
The Energy Cost of Cryptographic Key Establishment in
Wireless Sensor Networks∗

Johann Großschädl
jgrosz@iaik.tugraz.at

Alexander Szekely
aszekely@iaik.tugraz.at

Stefan Tillich
stillich@iaik.tugraz.at

Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, A–8010 Graz, Austria

ABSTRACT
Wireless sensor nodes generally face serious limitations in
terms of computational power, energy supply, and network
bandwidth. Therefore, the implementation of effective and
secure techniques for setting up a shared secret key between
sensor nodes is a challenging task. In this paper we analyze
and compare the energy cost of two different protocols for
authenticated key establishment. The first protocol employs
a “light-weight” variant of the Kerberos key distribution
scheme with 128-bit AES encryption. The second protocol
is based on ECMQV, an authenticated version of the elliptic
curve Diffie-Hellman key exchange, and uses a 256-bit prime
field GF(p) as underlying algebraic structure. We evaluate
the energy cost of both protocols on a Rockwell WINS node
equipped with a 133 MHz StrongARM processor and a 100
kbit/s radio module. The evaluation considers both the pro-
cessor’s energy consumption for calculating cryptographic
primitives and the energy cost of radio communication for
different transmit power levels. Our simulation results show
that the ECMQV key exchange consumes up to twice as
much energy as the Kerberos key distribution. However, in
large-scale networks, ECMQV is more energy-efficient than
Kerberos.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General
—Security and Protection; E.3 [Data]: Data Encryption.

General Terms
Algorithms, Design, Performance, Security.

Keywords
Wireless networking, security protocols, cryptography, key
establishment, energy evaluation.

1. INTRODUCTION
Wireless sensor networks are, in general, more vulnerable

to attacks and unauthorized access than traditional (wired)
networks. The security threats stem primarily from two key
characteristics of wireless sensor networks. First, the sensor
nodes are often deployed in hostile environments where they

∗The research described in this paper has been supported
by the Austrian Science Fund (FWF) under grant number
P16952-NO4 and by the European Commission under grant
number FP6-IST-033563 (project SMEPP).

can be easily captured, compromised, or manipulated by an
adversary. Second, the use of radio waves as data trans-
mission medium enables an adversary to eavesdrop on the
communication, inject false messages, and replay or change
old messages. This multitude of threats calls for effective
protection mechanisms. However, the “traditional” security
architectures used in wired networks are not directly appli-
cable to wireless sensor networks because of the resource
constraints of sensor nodes, most notably limited energy
supply, computational power, and network bandwidth.

In the recent past, a multitude of security architectures
and protocols have been proposed to increase the resistance
against the aforementioned attacks, taking the special char-
acteristics of wireless sensor networks into account [19]. Key
management and authentication are the two most essential
security services to maintain the proper operation of a
sensor network. The establishment of a shared secret key be-
tween a pair of nodes is the basis for other security services
such as encryption. A simple approach for key establishment
is to load one or more secret keys onto each sensor node prior
to deployment. Most practical security protocols based on
pre-deployed keying use either a single network-wide key
shared by all nodes [10] or a set of keys randomly chosen
from a key pool such that two nodes will share (at least)
one key with a certain probability [7]. These protocols are
easy to implement and entail only little overhead since no
complex key agreement has to be performed. However, most
protocols based on pre-deployed keys have disadvantages
regarding scalability and vulnerability to node capture.

1.1 Key Establishment Protocols
Key establishment in sensor networks can also be realized

with protocols where the nodes set up a shared secret key
after deployment, either through key transport or key agree-
ment [13]. A key transport protocol is a protocol where one
entity creates or otherwise obtains a secret key and transfers
it securely to the other entity (or entities). Key agreement
refers to a mechanism or protocol where all participating
entities contribute a random input which is used to derive a
shared secret key. The advantage of key agreement over key
transport is that no entity can predetermine the resulting
key as it depends on the input of all participants.

In practice, many key establishment protocols involve a
so-called trusted third party or trusted authority to set up a
shared key between two entities. Examples of such protocols
include the Needham-Schroeder protocol [15], the Kerberos
key distribution protocol [11], and the SPINS node-to-node
key establishment protocol [16]. All these protocols build on

secret-key cryptography (symmetric encryption) and need a
trusted party (in the following abbreviated as T) with which
each entity shares a long-term secret key a priori, i.e. the
long-term key is pre-distributed over a secure channel. The
entities use T to prove their identity (authentication) or to
generate and transmit a session key that allows two entities
to securely communicate with one another. Depending on
the protocol, T either provides the session key by itself or
makes a session key generated by one entity available to the
other by encrypting it with the long-term key shared with
the latter.

Key agreement (or key exchange) protocols do not rely on
a third party to set up a shared secret key. Instead, they
allow two entities to directly establish a key by exchanging
messages over an insecure communication channel. Another
difference between T -based key establishment (Kerberos)
and key agreement is that the latter does not require a
pre-distribution of keying material, and hence it also works
for entities which have never met in advance or do not
possess a secret key with a trusted third party. Most practi-
cal protocols for key agreement use asymmetric techniques
(i.e. public-key cryptosystems). A well-known example of a
protocol providing non-authenticated key agreement is the
Diffie-Hellman protocol [6], which can be designed around a
multiplicative group of integers modulo a large prime or an
additive group of rational points on an elliptic curve defined
over a finite field [2, 8]. The security of the Diffie-Hellman
cryptosystem relies on the presumed hardness of the discrete
logarithm problem (DLP) in a group of large order.

1.2 Contributions of this Paper
While the recent literature contains a number of papers

about key establishment protocols for wireless sensor and
ad-hoc networks (see [19] and the references therein), only
very few of these actually analyze and compare the pros and
cons of different protocols. Especially the energy-efficiency
of key establishment protocols has not been widely explored
until now. The only relevant publications we are aware of are
[4], [9], [17], and [24]; the former two compare the overall en-
ergy cost of Kerberos key establishment and Diffie-Hellman
key agreement. It was concluded in [9] that key agreement
protocols using public-key cryptography (e.g. elliptic curve
systems) require between one and two orders of magnitude
more energy than a Kerberos-like protocol.

The high energy requirements of public-key algorithms
reported in [4, 9] have raised serious concerns about their
feasibility in wireless sensor networks. However, it must be
considered that the experiments documented in [4] and [9]
were conducted in 2000 and 2002, respectively, and since
then, enormous progress has been made in the efficient im-
plementation of public-key cryptography, especially elliptic
curve cryptography [8]. This progress makes it necessary to
completely re-evaluate the energy requirements of elliptic
curve cryptosystems. In the present paper we demonstrate
that the energy cost of elliptic curve cryptography—when
implemented with state-of-the-art algorithms—is far lower
than reported in previous work. Our experimental results
clearly show that key exchange protocols using elliptic curve
systems are feasible for wireless sensor networks. Even more
important, we found that, in large sensor networks, elliptic
curve-based key exchange may actually require less energy
than Kerberos key distribution.

1.3 Methodology and Tools
We conducted our evaluation of the energy cost of cryp-

tographic key establishment on a WINS sensor node from
Rockwell Scientific [1]. The WINS node is equipped with a
133 MHz StrongARM processor and features a 100 kbit/s
radio module. Our motivation for using this specific sensor
node is twofold. First, we wanted to use the same node as
the authors of [4] and [9] so that we can directly compare
the results and, in this way, demonstrate the progress in
public-key cryptography in recent years. The second reason
for choosing the WINS node is because ARM processors
have a considerable market share in the embedded systems
field. Besides the WINS node, ARM processors are used in
a number of other sensor nodes like the Intel iMote or the
Sun SPOT. In addition, various PDAs and mobile phones
have (Strong)ARM processors. Therefore, we hope that our
study of the energy cost of key establishment protocols will
be useful not only for the sensor network community, but
also for researches in other fields like mobile computing.

