
 1

Fast Elliptic Scalar Multiplication using

New Double-base Chain and Point Halving

K.W. Wong1*, Edward C.W. Lee1, L.M. Cheng1, and Xiaofeng Liao2

1Department of Electronic Engineering, City University of Hong Kong,
83 Tat Chee Avenue, Kowloon Tong, Hong Kong

2Department of Computer Science and Engineering, Chongqing University,
Chongqing, 400044, P.R. China

*Corresponding Author: K.W. Wong (e-mail: itkwwong@cityu.edu.hk)

Abstract

The fast implementation of elliptic curve cryptosystems relies on the efficient

computation of scalar multiplication. Based on the double-base chain representation of scalar

using powers of 2 and 3, we propose a new representation with powers of ½ and 3 instead.

Thus the efficient point halving operation can be incorporated in the new double-base chain to

achieve fast scalar multiplication. Experimental results show that our approach leads to a

lower complexity which contributes to the efficient implementation of elliptic curve

cryptosystems.

Keywords: Elliptic Curve Cryptography (ECC), Double-base Chain, Point Halving

1. Introduction

The popularity of private electronic communication and e-commerce stimulates the need

to develop fast and secure cryptographic algorithms. Public key cryptography is a kind of

cryptographic approach in which the encryption key can be made public to get rid of the key

distribution problem that private key cryptography suffers. In particular, elliptic curve

cryptography (ECC) is a public key cryptographic scheme with great potential. It was first

proposed by Koblitz [1] and Miller [2] independently. In recent years, it is extensively studied

 2

and implemented by mathematicians, cryptographers and computer scientists around the

world because of its superior security over existing public key cryptographic algorithms. The

best algorithm known for solving the underlying mathematical problem of ECC, referred to as

the elliptic curve discrete logarithm problem (ECDLP), takes full exponential time. On the

contrary, sub-exponential-time algorithms are known for tackling the integer factorization and

the discrete logarithm problems that RSA and DSA is relied on, respectively [3]. This implies

that the algorithms for solving the elliptic curve discrete logarithm problem become infeasible

much more rapidly as the problem size increases than those algorithms for tackling the integer

factorization and the discrete logarithm problems. For this reason, ECC offers a security level

equivalent to RSA and DSA while using a far smaller key size.

ECC operates on the multiplicative group in finite field. A key factor for its fast

implementation is how to compute the scalar multiplication kP efficiently, where k is a large

integer and P is a point on the elliptic curve. Various fast algorithms have been proposed for

this purpose. Traditionally, the integer k is represented in binary form and the double-and-add

method is applied to calculate kP. This means that the accumulator is always doubled at each

bit. If there’s a “1” encountered, P is added to the accumulator. In order to reduce the amount

of computation, the length of the representation of k and the number of non-zero elements in

it should be kept as small as possible. The non-adjacent form (NAF), which is a signed

representation, is proposed for this purpose [4]. This form guarantees that no two adjacent

terms are both non-zero. In ECC, there is frequently a need to compute the value of aP+bQ

such as signature verification in Elliptic Curve Digital Signature Algorithm (ECDSA). In

order to perform this computation efficiently, the joint sparse form (JSF) was proposed [5]. It

is based on NAF and is an optimal signed binary representation of a pair of integers that leads

to more double zero positions. The use of an efficient endomorphism can increase the

computational speed of the scalar computation if the elliptic curve admits the endomorphism.

In [6], anomalous binary curves on which the Frobenius map can be applied were proposed by

 3

Koblitz. For this type of curves, an efficient scalar representation, referred to as reduced

τ-adic non-adjacent form (RTNAF), was suggested by Solinas [7]. Under this RTNAF

representation, τP is performed by squaring the x and y coordinates of point P. If normal basis

is adopted, this operation can be done in a very short time as a squaring is equivalent to a shift

operation.

Recently, the classical approach of representing the scalar in binary form and then

performing the scalar multiplication by a standard double-and-add method has been advanced.

In particular, there are suggestions that the scalar k can be expressed in a mixed base. In [8], a

ternary / binary approach making use of the efficient triple (3P) and double (2P) of point P

was proposed for fast scalar multiplication. A similar idea was suggested in [9] that the scalar

is represented as a double-base (bases 2 & 3) chain. On the other hand, point halving was

proposed independently by Knuden [10] and Schroeppel [11]. They suggested that point

doubling in the double-and-add method can be replaced by a faster point halving operation. A

detail analysis of the speed advantage of employing point halving instead of point doubling

can be found in [12]. Moreover, point halving can be combined with Frobenius

endomorphism so as to speed up the corresponding operation in Koblitz curve by 25%

[13,14].

