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Abstract

We present a blind signature scheme that is efficient and provably secure without random oracles
under concurrent attacks utilizing only four moves of short communication. The scheme is based on
elliptic curve groups for which a bilinear map exists and on extractable and equivocable commitments.
The unforgeability of the employed signature scheme is guaranteed by the LRSW assumption while the
blindness property of our scheme is guaranteed by the Decisional Linear Diffie-Hellman assumption.

We prove our construction secure under the above assumptions as well as Paillier’s DCR assumption
in the concurrent attack model of Juels, Luby and Ostrovsky from Crypto ’97 using a common reference
string. Our construction is the first efficient construction for blind signatures in such a concurrent model
without random oracles. We present two variants of our basic protocol: first, a blind signature scheme
where blindness still holds even if the public-key generation is maliciously controlled; second, a blind
signature scheme that incorporates a “public-tagging” mechanism. This latter variant of our scheme
gives rise to a partially blind signature with essentially the same efficiency and security properties as our
basic scheme.

1 Introduction

Blind signatures were introduced by Chaum in [Cha82] and proved to be a most useful cryptographic scheme
that has been the basis of many complex cryptographic constructions including e-cash systems and e-voting
schemes. Informally, a blind signature is a signature scheme that incorporates a signing protocol that allows
the signer to sign a document submitted by a user blindly, i.e., without obtaining any information about the
document itself.

It was observed early on (at least as early as [Dam88], see also [PW91]) that blind signatures contain an
instance of a secure function evaluation protocol in the following sense: the user possesses a private inputm
and a public-inputpk which is the verification key of a digital signature algorithm, and the signer possesses
a private inputsk which is the signing-key of the digital signature algorithm; with this setup the user and the
signer should execute a probabilistic secure function evaluation protocol that will allow the user to compute
σ, a signature onm underpk, without revealingm to the signer and without the signer revealingsk to
the user. Given the complexity of general secure function evaluation though, [Yao86, GMW87], in early
work on blind signatures this paradigm was not very motivating. A more motivating paradigm was found
in divertible zero-knowledge proofs [OO89, Oka92, CDP94] and many blind signatures were subsequently
designed in this line of reasoning [PS96, PS97, Poi98, AO00, AO01, Abe01] as well as the first attempt to
give provably secure constructions (in the random oracle model) was due to [PS96].

Regarding provably secure constructions, Pointcheval and Stern [PS96], presented secure blind sig-
natures with three communication moves that were proven secure in the random oracle model under the

∗An earlier version of this paper was titled “Two-round Concurrent Blind Signatures without Random Oracles” with each round
meant to include two moves; this proved to be confusing with respect to the use of the term “round” in previous works and thus
the “two-round” was removed from the title. The protocols presented in all versions of the present work have always been 4-move
protocols.

†University of Connecticut, Computer Science and Engineering, Storrs, CT, USA,{aggelos,hszhou }@cse.uconn.edu .
Research partly supported by NSF CAREER Award CNS-0447808.

1



discrete-logarithm assumption assuming only logarithmically many messages were transmitted by the user.
This result was later improved to polynomially many messages but five communication moves [Poi98] and
the round complexity was finally decreased to three moves and polynomially many messages in [AO01,
Abe01]. A two moves protocol was presented in [BNPS01] assuming the RSA inversion oracle assumption.
We stress that all these results were proven secure in the random oracle model.

Concurrency in the context of blind signatures was put forth by Juels, Luby and Ostrovsky [JLO97]
who presented the first security model for blind signatures that takes into account that the adversary may
launch many concurrent sessions of the blind signing protocol (operating as either the user or the signer).
Concurrency is particularly important since in implementations of blind signatures in e-voting and e-cash
schemes, see e.g., [Cha82, FOO92, Kim04], the signer is a multi-threaded server that accepts many concur-
rent sessions of users that are executing the signing protocol. Thus, it is of crucial importance to consider the
security of blind signatures, when(1) a malicious signer attempts to defeat the blindness of many concur-
rently joining users, and(2) a coalition of malicious users attempts to extract information about the signing
key of the multi-threaded signer server. Still, the design of schemes that satisfied such stronger models
proved elusive. In fact, Lindell [Lin03] showed that concurrent security for blind signatures is impossible
in the bare model (i.e., without any setup assumption). On the other hand, in the CRS model, Canetti et
al. [CLOS02] gave a generic construction for multi-party secure function evaluation that achieves an even
stronger notion of security than concurrency (universal composition) and can be used to solve (generically)
the blind signature problem using a CRS. Note that this construction is not efficient and some trusted setup
assumption such as using a CRS is necessary for a blind signature given the result of Lindell [Lin03]. More
recently, Camenisch et al. [CKW04] using a weaker model than that of [JLO97] that only allowed sequential
attacks presented an eight-move blind signature scheme that is based on the Strong-RSA assumption leaving
as open problem the possibility of achieving concurrent security in an efficient scheme.

Our Contribution. In this paper, we give the first efficient construction for blind signatures to achieve con-
current security in the sense of [JLO97] assuming a common reference string. The four-move interactions
between the user and the signer in the signing protocol requires overall communication not exceeding 2
Kbytes (about 10.2 Kbits to be precise) for a full signature generation. Achieving this level of efficiency
while simultaneously maintaining provability in a concurrency model required the careful composition of a
number of cryptographic primitives. As our underlying digital signature scheme (i.e., the type of signature
that is obtained by users) we use the elliptic curve based signature scheme of Camenisch and Lysyanskaya
[CL04] (henceforth called a CL signature). We also employ a variant of Linear Encryption, an encryption
scheme that was originally introduced in the context of group signatures by Boneh, Boyen and Shacham
[BBS04]. Here we find a novel use of this primitive in the context of blind signatures. In addition to
these primitives, our construction makes essential use of discrete-logarithm equivocal commitments based
on Pedersen commitments [Ped91] and extractable commitments based on Paillier encryption [Pai99].

The central idea of our construction is to use a variant of Linear Encryption to produce a very efficient
secure function evaluation protocol for CL signatures that proceeds roughly as follows: the user selects on
the fly a key for the encryption scheme and encrypts her message with it. The signer upon receiving this
encryption takes advantage of the homomorphic properties of the encryption to blindly transform the cipher-
text into a randomized encryption of a CL signature and then transmits the resulting rerandomized ciphertext
back to the user. We make an essential use of the homomorphic properties of the underlying encryption in
the efficient generation of non-adversarial randomness between the mutually distrustful players.

In order to prove security under concurrent attacks a number of provisions have to be taken in the blind
signature protocol design. Most importantly, in our signing protocol, both sides will be required to prove
statements about their local computations. As a result, performing the whole protocol in four moves is one
of the most delicate parts of our construction. The homomorphic encryption based interaction that is used
for the secure signature computation needs to be paired with an extractable commitment. Moreover, an
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equivocable commitment is used for ensuring that no information leakage occurs from the user to the signer
or vice versa. Finally, the signer, proves to the user that he is following the protocol specifications and is
applying his signing key to the user’s ciphertext whereas the user has to prove that he is consistent across
his commitments.

The construction is proven to satisfy the two properties of the [JLO97] model as follows: the blindness
property is ensured under the Decisional Composite Residuosity assumption of [Pai99] and the Decision
Linear Diffie-Hellman assumption of [BBS04]. The unforgeability property is proven under the LRSW
assumption of [LRSW99]. Note that the resulting signature from the signing protocol is about half the size
of an RSA based Chaum blind signature.

Stronger blindness property.We consider a stronger adversarial model for blindness where the public-key is
adversarially controlled; we show how it is possible to modify our basic protocol in a straightforward way
to achieve this stronger blindness property.

Public-tagging and partial blindness.We finally provide an extension of our scheme that allows the public-
tagging of blindly signed messages, i.e., all messages that are obtained by the users also contain a publicly
known tag that is decided prior to the signing protocol execution. This extension is essentially equivalent
to a partially blind signature construction, a notion that was formalized in [AF96]. In a partially blind
signature every message is tagged with a public-string that is produced jointly by the user and the signer.
The blindness property is then restricted to hold only for blind signatures with same tag. Partial blindness
is important as it allows the signer to reuse the same public-key for a variety of different blind signature
functions.

2 Preliminaries

Bilinear Groups. Let G = 〈g〉 be a cyclic group of prime orderp such thate : G × G → GT is a bilinear
map, i.e., for allt, v ∈ G anda, b ∈ Z, it holds thate(ta, vb) = e(t, v)ab ande is non-trivial, i.e.,e(g, g) 6= 1.
Note that|GT | = p.

Camenisch-Lysyanskaya Signature.Camenisch and Lysyanskaya [CL04] proposed a digital signature
scheme (which we will call it CL-signature for short) that was adaptively chosen message secure in the
standard model. Our blind signature will be based on this signature scheme and we describe it below:

- The key generation algorithmgenCL: generate the bilinear group parameter(p,G,GT , g, e); then
choosex, y

r← Z∗
p, and computeX = gx andY = gy; set secret key assk = (x, y) and public

key aspk = (p,G,GT , g, e;X,Y ).
- The signing algorithmsignCL: on input messagem, secret keysk = (x, y), and public keypk =

(p,G,GT , g, e;X,Y ), choose a randoma ∈ G, and output the signatureσ = (a, ay, ax+mxy).
- The verification algorithmverifyCL: on input public keypk = (p,G,GT , g, e;X,Y ), message

m, and signatureσ = (a, b, c), check whether the verification equationse(a, Y ) = e(g, b) and
e(X, a)e(X, b)m = e(g, c) hold.

The underlying assumption of CL-signatures is called the LRSW assumption, which was introduced by
Lysyanskaya et al. [LRSW99]. Note that in this paper it was also shown that this assumption holds for
generic groups.

