
Application of LFSRs for Parallel Sequence Generation in
Cryptologic Algorithms

Sourav Mukhopadhyay and Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108
e-mail:{sourav t,palash}@isical.ac.in

Abstract. We consider the problem of efficiently generating sequences in hardware for use in certain
cryptographic algorithms. The conventional method of doing this is to use a counter. We show that
sequences generated by linear feedback shift registers (LFSRs) can be tailored to suit the appropriate
algorithms. For hardware implementation, this reduces both time and chip area. As a result, we are
able to suggest improvements to the design of DES Cracker built by the Electronic Frontier Foundation
in 1998; provide an efficient strategy for generating start points in time-memory trade/off attacks; and
present an improved parallel hardware implementation of a variant of the counter mode of operation
of a block cipher.
Keywords: DES Cracker, TMTO, Counter Mode of Operation, LFSR.

1 Introduction

Consider the following cryptologic algorithms which require the generation of a sequence of s-bit
vectors.

Exhaustive Search: In this case, the search space consists of all elements of {0, 1}s and the
algorithm must consider each element of this set. Exhaustive search algorithms like the DES
Cracker [1] employ a high degree of parallelism. Hence, the requirement is to generate in parallel
a set of pairwise disjoint sequences of s-bit vectors whose union is the set {0, 1}s.

Time-Memory Trade-Off (TMTO): This is also a generic search method. The pre-computation
phase of such algorithms require the generation of parallel independent (pseudo)-random se-
quences of s-bit values.

Counter Mode of Operation: This is a mode of operation of a block cipher, which converts the
block cipher into an additive stream cipher. In this mode of operation, one requires to generate
a long non-repeating sequence of s-bit values.

The first two are cryptanalytic algorithms, while the third one is a cryptographic algorithm. Imple-
mentations of the above three algorithms use a counter to generate the required sequences. While
this is intuitively simple, it is not the best possible option for hardware implementation.

In this paper, we explore the possibility of using sequences obtained from linear feedback shift
registers (LFSRs) for the hardware implementation of the above algorithms. In each case, we show
how LFSR sequences can be tailored for use in the respective algorithm. Replacing counters by
LFSRs in hardware implementation has the following two advantages.

Time: The next state of an LFSR can be obtained in one clock. For a counter, we need to add one
to the current value. Addition requires much more time. We also show that parallel generation
of pairwise disjoint subsequences can be done very efficiently.

Chip Area: Implementing the next state function of an LFSR in hardware requires only a few
XOR gates. In contrast, sophisticated carry-look-ahead adders require significantly more cir-
cuitry. Consequently, replacing adders by LFSRs will reduce the required chip area.

A combination of the above two effects can lead to a significant improvement in price-performance
ratio. This leads us to suggest changes to the DES Cracker [1] which simplify the design as well as
reduce the time; to provide an efficient strategy for generating start points in hardware implemen-
tation of TMTO algorithms; and finally, to present a new variant of the classical counter mode of
operation of a block cipher. This new variant has a more efficient parallel hardware implementation.

Related Work: The DES Cracker [1] is the most famous implementation of special purpose crypt-
analytic hardware. Descriptions of hardware implementations of TMTO algorithms can be found
in [9,12].

The first work to suggest the use of LFSRs in exhaustive key search was by Wiener [13]. (This
fact was pointed out to us by David Wagner.) In [13], Wiener described a detailed design for a
special purpose hardware for cracking DES. The suggestion for generating candidate keys was to
use an LFSR having g(x) = x56 + x7 + x4 + x2 + 1 as the primitive characteristic polynomial. The
generation of keys starting from a key k was to use the sequence k, kx mod g, kx2 mod g and so
on. The idea of using parallel LFSR sequences was suggested by Goldberg and Wagner [5] and was
used by them in 1996 for an FPGA-based DES keysearch engine. In view of the above works by
Wiener [13] and Goldberg-Wagner [5], we find it surprising that the design of the DES cracker used
counters instead of LFSRs. As suggested in this paper, the design would certainly have improved
if LFSRs had been used for key generation instead of counters.