In this paper, we propose a new double-base chain representation with bases ½ and 3 for

the incorporation of point halving in scalar multiplication. Experimental results show that our

approach leads to a lower complexity in computing scalar multiplication. The organization of

the remaining parts of this paper is as follows. In Section 2, the double-base chain

representation and the idea of point halving will be described in detail. Then we propose, in

Section 3, our new double-base chain representation and the utilization of point halving for

scalar multiplication. In Section 4, experimental results of the computation complexity of our

approach will be presented. Conclusions will be drawn in the last section.

 4

2. Background Theory

Our approach is based on two existing techniques. The double-base chain representation

of a scalar will first be introduced in Section 2.1 while and the operations of point halving will

be described in Section 2.2.

2.1 Double-base Chain Representation

Ciet et al [8] have proposed a ternary / binary approach for fast ECC scalar multiplication.

It makes use of the efficient doubling (2P), tripling (3P), and quadrupling (4P) of a point P. A

similar idea was suggested in [9] that an integer k is represented in double-base number

system as the sum or difference of mixed powers of two and three, as given by Eq. (1)

∑=
=

m

i

tb
i

iisk
1

32 with si ∈ {1, -1} and bi , ti ≥ 0 (1)

If the sequences of binary and ternary exponents decrease monotonically, i.e., b1 ≥ b2

≥ …≥ bm ≥ 0 and t1 ≥ t2 ≥ …≥ tm ≥ 0, a double-base chain is formed. As a result, fast

computation of scalar multiplication is achieved by the following recursive calculations.

K1 = 1, Ki = 2u3vKi-1 + si with i ≥ 2, si ∈ {1, -1} (2)

where u is the difference of two consecutive binary exponents, and v is the difference of two

consecutive ternary exponents.

Take the example of 314159 as used in [9]. Its double-base chain representation is

314159 = 21234 - 21132 + 2831 + 2431 – 2030 (3)

The calculation successively computes 17P, 409P, 6545P and finally 314159P, as illustrated

in Table 1.

i Ki s u v

1 1 1 0 0

2 18 K1 - 1 = 17 -1 1 2

 5

3 24 K2 + 1 = 409 1 3 1

4 16 K3 + 1 = 6545 1 4 0

5 48 K4 - 1 = 314159 -1 4 1

Table 1: Procedures in calculating 314159P in five iterations.

If prime field is chosen, it needs to calculate 13 inversions, 55 squarings and 95

multiplications. The analyses made in [9] show that this method is faster than the classical

binary, 2-NAF, 4-NAF and the ternary / binary approach proposed in [8], over both binary and

prime fields. Moreover, it does not require any precomputation.

2.2 Point Halving Operations

Point halving was proposed independently by Knuden [10] and Schroeppel [11]. It is the

reverse operation of point doubling. Let P = (x,y) be a point on the elliptic curve defined over

binary field using affine coordinates. A point doubling requires to calculate the coordinates of

the point Q = 2P = (u,v) using the following equations:

λ = x + y/x (4)

u = λ 2+ λ + a (5)

v = x2 + u (λ +1) (6)

Point halving is just the opposite, i.e., given Q = (u,v), find P = (x,y) such that Q = 2P. It is

computed by solving Eq. (5) for λ , Eq. (6) for x, and finally, Eq. (4) for y. This means that we

have to solve λ2+λ = u + a for λ , x2 = v + u (λ +1) for x , and finally obtain y =λ x + x2.

If all the point doublings required in the traditional double-and-add method are replaced

by the faster point halving operation, the computation speed could be up to 39% [10] and 50%

[11] faster. A detail analysis of the computational complexity of point halving was made in

[12]. It was reported that the point halving method is 15% to 24% faster than point doubling.

 6

Moreover, this approach performs better when the point P is not known in advance and the

inversion-to-multiplication ratio is small.

3. The Proposed Approach

For fast ECC scalar multiplication, we propose a new double-base chain representation

for scalars. Instead of mixed powers of 2 and 3, our idea is to represent the scalar by a new

double-base chain with monotonic decreasing powers of ½ and 3. As a result, point doubling

and quadrupling can be replaced by point halving while keeping the tripling operations. The

algorithm in finding such a new double-base chain is described as follows.