Assumption 2.1 (LRSW Assumption).Given the bilinear group parameters(p, g,G,GT , e). LetX,Y ∈
G, X = gx, Y = gy and defineOX,Y () to be an oracle that, on input a valuem ∈ Zp, it outputs a triple
(a, b, c) such thatb = ay, andc = ax+mxy wherea

r← G. Then, for all probabilistic polynomial time
adversariesA,
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Pr
[
x, y ∈ Zp;X = gx;Y = gy; (m,a, b, c)← AOX,Y :

m /∈ Q ∧m ∈ Zp ∧m 6= 0 ∧ a ∈ G ∧ b = ay ∧ c = ax+mxy

]
≤ ε

whereε is a negligible function in security parameterλ, andQ is the set of queries thatA made toOX,Y ().

Linear Encryption. Boneh et al. [BBS04] proposed a variant of ElGamal encryption, called, Linear En-
cryption that is suitable for groups over which the DDH assumption fails. We call it LE for short.

- The key generation algorithmgenLE : the public keypk is a triple of generatorst, v, w ∈ G and
the secret keysk is the exponentsx, y ∈ Z∗

p such thattx = vy = w.
- The encryption algorithmencLE : to encrypt a messagem ∈ G, choose random valuesa, b ∈ Zp,

and output the triple(ta, vb,m · wa+b).
- The decryption algorithmdecLE : given an encryption(T, V,W ), we recover the plaintextm as

followsm = decLE
sk (T, V,W ) = W

T x·V y .

The Linear encryption is based on the Decision Linear Diffie-Hellman assumption, which was first
introduced by Boneh et al. [BBS04]. With g ∈ G as above, along with arbitrary generatorst,v, andw of G,
consider the following problem:

Definition 2.2 (Decision Linear Diffie-Hellman Problem in G). Given t, v, w, tα, vβ, wγ ∈ G as input,
output1 if α+ β = γ and0 otherwise.

It is believed that DLDH is a hard problem even in bilinear groups where DDH is easy. Now we define
the advantage of an algorithmA in deciding the DLDH problem inG as

AdvADLDH =
∣∣∣∣ Pr[1← A(t, v, w, tα, vβ , wα+β) : t, v, w ∈ G, α, β ∈ Zp]

− Pr[1← A(t, v, w, tα, vβ, χ) : t, v, w, χ,∈ G, α, β ∈ Zp]

∣∣∣∣
Assumption 2.3 (Decision Linear Diffie-Hellman Assumption).We say that the Decision Linear Diffie-
Hellman assumption holds inG if for all PPT algorithmsA it holds thatAdvADLDH is negligible in the security
parameterλ.

Paillier-Encryption. In our scheme we will employ the public-key encryption introduced by Paillier
[Pai99]:

- The key generation algorithmgenPai : let p andq be random primes for which it holdsp 6= q,
|p| = |q| and gcd(pq, (p− 1)(q− 1)) = 1; let n = pq, π = lcm(p− 1, q− 1),K = π−1 mod n,
andg = (1 + n); the public key ispk = (n, g) while the secret key issk = (p, q).

- The encryption algorithmencPai : the plaintext set isZn; given a plaintextm, choose a random
ζ ∈ Z∗

n, and let the ciphertext beEm = encPai
pk (m, ζ) = gmζn mod n2.

- The decryption algorithmdecPai : given a ciphertextEm, letK = π−1 mod n and now observe
that (Em)πK = gm·πK · ζn·πK = gm·πK mod n · ζn·πK mod nπ = gm mod n · ζ0 mod nπ = gm =
1 +mn mod n2. Thus, it is possible to recoverm = ((Em)πK mod n2)−1

n mod n.
The cryptosystem above has been proven semantically secure if and only if the Decisional Composite

Residuosity (DCR) assumption [Pai99] is true. The advantage of an algorithmA in deciding the DCR
problem is defined as follows:

AdvADCR =
∣∣ Pr[1← A(z) : z ∈ Z∗

n2 ]− Pr[1← A(z) : z ∈ HRn
n2 ]

∣∣
whereHRn

n2 is the subgroup ofn-th residues modulon2.

Assumption 2.4 (Decisional Composite Residuosity Assumption).We say that the DCR assumption holds
in G if for all PPT algorithmsA it holds thatAdvADCR is negligible in the security parameterλ.
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Commitment Schemes.A commitment scheme is a protocol with two stages, the commit stage and the
decommit stage, between two parties, the committer and the receiver. A commitment scheme consists of
a key generation algorithmgen which can be used to produce a public keypk, a commitment algorithm
com which is used by the committer to produce a commitment to the messagem and the decommitment
informationζ, i.e.,(c, ζ)← compk(m), and a decommitment verification algorithmdec which can be used
by the receiver to verify the decommitment informationζ and the messagemwith respect to the commitment
c, i.e.,dec(c,m, ζ) ∈ {0, 1}. Frequently the decommitment informationζ is the random coins used by the
commitment algorithm and we will writec← compk(m, ζ).

A commitment scheme will satisfy two properties:hiding, the receiver can not obtain any information
aboutm given compk(m, ζ); and binding, the committer cannot change his mind aboutm later, i.e. he
cannot change the decommitment verification information(m, ζ) into some(m′, ζ ′) wherem 6= m′, so that
c← compk(m, ζ) anddec(c,m′, ζ ′) = 1.

In anextractablecommitment, there is a trapdoor informationxk associated to each public keypk that
allows the trapdoor owner to computem from anycompk(m, ζ). In anequivocablecommitment on the other
hand, there is a trapdoor informationek associated to each public keypk that allows a committer who is a
trapdoor owner to computeζ ′ given anym, ζ,m′, c← compk(m, ζ) so thatdec(c,m′, ζ ′) = 1.

Common Reference String Model. In the common reference string (CRS) model, we assume that each
player can access a common string that is guaranteed to come from a prescribed distribution. Furthermore,
no players (including the adversaries) will know the trapdoor information related to the procedure of choos-
ing the string. The trapdoor will be known to the simulator in the proof of security. In practice, a trusted
third party can generate the CRS by running the CRS generatorK, i.e. (crs, τ)← K(1λ), and discarding the
trapdoorτ . The stringcrs is published, and all parties receive it as additional input.

3 Formal Model for Blind Signatures

In this section, we revisit in detail the formal model for blind signatures as introduced in [JLO97] and
we reformulate it to the common reference string (CRS) model. We stress again that some trusted setup
assumption is necessary in the light of Lindell’s negative result for blind signatures [Lin03] in the “bare”
concurrent model.

3.1 Blind Signature Scheme

Definition 3.1 (Blind Signature Scheme).A blind digital signature scheme is a four-tuple, consisting of
two interactive Turing machines (S, U) and two algorithms (gen,verify). HereS denotes the signer, andU
the user.

- gen(1λ) is a probabilistic polynomial time key-generation algorithm which takes as an input a
security parameter1λ and outputs a pair(pk, sk) of public and secret keys.

- S(pk, sk) andU(pk,m) is a pair of polynomially time bounded probabilistic interactive Turing
machines, where both machines have the following tapes: read-only input tape, write-only output
tape, a read/write work tape, a read-only random tape, and two communication tapes, a read-only
and a write-only tape. They are both given on their input tapes as a common input apk produced
by the key generation algorithm. AdditionallyS is given on his input tape the corresponding
secret keysk andU is given on his input tape a messagem, where the length of all inputs must
be polynomial in the security parameter1λ. Both U andS engage in an interactive protocol for
some polynomial inλ number of moves. At the end of this protocolS outputs eithercompletedor
not-completedandU outputs eitherσ or⊥.

- verify(m,σ, pk) is a deterministic polynomial time algorithm, which outputs1 or 0.
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The correctness requirement for the above is that for any messagem, and for all random choices of the
key generation algorithm, if bothS andU follow the protocol thenS always outputscompleted, and if the
output of the user isσ thenverify(m,σ, pk) = 1.

Note that in the CRS model, bothS,U receive as additional input thecrs string.

3.2 Blindness and Unforgeability

The security properties for blind signatures defined in [JLO97] are blindnessandunforgeability . Below
we revisit their modelling and we give detailed definitions for these properties in the CRS model.

Definition 3.2 (Blindness). Assume(crs, τ) ← K(1λ), (pk, sk) ← gen(1λ). We define an oracleIφ

with public input(1λ, crs, pk) which simulates two user instantiationsUL andUR, whereφ ∈ {0, 1}. The
adversaryA will be communicating with this oracle trying to predictφ given input(1λ, crs, pk, sk). The
oracleIφ operates as follows:

- Given 〈challenge,m0,m1〉, the oracleIφ simulates two user instantiationsUL andUR with
input the public-keypk and the messagesmφ andm1−φ respectively. The oracleIφ keeps a
database with the state of each user instantiation; the state includes all coin tosses of the user
instantiation and the contents of all tapes including the communication tape. The oracle usesstL

(resp.stR) to record the state ofUL (resp.UR).
- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}, the oracleIφ recovers the state ofstρ, and simulates

the user instantiationUρ with msg till Uρ either terminates or returns a response to the signer. If
Uρ returns a response, thenIφ returns this toA. The oracle will record the current statest, i.e.
stρ = stρ||st. Note that this kind of query can be executed several times depending on the number
of moves of the blind signature protocol.

- Given〈terminate,msgL,msgR〉, the oracleIφ recovers the statestL (resp.stR), and simulates
the user instantiationUL (resp. UR) with msgL (resp. msgR) till UL (resp. UR) terminates or
fails. If both user instantiations terminate successfully and output two signatures, then the oracle
returns these signatures toA, otherwise returns(⊥,⊥).