Our evaluation of key establishment protocols considers
both the energy that the StrongARM consumes during the
execution of cryptographic algorithms and the energy cost
of radio communication. We used the energy characteristics
of the WINS node reported in [20], upon which the node’s
average power consumption is 360 mW when the processor
is active. The energy required for the calculation of cryp-
tographic primitives is simply the product of the average
power consumption and the execution time. We determined
the execution time of the cryptographic primitives through
simulations with SimIt-ARM, a cycle-accurate instruction
set simulator for the StrongARM [18]. The main advantage
of a simulation-based energy evaluation is that the results
can be easily re-produced, even by researchers who do not
have access to a “real” WINS node.

2. THE ENERGY COST OF CRYPTOGRA-
PHIC KEY ESTABLISHMENT

The overall energy cost of a key establishment protocol is
not only determined by energy required for calculating cryp-
tographic primitives, but also by the energy cost of radio
communication between the involved parties. Raghunathan
et al [20] analyzed the power consumption characteristics
of modern sensor nodes and found out that, depending on
the operating modes of the node’s components, the wireless
transmission of data can account for a major portion of the
total energy consumption. For example, the WINS sensor
node [1] from Rockwell Scientific consumes between 1500
and 2700 times more energy for the transmission of one bit
over the RF module than for the execution of an instruction
on the node’s processor unit (the exact factor depends on
the transmit power level).

Kerberos and similar key establishment protocols using
a trusted third party have the advantage that they can be
implemented solely with secret-key primitives, and hence do
not require to perform computation-intensive (and battery-
draining) cryptographic computations. The penalty of these
protocols is the three-way communication since two entities
wishing to set up a secret key do not only transmit messages
to each other but also to the trusted authority. Thus, the
communication energy cost of Kerberos-like protocols is typ-
ically much higher than the energy required for calculating
cryptographic primitives [4]. On the other hand, the relation

between communication energy and computation energy is
completely different for key agreement protocols using pub-
lic-key cryptography. The Diffie-Hellman protocol requires
to perform computation-intensive (and hence energy-costly)
arithmetic operations like exponentiation in a multiplicative
group or scalar multiplication in an additive group, whereby
the group order is at least 1024 bits for the former and 160
bits for the latter, respectively. Regarding communication
energy cost, the Diffie-Hellman protocol has the advantage
that the two entities participating in the key establishment
process communicate directly with each other, i.e. there is
no third party involved. In summary, the Diffie-Hellman
key exchange is characterized by high energy consumption
for calculating cryptographic primitives, but relatively low
communication energy cost [9].

2.1 Simulation Results from Previous Work
Carman et al [4] conducted an extensive study of crypto-

graphic primitives and security protocols for wireless sensor
networks, including an energy analysis of various public-key
cryptosystems like RSA and DSA. They found out that the
energy cost for generating a 1024-bit RSA signature is about
15 mJ on a Rockwell WINS sensor node [1] equipped with
a 133 MHz StrongARM processor. This result was achieved
by applying the Chinese Remainder Theorem (CRT) for the
modular exponentiation1. Consequently, it can be estimated
that the energy cost of a 1024-bit modular exponentiation
without CRT, such as required for the Diffie-Hellman key
exchange, is approximately 60 mJ on the StrongARM. The
energy consumption for transmitting a 1024-bit data block
using the WINS radio subsystem operating at 10 kbit/s and
10 mW transmit power is roughly 21.5 mJ on the sending
node and 14.3 mJ on the receiving node, respectively [4]. In
other words, the computation energy cost is nearly twice the
communication energy cost. For comparison, encrypting a
128-bit block of data with a symmetric algorithm like the
Advanced Encryption Standard (AES) needs only 2.17 µJ
on the StrongARM, which is virtually negligible in relation
to the afore-mentioned energy values.

Hodjat and Verbauwhede [9] analyzed and compared the
energy cost of elliptic curve Diffie-Hellman (ECDH) key-
exchange and Kerberos-like key establishment on a Rockwell
WINS node. The energy consumption of the ECDH protocol
was evaluated for three different key lengths: 128, 192, and
256 bits. Accordingly, Hodjat and Verbauwhede used the
binary extensions fields GF(2128), GF(2192), and GF(2256)
as underlying algebraic structure for the elliptic curves. On
the WINS node, the average energy cost for computing a
point multiplication2 is 300 mJ, 1070 mJ, and 2340 mJ for
the 128-bit, 192-bit, and 256-bit field, respectively. When
considering both the computation and the communication
energy cost, the ECDH key exchange requires 1213.7 mJ,
4296.0 mJ, and 9378.3 mJ for a key length of 128, 192, and
256 bits, respectively. Hodjat and Verbauwhede also ana-
lyzed the energy consumption of a simplified variant of the
Kerberos key distribution using AES encryption. The over-
all energy cost was estimated to be less than 140 mJ (for

1Using the CRT allows to split a 1024-bit modular expo-
nentiation into two 512-bit exponentiations, which reduces
both the execution time and energy by a factor of four.
2A point multiplication is the fundamental operation of all
elliptic curve cryptosystems, comparable to modular expo-
nentiation in “traditional” cryptosystems like RSA.

128, 192, and 256-bit keys), whereby the energy needed for
AES encryption/decryption is almost negligible in relation
to the communication energy cost.

Since the security of a 256-bit elliptic curve cryptosystem
corresponds to the security of 128-bit AES encryption, it
can be concluded that, for comparable security levels, the
ECDH key agreement requires about 67 times more energy
than the Kerberos-like key transport protocol.

3. LIGHTWEIGHT KERBEROS PROTO-
COL WITH SHORT MESSAGES

Kerberos is a network authentication system that uses
a trusted third party (or trusted authority) to authenticate
two entities (i.e. to prove their identity to one another) by
issuing a shared session key between them [11]. This idea
is originally due to Needham and Schroeder and was first
published in [15]. Roughly speaking, Kerberos extends the
Needham-Schroeder protocol by using timestamps and life-
times to indicate the freshness of a message, which helps to
prevent replay attacks. The primary purpose of Kerberos is
to authenticate clients and servers in a network; the estab-
lishment of a shared key is a side effect. Kerberos can be
implemented with secret-key cryptography and is relatively
easy to manage due to its centralized design. On the other
hand, Kerberos is less scalable than key agreement protocols
using public-key cryptography.

Each entity on the network shares a long-term secret key
with the trusted third party (in the following abbreviated
by T), which enables the entities to verify that messages
from T are authentic. Similarly, knowledge of the long-term
key also serves to prove an entity’s identity to T . To set up a
shared key between two entities A and B, the trusted third
party T generates a session key and securely delivers it to
A and B encrypted in the long-term key that T shares with
A and with B, respectively. Extraction of the session key
is only possible for the legitimate entities which possess the
corresponding long-term key. Thus, by trusting T , entities
can authenticate each other (i.e. prove that they are who
they claim to be) and establish a session key.

In a sensor network, the long-term key that each node
shares with T is pre-deployed, but contrary to approaches
with a single network-wide key, each node has a unique key
and thus the capture of some sensors by an adversary does
not jeopardize the security of other sensors. The trusted
third party can be a single centralized entity (such as the
base station or a cluster head) or distributed among trusted
sensor nodes [4].