We would like to mention that the mathematics required for generating parallel LFSR sequences
is quite standard (as mentioned in [5]). In this paper, we simply provide explicit details of this
method. Our main point is that parallel LFSR sequences have several cryptologic applications. We
have provided three but perhaps there are more. In the future, it might be worthwhile to look for
further applications.

The work in [10] also suggest the use of LFSRs in TMTO algorithm. However, the suggestion
in [10] is to use LFSR for function generation, whereas, our work considers the use of LFSRs for
start point generation.

2 LFSR Preliminaries

A binary linear feedback shift register (LFSR) of length s is an s-bit register. Let at time t ≥ 0, the
content of stage i be at

i ∈ {0, 1} for 0 ≤ i ≤ s−1. Then the state at time t is given by the vector St =
(a(t)

s−1, a
(t)
s−2, . . . , a

(t)
0). The state at time t+1 is given by the vector St+1 = (a(t+1)

s−1 , a
(t+1)
s−2 , . . . , a

(t+1)
0),

where a
(t+1)
i = a

(t)
i+1 for 0 ≤ i ≤ s − 2; and a

(t+1)
s−1 = c0a

(t)
s−1c1a

(t)
s−2 ⊕ · · · ⊕ cs−1a

(t)
0 . The values

c0, . . . , cs−1 are constant bits and the polynomial p(x) = xs ⊕ cs−1x
s−1 ⊕ cs−2x

s−2 ⊕ · · · ⊕ c1x⊕ c0

over GF (2) is called the connection polynomial of the LFSR. The behaviour of an LFSR is described
by the sequence S0, S1, . . . of s-bit vectors and is completely determined by the state S0 and the
polynomial p(x).

Below we highlight some features of LFSRs which are relevant to our work. See [7,8] for more
details and theory of LFSR sequences, including non-binary LFSRs. Additionally, we would like
to point out that even though we consider only LFSRs in this paper, our ideas carry over in a
straightforward manner to other linear finite state machines like cellular automata.

Maximal length LFSR: It is well known that if p(x) is a primitive polynomial, then for any non-zero
s-bit vector S0, the sequence S0, S1, S2, . . . , S2s−2 consists of all the 2s − 1 non-zero s-bit vectors.
An LFSR which has this property is called a maximal length LFSR. The number of primitive
polynomials of degree s over GF (2) is given by the expression φ(2s − 1)/s, where φ(i) is the Euler
totient and is defined to be the number of positive integers less than i and co-prime to i. The
expression φ(2s − 1)/s is almost as large as 2s and hence there are a large number of maximal
length LFSRs of a certain degree. Further, maximal length LFSR sequences satisfy certain well
defined pseudorandomness properties and hence such sequences are used in generating test vectors.

Matrix representation: There is another way to view an LFSR sequence, which will be useful
to us later. The next state St+1 is obtained from state St by a linear transformation and hence
we can write St+1 = StM , where M is an s × s matrix whose characteristic polynomial is p(x).
Extending this, we can write St = S0M

t. Thus, knowing M t, we can directly jump from S0 to St

without going through the intermediate states. For any fixed value of t < 2s − 1, computing the
matrix exponentiation M t can be done using the usual square and multiply method and requires
at most 2 log t ≤ 2s matrix multiplications. Appropriate addition chain heuristics can speed up the
computation. Later we will apply this idea for parallel generation of subsequences of the sequence
S0, S1, . . . , S2s−2.

Implementation: Implementing an LFSR in hardware is particularly efficient. Such an implementa-
tion requires s flip-flops and wt(p(x))− 1 many 2-input XOR gates, where wt(p(x)) is the number
of non-zero coefficients in p(x). With this hardware cost, the next s-bit state is obtained in one
clock. For maximal length LFSR, one requires p(x) to be primitive. It is usually possible to choose
p(x) to be of very low weight, either a trinomial or a pentanomial. Thus, an s-bit maximal length
LFSR provides a fast and low cost hardware based method for generating the set of all non-zero
s-bit vectors. Software generation of an LFSR sequence is in general not as efficient as in hardware.
On a machine which supports w-bit words, the next s-bit state of an LFSR can be obtained using
(wt(p(x))− 1)s/w XOR operations (see [3]).