Given any probabilistic polynomial timeA, we define its advantage against blindness as:

AdvAblind(λ) =

∣∣∣∣∣Pr

[
φ← AIφ(1λ,crs,pk)(1λ, crs, pk, sk) :

φ
r← {0, 1}, (crs, τ)← K(1λ), (pk, sk)← gen(1λ)

]
− 1

2

∣∣∣∣∣
and say that the blind signature scheme satisfies the blindness property ifAdvAblind(λ) is negligible inλ.

Definition 3.3 (Unforgeability). We define an oracleI that is simulating concurrently an arbitrary number
of signer instantiations. The oracle accepts two types of queries defined as follows:

- 〈start,msg〉. The oracleI selects a session identifiersid, and simulates the signer instantiation
S with msg till S either terminates or returns a response. If the signer instance returns a response
to the user,I returns this with the session identifiersid as an answer to the oracle query. The
oracleI keeps a database with the state ofS for the session identifiersid; the state includes all
coin tosses ofS, and the contents of all tapes including the communication tape.

- 〈advance, sid,msg〉. The oracleI looks up the table of sessions and recovers the state ofS for the
session with identifiersid (if sessionsid exists). Subsequently,I writesmsg in the communication
tape ofS and simulates it till it either terminates or returns a response to the user. If it returns a
message to the user,I returns this as an answer to the oracle query. If no session identifier exists
the oracle returns “fail.”
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The oracleI maintains a counter̀that counts the number of times that the oracle has successfully terminated
a signer session. Each time thatI successfully terminates a signer session it increases the counter` by 1. A
“one-more forgery” adversary against the blind signature is a polynomial-time probabilistic machineA that
is given as input(1λ, crs, pk) where(crs, τ)← K(1λ) and(pk, sk)← gen(1λ). The adversaryA interacts
with I(crs, pk, sk) and terminates by returning a sequence of(m1, σ1), ..., (m`′ , σ`′) wheremi 6= mj for
all i, j : 1 ≤ i 6= j ≤ `′. We define the advantage ofA in the above attack by

AdvAunforge(λ) = Pr[∧`′
i=1(1← verify(pk,mi, σi)) ∧ (`′ > `)]

and say that the blind signature scheme is unforgeable ifAdvAunforge(λ) is negligible inλ.

4 The Proposed Scheme

4.1 Setup and Generation of Keys

We start the description of our construction by describing the setup definition as well as the way that the
involved parties, the user and the signer generate their keys.

Public Parameters. The public parameterpub contains general information about all protocol executions
as well as a specific bilinear group parameter(p,G,GT , g, e) appropriately selected.

Common Reference String. Next we describe how the common reference stringcrs is selected. It includes
two parts,crs1 andcrs2. First, we generate parameters for a Pedersen-like [Ped91] commitment scheme
over an elliptic curve group: letG = 〈g〉 be a cyclic elliptic curve group of prime orderQ; selectr

r← Z∗
Q

and computeh = gr; setcrs1 = 〈Q,g,h,G,H〉, whereH : {0, 1}∗ → ZQ is a collision resistant hash
function and set the trapdoor to beτ1 = r. Then we generate parameters for the Paillier encryption: letp
andq be random primes for which it holdsp 6= q, |p| = |q| and gcd(pq, (p − 1)(q − 1)) = 1; let n = pq,
andg = (1 + n); setcrs2 = 〈n, g〉 and the trapdoorτ2 = 〈p, q〉. Now we havecrs = (crs1, crs2); the
two trapdoorsτ1, τ2 as well as any random coins used for the generation ofcrs are discarded.

Signer Parameters. The signerS uses the algorithmgen to generate his public and secret parameters based
onpub. The signer selectsx, y

r← Z∗
p and computesX = gx andY = gy. Then it setsPKS = 〈X,Y 〉 and

SKS = 〈x, y〉; this is the key pair ofS.

We note that the parameters selected above are assumed to be long-lived, i.e., they will be used for many
executions of the signing protocol. On the other hand, the user has no long-lived parameters. Still, as part
of each signing protocol the user will select some public and secret key that will have the lifetime of one
signing protocol execution. We stress that this is not a necessity and each user may also keep his public-key
parameters the same across signing protocol executions; in fact these parameters can be part of a PKI that
all users are members of. This will make the protocol’s time-complexity somewhat more efficient on the
side of the user (but will have the cost of maintaining a user PKI).

User Parameters.Each userU generates his key pair on the fly: he selectsw
r← G\{1} andδ, ξ

r← Z∗
p, and

sett, v ∈ G such thattδ = vξ = w. SetPKU = 〈t, v, w〉 as his public key and keep secretlySKU = 〈δ, ξ〉
as his secret key.

Choice of Parameter Lengths.The length of each parameterp, n, Q is νp, νn, νQ respectively and should
be selected so that the following are satisfied: (i) The DLDH assumption holds over the bilinear group pa-
rameter(p,G,GT , g, e), (ii) The LSRW assumption holds over the bilinear group parameter(p,G,GT , g, e),
(iii) The discrete-logarithm (DLOG) assumption holds over the elliptic curve cyclic groupG, (iv) The DCR
assumption holds overZ∗

n2 . Based on the present state of the art with respect to the solvability of the above
problems, a possible choice of the parameters is for exampleνp = 171 bits,νn = 1024 bits,νQ = 171 bits.
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4.2 Signing Protocol

We give a high-level description of our protocol before presenting in detail.
(1) First, both the user and the signer obtain the public inputspub, crs, andPKS, the signer gets the private
inputSKS, and the user gets the private input messagem.
(2) Then the user generates his key pair(PKU, SKU) for Linear Encryption, and keepsSKU secret; the
user generates a Paillier ciphertext for messagem which is used as an extractable commitment; the user
generates a special Linear Encryption ciphertext form which will be signed by the signer.
(3) To guarantee that the Linear Encryption ciphertext and the Paillier ciphertext are consistent, the user
interleaves within the protocol execution a 3-moveΣ-protocol that shows the consistency of the com-
mitment and the encryption. This protocol employs an equivocal Pedersen commitment scheme to allow
zero-knowledge in the concurrent setting (cf. [Dam00]). When the signer successfully verifies the 3-move
protocol which was initialized by the user, he will transform the Linear Encryption ciphertext by using his
signing keySKS and appropriately rerandomize it. This will result in the encryption of a CL-signature
which will be recovered by the user using his secret keySKU.
(4) To guarantee that the signer follows the protocol specifications, the signer is required to interleave a
3-moveΣ-protocol as well in order to show that he is applying his secret-key appropriately on the Linear
Encryption ciphertext that is provided by the user. Again we employ an equivocal Pedersen commitment to
allow for concurrent zero-knowledge.
(5) When the user verifies successfully the final step of the signing protocol computation, he decrypts the CL-
signature from the signer’s ciphertext using his secret-keySKU and obtains a CL-signature for the message
m. Then he refreshes the randomness of the signature taking advantage of the randomness homomorphic
property of CL-signatures.

Σ-protocols and Round-complexity.In our signing protocol we employ twoΣ-protocols from both sides of
the interaction. Both these protocols have the form〈commitment; challenge; response, decommitment〉.
A subtle difficulty in the design of our protocol is that if the twoΣ-protocols are executed sequentially they
will result in an overall round complexity of six moves. In order to maintain the four-move protocol com-
plexity we want to “start” theΣ-protocol for the signer side before the user sideΣ-protocol terminates.
Nevertheless this will violate the security property of our scheme, so, in order to allow an early start of the
signer sideΣ-protocol we have the signer commit to the value he will prove a statement about and open the
commitmentonly in casethe user’s sideΣ-protocol verifies.

We outline the high-level description of our signing protocol inFigure 1. In the first step, the userU
prepares two different encryptions of his private inputm, calledEm and〈T, V,W 〉. Moreover, it computes
the first move of aΣ-protocol that shows the consistency of the two encryptions and commits to it into
commitmentU. In the second step, the signer prepares an encryptionψ that can be decrypted by the user
into a CL-signature but does not transmit yet this value to the user. Instead, it prepares the first move of
a Σ-protocol that shows that he computedψ correctly and commits toψ as well as the first move into
commitmentS. In the third step, the user, given the challenge of the signer, completes theΣ-protocol that
shows he computed the two encryptionsEm and〈T, V,W 〉 in a consistent way and transmits to the signer
the decommitment information necessary to verify the consistency of the ciphertexts. In the fourth step,
the signer verifies theΣ-protocol of the user and if it is accepted, the signer completes hisΣ-protocol and
transmits to the user the encryptionψ as well as the decommitment information necessary to verify the claim
thatψ is correctly computed based on the signer’s public-key. Finally the user verifies theΣ-protocol and if
accepted it outputs the computed blind signature.

The detailed description of the protocol is shown inFigure 2. Note thatd1 < p, d2 < p, i.e. λ1 < νp,
λ2 < νp. For exampleλ0 = λ1 = λ2 = 80 bits.
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U S

(PKU, SKU)← genLE (1λ)
Em ← encPai(m)
UseencLE (·) andm to produce an
appropriate ciphertext〈T, V,W 〉
Compute the first move of the user
side Σ-proof and commit it into
commitmentU

PKU,Em,〈T,V,W 〉,commitmentU

−−−−−−−−−−−−−−−−−−−−−−−−→ Use the homomorphic properties
of Linear Encryption and of CL-
signature and transformT, V,W
into an encryptionψ of a CL-
signatureσ′ on the messagem.
Compute the first move of the
signer side Σ-proof and com-
mit it together with ψ into
commitmentS.

challengeU,commitmentS

←−−−−−−−−−−−−−−−−−−−−−−−−
responseU,decommitmentU,challengeS

−−−−−−−−−−−−−−−−−−−−−−−−→
Verify the 3-move Σ-protocol
〈commitmentU; challengeU;
responseU, decommitmentU〉,

Verify the 3-move Σ-protocol
〈commitmentS; challengeS;
responseS, decommitmentS〉, then
get ψ from decommitmentS and
decrypt it to obtain the signature.

responseS,decommitmentS

←−−−−−−−−−−−−−−−−−−−−−−−−

Figure 1: Overview of our blind signature generation protocol.