First of all, we multiply k with a large power of 2, say, 2q. From the experimental results,

we choose 2q to be a value around the field size. Then we find the remainder k’ after modulo

the field size p, as given by Eq. (7).

pkk q mod2'= (7)

The next step is to obtain the double-base chain of k’ with powers of 2 and 3 in the form

of increasing binary exponents but decreasing ternary exponents. We achieve this by an

iterative approach. First, we find n such that k = 0 mod n, with the trial of n in the order of 6,

4, 3 and 2, respectively. If k = 0 mod 6, we return

×
×

32
32 k . If k = 0 mod 4, we return

×
×

22
22 k . If k = 0 mod 3, we return ()3/3 k . If k = 0 mod 2, we return)2/(2 k . If there is

no suitable match after all the four trials, we find k2 - a power of 2 that is the closest to k, and

return the absolute value of the difference, i.e., 2kk − . We choose a power of 2 as an

approximation to k because doubling (which becomes halving later) is more favorable than

tripling. As the returned value 2kk − is getting smaller and smaller, it can always be

approximated by a lower power of 2 in next approximation. As a result, there will not be

adjacent terms in the double-base chain having the same binary exponents. Thus, the binary

 7

exponents in this double-base chain keep strictly decreasing and so triple-and-add operation is

not required in the scalar multiplication. Moreover, the sequence of ternary exponents in this

double-base chain will only increase or remain unchanged, but will never decrease. This is

because whenever k = 0 or 3 mod 6, the ternary exponent will increase. For the rest of values

of k, the ternary exponents remain unchanged. In the worse case, we can use purely a

sequence of power of 2 while keeping all ternary exponents zero to represent the scalar k. The

recursion stops until k is equal to 1, a power of 2 or a power of 3, i.e., a positive number that

can be represented by 2b3t for any non-negative integers b and t.

This iterative algorithm will return the terms in an order from the highest power of 2

times the lowest power of 3 to the lowest power of 2 times the highest power of 3. If we

reverse the order of the terms, i.e., the last term becomes the first term, the expression

becomes the desired double-base chain with increasing binary exponents but decreasing

ternary exponents. Finally, we divide the double-base chain by 2q to make all the binary

exponents negative but with decreasing magnitude. The ternary exponents are unaffected and

are all positive or zero with decreasing magnitude. This is actually a new double-base chain

with decreasing powers of ½ and 3, with value equal to k. To summarize, the representation of

k is given by Eq. (8).

∑
∑

=

−
=

===

m

i

t
bq

iq

m

i

tb
i

q
i

i
ii

s
s

kk
1

)(
1 3

2
1

2

32

2
'

'
'

 mod p (8)

where si ∈ {1, -1} , 0 ≤ b’1 < b’2 < …< b’m , t1 ≥ t2 ≥ …≥ tm ≥ 0, ibq i ∀≥ ' .

 For the example used in Section 2.1, if the field size p is chosen as 314161, the scalar

314159 becomes 52017 after multiplied 217 and mod 314161. The steps in finding the new

double-base chain representation of 314159 are shown in Table 2.

 8

Step Divisible by Return

0 / 52017

1 3 3 (17339)

2 / 3 (214 + 955)

3 / 3 (214 + (210 – 69))

4 3 3 (214 + (210 – 3(23)))

5 / 3 (214 + (210 – 3(24 + 7)))

6 / 3 (214 + (210 – 3(24 + (23 – 1))))

Double-base chain 21431 + 21031 – 2432 – 2332 + 2032

After reversed the terms 2032 – 2332 – 2432 + 21031 + 21431

After divided by 217 (½)1732 – (½)1432 – (½)1332 + (½)731 + (½)331

Table 2: Steps in obtaining a new double-base chain for k = 314159.

More examples with k multiplied by different values of q over the prime field with size p

= 314161 are given in Table 3. When q = 15 and 19, there are five terms in the new

double-base chain, same as that in the original chain. However, when q = 24, there are only

four terms, i.e., one term fewer although the highest power of ½ and 3 are both larger. Besides,

the new double-base chain obtained when multiplying by 217 is exactly equal to that by 219

although the values of q and hence k’ are different.

q pkk q mod2'= New double-base chain for k = 314159

15 248625 (½)1534 – (½)1034 – (½)733 – (½)332 + (½)032

17 52017 (½)1732 – (½)1432 – (½)1332 + (½)731 +(½)331

19 208068 (½)1732 – (½)1432 – (½)1332 + (½)731 +(½)331

24 60795 (½)2435 + (½)2134 – (½)1533 +(½)1132

Table 3: Some double-base chain representations for k = 314159.