2.1 LFSRs versus Counters

The set of all s-bit vectors can be identified with the set of non-negative integers less than 2s. In
certain cryptologic algorithms, the requirement is to generate a sequence of non-negative integers
with the only condition that no value should repeat. One simple way of doing this is to generate
integers 0, 1, 2, . . . using a counter. While intuitively simple, this is not the only method of generating
non-repeating sequence. One can use an s-bit maximal length LFSR to generate the sequence
S0, S1, . . ., which is also non-repeating. We next discuss the relative advantages of LFSR and counter
sequences with respect to hardware implementation.

Implementing a counter which can count from 0 upto 2s − 1 requires an s-bit register and an
adder. The task required of the adder is to add one to the current state of the register. Due to carry

propagation, the simplest adder implementation will require s clocks in the worst case (and s/2
clocks in the average case) to generate the next value. More sophisticated carry-look-ahead adders
can reduce the number of clocks but the circuitry becomes significantly more complicated and
costlier. In contrast, for LFSR sequences, apart from the s-bit register, we require only wt(p(x))−1
many 2-input XOR gates and the next s-bit state is obtained in one clock cycle.

Another advantage is that of scalability. The main cost of implementing an LFSR is the register
and the interconnections. The number of XOR gates can usually be taken to be either two or four
and can be assumed to be less than ten for all values of s. Thus, the cost of implementing an LFSR
scales linearly with the value of s. On the other hand, the cost of implementing an adder circuit
scales quadratically with the value of s.

Hence, using an LFSR in place of a counter leads to significantly lower hardware cost and
also provides a faster method of generating a non-repeating sequence. Additionally, for certain
applications, the requirement is to generate a pseudorandom sequence of non-negative integers. In
such cases, the only option is to use an LFSR sequence.

3 Parallel Sequence Generation

Consider the following problem.

• Generate n parallel and pairwise disjoint sequences of s-bit strings such that the union of these
n sequences is the set of all (non-zero) s-bit strings.

We provide a simple LFSR based strategy for solving the above problem. Let L = (s, p(x)) be an
s-bit LFSR where p(x) is a primitive polynomial of degree s over GF(2). Let 2s − 1 = τ × n + r =
(τ + 1)r + τ(n− r) where 0 ≤ r < n. Let n1 = n− r, n2 = r and note that τ = b2s−1

n c. Let S0 be
any nonzero s-bit string and for t ≥ 1, we define St = S0M

t, where M is the state transition matrix
of L. Further, let T0 = Sn1τ and for t ≥ 1, Tt = T0M

t = Tt−1M . Also let τ ′ = d2s−1
n e. Define n

sequences as follows.

S0 : S0, S1, . . . , Sτ−1; T0 : T0, T1, . . . , Tτ ′−1;
S1 : Sτ , Sτ+1, . . . , S2τ−1; T1 : Tτ ′ , Tτ ′+1, . . . , T2τ ′−1;
...

...
Sn1−1 : S(n1−1)τ , S(n1−1)τ+1, . . . , Sn1τ−1; Tn2−1 : T(n2−1)τ ′ , T(n2−1)τ ′+1, . . . , Tn2τ ′−1.

(1)

The S sequences are of length τ , while the T sequences are of length τ ′ ≥ τ . Note that, Tn2τ−1 =
T0M

n2τ ′−1 = S0M
n1τMn2τ ′−1 = S0M

n1τ+n2τ ′−1 = S0M
2s−2 = S2s−2. Since p(x) is primitive, the

sequence S0, S1, . . . , Sn1τ−1, T0, T1, . . . , Tn2τ ′−1 consists of all non-zero s-bit vectors. This ensures
that the sequences S0,S1, . . . ,Sn1−1, T0, T1, . . . , Tn2−1 are pairwise disjoint. Thus, we obtain a so-
lution to the problem mentioned above. We now consider the problem of actually generating the
sequences in hardware.