4.3 Signature Verification

Given a message-signature pair(m;σ), whereσ = 〈a, b, c〉 , the verification algorithm is based on the two
verification equations below:e(a, Y ) = e(g, b) ande(X, a)e(X, b)m = e(g, c).

4.4 Correctness and Security

The correctness and security of our scheme is captured byTheorem 4.1, Theorem 4.3, Theorem 4.5as
described here.

4.4.1 Correctness

Theorem 4.1 (Correctness).If the signer and the user follow the signing protocol, the resulting signature
satisfies the verification with provability 1.

Proof. First, we check the correctness of the verification equations for theΣ-protocols.
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crs = 〈Q,g,h,G,H; n, g〉; pub = 〈p, g,G,GT , e〉; PKS = 〈X,Y 〉

U S
MSG = 〈m〉,m ∈ [0, 2νp ] SKS = 〈x, y〉

(PKU, SKU)← genLE (1λ)
PKU = 〈t, v, w〉, SKU = 〈δ, ξ〉

m̂
r← ±[0, 2λ0+λ1+νp ],Am, Bm

r← Z∗
n

α, k, l, k̂, l̂
r← Zp, θ

r← G\{1}, µ1
r← ZQ

Em = gm(Am)n mod n2

Êm = g bm(Bm)n mod n2

T = tk, V = vl,W = θmwk+l

T̂ = t
bk, V̂ = v

bl, Ŵ = θ bmw
bk+bl

ω1 = H(Êm, T̂ , V̂ , Ŵ ), C1 = gω1hµ1
PKU,Em,〈θ,T,V,W 〉,C1

−−−−−−−−−−−−−−−−−−−−→ d1
r← {0, 1}λ1

α′, k′, l′, x̂, k̂′, l̂′
r← Zp, µ2

r← ZQ

a′ = θα′
, b′ = θyα′

T ′ = T xyα′
tk

′α′
, V ′ = V xyα′

vl′α′

W ′ = W xyα′
θxα′

wk′α′+l′α′

LT = e(T, b′)bxe(t, a′)bk
′

LV = e(V, b′)bxe(v, a′)bl
′

LW = (e(W, b′)e(θ, a′))bx e(w, a′)bk
′+bl′

ω2 = H(a′, b′, T ′, V ′,W ′, LT , LV , LW )

d2
r← {0, 1}λ2

d1,C2
←−−−−−−−−−−−−−−−−−−−− C2 = gω2hµ2

sm = m̂− d1m (in Z)
sk = k̂ − d1k, sl = l̂ − d1l
Fm = Bm(Am)−d1 mod n

d2,〈sm,sk,sl,Fm〉,〈 bEm,bT ,bV ,cW,µ1〉
−−−−−−−−−−−−−−−−−−−−−−→ Em ∈? Z∗

n2 , sm ∈? ±[0, 2λ0+λ1+νp+1]

ω1 = H(Êm, T̂ , V̂ , Ŵ ), C1 =? gω1hµ1

Êm =? gsm(Fm)n(Em)d1 mod n2

T̂ =? tskT d1 , V̂ =? vslV d1

Ŵ =? θsmwsk+slW d1

sx = x̂− d2x,
sk′ = k̂′ − d2k

′, sl′ = l̂′ − d2l
′

ω2 = H(a′, b′, T ′, V ′,W ′, LT , LV , LW )
〈sx,sk′ ,sl′ 〉

←−−−−−−−−−−−−−−−−−−−−
〈a′,b′,T ′,V ′,W ′,LT ,LV ,LW ,µ2〉

C2 =? gω2hµ2

e(a′, Y ) =? e(b′, g)
LT =? e(T, b′)sxe(t, a′)sk′ e(T ′, θ)d2

LV =? e(V, b′)sxe(v, a′)sl′ e(V ′, θ)d2

LW =? (e(W, b′)e(θ, a′))sx ·
e(w, a′)sk′+sl′ e(W ′, θ)d2

a = (a′)α, b = (b′)α, c =
(

W ′

T ′δV ′ξ

)α

σ = 〈a, b, c〉
output(m;σ)

Figure 2: Blind signature generation protocol.
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Êm = g bm(Bm)n mod n2 = gsm+d1·m(Fm · (Am)d1)n mod n2

= (gsm(Fm)n) · (gm(Am)n)d1 mod n2 = gsm(Fm)n(Em)d1 mod n2,

Ŵ = θ bmw
bk+bl = θsm+d1·mw(sk+sl)+d1·(k+l) = (θsmwsk+sl) · (θmwk+l)d1 = θsmwsk+slW d1 ,

T̂ = t
bk = tsk+d1·k = tsk · (tk)d1 = tskT d1 , V̂ = v

bl = vsl+d1·l = vsl · (vl)d1 = vslV d1 ;

LT = e(T, b′)bxe(t, a′)bk
′
= e(T, b′)sx+d2xe(t, a′)sk′+d2k′

= e(T, b′)sxe(t, a′)sk′
(
e(T, θyα′

)xe(t, θα′
)k′

)d2

= e(T, b′)sxe(t, a′)sk′
(
e(T, b′)xe(t, a′)k′

)d2

= e(T, b′)sxe(t, a′)sk′
(
e(T xyα′

, θ)e(tk
′α′
, θ)

)d2

= e(T, b′)sxe(t, a′)sk′e(T xyα′
tk

′α′
, θ)d2 = e(T, b′)sxe(t, a′)sk′e(T ′, θ)d2 ,

LV = e(V, b′)bxe(v, a′)bl
′
= e(V, b′)sx+d2xe(v, a′)sl′+d2l′ = e(V, b′)sxe(v, a′)sl′

(
e(V, θyα′

)xe(v, θα′
)l′

)d2

= e(V, b′)sxe(v, a′)sl′
(
e(V, b′)xe(v, a′)l′

)d2

= e(V, b′)sxe(v, a′)sl′
(
e(V xyα′

, θ)e(vl′α′
, θ)

)d2

= e(V, b′)sxe(v, a′)sl′e(V xyα′
vl′α′

, θ)d2 = e(V, b′)sxe(v, a′)sl′e(V ′, θ)d2 ,

LW = (e(W, b′)e(θ, a′))bx e(w, a′)bk
′+bl′ = (e(W, b′)e(θ, a′))sx+d2x e(w, a′)(sk′+sl′ )+d2(k′+l′)

= (e(W, b′)e(θ, a′))sx e(w, a′)sk′+sl′
(
(e(W, b′)e(θ, a′))x e(w, a′)k′+l′

)d2

= (e(W, b′)e(θ, a′))sx e(w, a′)sk′+sl′
((
e(W, θyα′

)e(θ, θα′
)
)x
e(w, θα′

)k′+l′
)d2

= (e(W, b′)e(θ, a′))sx e(w, a′)sk′+sl′e(W xyα′
θxα′

w(k′+l′)α′
, θ)d2

= (e(W, b′)e(θ, a′))sx e(w, a′)sk′+sl′e(W ′, θ)d2 .

Then we check the correctness of the CL-signature.

a = (a′)α = θαα′
,

b = (b′)α = (θy)αα′
= (θαα′

)y = ay,

c = (W ′/(T ′δV ′ξ))α = ((W xyθxwk′+l′)/((T xytk
′
)δ(V xyvl′)ξ))αα′

= ((W/(T δV ξ))xy · θx · (wk′+l′/(tδk′
vξl′)))αα′

= ((θm)xy · θx · 1)αα′
= (θαα′

)mxy+x = amxy+x

So,e(a, Y ) = e(g, b) ande(X, a)e(X, b)m = e(g, c).

4.4.2 Unforgeability

In this subsection, we prove the unforgeability of our scheme. Before proving the unforgeability of our
scheme, we first build a useful lemma which guarantees that the user will use the same plaintext in the Linear
Encryption and in the Paillier encryption based on the three-move proof in the blind signature generation
protocol. Based on the lemma, then we can simulate the signer successfully and reduce the unforgeability
to the unforgeability of the CL-signature.

Lemma 4.2. In the blind signature generation protocol, under the DLOG assumption, a PPT adversary can
generate a valid proof with the signer such that

logθ

(
decLE(T, V,W )

)
6= decPai(Em) mod p

only with probability2−λ1 .

Proof. Definem = decPai(Em). Paillier encryption is 1-1 overZ∗
n2 , so it is well-defined andm ∈ Zn.

Also Em ∈ Z∗
n2 can be written asEm = gm(Am)n mod n2 for someAm ∈ Z∗

n. Similarly, definem′ =
logθ

(
decLE(T, V,W )

)
. Recall thatθ ∈ G\{1} and the order ofG is primep. Soθ is a generator ofG, and

we can getθm′
= decLE(T, V,W ) andm′ ∈ Zp. Also t, v ∈ G are generators ofG, andT, V ∈ G can be
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written asT = tk, V = vl for somek, l ∈ Zp. Note thatdecLE(T, V,W ) = W
T δ ·V ξ . SoW = θm′

T δV ξ =
θm′

tkδvlξ = θm′
wk+l.