 9

4. Experimental Results

We perform our experiments on a Pentium D 3.00GHz platform using C++ with the

MIRACL library version 5.0 which consists of a collection of routines for treating large

integers. The library covers a full set of functions for addition, subtraction, multiplication,

division and modulo operations of large integers.

Tables 4 to 6 show the results for binary field with field size ranged from 163-bit to

283-bit while Table 7 lists the data for prime field with field size 192-bit, both use NIST

recommended fields. For each field, we generate five different values of k randomly. Some of

them have length equal to the field size while some are shorter. The original and new

double-base chains for each generated k are found. The variable bmax is the largest binary

exponent while tmax is the largest ternary exponent in the original double-base chain. In our

proposed method, the largest binary exponent b’max is counted before dividing the double-base

chain by 2q. After obtained the chains, we calculate the corresponding number of curve

operations required. For the original double-base chain, point doubling (D), double-and-add

(DA), tripling (T), triple-and-add (TA), quadrupling (Q), and quadruple-and-add (QA)

operations are used [9]. However, in our proposed method, only point halving (H),

half-and-add (HA) and tripling (T) operations are required. Note that the sum of the number

of halving (H) and halving-and-add (HA) operations equals to q while the number of tripling

(T) equals to tmax. The number of terms in the two types of double-base chain is also listed in

the tables. Sometimes our approach leads to fewer terms but sometimes more. It seems that

there is not a consistent trend.

For binary fields, on counting the number of curve operations needed for the original

method using doublings, we prefer 2(2P) to 4P as two consecutive doubling operations are

faster than one quadrupling. However, we prefer a single quadruple-and-add operation rather

than a doubling followed by a double-and-add because the former requires one multiplication

fewer than the latter regardless of the number of squarings.

 10

To compare the complexity of the two methods, the equivalent numbers of inversions [i],

squarings [s] and multiplications [m] for binary field are calculated based on Table 8 [9,12].

The results are also included in Tables 4 to 6. They indicate that our approach usually requires

only about half the number of inversions, one-third the number of squarings, and also a

slightly fewer number of multiplications. This shows that the computational complexity for

scalar multiplication is reduced substantially. However, as point halving has been studied in

binary field only [10,12], no complexity data for calculating a point halving in prime field are

available. Therefore we cannot compare the complexity of the two methods directly for prime

field.

 Table 9 lists the time needed for converting k to k’, the time required to find the

increasing binary but decreasing ternary exponents double-base chain, the time for dividing

the chain by 2q and finally the total conversion time. The data indicate that the time to find the

double-base chain representation for k’ dominates the total conversion time while the

additional time required in the pre- and post-processing is comparatively insignificant. In

particular, the time required for dividing the chain by 2q is very fast because we don’t need to

perform an actual division, but just need to subtract the binary exponents from q.

 11

Method using original double-base chain

Bit length of k bmax tmax
No. of

terms
D DA T TA QA [i] [s] [m]

150-bit 118 20 40 58 14 18 2 23 140 302 616

158-bit 115 27 42 58 19 24 3 19 145 315 672

163-bit1 82 51 37 38 16 45 6 14 139 352 729

163-bit2 118 28 47 56 24 25 3 19 149 327 720

163-bit3 66 61 52 36 14 32 29 8 156 327 763

Our proposed method

Bit length of

k
q b’max tmax

No. of

terms
H HA T - - [i] [s] [m]

150-bit 165 163 21 41 125 40 21 - - 61 84 597

158-bit 160 160 27 43 118 42 27 - - 69 108 635

163-bit1 163 161 26 35 129 34 26 - - 60 104 610

163-bit2 163 160 23 36 128 35 23 - - 58 92 592

163-bit3 163 159 22 43 121 42 22 - - 64 88 606

Table 4: Number of curve and field operations for NIST B-163 binary field.