Implementation: Let L0, . . . , Ln−1 be n implementations of the LFSR L. Hence, each Li has p(x)
as its connection polynomial. The initial conditions for L0, . . . , Ln1−1 are S0, Sτ , . . . , S(n1−1)τ re-
spectively and the initial conditions for Ln1 , . . . , Ln−1 are T0, Tτ ′ , . . . , T(n2−1)τ ′ respectively. At any
point of time, the current states of the Li’s provide the current values of the S and the T sequences.

All the Li’s operate in parallel, i.e., they are all clocked together and hence the next states of the
S and the T sequences are generated in parallel. The total hardware cost for implementing the n
LFSRs consists of n×s flip-flops and n×(wt(p(x)−1) many 2-input XOR gates. With this minimal
hardware cost, the parallel generation of the S and the T sequences become possible.

Obtaining the initial conditions: We explain how to obtain the initial condition for the n LFSRs.
Let M1 = M τ and M2 = M τ+1 = M ×M1. Then Siτ = S0M

iτ = S(i−1)τ ×M τ = S(i−1)τ ×M1.
Now T0 = S(n1−1)τ ×M1 and Tjτ ′ = T(j−1)τ ′ ×M2. Once we know M1 and M2 it is easy to find all
the Siτ ’s and Tjτ ′ ’s. Computing M1 requires a matrix exponentiation which as mentioned before
requires 2 log τ ≤ 2s many matrix multiplications. Obtaining M2 from M1 requires one matrix
multiplication. After M1 and M2 have been obtained, computing the initial conditions require a
total of n many vector-matrix multiplications. These initial conditions are obtained once for all in
an offline phase. These are then pre-loaded into the LFSRs and do not need to re-computed during
the actual generation of the parallel sequences.

4 Application 1: The DES Cracker

The data encryption standard (DES) was the industry standard block cipher from the mid-seventies
to around the end of the nineties. The best attack on DES was implemented by a civil liberties group
called the Electronics Frontier Foundation (EFF) in the year 1998 at a cost of around 200,000 USD
(80,000 USD for man power + 120,000 USD for production). EFF built a special purpose machine
called DES Cracker [1] for performing a ciphertext only exhaustive search attack on DES. The DES
Cracker is given two ciphertexts which are encryptions of two English plaintext messages using the
same secret key. The goal is to find the secret key. The DES cracker was able to find the secret key
in about three and a half days.

In the the design of DES cracker, a computer drives 216 search units. The search units are
parallel hardware units while the computer provides a central control software. The key space is
divided into segments and each search unit searches through one segment. For each candidate key,
a search unit does the following. Let k be the current candidate key. A search unit decrypts the
first ciphertext using k and checks whether the resulting plaintext is “interesting”. If yes, then it
decrypts the second ciphertext using k and checks if it is also interesting. (The search unit considers
a plaintext to be interesting if all its 8 bytes are ASCII.) If the both plaintexts are found to be
interesting then the (key, plaintext) pair is passed to a computer to take the final decision. The
search unit then adds one to k to obtain the next candidate key.

Recall that in DES, the message and cipher block size is 64 bits while the key size is 56 bits. In
each search unit, a counter (and an adder) generates the candidate keys. A 32-bit counter is used
to count through the bottom 32 bits of the key. The reason for using a 32-bit adder is that it is
cheaper to implement than a 56-bit adder. The top 24 bits of the key are loaded onto the search
unit by the computer. After completing 232 keys with a fixed value of the 24 bits, a search unit
sends a signal to the computer. The computer stops the chip; resets the key counter; puts a new
value in the top 24 bits; and the search starts once more with this new 24-bit value.

4.1 LFSR Based Solution

We describe an alternative LFSR based solution for candidate key generation in the DES cracker.
This solution is based on the parallel sequence generation described in Section 3. The number of
parallel search units n = 216, while s = 56. Thus, τ = 240 − 1, τ ′ = 240, n1 = 1 and n2 = 216 − 1.