Kerberos, as specified in [11], is a full-featured protocol
originally designed for mutual client/server authentication
in “wired” networks. The messages exchanged in Kerberos
can have a payload of several kilobytes, which makes the
standard Kerberos protocol rather unpractical for use in
sensor networks where data transfer is extremely costly in
terms of energy consumption. Therefore, we introduce in
this section a lightweight version of the original Kerberos
protocol optimized for small messages. In a nutshell, our
lightweight key establishment protocol can be described as
“simplified Kerberos without ticket granting service.” Fig-
ure 1 illustrates the message transfers between entity A and
B and the trusted third party T , assuming that A wishes to
establish a session key with entity B. Both A and B share
a long-term secret key with T , similar to the conventional
Kerberos protocol.

T

A B

1.
 A

S_R
E
Q

2.
 A

S_R
E
P

3. AP_REQ

4. AP_REP

1. AS_REQ: A, B, n
A

2. AS_REP: {

k

AB
, B, t

S
, t

E
, n

A
}

k

AT
 , {

k

AB
, A, t

S
, t

E
}

k

BT

3. AP_REQ:

{

k

AB
, A, t

S
, t

E
}

k

BT
 , {

A, t

A
}

k

AB

4. AP_REP: {

t
A

}

k

AB

Figure 1: Simplified Kerberos protocol exchange (an
expression of the form {X} k means that message X
is encrypted using the key k.

In the first message (AS REQ) entity A asks the trusted
third party T for a session key that enables A to securely
communicate with B. Thereupon, T generates a session key
kAB and assembles a reply message (AS REP) consisting
of a ticket and other data as illustrated in Figure 1. The
ticket contains the freshly generated session key kAB and is
encrypted in the long-term key kBT shared between B and
T . Besides the ticket, the AS REP message also includes
the session key kAB in a form readable by A, i.e. encrypted
in the long-term key kAT shared between A and T . Having
received AS REP, entity A decrypts the non-ticket portion
of the message to obtain the session key kAB . Next, A pro-
duces an authenticator, encrypts it using the key kAB , and
sends it along with the ticket to entity B (message AP REQ
in Figure 1). Entity B first decrypts the ticket using its
long-term key kBT and extracts the session key kAB . The
session key enables B to decrypt the authenticator from the
AP REQ message, which, if successful, proves A’s identity
since only a legitimate entity possessing kAB can generate
a valid authenticator. Finally, message AP REP, sent from
B to A, confirms B’s true identity and completes the mutual
authentication.

Besides session key, ticket, and authenticator, the mes-
sages sent in our lightweight Kerberos protocol also include
other data like node IDs, nonces, timestamps, or expiration
times in order to guarantee a message’s freshness and to
prevent replay attacks. However, all these fields increase the
length of a message and, consequently, the energy required
for its transmission. Appendix A contains a more detailed
description of the messages and the rationale behind their
content. Though our lightweight Kerberos is similar to the
standard Kerberos protocol, we feel that it is necessary to
describe all messages in detail to help the reader understand
the evaluation of the communication energy cost which we
conduct in Section 5.

4. AUTHENTICATED DIFFIE-HELLMAN
KEY EXCHANGE

The primary advantage of Kerberos-like protocols is that
they can be implemented with secret-key cryptosystems and
hence do not require to perform computation-intensive and
energy-costly public-key algorithms. However, the Kerberos

protocol relies on the sensor nodes’ ability to communicate
with the trusted third party (base station) during the key
establishment process. On the other hand, Diffie-Hellman
key exchange [6] does not involve a third party to establish
a secret key between two entities, which reduces the commu-
nication overhead. The Diffie-Hellman protocol allows two
entities to jointly generate a shared secret key by exchanging
messages directly with each other.

The Diffie-Hellman key exchange can be embedded into
any cyclic group in which the discrete logarithm problem
(DLP) is hard. Well-known examples of such groups are the
multiplicative group Z∗p and the additive group of points
defined by an elliptic curve over a finite field [8]. The elliptic
curve Diffie-Hellman (ECDH) has a number of advantages
over the standard Diffie-Hellman in Z∗p, including a “higher
security per bit” (i.e. shorter keys) and a multitude of im-
plementation options. Appendix B summarizes the basics
of Diffie-Hellman as well as ECDH key exchange and gives
a brief introduction to elliptic curve cryptography. A more
detailed discussion of these topics can be found in [2, 8].

The Diffie-Hellman key exchange in its original form, as
described in Appendix B, does not authenticate the entities
A and B, and is therefore vulnerable to man-in-the-middle
attacks [13]. A straightforward way to authenticate A and
B to each other is to sign the two messages in the Diffie-
Hellman key exchange. However, the problem with signed
Diffie-Hellman is that it is wasteful in bandwidth since a
signature needs to be attached to the messages transferred
between A and B. An alternative approach is to keep the
message flow as in the original Diffie-Hellman protocol, but
change the way in which the shared key is derived with the
goal to provide implicit authentication. Typical examples
of key exchange protocols with implicit authentication are
the Menezes-Qu-Vanstone (MQV) protocol, and its elliptic
curve variant, the ECMQV protocol [12]. Both are exten-
sions of the standard Diffie-Hellman protocol.

In the ECMQV protocol each entity is assumed to have
both a static (i.e. long-term) public/private key pair and an
ephemeral (i.e. short-term) key pair. The static key pair is
valid for a certain period of time, whereas new ephemeral
keys are generated for each run of the protocol. A shared
secret is derived using the static keys and the ephemeral
keys, which guarantees that each protocol run between two
entities A and B produces a different shared secret. In what
follows, we assume that every entity of the network knows
the elliptic curve domain parameters p, α, β, n, and G (an
explanation of the parameters is given in Appendix B). The
static key of entity A consists of a random number a and
the point S = a ·G, whereby the former is the secret part
and the latter the public part of the key pair (a, S). Entity
B has the static key pair (b, T) consisting of the secret key
b and the public key T = b ·G. The entities participating in
the ECMQV protocol first exchange the public part of their
static keys, i.e. entity A sends S to B, and entity B sends
T to A. However, the static keys are long-term keys which
are generated only once, for example during the initializa-
tion phase of the network. Therefore, the generation and
transmission of the public parts S and T does not fall into
account in the actual ECMQV key establishment process
described below.

After having exchanged the public parts of their static
keys, entity A and B perform the following steps to agree on
a shared secret [3]. First, entity A generates the ephemeral

key pair (c, U), whereby U = c ·G, and entity B generates
the ephemeral key pair (d, V) with V =d ·G. They exchange
the public parts of these ephemeral keys as in the standard
ECDH protocol, i.e. entity A sends U to B, and entity B
sends V to A. Hence, the messages sent between A and B
are exactly the same as in the ECDH protocol. After this
exchange, entity A knows its own secret keys a, c, and the
public keys S, T , U , and V . On the other hand, entity B
knows b, d, S, T , U , and V . The shared secret K is then
determined by entity A as specified in Algorithm 1 [3].

Algorithm 1: ECMQV key derivation for entity A.

Input: Elliptic curve domain parameters p, α, β, n, G, the
secret keys a, c, and the public keys S, T , U , V .

Output: A secret point K ∈ E shared with the entity with
public static key T .