Method using original double-base chain

Bit length of k bmax tmax
No. of

terms
D DA T TA QA [i] [s] [m]

189-bit 74 72 52 38 14 46 26 11 172 394 868

192-bit 169 14 66 76 31 11 3 31 186 377 845

224-bit 163 38 61 86 27 30 8 25 209 434 947

233-bit1 172 38 58 88 26 36 2 29 212 464 970

233-bit2 164 43 52 94 28 41 2 21 209 446 955

Our proposed method

Bit length of

k
q b’max tmax

No. of

terms
H HA T - - [i] [s] [m]

189-bit 238 232 37 55 184 54 37 - - 91 148 897

192-bit 232 228 39 54 179 53 39 - - 92 156 896

224-bit 234 232 40 54 181 53 40 - - 93 160 907

233-bit1 239 223 40 48 192 47 40 - - 87 160 899

233-bit2 232 228 39 56 177 55 39 - - 94 156 902

Table 5: Number of curve and field operations for NIST B-233 binary field.

 12

Method using original double-base chain

Bit length of k bmax tmax
No. of

terms
D DA T TA QA [i] [s] [m]

256-bit1 114 89 58 70 20 64 25 12 228 513 1113

256-bit2 211 28 76 100 31 24 4 40 243 510 1083

283-bit1 156 80 57 82 24 73 7 25 243 593 1204

283-bit2 202 51 74 106 38 45 6 29 259 554 1213

283-bit3 256 17 93 126 48 14 3 41 276 533 1219

Our proposed method

Bit length of

k
q b’max tmax

No. of

terms
H HA T - - [i] [s] [m]

256-bit1 278 278 42 68 211 67 42 - - 109 168 1051

256-bit2 286 283 47 71 216 70 47 - - 117 188 1111

283-bit1 279 278 40 73 207 72 40 - - 112 160 1054

283-bit2 284 280 50 68 217 67 50 - - 117 200 1119

283-bit3 281 279 44 70 212 69 44 - - 113 176 1077

Table 6: Number of curve and field operations for NIST B-283 binary field.

Method using original double-base chain

Bit length of k bmax tmax
No. of

terms
DA T TA Q QA [i] [s] [m]

150-bit 118 20 40 14 18 2 29 23 111 461 784

158-bit 115 27 42 19 24 3 29 19 116 483 836

163-bit 82 51 37 16 45 6 19 14 120 463 838

189-bit 74 72 52 14 46 26 19 11 153 531 974

192-bit 169 14 66 31 11 3 38 31 148 584 1066

Our proposed method

Bit length of

k
q b’max tmax

No. of

terms
H HA T - - [i] [s] [m]

150-bit 191 190 32 47 145 46 32 - - - - -

158-bit 190 186 34 48 143 47 34 - - - - -

163-bit 193 190 32 47 147 46 32 - - - - -

189-bit 191 190 33 43 149 42 33 - - - - -

192-bit 192 191 25 54 139 53 25 - - - - -

Table 7: Number of curve and field operations for NIST P-192 prime field.

 13

Curve operation Complexity

Halving (H) 2[m]
Half-and-add (HA) 1[i] + 5[m]
Tripling (T) 1[i] + 4[s] + 7[m]

Table 8: The complexity for different curve operations over binary field.

Bit length
of k

Conversion of k

Time to
convert k

to k’
/ ms

Time to
convert k’ to a

double-base
chain / ms

Time to
divide the

chain by 2q
/ ms

Total
conversion
time / ms

B-163: Binary field size 163-bit with irreducible polynomial 12222 367163 ++++
150-bit ()163-B mod 2165 k 0.0151 3.8551 0.0019 3.8721
158-bit ()163-B mod 2160 k 0.0155 4.0636 0.0020 4.0811
163-bit1 ()163-B mod 2163k 0.0150 3.3644 0.0017 3.3811
163-bit2 ()163-B mod 2163k 0.0143 3.4256 0.0017 3.4416
163-bit3 ()163-B mod 2163k 0.0150 4.0270 0.0019 4.0439

B-233: Binary field size 233-bit with irreducible polynomial 122 74233 ++
189-bit ()233-B mod 2238 k 0.0179 5.3730 0.0025 5.3934
192-bit ()233-B mod 2232 k 0.0168 5.3333 0.0023 5.3524
224-bit ()233-B mod 2234 k 0.0189 5.3164 0.0023 5.3376
233-bit1 ()233-B mod 2239 k 0.0183 4.8176 0.0022 4.8381
233-bit2 ()233-B mod 2232 k 0.0183 5.5036 0.0025 5.5244