Choose an LFSR L such that p(x) is the primitive pentanomial x56 + x7 + x4 + x2 + 1 (as
suggested by Wiener [13]). Choose S0 to be an arbitrary non-zero 56-bit value and compute the
values T0, . . . , Tn2−1 using the method of Section 3. The total number of 56 × 56 binary matrix
multiplications required is at most 2× s + 1 = 113. Additionally, one has to compute a total of 216

many multiplications of a 56-bit vector with a 56× 56 binary matrix. Even with a straightforward
software implementation, the entire computation can be completed within a few hours. The initial
condition of the LFSR in the first search unit is set to S0, while the initial conditions for the
LFSRs in the other search units are set to T0, T1, . . . , Tn2−1. Computing the initial conditions can
be considered to be part of design stage activity.

In our design, each search unit of the DES cracker has its own implementation of L. This imple-
mentation requires n flip-flops and only four 2-input XOR gates. Each search unit now generates
the candidate keys independently of the computer and also independently of each other. To obtain
the next candidate key, it simply clocks its local LFSR once and uses the state of the LFSR as the
candidate key. The first search unit does this for τ = 240 − 1 steps while the other search units
do this for τ ′ = 240 steps. This ensures that all non-zero keys are considered, with the all-zero key
being considered separately.

4.2 Comparison to the Counter Based Solution

There are two ways in which the LFSR based solution improves over the counter based solution.

– There are 216 search units. In the counter based solution, each search unit sends an interrupt
signal to the computer after completing an assigned key segment. Thus, the computer needs to
handle a total of 224 interrupts from all the search units. In the LFSR based solution, candidate
key generation is done solely by the search unit without any involvement from the computer.

– In the counter method, each search unit requires a 32-bit adder for a total of 216 such adders.
In contrast, in the LFSR based solution, the circuitry for generating the next candidate key
consists of only 4 XOR gates per search unit. Thus, the adders of the counter based method
take up significantly more chip area which could be utilised otherwise. One could either build
more parallel search units at the same cost, or build the same number of search units at a lesser
cost.

The above two factors can lead to a substantial improvement in the price-performance ratio of the
DES cracker.

4.3 General Exhaustive Search

The LFSR based candidate key generation algorithm described above for DES cracker can easily be
generalized to generate candidate keys for exhaustive search on any cryptographic algorithm. We
need to choose the appropriate value of s (for example, for AES, s = 128) and a suitable primitive
polynomial of degree s over GF (2). Now given n, the number of parallel search units, we can apply

the method of Section 3 to obtain the initial conditions of the local LFSR implementations of all
the search units. This in effect divides the entire key space into disjoint subspaces, with each search
unit searching through its alotted subspace.

5 Application 2: TMTO Pre-Computation

In 1980, Hellman [6] described a chosen plaintext time/memory trade-off attack for block ciphers.
For a fixed chosen plaintext msg, define the function f(k) = Ek(msg), where E is the encryption
function of a block cipher and k is an s-bit key. The function f maps keys to the ciphertexts. In
the attack stage, a target cpr is provided which is an encryption of msg under an unknown key. The
goal of the attack is to find the unknown key.

More generally, TMTO can be considered to be a generic method for inverting a one-way
function. This consists of two phases: pre-computation phase and online attack phase. A set of
table(s) is constructed during the pre-computation phase. The tables store keys in an off-line phase.
In the online phase, an image y = f(x) under an unknown key x is received. The goal is to find the
unknown key x by making use of the precomputed tables. The main idea is to store only a part of
the tables. This incurs a cost in the online phase and leads to a trade-off between the memory and
time requirements. In the following, we describe the pre-computation of three TMTO methods. We
will not propose any modification to the online phase and hence we do not discuss this phase.

Hellman Pre-Computation: The pre-computation phase in Hellman’s method consists in preparing
several tables. Hellman derives r functions f0, . . . , fr−1 from f by minor modifications (permuting
the output bits of f). Each function is used to prepare one table leading to a total of r tables
M0, . . . ,Mr−1 where each Mi is an m × (t + 1) table. We describe the construction of Mi. Let
x

(i)
0,0, x

(i)
1,0, . . . , x

(i)
m−1,0 be a set of points chosen independently and uniformly at random from {0, 1}s.