1: m← dlog2(n)e/2 {m is the half bitlength of n}
2: uA ← (ux mod 2m) + 2m {ux is the x-coordinate of U}
3: sA ← (c + uAa) mod n {implicit signature}
4: vA ← (vx mod 2m) + 2m {vx is the x-coordinate of V }
5: zA ← sAvA mod n
6: K ← sA · V + zA · T

Entity B can also compute the same value of K by simply
swapping the occurrence of (a, c, T , U , V) in Algorithm 1
with (b, d, S, V , U). Thus, entity B obtains

uB = (vx mod 2m) + 2m and vB = (ux mod 2m) + 2m

whereby vx and ux denote the x-coordinate of the elliptic
curve points V and U , respectively. It can be easily observed
that uB = vA and vB = uA. Since sB = (d + uBb) mod n
and zB = sBvB mod n, entity B gets the following value
for the shared secret K.

K = sB ·U + zB ·S = sB · (U + vB ·S) = sB · (U + uA ·S)

= sB · (c ·G + uAa ·G) = sB · (c + uAa)·G = sBsA ·G

Similarly, it can be shown that the secret K computed by
entity A (i.e. the quantity sA · V + zA · T) is nothing else
than sAsB ·G, which proves that A and B possess the same
secret value K.

The quantity sA = (c + uAa) mod n used in Algorithm 1
can be viewed as an implicit signature for A’s ephemeral
public key U . It is a “signature” in the sense that the private
keys a and c are necessary to compute sA, and thus only
entity A is able to generate this signature. The signature is
“implicit” in the sense that entity B indirectly verifies its
validity by using sA ·G = (U + vB · S) to derive the shared
secret K (see above equations). Similarly, sB serves as an
implicit signature for B’s ephemeral public key V . These
implicit signatures allow to achieve mutual authentication
in the ECMQV key exchange [8].

Computational Cost of ECMQV Key Exchange
Entity A and entity B generate a new ephemeral key pair for
each run of the ECMQV protocol, which requires them to
perform a scalar multiplications k · P in order to obtain the
ephemeral public keys. The simplest algorithm for compu-
ting k ·P is the left-to-right binary method (Algorithm 3.27
in [8]), which is also called double-and-add method because
it produces the result through a sequence of point doublings
and additions, respectively. Given a scalar k consisting of
m = dlog2(k)e bits, the double-and-add method performs

exactly m point doublings, whereas the number of point
additions depends on the Hamming weight of k. When the
scalar k is converted into the non-adjacent form (NAF), the
computation of k · P requires m point doublings, and, on
average, m/3 point additions (see [8] for details).

Algorithm 2: Multiple point multiplication.

Input: The points P, Q ∈ E, scalar k = (km−1, . . . , k1, k0)2
and scalar l = (lm−1, . . . , l1, l0)2.

Output: R = k · P + l ·Q.
1: Z ← P + Q
2: R← O
3: for i from m− 1 down to 0 do
4: R← R + R {point doubling}
5: if (ki = 1) and (li = 0) then R← R + P end if
6: if (ki = 0) and (li = 1) then R← R + Q end if
7: if (ki = 1) and (li = 1) then R← R + Z end if
8: end for
9: return R

In order to derive the shared secret K, entity A and entity
B have to accomplish an operation of the form k · P + l ·Q
(see Algorithm 1). This operation, which is called multiple
scalar multiplication or multiple point multiplication, has
an impact on the overall computational cost of the ECMQV
key exchange. The naive approach to obtain k · P + l ·Q is
to compute the point multiplications k · P and l ·Q sepa-
rately, followed by an addition of the results. However, the
multiple scalar multiplication k · P + l ·Q can be performed
much faster when the doublings are combined as shown in
Algorithm 2. The idea of this “simultaneous” multiple point
multiplication is originally due to E. Straus [23], but often
referred to as Shamir’s trick in the literature.

Algorithm 2 performs m point doublings when m is the
bitlength of the scalars k and l. The number of additions
depends on the joint Hamming weight of k and l. However,
when the scalars k and l are represented in the joint sparse
form (JSF) [22], the multiple point multiplication can be
accomplished with m/2 additions on an average. Thus, the
computation of k · P + l ·Q requires about 17% more point
additions than an ordinary scalar multiplication k ·P , while
the number of point doublings is identical.

In summary, the ECMQV key exchange is only slightly
more computation-intensive than ECDH. Every run of the
ECMQV protocol requires exactly the same bandwidth as
the unauthenticated ECDH key exchange, provided that the
public parts of the static keys have already been transferred
to the other entity.

5. EXPERIMENTAL RESULTS
Sensor nodes are battery driven and hence operate on a

strictly limited power budget. The results from previous
work [4, 9] show that the overall energy consumption of key
establishment protocols depends on the energy required for
computing cryptographic primitives and the energy needed
for the transmission of messages between sensor nodes. In
this section we analyze and compare the energy demands
of Kerberos-like key distribution and ECDH/ECMQV key
exchange, taking into account both the computation and
communication energy cost. Our evaluation is based on the
power and energy characteristics of the WINS sensor node
developed by Rockwell Scientific [1].

Processor Sensor Radio mode Power

Tx, Power: 36.3mW 1080.5 mW
Tx, Power: 10.0mW 910.9 mW

Active On
Tx, Power: 0.96mW 787.5 mW
Tx, Power: 0.12mW 771.1 mW

Active On Rx 751.6 mW

Active On Idle 727.5 mW

Active On Sleep 416.3 mW

Active On Removed 383.3 mW

Idle On Removed 64.0 mW

Active Rmvd. Removed 360.0 mW

Table 1: Power characteristics of the WINS node.

The WINS node has a modular design and consists of a
power supply module, a processor module equipped with
a StrongARM SA-1100 processor clocked at 133 MHz, a
100 kbit/s radio module capable of operating at different
transmit power levels ranging from 1 mW to 100 mW, and
a sensor module with an acoustic or seismic sensor. Table 1
is taken from [20] and shows that the overall power con-
sumption of the WINS node depends heavily on the radio
module’s and the processor’s mode of operation. The sensor
module has a constant power consumption of 23 mW when
it is active.

5.1 Evaluation of Computation Energy
In light of the energy constraints of sensor nodes, it is very

important to consider the computational energy cost of the
cryptographic primitives. The amount of energy consumed
by a primitive on a given processor can be determined as the
product of the processor’s average power consumption and
the time required to execute the primitive. Thus, in order
to evaluate the computation energy cost of a cryptographic
primitive, we have to determine its exact execution time
(e.g. through measurements or with help of a cycle-accurate
instruction set simulator like SimIt-ARM [18]) and then
calculate the energy as mentioned before.

The amount of power drawn by the StrongARM SA-1100
processor depends on its mode of operation (active, idle, or
sleep). When clocked with a frequency of 133 MHz, the
StrongARM consumes, on average, about 360 mW in active
mode, 40 mW in idle mode, and less than 1 mW in sleep
mode. It was reported in [21] that the StrongARM’s power
consumption is largely dominated by a common overhead
(caches, buses, clock tree, decode logic, etc.) and can, as a
first order approximation, be regarded as uniform and inde-
pendent of the executed instructions. Therefore, we simply
use the value of 360 mW to evaluate the energy consumed
by a cryptographic primitive.

5.2 Evaluation of Communication Energy
In addition to consuming energy through computational

processing, security protocols also consume energy due to
the transmission of messages. The communication energy
depends on the distance between sending and receiving node
(which determines the transmit power level) and the time
required for sending the message, whereby the latter is pro-
portional to the message length and indirectly proportional
to the transmission rate. Furthermore, it must be considered
that the transmission of messages consumes energy not only
on the sending node, but also on the receiving node.

The radio module of the WINS sensor node can operate
in four distinct modes: transmit, receive, idle, and sleep. In
general, the radio module consumes significantly less power
in sleep mode than when idle listening or sending/receving
data. The radio module also supports different transmit
power levels, thereby enabling the use of power-optimized
communication algorithms.

