
Security Analysis of KEA Authenticated Key
Exchange Protocol

Kristin Lauter1 and Anton Mityagin2

1 Microsoft Research, One Microsoft Way, Redmond, WA 98052
klauter@microsoft.com

2 Department of Computer Science, University of California San Diego
9500 Gilman Dr., La Jolla, CA 92037

amityagin@cs.ucsd.edu

Abstract. KEA is a Diffie-Hellman based key-exchange protocol devel-
oped by NSA which provides mutual authentication for the parties. It
became publicly available in 1998 and since then it was neither attacked
nor proved to be secure. We analyze the security of KEA and find that
the original protocol is susceptible to a class of attacks. On the positive
side, we present a simple modification of the protocol which makes KEA
secure. We prove that the modified protocol, called KEA+, satisfies the
strongest security requirements for authenticated key-exchange and that
it retains some security even if a secret key of a party is leaked. Our secu-
rity proof is in the random oracle model and uses the Gap Diffie-Hellman
assumption. Finally, we show how to add a key confirmation feature to
KEA+ (we call the version with key confirmation KEA+C) and discuss
the security properties of KEA+C.

1 Introduction

Authenticated Key Exchange. Generally, key exchange protocols allow 2
parties who share no secret information to compute a secret key via public
communication. Authenticated key exchange (AKE) not only allows parties to
compute the shared key but also ensures authenticity of the parties. A party can
compute a shared key only if it is the one it claims to be. AKE protocols operate
in a public key infrastructure and the parties use each other’s public keys to
construct a shared secret.
Natural Solution: Signed Diffie-Hellman. One possible solution for au-
thenticated key exchange is to execute a Diffie-Hellman key exchange and to
sign all the communication sent between the parties. Such an AKE protocol is
sometimes referred to as Signed Diffie-Hellman. Let G be a group of prime order
and denote by g a generator of G. Assume that the parties have secret/public
keys for some digital signature scheme SIG and that parties know each other’s
registered public keys. Denote the signature of a message M under the secret
key of a party A as SIGA(M).

The protocol has 2 passes. First, an initiator A picks an ephemeral secret key
x at random and sends to a responder B a tuple {gx, SIGA(gx,B)}. The respon-
der B picks an ephemeral secret key y and replies with a tuple {gy, SIGB(gy,A)}.



Parties then verify each other’s signatures and if accepted, compute a shared
session key K = gxy. The protocol is depicted in Figure 1. This protocol was

A B

x
gx, SIGA(g

x,B) -

gy, SIGB(g
y,A)¾ y

K = gxy K = gxy

Fig. 1. Signed Diffie-Hellman authenticated key-exchange

formally analyzed by Shoup [17] and it is proven to be secure (we will discuss be-
low in detail what security means) against an adversary who can reveal session
keys of honest key-exchange sessions but who cannot reveal ephemeral secret
keys.

It is worth noting that Signed Diffie-Hellman AKE can be broken if an ad-
versary can reveal ephemeral secret keys of the parties. Exposure of ephemeral
secret keys can occur in practical implementations of AKE protocols if ephemeral
keys are precomputed or if they are stored in insecure storage. If an adversary
M reveals an ephemeral secret key x used by A in some session with B, then
M can impersonate A to B by starting a session with B and sending the same
tuple {gx, SIGA(gx,B)}. B will accept this tuple because the signature is valid
and then M can compute a session key using the knowledge of x.
Security of Authenticated Key Exchange. For AKE protocols there are
a surprisingly large number of possible attack scenarios and there is no single se-
curity definition. We sketch 3 security notions which seem to capture all possible
attacks, and give their precise definitions in Section 2:

1. The main security requirement (we will call it AKE security) as intro-
duced by Bellare and Rogaway [4] and further refined by Bellare, Pointcheval
and Rogaway [3] and by Canetti and Krawczyk [9], considers a multi-party ex-
periment with unauthenticated communication channels (called the AKE ex-
periment). The adversary controls all the communication and can corrupt some
of the parties. Moreover, the adversary selects honest parties to participate in
key-exchange sessions. The adversary must select an uncorrupted session called
a test session and then he is given a challenge, which is either the session key
of the test session or a randomly selected key. The goal of the adversary is to
distinguish between these 2 cases.

2. One of the properties not captured by AKE security is Perfect Forward
Secrecy (PFS). Perfect Forward Secrecy says that an adversary in the AKE ex-
periment who corrupted one of the parties (that is, revealed the long-term secret
key), should not be able to reveal session keys of past sessions executed by that



party. Krawzcyk [11] shows that no 2-pass AKE protocol can achieve perfect
forward secrecy. Alternatively, he presents a notion of weak perfect forward se-
crecy (wPFS). Weak perfect forward secrecy guarantees security only for those
previous sessions executed without the adversary’s intrusion.

3. The last security requirement is resistance to key compromise imperson-
ation (KCI). An adversary who reveals a long-term secret key of some party
A should be unable to impersonate other parties to A (still, an adversary can
impersonate A to anyone else).