These m points form the first column of Mi. For 0 ≤ j1 ≤ m − 1 and 0 ≤ j2 ≤ t − 1, the other
entries of Mi are obtained using the rule x

(i)
j1,j2+1 = fi(x

(i)
j1,j2

). Thus, each row is a chain of the

form: x
(i)
j1,0; x

(i)
j1,1 = fi(x

(i)
j1,0); x

(i)
j1,2 = fi(x

(i)
j1,0); · · · ; xj1,t = fi(x

(i)
i,t−1). For the table Mi, the pairs

of points (x(i)
j1,0, x

(i)
j1,t) are stored sorted on the second components. The first component is called a

start-point and the second component is called an end-point.

Distinguished Point Method: Rivest improved Hellman’s technique by incorporating the distin-
guished point (DP) property. We can define a DP property on the key space K as follows: A key
k satisfies the DP property if its first p bits are zero. We choose a maximum chain length t. For
each table, we randomly choose m distinct start points from the key space. For each start point,
we generate a chain as usual until we reach a DP or until the length of the chain is t. If a DP
is encountered in the chain, then we store the tuple (start point, DP point, length of the chain),
otherwise the chain is discarded. The tables are sorted in the increasing order of the endpoints. If
the same DP occurs in two different tuples, then the tuple with the maximum chain length will be
stored.

Rainbow Method: In 2003, Oechslin [11] described a different construction method. In Oechslin’s
method, a single m × (t + 1) table covers N points in the following manner. This method uses t
functions f0, . . . , ft−1 obtained from f by output modifications as in Hellman’s method. The first

column of the table is chosen to be a set of random points x0,0, . . . , xm−1,0. The ith row of the table
is formed as follows: xi,0; xi,1 = f0(xi,0); xi,2 = f1(xi,1); · · · ; xi,t = ft−1(xi,t−1). Each such row is
called a rainbow chain and the method is called the rainbow method. The set of pairs (xi,0, xi,t) is
stored sorted on the second component.

5.1 Parallel Implementation

The pre-computation phase is essentially an exhaustive search which is required to be done only
once. Practical implementations of TMTO attack will use parallel f -invocation units to perform
the pre-computation. The problem that we consider is of generating the start points on chip. We
show an LFSR based method for doing this. But before that, we consider the counter based method
(and its disadvantage) proposed in the literature.

Counter Based Start Point Generation: Quisquater and Standaert [12] describe a generic architec-
ture for the hardware implementation of Hellman + DP method. Nele Mentens et al [9] propose a
hardware architecture for key search based on rainbow method. A global s-bit counter is used [9]
as a start point generator which is connected to each of the processor. This approach has at least
the following problems.

– In the analysis of success probability for TMTO, the start points are assumed to be randomly
chosen. Using a counter to generate start points violates this assumption.

– Using a global s-bit counter (adder) to generate start points for n processors has the following
disadvantage. Some (or all) of the n processors may ask for a start point at the same time. Then
there will be a delay since there is only one global counter to generate the start points.

– On the other hand, using n counters will require n adders which can be quite expensive.

LFSR Based Start Point Generation: To generate r tables with size m × t, we require a total of
m× r many s-bit start points. Suppose we have n many processors P1, P2, . . . , Pn available for the
pre-computation phase. We may assume n|m, since both are usually powers of two and n < m.

We choose n distinct primitive polynomials p1(x), . . . , pn(x) and set-up a local start point gen-
erator (SPG) for processor Pi as follows. The local SPG is an implementation of a maximal length
LFSR Li with connection polynomial pi(x). The intial condition Si for Li is chosen randomly and
loaded into Li during the set-up procedure. For preparing a single table all the n processors run in
parallel. For each table m chains need to be computed. This is done by requiring each processor to
compute m/n chains. The description of Pi is as follows.