Now we assume that there is a PPT adversary who can generate a valid proof with the signer such that
m 6= m′ mod p. Up to now we have equations:

m 6= m′ mod p m ∈ Zn,m
′ ∈ Zp (1)

Em = gm(Am)n mod n2 Am ∈ Z∗
n (2)

W = θm′
wk+l k, l ∈ Zp (3)

T = tk (4)
V = vl (5)

We have assumed that the proof is valid. So all verification equations hold:

Êm = gsm(Fm)n(Em)d1 mod n2 (6)
Ŵ = θsmwsk+slW d1 (7)
T̂ = tskT d1 (8)
V̂ = vslV d1 (9)

From equations (2) and (6), we have

Em = gsm(Fm)n(Em)d1 mod n2 = gsm(Fm)n(gm(Am)n)d1 mod n2 = gsm+d1m(Fm(Am)d1)n mod n2

By the similar way, we can get̂T = tsk+d1k, V̂ = vsl+d1l, andŴ = θsm+d1m′
w(sk+d1k)+(sl+d1l). Now we

call

m̂
def= sm + d1m mod n (10)

Bm
def= Fm(Am)d1 mod n (11)

k̂
def= sk + d1k mod p (12)

l̂
def= sl + d1l mod p (13)

m̂′ def= sm + d1m
′ mod p (14)

Consider thatgcd(n, p) = 1. From the equation (10), we can letm̂ = sm + d1m + An, whereA ∈ Z.
Som̂ − sm − d1m = An. Recall thatsm ∈ ±[0, 2λ0+λ1+νp+1], andm̂ ∈ ±[0, 2λ0+λ1+νp ], d1 ∈ {0, 1}λ1 ,
andm ∈ [0, 2νp ]. Som̂− sm − d1m ∈ ±[0, 2λ0+λ1+νp+2], andA = 0 becausèn � νp + λ0 + λ1 + 3. So
m̂ = sm + d1m.

From the equation (14), we can let̂m′ = sm + d1m
′ + Bp whereB ∈ Z. So m̂ − m̂′ = d1(m −

m′) − Bp. Recall thatp - (m − m′). We can find suchB only in the case ofp | (m̂ − m̂′) − d1(m −
m′). Note that〈m,m′, m̂, m̂′〉 is determined before receiving the challenged1 from the signer because
〈t, v, w,Em, θ, T, V,W ;C1〉 is sent before receivingd1 and〈Êm, T̂ , V̂ , Ŵ 〉 is bound by the commitment
C1 under the DLOG assumption. So we have only probability2−λ1 to findB. Therefore, under the DLOG
assumption, the adversary cannot develop a valid proof withm 6= m′ mod p except negligible probability
2−λ1 .

Theorem 4.3 (Unforgeability). The proposed scheme is unforgeable under the LRSW assumption.

Proof. In this part, we will show under LRSW assumption, no PPT adversary userA can achieve “one-
more” forgery with non-negligible probability. Let(p, g,G,GT , e;X,Y ) be the input instance of LRSW
problem. If a PPT userA obtains` + 1 valid message-signature pairs after` times successful executions
with the signer, we can construct oracleI which will output a valid pair(m∗, 〈a∗, b∗, c∗〉), wherem∗ is not
queried to the oracleOX,Y .
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1. The oracle setspub = 〈p, g,G,GT , e〉 andPKS = 〈X,Y 〉. The oracle generatescrs1 = 〈Q,g,h,G,H〉
andτ1 = r for the equivocal Pedersen commitment scheme; generatescrs2 = 〈n, g〉 andτ2 = 〈p, q〉
for the Paillier encryption; setscrs = (crs1, crs2). Now the oracle supplies the adversary with
〈pub, crs, PKS〉, keeps〈τ1, τ2〉.

2. The oracleI will be queried byA which operates like that in one of the two cases below:

Case 1:A queriesI with 〈start,msg〉, wheremsg = {PKU, Em, 〈θ, T, V,W 〉, C1}. The oracleI will
create a session identitysid and set the corresponding statest = ⊥; the oracleI will simulates
the signerS with msg till S either terminates or returns a responsersp to the user; the oracleI
records the current state inst. If S returnsrsp thenI returns this with the session identity toA,
i.e. I returns{sid, d1, C2} toA, whered1

r← {0, 1}λ1 andC2 = gγ2 , γ2
r← ZQ.

Case 2:A queriesI with 〈advance, sid,msg〉, wheremsg = {d2, 〈sm, sk, sl, Fm〉, 〈Êm, T̂ , V̂ , Ŵ , µ1〉}.
The oracleI will simulate the signerS with msg and previous statest. TheS checks whether all
equations hold:C1 =? gω1hµ1 whereω1 = H(Êm, T̂ , V̂ , Ŵ ), Êm =? gsm(Fm)n(Em)d1 mod
n2, T̂ =? tskT d1 , V̂ =? vslV d1 , Ŵ =? θsmwsk+slW d1 . If not true, terminates. Otherwise, the
oracleI generates an identically distributed response toA.

Consider the Pedersen commitment scheme is involved. FromLemma 4.2above, under the
DLOG assumption, except negligible error probability2−λ1 , the oracleI can obtain them un-
der{θ, T, V,W} by decryptingm from Em, and then obtain〈a′, b′, T ′, V ′,W ′〉 based on this
m: the oracleI simulatesS to decryptEm into m = decPai

τ2 (Em) by using the trapdoor in-
formationτ2 = 〈p, q〉; then the oracleI simulatesOX,Y with inputm mod p which returns
〈a, b, c〉, and computesa′ = a, b′ = b,W ′ = cwk′′+l′′ , T ′ = tk

′′
, V ′ = vl′′ , wherek′′, l′′

r← Zp.
Note that here〈T ′, V ′,W ′〉 is in fact the ciphertext ofc over the public key〈t, v, w〉. The
simulated{a′, b′, T ′, V ′,W ′} is indistinguishable from the protocol answer consider the error
probability2−λ1 is negligible. In fact, without the error probability, the two distribution is iden-
tical, i.e. {a, b, cwk′′+l′′ , tk

′′
, vl′′} ≈ {(θ)α′

, (θy)α′
, (W xyθxwk′+l′)α′

, (T xytk
′
)α′
, (V xyvl′)α′

,
for random〈k′′, l′′〉 and 〈α′, k′, l′〉. Note that〈a, b, c〉 is the response fromOX,Y . So, a is
a random element inG, b = ay, c = ax+mxy. We knowW = θmwk+l, T = tk, V =
vl, for somek, l ∈ Zp. We can compute(W xyθxwk′+l′)α′

= ((θmwk+l)xyθxwk′+l′)α′
=

((θ)α′
)x+mxyw(kxy+k′)α′+(lxy+l′)α′

, (T xytk
′
)α′

= ((tk)xytk
′
)α′

= t(kxy+k′)α′
, (V xyvl′)α′

=
((vl)xyvl′)α′

= v(lxy+l′)α′
. Replaceθα′

, (kxy+ k′)α′, (lxy+ l′)α′ with a, k′′, l′′, we will know
the two probability distributions are identical.

Next, the oracleI randomly selectssx, sk′ , sl′
r← Zp, and letLT = e(T, b′)sxe(t, a′)sk′e(T ′, θ)d2 ,

LV = e(V, b′)sxe(v, a′)sl′e(V ′, θ)d2 ,LW = (e(W, b′)e(θ, a′))sx e(w, a′)sk′+sl′e(W ′, θ)d2 ; com-
putesω2 = H(a′, b′, T ′, V ′,W ′, LT , LV , LW ); uses the trapdoorτ1 = r to computeµ2 such
thatC2 = gω2hµ2 , i.e.µ2 = γ2−ω2

r . Consider the 3-move proof is zero-knowledge [Dam00], the
simulated distribution{a′, b′, T ′, V ′,W ′, LT , LV , LW , µ2; sx, sk′ , sl′} is indistinguishable from
that in the protocol answer.

3. A outputs message-signature pairs.

Now assume thatA can break the scheme, which meansA can generatè′ message-signature pairs
(m∗

1;σ
∗
1), (m

∗
2;σ

∗
2), . . . , (m

∗
`′ ;σ

∗
`′) with mi 6= mj and`′ > `. Since`′ − ` ≥ 1, at least one message, say

m∗
O, is not queried to oracleOX,Y , though(m∗

O;σ∗O) is a valid pair. In other word, we can construct a valid
pair (m∗

O;σ∗O), wherem∗
O is not in query history. This breaks the LRSW assumption.
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4.4.3 Blindness

In this subsection, we show the blindness of our scheme. Before going to the proof of the blindness of
our scheme, we first build a useful lemma which guarantee that the signer will use the correct ciphertext
〈θ, T, V,W 〉 and his secret key〈x, y〉 to generate〈a′, b′, T ′, V ′,W ′〉 based on the three-move proof.

Lemma 4.4. In the blind signature generation protocol, under the DLOG assumption, a PPT adversary can
generate a valid proof with the user such that

logg Y 6= loga′ b
′ mod p

or
logg X + logg X · logg Y · logθ

(
decLE(T, V,W )

)
6= loga′

(
decLE(T ′, V ′,W ′)

)
mod p

only with probability2−λ2 .