To save energy, both the processor and the radio module
should be in sleep mode when not transmitting or receiving
data. A WINS node sending data with a transmit power
of 0.12 mW has an overall power consumption of about
771.1 mW (see Table 1). The overall power consumption in-
creases to 1080.5 mW for a transmit power of 36.3 mW. On
the other hand, when the radio module operates in receive
(Rx) mode, the WINS node consumes about 751.6 mW.

The amount of energy spent to send or receive a given
number of bits is proportional to the transmission time and
hence to the transmission rate. Given the 100 kbit/s trans-
mission rate of the WINS radio module, the transmission
of one bit of data requires an energy of between 7.71 µJ and
10.8 µJ on the sending node, and 7.52 µJ on the receiving
node, respectively. The overall energy cost for transmitting
(i.e. sending and receiving) a single bit of data ranges from
15.2 µJ to 18.3 µJ, whereby the exact value depends on the
transmit power level.

5.3 Energy Analysis of Kerberos
The Kerberos protocol, as described in Section 3, requires

to send four messages between entity A, entity B, and the
trusted third party T . In order to determine the size of the
messages shown in Figure 1, we assume that node identifiers
(node IDs) and timestamps consist of 64 bits, whereas the
session key has a length of 128 bits. Furthermore, we count
32 bits for the nonce nA that is part of both the AS REQ
and AS REP message. The second column of Table 2 shows
the number of bits for the different messages.

Message Length Blk. Tot. length Energy

AS REQ 160 b – 160+256 b 6.33–7.62 mJ

AS REP 672 b 6 768+256 b 15.6–18.8 mJ

AP REQ 448 b 4 512+256 b 11.7–14.1 mJ

AP REP 64 b 1 128+256 b 5.85–7.04 mJ

All msgs. 1344 b 11 2592 b 39.5–47.5 mJ

Table 2: Communication energy cost of Kerberos.

However, it must be considered that all messages except
AS REQ are AES-encrypted, and since the AES operates
on 128-bit blocks, we have to pad each message until its
bitlength is a multiple of 128. Besides the actual payload,
each message also contains other information like a protocol
ID, a message ID, a checksum as reliable indicator of data
integrity3, as well as low-level (MAC and PHY) headers and
footers consisting of network addresses and other bookkeep-
ing data. We assume that this “overhead” contributes 256
bits to a message4. The fourth column of Table 2 shows the

3The IEEE 802.15.4 (ZigBee) standard uses a message in-
tegrity code (MIC), which can be 32, 64, or 128 bits long.
4For comparison, the IEEE 802.15.4 standard specifies that
a data frame can have a payload of up to 816 bits, and the
overhead due to the PHY header and the MAC header and
footer, respectively, is between 120 and 248 bits.

total length of each message, and the fifth column lists the
required energy for sending and receiving the message with
respect to different transmit power levels. It turns out that
the overall communication energy cost of the four Kerberos
messages ranges from 39.5 to 47.5 mJ, whereby the exact
value depends on the transmit power level.

As mentioned before, all messages except AS REQ are
AES-encrypted. The third column of Table 2 specifies the
number of 128-bit blocks constituting the payload of each
message. In summary, eleven encrypted 128-bit blocks are
transferred between the entities A, B, and T in each run
of the Kerberos protocol. However, it must be considered
that the ticket, which is part of both the AS REP and the
AP REQ message, is encrypted by T and decrypted by B,
i.e. entity A just forwards the encrypted ticket from T to
entity B. Therefore, only eight encryption and decryption
operations on 128-bit blocks have to be carried out, given
that the ticket consists of three 128-bit blocks.

The AES encryption of a single 128-bit block of data using
a 128-bit key requires approximately 2109 clock cycles on
the StrongARM, whereas the decryption of a single block
takes 2367 cycles, and the key scheduling requires some 670
clock cycles5. Given a clock frequency of 133 MHz, the cor-
responding energy values are 5.7 µJ (for encryption), 6.4 µJ
(decryption), and 1.8 µJ (key scheduling). In summary, the
encryption and decryption of eight 128-bit blocks requires
less than 0.1 mJ altogether.

Protocol Comp. Msg. transfer Total energy

Kerberos 0.1 mJ 39.5–47.5 mJ 39.6–47.6 mJ

ECMQV 51.8 mJ 27.2–32.8 mJ 79.0–84.6 mJ

Table 3: Energy analysis of Kerberos and ECMQV.

Putting it all together, we find that the overall energy cost
(i.e. computation and communication energy) of key estab-
lishment according to the Kerberos protocol is between 39.6
mJ and 47.6 mJ (see Table 3). The communication energy
constitutes the lion’s share of the overall energy, whereas
the computation energy is virtually negligible.

Other Factors Impacting the Communication Energy
A fundamental property of the Kerberos key establishment
is that entity A obtains a session key from the trusted third
party T through the AS REQ/AS REP message exchange.
The actual energy requirements of Kerberos also depend
on whether the energy-rich base station or a conventional
(energy-constrained) sensor node implements the trusted
third party. In the former case, assuming that the base sta-
tion has an unlimited energy store, the energy for receiving
the AS REQ message and for sending the AS REP message
does not need to be considered, which reduces the overall
energy cost by almost 30% (from 39.6-47.6 mJ to 28.6-33.4
mJ). On the other hand, there exist also protocols where a
conventional sensor node plays the role of the trusted third
party, and, in this case, the energy for receiving/sending the
AS REQ/AS REP message must be taken into account. An
example for such a protocol is PIKE [5], which combines the
basic ideas of random key pre-distribution and Kerberos-like
key establishment.

5All cycle counts have been evaluated by simulations with
SimIt-ARM [18], a cycle-accurate StrongARM simulator.

nodes Total energy

0 39.6–47.6 mJ

1 61.5–73.9 mJ

2 83.4–100.3 mJ

3 105.3–126.7 mJ

4 127.2–153.0 mJ

5 149.0–179.4 mJ

6 170.9–205.7 mJ

Table 4: Total energy of Kerberos depending on the
number of intermediary nodes between A and T .

Our energy analysis of the Kerberos protocol shown in
Table 3 is based on the assumption that entityA can directly
send/receive messages to/from the third party T , i.e. A is
within communication distance of T and vice versa. While
this is a reasonable assumption for small sensor networks, it
is almost never the case in a large network where the sensor
nodes may be located far away from the base station. The
communication energy cost of Kerberos depends not only on
the transmit power level, but also on the number of inter-
mediary nodes between A and T . Multi-hop communication
between A and T increases overall energy consumption since
any intermediary node has to forward (i.e. receive and re-
transmit) the message to its neighbor located on the route
to the final destination. Table 4 summarizes the overall
energy cost of Kerberos key establishment depending on the
number of intermediary nodes between A and T (we assume
that A and B have no intermediary nodes).

According to the results in Table 3 and 4, our lightweight
Kerberos protocol is more energy efficient than ECMQV
when A is within direct communication distance to T or
when at most one intermediary node lies between them. On
the other hand, ECMQV requires less energy than Kerberos
if the communication between A and T passes through two
or more hops, which is almost always the case in a large
sensor network.

Other Factors Impacting the Computation Energy
State-of-the-art RF modules compliant to the IEEE 802.15.4
standard feature an AES hardware engine to reduce the en-
ergy consumption of encryption/decryption operations. Un-
fortunately, performing AES in hardware instead of software
has virtually no impact on the overall energy of the Kerberos
protocol since the communication energy is orders of magni-
tude higher than the computation energy.