Pi: Ui denotes the current state of Li;
1. Ui ← Si; j ← 1;
2. do while (j ≤ m

n)
3. generate the chain with start point Ui;
4. if the chain reaches an end point Ti

5. store (Si, Ti) into Tabi;
6. j ← j + 1;
7. end if;
8. Ui = nexti(Ui);
9. end do

end.

The function nexti() refers to clocking LFSR Li once. In this design, each processor Pi has
its own SPG as opposed to a global SPG for all the Pi’s. This simplifies the design considerably
while retaining the pseudo-random characteristic of start points. Further, as discussed earlier, im-
plementing the LFSRs is significantly more cost effective and faster than implementing counters in
hardware.

6 Application 3: Counter Mode of Operation

In 1979, Diffie and Hellman [4] introduced the counter mode (CTR mode) of operation for a block
cipher. This mode actually turns a block cipher into an additive stream cipher. Let Ek() be a 2s-bit
block cipher. The pseudorandom sequence is produced as follows:

Ek(nonce||S0)||Ek(nonce||S1)||Ek(nonce||S2)|| . . . ,

where nonce is an s-bit value and S0, S1, . . . is a sequence of s-bit values. The security requirements
are the following.

1. The nonce is changed with each message such that the same (key,nonce) pair is never repeated.
2. The sequence S0, S1, S2, . . . is a non-repeating sequence.

Usual implementations define Si = bins(i), where bins(i) is the s-bit representation of the integer
i. With this definition, the sequence Si can be implemented using a counter.

Hardware implementation of CTR mode can incorporate a high degree of parallel processing.
The inherent parallelism is that each 2s-bit block of pseudorandom bits can be produced in parallel.
Suppose we have n many processors P0, P1, . . . , Pn−1 where each processor is capable of one block
cipher encryption. Processor Pi encrypts the values nonce||Si, nonce||Sn+i, nonce||S2n+i, If Si

is defined to be bins(i), then there are two ways of generating the sequence.

Single adder: With a single adder, the algorithm proceeds as follows. At the start of the jth
round (j ≥ 1), the adder generates the values Sn(j−1), . . . , Snj−1. Then all the processors operate
in parallel and processor Pi encrypts nonce||Sn(j−1)+i.
Problem: The single adder introduces delay which affects the overall performance of the parallel
implementation.

n adders: In this case, each Pi has its own adder. Its local counter is initialized to Si and after
each block cipher invocation, the adder adds n to the local counter.
Problem: In this implementation, the cost of implementing n adders can take up chip area
which is better utilised otherwise.

6.1 LFSR Based Solution

Note that the only restriction on the sequence S0, S1, . . . is that it is non-repeating. Thus, one can
use a maximal length LFSR with a primitive connection polynomial to generate the sequence. Again
there are two aproaches to the design both of which are better than the corresponding approach
based on using adders.

Single LFSR: In this case, a single LFSR is used which is initialised with a non-zero s-bit value.
For j ≥ 1, before the start of the jth round, the LFSR is clocked n times to produce the
values Sn(j−1), . . . , Snj−1. Pi then encrypts nonce||Sn(j−1)+i as before. Clocking the LFSR n
times introduces a delay of only n clocks into the system. This is significantly less than the time
required for n increments using an adder.

n LFSRs: We can avoid the delay of n clocks by using n different implementations of the same
LFSR initialised by suitable s-bit values to ensure that the sequences generated by the imple-
mentations are pairwise disjoint. The description of how this can be done is given in Section 3.
As discussed earlier, the cost of n separate implementations of the same LFSR scales linearly
with the value of n and does not consume too much chip area.

Using the LFSR based method to generate the sequence S0, S1, . . . will lead to an improved price-
performance ratio compared to the counter based method. The design must specify the actual LFSR
being used, and the required initial condition(s). Since there are many maximal length LFSRs to
choose from, this provides additional flexibility to the designer.

6.2 Salsa20 Stream Cipher

Salsa20 [2] is an additive stream cipher which has been proposed as a candidate for the recent
Ecrypt call for stream cipher primitives. The core design of Salsa20 consists of a hash function
which is used in the counter mode to obtain a stream cipher. Denote by Salsa20k() the Salsa20
hash function. Then the pseudorandom stream is defined as follows.