Proof. Based on the verification equatione(a′, Y ) = e(b′, y) it is very easy to prove the first part of the
lemma. Next we focus on the second part. Now we haveY = gy, X = gx, b′ = (a′)y. Definem =
logθ

(
decLE(T, V,W )

)
, and we haveT = tk, V = vl,W = θmwk+l for somek, l ∈ Zp by using the same

argument in the proof ofLemma 4.2. Note thatGT is also order primep. There exist̂x, k̂′, l̂′, η̂, k′, l′, η ∈ Zp

such that,
LT = e(T, b′)bxe(t, a′)bk

′
(15)

LV = e(V, b′)bxe(v, a′)bl
′

(16)
LW = (e(W, b′)e(θ, a′))bx e(w, a′)bη (17)
e(T ′, θ) = e(T, b′)xe(t, a′)k′

(18)
e(V ′, θ) = e(V, b′)xe(v, a′)l′ (19)
e(W ′, θ) = (e(W, b′)e(θ, a′))x e(w, a′)η (20)

Assume there is a PPT can generate valid proof such thatlogg X+logg X ·logg Y ·logθ

(
decLE(T, V,W )

)
6=

loga′
(
decLE(T ′, V ′,W ′)

)
mod p; the verification equations are

LT = e(T, b′)sxe(t, a′)sk′e(T ′, θ)d2 (21)
LV = e(V, b′)sxe(v, a′)sl′e(V ′, θ)d2 (22)
LW = (e(W, b′)e(θ, a′))sx e(w, a′)sk′+sl′e(W ′, θ)d2 (23)

From equations (15,16,18,19,21,22), we can obtain
sx = x̂+ d2x mod p (24)
sk′ = k̂′ + d2k

′ mod p (25)
sl′ = l̂′ + d2l

′ mod p (26)
From equations (17, 20, 23, 24), we can obtain

sk′ + sl′ = η̂ + d2η mod p (27)
From equations (25-27), we can obtain

k̂′ + l̂′ − η̂ = −d2(k′ + l′ − η) mod p (28)
Note that〈a′, b′, T ′, V ′,W ′;LT , LV , LW 〉 is bound by commitmentC2 which is sent before the challenge
d2; and 〈k′, l′, η, k̂′, l̂′, η̂〉 is determined before receivingd2 from the user. So, except probability2−λ2 ,
the signer cannot getd2 before receiving it from the user. Now the equationη = k′ + l′ mod p holds;
otherwise the signer can compute suchd2 = −(k̂′ + l̂′ − η̂)/(k′ + l′ − η) before he receives the value.
Put the equationη = k′ + l′ mod p into equation (28), we can also getη̂ = k̂′ + l̂′ mod p. Assume
a′ = θα′

and recall thatb′ = (a′)y, we can obtainT ′ = T xyα′
tk

′α′
from equation (18); similarly we

can obtainV ′ = V xyα′
vl′α′

andW ′ = W xyα′
θxα′

wk′α′+l′α′
. Definec′ = decLE(T ′, V ′,W ′). Then

c′ = W ′

(T ′)δ(V ′)ξ = θ(x+xym)α′
= (a′)x+xym. And loga′

(
decLE(T ′, V ′,W ′)

)
= loga′ c

′ = x + xym =

14



logg X + logg X · logg Y · logθ

(
decLE(T, V,W )

)
mod p which contradicts the assumption. So, based

on a secure commitment scheme, except the probability2−λ2 , no PPT adversary can develop a valid proof
such thatlogg X + logg X · logg Y · logθ

(
decLE(T, V,W )

)
6= loga′

(
decLE(T ′, V ′,W ′)

)
mod p. This

completes the proof.

Theorem 4.5 (Blindness).The proposed scheme is blind under the DLDH assumption and the DCR as-
sumption.

We start from the blindness model, and define it as Game 0; we slightly change Game 0 by simulating the
left user instantiation by Damgård’s trick in Game 1; and then we slightly change Game 1 again and do
the similar simulation for the right user instantiation in Game 2. The statistical distance of the probability
distribution of Game 0 and Game 1, and of Game 1 and Game 2 are negligible. Now we slightly change
Game 2 into Game 3 when two user instantiations verify the verification equations successfully: instead of
generatingσ based on〈a′, b′, T ′, V ′,W ′〉 in Game 2, generateσ by using the signing key(x, y) onm. Based
onLemma 4.4, we show the statistical distance between Game 2 and Game 3 is negligible. Next we slightly
change Game 3 by simulating the left user instantiation with inputting a random message (not one of the
messages selected by the adversary) to the Paillier encryption in Game 4; then do the similar simulation for
the right user instantiation in Game 5. Both distances between Game 3 and Game 4, and Game 4 and Game 5
are negligible under the DCR assumption. Similarly, we slightly change Game 5 into Game 6 by simulating
the left user instantiation with inputting a random message to the linear encryption; then change Game 6 into
Game 7 by similar way for the right user instantiation. Again the distances between Game 5 and Game 6,
and Game 6 and Game 7 are negligible under the DLDH assumption. Therefore, the probability distribution
in Game 0 is indistinguishable from that in Game 7. Consider in Game 7, the two messages(m0,m1) have
never been involved in the communications between the user instantiations and the adversary signer, which
means the adversary has no advantage to win the game (with just probability1

2 to predictφ). So, in Game
0, the adversary has at most negligible advantage to win the game under the assumptions.

Proof. We use the sequential games technique to prove this part, and define gamesGA
j between the adversary

A and the oracleIφ
j which simulates two user instantiation: the left oneUL and the right oneUR, where

j = 0, 1, . . . , 7. Also we defineEj to be the event thatφ = φ′ in GA
j .

Game 0:

Follow the blindness model, we can define Game 0 as below:

GA
0 (1λ)

1. φ
r← {0, 1};

2. (pub, crs, PKS, SKS)← gen(1λ);
3. φ′ ← AIφ

0 (1λ,pub,crs,PKS)(1λ, pub, crs, PKS, SKS);
4. if φ = φ′ then1;

HereIφ
0 is defined as:

- Given 〈challenge,m0,m1〉, the oracleIφ
0 simulatesUL (resp. UR) with mφ (resp. m1−φ). The

oracleIφ
0 keeps a database with the state of each user instantiation; the state includes all coin tosses

of the user instantiation and the contents of all tapes including the communication tape. Here the
oracle usesstL (resp.stR) to record the state ofUL (resp.UR).

- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}:
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– If msg = ⊥, thenIφ
0 recovers the state ofstρ, and simulates the user instantiationUρ till Uρ

either terminates or returns a response to the signer. IfUρ returns a responsersp, thenIφ
0 returns

rsp toA. The oracle will record the current statest, i.e. stρ = stρ||st. Letm be the simulated
message forUρ, i.e.m = mφ for ρ = L andm = m1−φ for ρ = R, we have,

(a) (PKρ
U, SK

ρ
U)← genLE (1λ)

(b) m̂
r← ±[0, 2λ0+λ1+νp ],Am, Bm

r← Z∗
n, α, k, l, k̂, l̂

r← Zp, θ
r← G\{1}, µ1

r← ZQ.

(c) Em ← encPai
crs2

(m,Am)

(d) 〈T, V,W 〉 ← encLE
pub,PKρ

U
(m, θ, k̂, l̂)

(e) Êm ← encPai
crs2

(m̂,Bm)

(f) 〈T̂ , V̂ , Ŵ 〉 ← encLE
pub,PKρ

U
(m̂, θ, k̂, l̂)

(g) ω1 = H(Êm, T̂ , V̂ , Ŵ ), C1 = gω1hµ1

(h) rsp = {PKU, Em, 〈θ, T, V,W 〉, C1}

– If msg = {d1, C2}, thenIφ
0 recovers the state ofstρ, and simulates the user instantiationUρ

with msg till Uρ either terminates or returns a responsersp to the signer. IfUρ returns a response
rsp, thenIφ

0 returnsrsp toA. The oracle will record the current statest, i.e. stρ = stρ||st.
Herersp is in the form of{d2, 〈sm, sk, sl, Fm〉, 〈Êm, T̂ , V̂ , Ŵ , µ1〉}, where〈Êm, T̂ , V̂ , Ŵ , µ1〉
is recovered from the previous state ofstρ, and〈sm, sk, sl, Fm〉 is generated as:sm = m̂−d1 ·m
in Z, sk = k̂− d1 · k mod p, sl = l̂− d1 · l mod p, Fm = Bm(Am)−d1 mod n, d2

r← {0, 1}λ2 .

- Given〈terminate,msgL,msgR〉, the oracleIφ
0 recovers the statestL (resp.stR), and simulates the

user instantiationUL (resp. UR) with msgL (resp. msgR) till UL (resp. UR) either terminates or
returns an output, wheremsgρ is in form of {sx, sk′ , sl′ ; a′, b′, T ′, V ′,W ′, LT , LV , LW , µ2〉}. Each
Uρ will verify all equations:

C2 = gω2hµ2 whereω2 = H(a′, b′, T ′, V ′,W ′, LT , LV , LW ),
e(a′, Y ) = e(b′, g),
LT = e(T, b′)sxe(t, a′)sk′e(T ′, θ)d2 ,
LV = e(V, b′)sxe(v, a′)sl′e(V ′, θ)d2 ,
LW = (e(W, b′)e(θ, a′))sx e(w, a′)sk′+sl′e(W ′, θ)d2

If the two user instantiations verify the verification equations successfully, each of them generates
σ = (a, b, c) by a = (a′)α, b = (b′)α, c = (W ′/(T ′δV ′ξ))α. Let the generated signatures from the
two user instantiations beσ0, σ1 for messagem0,m1 respectively. The oracle setrsp = (σ0, σ1).
Otherwise setrsp = (⊥,⊥). The oracle returnsrsp toA.