5.4 Energy Analysis of ECDH/ECMQV
The conventional (unauthenticated) ECDH protocol is a

two-pass protocol, which means that two message transfers
are necessary to establish a shared secret key. Each run of
the ECMQV protocol also requires the transmission of two
messages, provided that the public parts of the static keys
have already been exchanged (see Section 4). The payload
of these messages consists of the x and y coordinate of the
elliptic curve point that represents the public part of the
ephemeral key. Both coordinates amount to 512 bits when
using a 256-bit field as underlying algebraic structure6. We

6We use a 256-bit field to evaluate the energy requirements
of the ECMQV protocol since a properly selected 256-bit
elliptic curve system provides the same level of security as
a symmetric algorithm like AES with a 128-bit key [14].

also include the identities (IDs) of the two entities A and B
involved in the key exchange, which increases the payload
of each message to 640 bits. In addition, we count for each
message an overhead of 256 bits for protocol ID, message
ID, checksum, and low-level (i.e. MAC and PHY) headers
and footers, respectively. Thus, we have to transmit 896 bits
from entity A to entity B, and the same amount in the op-
posite direction, which results in an overall communication
energy of between 27.2 mJ and 32.8 mJ for both messages
(the exact value depends on the transmit power level).

Key exchange protocols using public-key primitives, such
as ECDH and ECMQV, are very computation-intensive in
relation to Kerberos. Each of the two entities participating
in ECDH key exchange has to compute two standard point
multiplications of the form k · P , while ECMQV requires
each entity to compute a standard point multiplication (for
the generation of the ephemeral public key) and a multiple
point multiplication of the form k · P + l ·Q (to derive the
shared secret according to Algorithm 1). The computation
time and energy of the point multiplications carried out in
ECDH/ECMQV depends heavily on the group order, and
hence on the order of the underlying finite field.

We have selected a 256-bit prime field for the evaluation
of ECMQV in order to match the security level of Kerberos
with 128-bit AES encryption. More precisely, we have used
the prime field GF(p) defined by the generalized-Mersenne
prime p = 2256− 2224+ 2192+ 296− 1, in combination with
the elliptic curve P-256 as specified in the NIST standard
186-2 [14]. Our implementation performs the multiplication
of field elements and the modular reduction according to
Algorithm 2.10 and 2.29 in [8]. Furthermore, we have used
Algorithm 3.21 and 3.22 to implement the doubling and the
addition of points, respectively.

A point multiplication k · P on the P-256 curve requires
to carry out 256 doublings and 85 additions on basis of the
double-and-add method with NAF-representation of k. Our
simulation results show that the StrongARM executes a
point multiplication in about 4.25 · 106 clock cycles. The
multiple point multiplication (Algorithm 2) is 22% slower
(5.31 · 106 clock cycles) since 128 point additions have to
be performed on average when using the JSF. In summary,
the energy consumption of a point multiplication k · P is
roughly 11.5 mJ, whereas a multiple point multiplication
k · P + l ·Q consumes circa 14.4 mJ.

Table 3 shows the energy characteristics of the ECMQV
protocol. Each entity has to perform a point multiplication
and a multiple point multiplication, resulting in an overall
computation energy cost of 51.8 mJ. The communication
energy cost of ECMQV is only about one-half to two-third
of the computation energy cost.

Other Factors Impacting the Communication Energy
The communication energy cost of ECDH/ECMQV can be
reduced by applying a technique called point compression
[2]. Point compression allows to represent a point using the
minimum possible number of bits, which is attractive for
sensor networks since the transmission of data is relatively
expensive. A straightforward representation of a point P on
an elliptic curve over a prime field GF(p) requires m bits
for each the x and the y coordinate of P , resulting in 2m
bits altogether, whereby m = dlog2(p)e. The number of bits
can be reduced to m + 1 since, for a given x coordinate, the
Weierstraß equation (Equation 1 in Appendix B) is qua-

dratic in y and has at most two solutions. Consequently, a
single bit is sufficient to specify the y coordinate of a point
on the curve. Decompressing the point P , i.e. recovering the
y coordinate from x and the extra bit, requires to solve a
quadratic equation modulo p, which can be done according
to Algorithm II.8 in [2].

Unfortunately, the recovery of the y coordinate is highly
computation-intensive, and therefore a potential saving in
communication energy is, in part, nullified by an additional
demand for computation energy. According to our experi-
mental results, point compression does not allow to reduce
the overall energy cost of ECDH/ECMQV key exchange by
more than 10%.

Other Factors Impacting the Computation Energy
The execution time and energy requirements of both ECDH
and ECMQV can be substantially improved by applying an
advanced technique for (multiple) point multiplication. For
example, window methods or comb methods are faster than
the double-and-add method because they need fewer point
additions and/or doublings [8]. However, all these advanced
techniques have in common that they require pre-computa-
tion and storage of multiples of the base point P , which can
pose a problem if memory resources are at a premium. An
in-depth study of window/comb methods for point multi-
plication is outside of the scope of this paper. We refer the
interested reader to [8] and the references therein.

6. CONCLUSIONS
In this paper we analyzed and compared the energy cost

of Kerberos-like key establishment based on AES encryption
and a variant of the Diffie-Hellman key exchange (ECMQV)
using elliptic curve cryptography. We found that the overall
energy cost of the former is between 39.6 and 47.6 mJ, while
the latter requires an energy of between 79.0 and 84.6 mJ
(the exact value depends on the transmit power level). Con-
sequently, the energy consumption of ECMQVand Kerberos
differs by a factor of between 1.78 (for high transmit power)
and 2.0 (for low transmit power). Our analysis also shows
that the energy consumption of Kerberos is dominated by
the message transfers, whereas the energy required for the
encryption of data is negligible (see Table 3). In ECMQV
key exchange, on the other hand, the computation of cryp-
tographic primitives constitutes approximately 63% of the
overall energy consumption. All these results are based on
the energy characteristics of the WINS sensor node.

Our results differ significantly from the results of Hodjat
and Verbauwhede [9], who found that ECDH key exchange
may require between one and two orders of magnitude more
energy than Kerberos with AES encryption. The difference
between our results and the results in [9] can be explained by
the progress in the area of efficient implementation of elliptic
curve cryptography in recent years. It can be expected that
advances in elliptic curve cryptography will further narrow
the energy gap between public-key and secret-key protocols
in the future. Thus, we conclude that security protocols us-
ing public-key cryptography should no longer be considered
prohibitively expensive in terms of energy consumption.

Another important result of our work is that the (relative)
energy efficiency of key establishment protocols depends on
the size and of a sensor network. In Kerberos and similar
protocols (e.g. SPINS), the sensor node initiating the key
establishment process needs to communicate with a trusted

third party (typically the base station) in order to obtain a
session key. This communication is usually multi-hop with
other nodes working as routers, especially in large sensor
networks. Unfortunately, multi-hop communication is very
costly in terms of energy, making Kerberos unattractive
in relation to ECMQV. According to our results, ECMQV
requires less energy than the Kerberos protocol if the node
requesting the session key is two or more hops away from
the trusted third party.

7. ACKNOWLEDGEMENTS
The authors are grateful to Erkay Savaş and Ingrid Ver-

bauwhede for valuable comments on a draft version of this
paper.

8. REFERENCES
[1] J. R. Agre, L. P. Clare, G. J. Pottie, and N. P. Romanov.

Development platform for self-organizing wireless sensor
networks. In Unattended Ground Sensor Technologies and
Applications, vol. 3713 of Proceedings of SPIE, pp.
257–268. SPIE, 1999.

[2] I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic Curves
in Cryptography. Cambridge University Press, 1999.