Salsa20k(v, S0),Salsa20k(v, S1),Salsa20k(v, S2), . . .

where v is a 64-bit nonce and Si = bin64(i). For hardware implementation, we can possibly generate
the sequence S0, S1, . . . using an LFSR as described above. This defines a variant of the Salsa20
stream cipher algorithm. We believe that this modification does not diminish the security of Salsa20.

6.3 Discussion

For certain algorithms replacing counters by LFSRs will not provide substantial improvements. For
example, hardware implementation of Salsa20k() will require an adder since addition operation is
required by the Salsa20 algorithm itself. Hence, avoiding the adder for generating the sequence
S0, S1, S2, . . . might not provide substantial improvements. On the other hand, let us consider AES.
No adder is required for hardware implementation of AES. Hence, using LFSR(s) to produce the
sequence S0, S1, S2, . . . will ensure that no adder is required for hardware implementation of the
counter mode of operation. In this case, the benefits of using LFSRs will be more pronounced.

7 Conclusion

In this paper, we have shown that it is more efficient to use LFSRs instead of counters to gen-
erate sequences for use in hardware implementation of certain cryptologic algorithms. Two of the
algorithms are cryptanalytic generic search algorithms, while the third algorithm is the counter
mode of operation of a block cipher. Since LFSR based counter mode of operation is more efficient
than conventional counter mode of operation, future designs of cryptographic co-processors should
incorporate the facility of LFSR sequence generation.

Acknowledgement: We would like to thank David Wagner for informing us about Wiener’s earlier
suggestion for using LFSRs in exhaustive key search and also for pointing out reference [5] to us.

References

1. Electronics Frontier Foundation, Cracking DES, O’Reilly and Associates, 1998.
2. D. J. Bernstein. Salsa20 specification, ecrypt submission 2005. http://www.ecrypt.eu.org/
3. S. Burman and P. Sarkar. An Efficient Algorithm for Software Generation of Binary Linear Recurrences, Appl.

Algebra Eng. Commun. Comput. 15(3-4): 201-203 (2004)
4. W. Diffie and M. Hellman. Privacy and Authentication: An Introduction to Cryptography, Proceedings of the

IEEE, 67, pp. 397-427, 1979.
5. I. Goldberg and D. Wagner. Architectural considerations for cryptanalytic hardware. Chapter 10 of Crack-

ing DES: Secrets of Encryption Research, Wiretap Politics & Chip Design, O’Reilly, July 1998. See also
http://citeseer.ist.psu.edu/goldberg96architectural.html.

6. M. Hellman. A cryptanalytic Time-Memory Trade-off, IEEE Transactions on Information Theory, vol 26, pp
401-406, 1980.

7. R. Lidl and H. Niederreriter. Introduction to Finite Fields and their applications, Cambridge University Press,
Cambridge, pp 189-249, 1994 (revised edition).

8. A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied Cryptography, pp 195-201. CRC,
Boca Raton, 2001.

9. N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede. Cracking Unix passwords using FPGA platforms,
Presented at SHARCS’05, 2005.

10. S. Mukhopadhyay and P. Sarkar. Application of LFSRs in Time/Memory Trade-Off Cryptanalysis, in the
proceedings of WISA 2005, LNCS, to appear.

11. P. Oechslin. Making a faster Cryptanalytic Time-Memory Trade-Off, in the proceedings of CRYPTO 2003,
LNCS, vol 2729, pp 617-630, 2003.

12. J.J. Quisquater and F.X. Standaert. Exhaustive Key Search of the DES: Updates and Refinements, Presented
at SHARCS’05, 2005.

13. M.J. Wiener. Efficient DES Key Search, Crypto 1993 (rump session presentation), Santa Barbara, California,
USA, August 1993. Reprinted in Practical Cryptography for Data Internetworks, W. Stallings editor, IEEE
Computer Society Press, 1996, pp. 31-79.