Game 1:

We modifyGA
0 into GA

1 by changing step 2 into:

2. (pub, crs2, PKS, SKS)← gen(1λ); generatescrs1 = 〈Q,g,h,G,H〉 andτ1 = r for the equivocal
Pedersen commitment scheme; setcrs = (crs1, crs2).

and changingIφ
0 into Iφ

1 . Note thatIφ
1 is same asIφ

0 except that

- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}. If ρ = R, Iφ
1 operates identically asIφ

0 ; but if ρ = L,
Iφ

1 works as follows:
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– If msg = ⊥, thenIφ
1 recovers the state ofstL, and simulates the user instantiationUL till UL

either terminates or returns a response to the signer. IfUL returns a responsersp, thenIφ
1 returns

rsp toA. The oracle will record the current statest, i.e. stL = stL||st. Letm = mφ, we have,

(a) (PKL
U , SK

L
U)← genLE (1λ)

(b) Am
r← Z∗

n, α, k, l
r← Zp, θ

r← G\{1}.
(c) Em ← encPai

crs2
(m,Am)

(d) 〈T, V,W 〉 ← encLE
pub,PKL

U
(m, θ, k, l)

(e) γ1
r← ZQ, C1 = gγ1

(f) rsp = {PKL
U , Em, 〈θ, T, V,W 〉, C1}

– If msg = {d1, C2}, thenIφ
1 recovers the state ofstL, and simulates the user instantiationUL

with msg till UL either terminates or returns a responsersp to the signer. IfUL returns a response
rsp, thenIφ

1 returnsrsp toA. The oracle will record the current statest, i.e. stL = stL||st.

(a) sm
r← ±[0, 2λ0+λ1+νp ], Fm

r← Z∗
n, sk, sl

r← Zp

(b) Êm = gsm(Fm)n(Em)d mod n2

(c) Ŵ = θsmwsk+slW d1 , T̂ = tskT d1 , V̂ = vslV d1

(d) useτ1 = r to computeµ1 such thatC1 = gω1hµ1 whereω1 = H(Êm, T̂ , V̂ , Ŵ ), i.e.
µ1 = γ1−ω1

r mod Q

(e) rsp = {d2, 〈sm, sk, sl, Fm〉, 〈Êm, T̂ , V̂ , Ŵ , µ1〉}

Game 2:

We modifyGA
1 into GA

2 by changingIφ
1 into Iφ

2 . Note thatIφ
2 is same asIφ

1 except that :

- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}. If ρ = L, Iφ
2 operates identically asIφ

1 ; but if ρ = R,
Iφ

2 operates similarly as the caseρ = L with m = m1−φ, i.e. runs the same operations for the right
user instantiationUR.

Game 3:

We modifyGA
2 into GA

3 by changingIφ
2 into Iφ

3 . Note thatIφ
3 is same asIφ

2 except that

- Given〈terminate,msgL,msgR〉, the oracleIφ
3 recovers the statestL (resp.stR), and simulates the

user instantiationUL (resp. UR) with msgL (resp. msgR) till UL (resp. UR) either terminates or
returns an output.

If the two user instantiations verify the verification equations successfully, now the oracle generates
two signaturesσ0, σ1 for m0,m1 by using the signing key:σ = (a, ay, ax+xym) wherea

r← G. The
oracle setrsp = (σ0, σ1). Otherwise setrsp = (⊥,⊥). The oracle returnsrsp toA.

Game 4:

We modifyGA
3 into GA

4 by changingIφ
3 into Iφ

4 . Note thatIφ
4 is same asIφ

3 except that

- Given 〈challenge,m0,m1〉, the oracleIφ
4 randomly selects̃m0, m̃1 from the message space and

simulatesUL (resp.UR) with mφ or m̃0 (resp.m1−φ or m̃1).

- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}. If ρ = R, Iφ
4 operates identically asIφ

3 ; but if ρ = L,
Iφ

4 works as follows:
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– If msg = ⊥, thenIφ
4 recovers the state ofstL, and simulates the user instantiationUL till UL

either terminates or returns a response to the signer. IfUL returns a responsersp, thenIφ
4 returns

rsp toA. The oracle will record the current statest, i.e. stL = stL||st. Let m̃ = m̃0,m = mφ,
we have,

(a) (PKL
U , SK

L
U)← genLE (1λ)

(b) Am
r← Z∗

n, α, k, l
r← Zp, θ

r← G\{1}.
(c) E

em ← encPai
crs2

(m̃,Am)
(d) 〈T, V,W 〉 ← encLE

pub,PKL
U
(m, θ, k, l)

(e) γ1
r← ZQ, C1 = gγ1

(f) rsp = {PKL
U , Eem, 〈θ, T, V,W 〉, C1}

– If msg = {d1, C2}, thenIφ
4 recovers the state ofstL, and simulates the user instantiationUL

with msg till UL either terminates or returns a responsersp to the signer. IfUL returns a response
rsp, thenIφ

4 returnsrsp toA. The oracle will record the current statest, i.e. stL = stL||st.

(a) sm
r← ±[0, 2λ0+λ1+νp ], Fm

r← Z∗
n, sk, sl

r← Zp

(b) Ê
em = gsm(Fm)n(E

em)d1 mod n2

(c) Ŵ = θsmwsk+slW d1 , T̂ = tskT d1 , V̂ = vslV d1

(d) useτ1 = r to computeµ1 such thatC1 = gω1hµ1 whereω1 = H(Ê
em, T̂ , V̂ , Ŵ ), i.e.

µ1 = γ1−ω1

r mod Q

(e) rsp = {d2, 〈sm, sk, sl, Fm〉, 〈Êem, T̂ , V̂ , Ŵ , µ1〉}

Game 5:

We modifyGA
4 into GA

5 by changingIφ
4 into Iφ

5 . Note thatIφ
5 is same asIφ

4 except that

- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}. If ρ = L, Iφ
5 operates identically asIφ

4 ; but if ρ = R,
Iφ

5 operates similarly as the caseρ = L with m̃ = m̃1, m = m1−φ, i.e. runs the same operations for
the right user instantiationUR.

Game 6:

We modifyGA
5 into GA

6 by changingIφ
5 into Iφ

6 . Note thatIφ
6 is same asIφ

5 except that

- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}. If ρ = R, Iφ
6 operates identically asIφ

5 ; but if ρ = L,
Iφ

6 works as follows:

– If msg = ⊥, thenIφ
6 recovers the state ofstρ, and simulates the user instantiationUL till UL

either terminates or returns a response to the signer. IfUL returns a responsersp, thenIφ
6 returns

rsp toA. The oracle will record the current statest, i.e. stL = stL||st. Let m̃ = m̃0, we have,

(a) (PKL
U , SK

L
U)← genLE (1λ)

(b) Am
r← Z∗

n, α, k, l
r← Zp, θ

r← G\{1}.
(c) E

em ← encPai
crs2

(m̃,Am)

(d) 〈T̃ , Ṽ , W̃ 〉 ← encLE
pub,PKL

U
(m̃, θ, k, l)

(e) γ1
r← ZQ, C1 = gγ1

(f) rsp = {PKL
U , Eem, 〈θ, T̃ , Ṽ , W̃ 〉, C1}
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– If msg = {d1, C2}, thenIφ
6 recovers the state ofstL, and simulates the user instantiationUL

with msg till UL either terminates or returns a responsersp to the signer. IfUL returns a response
rsp, thenIφ

6 returnsrsp toA. The oracle will record the current statest, i.e. stL = stL||st.

(a) sm
r← ±[0, 2λ0+λ1+νp ], Fm

r← Z∗
n, sk, sl

r← Zp

(b) Ê
em = gsm(Fm)n(E

em)d1 mod n2

(c)
̂̃
W = θsmwsk+slW̃ d1 , ̂̃

T = tsk T̃ d1 , ̂̃
V = vsl Ṽ d1

(d) useτ1 = r to computeµ1 such thatC1 = gω1hµ1 whereω1 = H(Ê
em,

̂̃
T ,

̂̃
V ,

̂̃
W ), i.e.

µ1 = γ1−ω1

r mod Q

(e) rsp = {d2, 〈sm, sk, sl, Fm〉, 〈Êem,
̂̃
T ,

̂̃
V ,

̂̃
W,µ1〉}

Game 7:

We modifyGA
6 into GA

7 by changingIφ
6 into Iφ

7 . Note thatIφ
7 is same asIφ

6 except that

- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}. If ρ = L, Iφ
7 operates identically asIφ

6 ; but if ρ = R,
Iφ

7 operates similarly as the caseρ = L with m̃ = m̃1, i.e. runs the same operations for the right user
instantiationUR.

Compute the Statistical Distance:

We prove in Game 0 and Game 1,|Pr[E0] − Pr[E1]| is negligible. Observe that, for the probability dis-
tributions of the right user instantiations[UR]0, [UR]1 are identical. We still need to show for the left user
instantiations[UL]0, [UL]1, the statistical distance of the probability distributions is negligible. First, we
prove the statistical distance of[sm]0 and [sm]1 are negligible. Observe that in both gamesm ∈ [0, 2νp ],
m̂ ∈ ±[0, 2λ0+λ1+νp ], d1

r← {0, 1}λ1 . We can obtain that the statistical distance of the random variables
[sm]0 = m̂− d1 ·m and[sm]1

r← ±[0, 2λ0+λ1+νp ] is less than2−λ0−1. Then we can observe that[Fm]0 and
[Fm]1, [sk]0 and[sk]1, [sl]0 and[sl]1 are identically distributed. So the statistical distance of[sm, sk, sl, Fm]0
and[sm, sk, sl, Fm]1 is 2−λ0−1. From the equivocal property of the Pedersen commitment scheme, we know
the distribution of{Êm, T̂ , V̂ , Ŵ , µ1} in Game 1 is identical to that in Game 0. So the statistical distance
of the two games is2−λ0−1, i.e. |Pr[E0] − Pr[E1]| ≤ 2−λ0−1. Use the similar argument, we can show in
Game 1 and Game 2,|Pr[E1]− Pr[E2]| ≤ 2−λ0−1.

Now we prove in Game 2 and Game 3, under the DLOG assumption,|Pr[E2] − Pr[E3]| is negligible.
From Lemma 4.4, in Game 2, if the user instantiation can verify the verification equations successfully,
then the generated signature isσ = (a, b = ay, c = ax+mxy) except probability2−λ2 . And in Game 3,
signatureσ is generated as above without any error probability. Consider there are two user instantiations.
So,|Pr[E2]− Pr[E3]| ≤ 2−λ2+1.