B-283: Binary field size 283-bit with irreducible polynomial 12222 5712283 ++++
256-bit1 ()283-B mod 2278 k 0.0211 6.7055 0.0029 6.7295
256-bit2 ()283-B mod 2286 k 0.0211 7.0172 0.0031 7.0414
283-bit1 ()283-B mod 2279 k 0.0215 7.1392 0.0029 7.1636
283-bit2 ()283-B mod 2284 k 0.0223 6.8095 0.0029 6.8347
283-bit3 ()283-B mod 2281k 0.0213 6.9416 0.0029 6.9658

Table 9: The time for each conversion step and the total conversion time.

 14

5. Conclusions

We have proposed a new double-base chain representation for a scalar k with mixed

powers of ½ and 3. The advantage of this representation is that all point doublings required in

the original chain can be replaced by the faster point halving operations. Experimental results

show that for binary fields, our approach requires only about half the number of inversions,

one-third the number of squarings, and a slightly fewer number of multiplications when

compared with the scalar multiplication using the original double-base chain. The

substantially reduced computational complexity contributes to the efficient implementation of

elliptic curve cryptosystems.

Acknowledgement

The work presented in this paper was fully supported by a grant from the Research Grants

Council of the Hong Kong Special Administrative Region, China [Project No. 9041035

(CityU 121305)].

 15

References

[1] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, 48, pp. 203–209,
1987.

[2] V.S. Miller, “Use of elliptic curves in cryptography,” in H.C. Williams Ed., Advances in
Cryptology – CRYPTO’85, LNCS 218, Springer-Verlag, pp. 417–426, 1986.

[3] S.A. Vanstone, "Next generation security for wireless: elliptic curve cryptography",
Computers and Security, vol. 22, no. 5, pp. 412-415, 2003.

[4] F. Morain & J. Olivos, “Speeding up the computations on an elliptic curve using
addition-subtraction chains,” Information Theory Applications, vol. 24, pp. 531-543,
1990.

[5] J.A. Solinas, “Low-Weight Binary Representations for Pairs of Integers,” Technical Report
CORR 2001-41, CACR, available at: www.cacr.math.uwaterloo.ca/
techreports/2001/corr2001-41.ps.

[6] N. Koblitz, “CM curves with good cryptographic properties,” Advances in Cryptology –
Crypto’91, LNCS 547, Springer-Verlag, pp. 279-287, 1992.

[7] J. Solinas, “Efficient arithmetic on Koblitz curves,” Designs, Codes, and Cryptography 19,
pp. 195-249, 2000.

[8] M. Ciet, M. Joye, K. Lauter, and P.L. Montgomery, “Trading Inversions for
Multiplications in Elliptic Curve Cryptography,” Cryptology ePrint Archive, Report
2003/257, 2003. Also to appear in Design, Codes and Cryptography.

[9] V.S. Dimitrov, L. Imbert, and P.K. Mishra, “Fast Elliptic Curve Point Multiplication using
Double-Base Chains, Cryptology ePrint Archive, Report 2005/069, 2005.

[10] E.W. Knudsen, “Elliptic Scalar Multiplication using Point Halving,” ASIACRYPT’99,
LNCS 1716, K.Y. Lam, E. Okamoto and C. Xing Ed., pp. 135 – 149, 1999.

[11] R. Schroeppel, “Elliptic Curve Point Ambiguity Resolution Apparatus and Method,”
International Patent Application Number PCT/US00/31014, filed 9 November 2000.

[12] K. Fong, D. Hankerson, J. Lopez, and A. Menezes, “Field Inversion and Point Halving
Revisited,” IEEE Transactions on Computers, vol. 53, no. 8, pp. 1047 – 1059, 2004.

[13] R.M. Avanzi, C. Heuberger, and H. Prodinger, “Minimality of the Hamming Weight of
the τ-NAF for Koblitz Curves and Improved Combination with Point Halving”,
Cryptology ePrint Archive, Report 2005/225, 2005.

[14] R.M. Avanzi, M. Ciet, F. Sica, “Faster Scalar Multiplication on Koblitz Curves
Combining Point Halving with the Frobenius Endomorphism” Public Key Cryptography
(PKC 2004), LNCS 2947, F. Bao, R. H. Deng, J. Zhou Eds., , pp. 28-40. Springer-Verlag,
2004.