[3] I. F. Blake, G. Seroussi, and N. P. Smart. Advances in
Elliptic Curve Cryptography. Cambridge University Press,
2005.

[4] D. W. Carman, P. S. Kruus, and B. J. Matt. Constraints
and Approaches for Distributed Sensor Network Security.
Technical Report #00-010, NAI Labs, Network Associates,
Inc., Glenwood, MD, USA, Sept. 2000.

[5] H. Chan and A. Perrig. PIKE: Peer intermediaries for key
establishment in sensor networks. In Proceedings of the
24th IEEE International Conference on Computer
Communications (INFOCOM 2005), vol. 1, pp. 524–535.
IEEE, 2005.

[6] W. Diffie and M. E. Hellman. New directions in
cryptography. IEEE Transactions on Information Theory,
22(6):644–654, Nov. 1976.

[7] L. Eschenauer and V. D. Gligor. A key-management
scheme for distributed sensor networks. In Proceedings of
the 9th ACM Conference on Computer and
Communications Security (CCS 2002), pp. 41–47. ACM
Press, 2002.

[8] D. R. Hankerson, A. J. Menezes, and S. A. Vanstone.
Guide to Elliptic Curve Cryptography. Springer Verlag,
2004.

[9] A. Hodjat and I. M. Verbauwhede. The energy cost of
secrets in ad-hoc networks. In Proceedings of the 5th IEEE
CAS Workshop on Wireless Communications and
Networking. IEEE, Sept. 2002.

[10] C. Karlof, N. Sastry, and D. Wagner. TinySec: A link layer
security architecture for wireless sensor networks. In
Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems (SenSys 2004), pp.
162–175. ACM Press, 2004.

[11] J. T. Kohl and B. C. Neuman. The Kerberos Network
Authentication Service (Version 5). Internet Engineering
Task Force, Networking Group, Internet Draft RFC 1510,
Sept. 1993.

[12] L. E. Law, A. J. Menezes, M. Qu, J. A. Solinas, and S. A.
Vanstone. An efficient protocol for authenticated key
agreement. Designs, Codes and Cryptography,
28(2):119–134, Mar. 2003.

[13] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[14] National Institute of Standards and Technology (NIST).
Digital Signature Standard (DSS). Federal Information
Processing Standards (FIPS) Publication 186-2, Feb. 2000.

[15] R. M. Needham and M. D. Schroeder. Using encryption for
authentication in large networks of computers.
Communications of the ACM, 21(12):993–999, Dec. 1978.

[16] A. Perrig, R. Szewczyk, V. Wen, D. E. Culler, and J. D.
Tygar. SPINS: Security protocols for sensor networks. In
Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking (MOBICOM 2001), pp.
189–199. ACM Press, 2001.

[17] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha.
Analyzing the energy consumption of security protocols. In
Proceedings of the 8th International Symposium on Low
Power Electronics and Design (ISLPED 2003), pp. 30–35.
ACM Press, 2003.

[18] W. Qin. SimIt-ARM (Release 2.1). Available for download
at http://simit-arm.sourceforge.net, 2002.

[19] C. S. Raghavendra, K. M. Sivalingam, and T. F. Znati.
Wireless Sensor Networks. Kluwer Academic Publishers,
2004.

[20] V. Raghunathan, C. Schurgers, S. Park, and M. B.
Srivastava. Energy-aware wireless microsensor networks.
IEEE Signal Processing Magazine, 19(2):40–50, Mar. 2002.

[21] A. Sinha and A. P. Chandrakasan. JouleTrack - A web
based tool for software energy profiling. In Proceedings of
the 38th Design Automation Conference (DAC 2001), pp.
220–225. ACM Press, 2001.

[22] J. A. Solinas. Low-weight binary representations for pairs
of integers. Technical Report CORR 2001-41, Centre for
Applied Cryptographic Research (CACR), University of
Waterloo, Waterloo, Canada, 2001.

[23] E. G. Straus. Addition chains of vectors. American
Mathematical Monthly, 71(7):806–808, Aug./Sept. 1964.

[24] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and
S. Chang Shantz. Energy analysis of public-key
cryptography for wireless sensor networks. In Proceedings
of the 3rd IEEE International Conference on Pervasive
Computing and Communication (PerCom 2005), pp.
324–328. IEEE Computer Society Press, 2005.

APPENDIX

A. DETAILED DESCRIPTION OF LIGHT-
WEIGHT KERBEROS

In this section we outline how our lightweight Kerberos
protocol produces a session key and give a brief description
of the messages sent between the entities. Let entity A be
the initiator of the key establishment process, and B shall
be the entity with which A wants to set up a unique session
key. We assume that both A and B possess a long-term key
with T , but do not initially share a secret key with each
other. Figure 1 illustrates the messages transferred between
A, B, and T in security protocol notation. For clarity, the
figure shows a simplified version of the messages to allow
focus on cryptographic aspects (several non-cryptographic
fields, such as network addresses, are omitted).

• The first message is the Authentication Server Request
(AS REQ) message, which is sent in plain text from
A to T . This message contains A’s own identity, the
identity of the entity B for which a shared key is re-
quested, and a randomly generated nonce nA that will
be used to associate reply messages with the matching
AS REQ request and to detect replays.

• Upon receipt of an AS REQ message, the trusted third
party T looks up entities A and B its database, verifies
that they are authorized to establish a session key, and
fetches the corresponding long-term keys kAT and kBT .
Then, T generates a new random session key kAB to

be shared by A and B and embeds it into a so-called
ticket. Besides the session key, the ticket also contains
the identity of the entity requesting the session key
(A in our example), and the ticket’s validity period
(lifetime), consisting of an expiration time tE and an
optional starting time tS . The ticket is encrypted using
the long-term key kBT only known by T and B, which
guarantees that nobody else can read or change the
identity of A specified within the ticket.

Next, T assembles a response, the AS REP message,
consisting of the ticket for A to present to B, the ses-
sion key kAB , the assigned expiration time tE after
which the session key is no longer valid, the identity
of the entity for which the ticket was created (B in
our example), and the nonce nA from the AS REQ
message. All elements except the ticket are encrypted
with the long-term key kAT shared between T and A
(in Kerberos version 4 also the ticket is encrypted in
kAT). The AS REP message provides entity A with
the session key kAB and the ticket7 to forward to B.

• After reception of the AS REP response, entity A uses
the long-term key kAT to decrypt the non-ticket por-
tion of the message, thereby obtaining the session key
kAB and other information as specified above. Entity
A verifies that the received nonce matches the nonce
it supplied in the AS REQ message (to detect replays)
and that the current time is within the lifetime of the
session key. Furthermore, entity A checks whether the
ticket was actually created for the desired communica-
tion partner (entity B in our example) by verifying the
identity decrypted from the AS REP message. When
everything matches, entity A assumes that it possesses
a valid session key and ticket for entity B.

In the third message, the AP REQ (Application Re-
quest) message, entity A transfers the ticket together
with a so-called authenticator to B. The authenticator
is generated by entity A and contains A’s own identity
as well as a fresh timestamp tA, both encrypted in
the session key kAB obtained from the trusted third
party T . In Kerberos, the purpose of the authenticator
is twofold. First, the authenticator proves that entity
A has knowledge of the secret session key kAB , which
in turn, proves A’s identity8 and entitles it to use the
ticket. Second, because the authenticator contains a
timestamp, it ensures that every AP REQ message is
unique (i.e. the authenticator serves to thwart replay
attacks).