We prove in Game 3 and Game 4, under the DCR assumption,|Pr[E3]−Pr[E4]| is negligible. Observe
that, the probability distributions of the right user instantiations[UR]3, [UR]4 are identical. For the left
user instantiations[UL]3, [UL]4, under the DCR assumption,[Em]3 and [E

em]4 are indistinguishable. So,
|Pr[E3]− Pr[E4]| ≤ AdvDCR. By the similar argument, we can obtain|Pr[E4]− Pr[E5]| ≤ AdvDCR.

Next we prove in Game 5 and Game 6, under the DLDH assumption,|Pr[E5] − Pr[E6]| is negligible.
Observe that, for the probability distributions of the right user instantiations[UR]5, [UR]6 are identical, and
for the left user instantiations[UL]5, [UL]6, under the DLDH assumption,[T, V,W ]5 and [T̃ , Ṽ , W̃ ]6 are
indistinguishable. So,|Pr[E5] − Pr[E6]| ≤ AdvDLDH. By the similar argument, we can get|Pr[E6] −
Pr[E7]| ≤ AdvDLDH.
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In Game 7,φ is not used, so the adversaryA has only probability12 to win the game, i.e.Pr[E7] = 1
2 .

Based on the argument above, we can get∣∣Pr[E0]− 1
2

∣∣ = |Pr[E0]− Pr[E7]| = |
6∑

j=0
Pr[Ej ]− Pr[Ej+1]| ≤

6∑
j=0
|Pr[Ej ]− Pr[Ej+1]|

= 2−λ0−1 + 2−λ0−1 + 2−λ2+1 + AdvDCR + AdvDCR + AdvDLDH + AdvDLDH

= 2−λ0 + 2−λ2+1 + 2AdvDCR + 2AdvDLDH

which is negligible. This completes the proof of blindness.

Remark 4.6. Both unforgeability and blindness depend on the DLOG assumption as well. InTheorem 4.3
andTheorem 4.5, we do not include the DLOG assumption, because the DLOG assumption can be implied
from the LRSW assumption or the DLDH assumption. Note that in our scheme, the size of elliptic curve
groupsG andG is same.

5 Extensions and Variants

Stronger Blindness Property. The formal model ofSection 3can be strengthened with respect to the
blindness property by allowing to the malicious signer to select the public/secret-key pairPKS, SKS instead
of selecting these values honestly as in [JLO97]. It is simple to modifyDefinition 3.2to include such stronger
adversaries; this strengthening of the [JLO97] model has been observed recently in [Oka06, ANN06] as well.
Our scheme can be easily modified to achieve such stronger blindness as follows: we have the signer make
an extractable commitment on the signing keySKS = 〈x, y〉 (using the same public-parameters employed
for the users’ extractable commitment) and prove that such commitment is consistent with the computation
of the encryptionψ. In the blindness proof, the oracleIφ can extract the signing key and the security proof
remains essentially unchanged; note though that unforgeability as argued inTheorem 4.3will also rely on
the DCR assumption.

Public-Tagging and Partial Blindness. We construct an extension of our blind signature that allows the
“public-tagging” of a message that is blindly signed. Public-tagging of blindly signed messages gives rise to
what is called a partially blind signature [AF96]: the signer knows a portion of the message that he is about to
sign. Public-tagging is useful as it allows the signer to keep the same public-key and issue blind signatures
for different purposes (e.g., a bank may issue e-coins that are publicly-tagged blind signatures, and the
tagging will correspond to the denomination, i.e., there will be a different tag for each coin denomination).
It should be stressed that in a blind signature with public tagging the blindness property is only enforced
within blind signatures with the same public-tag. The unforgeability property on the other hand remains
identical. We develop a public-tagging mechanism for our basic scheme. The key idea is the following: we
replace the underlying digital signature of [CL04] with the two message-block extended version (Scheme
C for two messages in [CL04]). In the modified blind signature the messages will be of the form〈m, tag〉.
The public informationtag is included intopub. Heretag ∈ [0, 2νp ]. Note that the exact choice for the
value oftag is negotiated by the signer and the user outside of the signing protocol.

In the modified signature that we use, the public and secret-key of the signer are modified and the values
PKS = 〈X,Y 〉 andSKS = 〈x, y〉 they are substituted withPKS = 〈X,Y, Z〉, SKS = 〈x, y, z〉, where
X = gx, Y = gy, Z = gz. Signing a message〈m, tag〉 corresponds to the following operation: select a
randoma ∈ G and output the signatureσ = 〈a, az, ay, ayz, ax+xym+xyz·tag〉. The modified signature has
the following verification process: Given a message-signature pair(m, tag;σ), whereσ = 〈a,A, b,B, c〉 ,
we can verify it by the verification equations:e(a, Z) = e(g,A); e(a, Y ) = e(g, b) ande(A, Y ) = e(g,B)
ande(X, a)e(X, b)me(X,B)tag = e(g, c).
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The detailed partially signing protocol is similar to our basic signing protocol (i.e., it retains the four-
move structure with short communication) and is shown in detail inFigure 3. We can obtain the security
theorem below:

Theorem 5.1. Under the LRSW assumption the proposed partially blind signature scheme is unforgeable
even if the public-tag is adversarially selected for each signature; Under the DLDH assumption and the
DCR assumption, the proposed scheme is blind for signatures with the same public-tag.

To prove the unforgeability property in the theorem above, we can use the similar proof idea inTheo-
rem 4.3. Consider that the scheme above is based on Camenisch-Lysyanskaya two message-block signature
[CL04], we reduce the unfogerability to the security of the Camenisch-Lysyanskaya two message-block
signature which is also based on the LRSW assumption. Considertag is fixed across protocol executions,
we can also use the similar proof idea inTheorem 4.5to show the blindness of the above scheme is based
on the DLDH and the DCR assumptions.
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crs = 〈Q,g,h,G,H; n, g〉; pub = 〈p, g,G,GT , e; tag〉; PKS = 〈X,Y, Z〉

U S
MSG = 〈m〉,m ∈ [0, 2νp ] SKS = 〈x, y, z〉

(PKU, SKU)← genLE (1λ)
PKU = 〈t, v, w〉, SKU = 〈δ, ξ〉
m̂

r← ±[0, 2λ0+λ1+νp ],Am, Bm
r← Z∗

n

α, k, l, k̂, l̂
r← Zp, θ

r← G\{1}, µ1
r← ZQ

Em = gm(Am)n mod n2

Êm = g bm(Bm)n mod n2

T = tk, V = vl,W = θmwk+l

T̂ = t
bk, V̂ = v

bl, Ŵ = θ bmw
bk+bl

ω1 = H(Êm, T̂ , V̂ , Ŵ ), C1 = gω1hµ1
PKU,Em,〈θ,T,V,W 〉,C1

−−−−−−−−−−−−−−−−−−−−→ d1
r← {0, 1}λ1

α′, k′, l′, x̂, k̂′, l̂′
r← Zp, µ2

r← ZQ

a′ = θα′
,A′ = θzα′

, b′ = θyα′
,B′ = θyzα′

T ′ = T xyα′
tk

′α′
, V ′ = V xyα′

vl′α′

W ′ = W xyα′
θxα′+xyzα′·tagwk′α′+l′α′

LT = e(T, b′)bxe(t, a′)bk
′

LV = e(V, b′)bxe(v, a′)bl
′

LW = (e(W, b′)e(θ, a′(B′)tag))bx ·
e(w, a′)bk

′+bl′

ω2 = H(a′, A′, b′, B′, T ′, V ′,W ′,
LT , LV , LW )

d2
r← {0, 1}λ2 , sm = m̂− d1m (in Z)

d1,C2
←−−−−−−−−−−−−−−−−−−−− C2 = gω2hµ2

sk = k̂ − d1k, sl = l̂ − d1l

Fm = Bm(Am)−d1 mod n
d2,〈sm,sk,sl,Fm〉,〈 bEm,bT ,bV ,cW,µ1〉
−−−−−−−−−−−−−−−−−−−−−−→ Em ∈? Z∗

n2 , sm ∈? ±[0, 2λ0+λ1+νp+1]

ω1 = H(Êm, T̂ , V̂ , Ŵ ), C1 =? gω1hµ1

Êm =? gsm(Fm)n(Em)d1 mod n2

T̂ =? tskT d1 , V̂ =? vslV d1

Ŵ =? θsmwsk+slW d1

sx = x̂− d2x,
〈sx,sk′ ,sl′ 〉

←−−−−−−−−−−−−−−−−−−−−−−−−
〈a′,A′,b′,B′,T ′,V ′,W ′,LT ,LV ,LW ,µ2〉

sk′ = k̂′ − d2k
′, sl′ = l̂′ − d2l

′

ω2 = H(a′, A′, b′, B′, T ′, V ′,W ′,
LT , LV , LW )

C2 =? gω2hµ2 , e(a′, Z) =? e(A′, g)
e(a′, Y ) =? e(b′, g), e(A′, Y ) =? e(B′, g)
LT =? e(T, b′)sxe(t, a′)sk′ e(T ′, θ)d2

LV =? e(V, b′)sxe(v, a′)sl′ e(V ′, θ)d2

LW =? (e(W, b′)e(θ, a′(B′)tag))sx ·
e(w, a′)sk′+sl′ e(W ′, θ)d2

a = (a′)α, b = (b′)α, c =
(

W ′

T ′δV ′ξ

)α

A = (A′)α,B = (B′)α

σ = 〈a,A, b,B, c〉
output(m, tag;σ)

Figure 3: Partially blind signature generation protocol.
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