• Having received the AP REQ message, entity B first
decrypts the ticket (using the long-term key kBT it
shares with T) and extracts the session key kAB , the
identity of the entity to which the ticket was issued
(A in our example), as well as the ticket’s expiration
time tE . Now entity B uses the session key kAB from
the ticket to decrypt the authenticator and compares

7The ticket is not sent directly to the B, but is instead sent
to A. However, A can not read or modify the ticket as it is
encrypted in the key kBT only known to T and B.
8The ticket by itself is insufficient for authentication since
an attacker could simply eavesdrop on the communication
and replay a ticket in order to impersonate entity A. There-
fore, the authenticator (rather than the ticket) is what really
proves A’s identity, since only a legitimate entity possessing
the session key can generate a valid authenticator.

the information in the ticket with that in the authen-
ticator. In particular, B verifies that the identity fields
obtained from the ticket and the authenticator match,
that the timestamp tA is still valid, and that B’s local
time is within the lifetime specified in the ticket. If all
checks pass, entity B may be reasonably assured that
A is in fact the entity named in the ticket, i.e. B now
considers A as properly authenticated.

Mutual authentication requires that entity B proves its
identity too. Entity A can easily verify B’s identity by
requesting that B sends something back that assures
that B has access to the session key kAB . The Appli-
cation Reply (AP REP) message simply consists of the
timestamp9 encrypted in the session key kAB . After
having received and decrypted the AP REP message,
entity A verifies that the timestamp is the same one
it sent in the AP REQ message. This ensures A that
the session key kAB has been successfully transmitted
to B, since kAB was needed to produce the AP REP
message. Furthermore, the AP REP message enables
A to verify that B really is B, since only B can extract
the session key from the ticket.

At the end of this message exchange, entity B is certain
that, according to Kerberos, entity A is who it claims to
be. Since mutual authentication occurs, A is also convinced
that B is authentic. Moreover, A and B share a key which
no one else knows. In Kerberos, both the ticket and the
authenticator are encrypted, but in different keys. The
ticket is generated by the trusted third party T , encrypted in
the long-term key shared between T and the entity to which
the ticket will be presented (B in our example), and valid
for a certain period. On the other hand, the authenticator
is built by the requesting entity A itself, encrypted in the
session key kAB , and can be used only once.

B. DIFFIE-HELLMAN KEY EXCHANGE
In its simplest form, the Diffie-Hellman key exchange is

carried out in a multiplicative group of integers modulo a
large prime p, in the following denoted as Z∗p. Let g with
2 ≤ g ≤ p− 2 be a generator of Z∗p. We assume that p, g are
publicly known to every entity of the network. Whenever
two entities, A and B, wish to establish a shared secret key
k, they accomplish the following actions [13]:

• Entity A chooses a random secret a with 1 ≤ a ≤ p−2,
computes s = ga mod p, and sends s to entity B.

• Entity B chooses a random secret b with 1 ≤ b ≤ p−2,
computes t = gb mod p, and sends t to entity A.

• When B receives s from A, it computes the shared key
as k = sb mod p = (ga)b mod p = gab mod p.

• When A receives t from B, it computes the shared key
as k = ta mod p = (gb)a mod p = gba mod p.

In summary, entity A derives the shared key k from its own
secret value a and the value t generated by B, while entity
B uses its own secret value b and the value s generated by
A to calculate k. Entity A and B possess the same secret
key k since ta mod p = sb mod p = gab mod p = k. An ad-
versary knows p and g, and may be able to obtain the values
s and t by eavesdropping on the communication between A

9In version 4 of the Kerberos protocol, the AP REP message
contains the timestamp value plus one.

and B. However, knowledge of p, g, s, t is insufficient to
derive the secret key k. On the other hand, if an adversary
would be able to determine a from s = ga mod p (or b from
t = gb mod p), he could easily calculate k in the same way
as entity A (or B) does. But finding a given s, g, and p is an
instance of the discrete logarithm problem (DLP), which is
computationally infeasible when the prime p is sufficiently
large (e.g. p ≥ 1024 bits). The Diffie-Hellman protocol can
be carried out in any group in which the DLP is hard and
the group operation is efficient, e.g. in the group of points
defined by an elliptic curve over a finite field.

Elliptic Curve Diffie-Hellman (ECDH)
Performing a modular exponentiation on operands with a
length of 1024 bits, such as required for Diffie-Hellman key
exchange in the group Z∗p, is very computation-intensive
and, hence, energy consuming. The main advantage of em-
bedding the Diffie-Hellman protocol into the group of points
on an elliptic curve is that taking the discrete logarithm in
such groups is much harder than in Z∗p. Therefore, a desired
level of security can be attained with much smaller group
orders (e.g. 160 to 256 bits), which makes the elliptic curve
Diffie-Hellman (ECDH) key exchange particulary attractive
for sensor nodes and similar devices with restricted memory
resources and low-bandwidth network connectivity.

An elliptic curve can be constructed over different alge-
braic structures like a ring or a field. However, it is common
practice in elliptic curve cryptography to use either a prime
field GF(p) or a binary extension field GF(2m) since these
two field types are recommended by several standards, in-
cluding the NIST standard FIPS 186-2 [14]. Implementation
results from [8] indicate that prime fields perform better in
software than binary extension fields. Therefore, we only
consider elliptic curve systems over prime fields in the rest
of this paper.

Formally, an elliptic curve over a prime field GF(p) can
be defined by a Weierstraß equation of the form

y2 = x3 + αx + β (1)

where α, β ∈ GF(p) and 4α3 + 27β2 6= 0 mod p [2]. A tuple
(x, y) ∈ GF(p)×GF(p) satisfying Equation (1) is a point
on the curve. The set of all points, together with a special
point called the point at infinity O, allows to construct an
abelian group, whereby the group operation is the addition
of points and O is the neutral element. A point addition is
performed through arithmetic operations in the underlying
prime field according to well-defined formulae (see [2, 8] for
further details). The basic building block of virtually all
elliptic curve cryptosystems is a so-called scalar multiplica-
tion or point multiplication, which is simply an operation
of the form k · P , whereby k is an integer and P is a point
on the curve. Calculating k · P is nothing else than adding
the point P exactly k − 1 times to itself, which results in
another point R on the curve10. Thus, a scalar multiplica-
tion can be accomplished by a sequence of point additions
and doublings, respectively. The inverse operation, i.e. to
recover k when the points P and R = k · P are given, is
an instance of the elliptic curve discrete logarithm problem
(ECDLP).

10Scalar multiplication in an additive group is equivalent to
exponentiation in a multiplicative group like Z∗p. Both are
performed by repeatedly applying the group operation (ad-
dition or multiplication) to a group element.

The ECDH protocol works very similar to the “tradi-
tional” Diffie-Hellman key exchange; the main difference is
that the group Z∗p is replaced by the group of points on an
elliptic curve. In what follows, let E be an elliptic curve
group of order n, and G shall be a point on the curve, i.e.
G ∈ E. For sake of simplicity we assume that the order n is
prime, which means that E is cyclic and G is a generator
of E. Furthermore, we assume the domain parameters p,
α, β, n, and G are publicly known to every entity of the
network. Let A and B be two entities wishing to establish a
shared key. First, entity A chooses a random secret number
a with 2 ≤ a ≤ n− 2, calculates S = a ·G, and sends S to
entity B. Entity B also chooses a random secret number
b in the range of [2, n− 2], calculates T = b ·G, and sends
T to entity A. Entity A can now compute the shared key
as K = a · T = a · b · G and entity B is able to compute
K = b · S = b · a ·G. Both entities have agreed on the same
key since E is an abelian group, i.e. a · b ·G = b · a ·G.

In summary, the ECDH key exchange requires to perform
four scalar multiplications and to send two messages.