All these security notions can involve either a “weak” or a “strong” adversary:
a weak adversary can reveal session keys of sessions executed by honest parties
while a strong adversary can reveal both session keys and ephemeral secret keys.
Both adversaries can also do total corruptions, i.e. take full control over honest
parties. We assume that a certificate authority (CA), upon registering a public
key, doesn’t require a party to prove knowledge of the corresponding secret key.
That is, a certificate authority will register arbitrary public keys presented by
parties, even ones matching existing public keys of other parties. In contrast,
proof of knowledge of the secret key is required by many existing AKE protocols,
but these checks are rarely done in practice.

KEA Protocol. KEA authenticated key exchange [15] was designed by NSA
in 1994 and originally its design was kept secret. It was declassified and became
available to the public in 1998. KEA involves 2 parties, A and B, with respec-
tive secret keys a and b and public keys ga and gb. We assume that parties
know each other’s registered public keys. The protocol first executes a standard
Diffie-Hellman communication: parties select ephemeral secret keys x and y at
random and exchange ephemeral public keys gx and gy. Then each party com-
putes gay and gbx and computes a session key K by applying a hash function F
to gay⊕gbx. The original description of KEA specifies F to be a certain function
built on the SKIPJACK block cipher [15]. The design of KEA closely resembles
Protocol 4 from Blake-Wilson et al. [5]. They suggest computing a session key
as H(gay, gbx), where H is a cryptographic hash function. Blake-Wilson et al.
conjectured (without proof) the security of their protocol provided H is modeled
by a random oracle.

Attacks on KEA. We observe that AKE security of KEA (even against a
weak adversary) can be violated if an adversary can register arbitrary public
keys. Consider the following adversary M. M registers a public key ga of some
honest party A asM’s own public key. ThenM intercepts a key-exchange session
between A and some other honest party B and at the same time starts a session
between M and B. Now M forwards ephemeral public key gx from A to B and
ephemeral public key gy from B to A. Since M has the same public key as A,
both A and B will compute identical session keys, however they participate in
two different key-exchange sessions. B participates in a session with M while A
participates in a session with B. Finally, M reveals a session key of one of the
sessions and announces the other session as a test session. Given a challenge key,
M compares it to the revealed key. If they are the same, M decides that the
challenge is a correct key for the test session and if different, M decides that



the challenge key was chosen at random. The demonstrated attack breaks AKE
security against a weak adversary (who can only reveal session keys). This attack
is often called as Unknown Key Share (UKS) attack.

One possible counter-measure to the above attack is not to allow 2 parties to
have the same public key, and this check can be done by a certificate authority.
We note that this counter-measure also wouldn’t work. In the previous attack’s
scenario, an adversary can pick any exponent k, register a public key gak and
instead of sending gy as a response to A, send a value gyk. This way, both A and
B will again have the same session key H(gayk ⊕ gbx).
Security fix: KEA+. We present a modified version of the KEA protocol,
called KEA+, which is resistant to the above attacks. We prove that no such
attacks on KEA+ are possible and that KEA+ satisfies the strongest known
security requirement. The main idea behind KEA+ is to incorporate parties’
identities in the computation of a session key. Interestingly, this simple feature
of the protocol turns out to be crucial in the security analysis and avoids the
proof-of-possession requirement.

The KEA+ protocol proceeds as follows. First, parties A and B randomly
select ephemeral secret keys x and y and exchange ephemeral public keys gx

and gy. Then parties verify that the received ephemeral public keys are in the
group G and compute a session key K as H(gay, gbx,A,B), where H can be an
arbitrary cryptographic hash function. In the security analysis we model H by
a random oracle. Figure 2 depicts actions performed by the parties. We note
that verifying that the ephemeral public keys are in the group G is essential for
the security of the protocol. Otherwise, the protocol is vulnerable to a so-called
“small subgroup” attack.

A : a, ga B : b, gb

x
gx

-

ygy
¾

K = H(gay, gbx,A,B) K = H(gay, gbx,A,B)

Fig. 2. New KEA+ protocol

We prove that KEA+ protocol satisfies AKE security, weak perfect forward
secrecy and security against KCI attacks. All these results involve a strong ad-
versary who can reveal ephemeral secret keys of the parties as well as session
keys. The results hold under either the standard Gap Diffie-Hellman (GDH)
assumption in a group G, as defined by Okamoto and Pointcheval [16], or un-
der a stronger Pairing Diffie-Hellman (PDH) assumption. The latter assumption
means hardness of the computational Diffie-Hellman problem, where a solver is



given access to a bilinear pairing oracle. The reason for having two reductions
(one to GDH and one to PDH) lies in the concrete security analysis. The re-
duction to PDH achieves better concrete security compared to the reduction to
GDH.

We stress that KEA+ does not require parties to prove possession of secret
keys upon key registration. Parties can register arbitrary public keys, even ones
matching somebody else’s keys. Moreover, an adversary can register keys for
corrupted parties at any time in the experiment. Our security results imply that
these powers do not allow the adversary to break the security of KEA+.
Key Confirmation: KEA+C. The 2-pass KEA+ protocol is optimized for
communication and has exactly the same communication as the original Diffie-
Hellman protocol. While satisfying the strongest security requirement, it doesn’t
provide delivery guarantees which might be desirable for some applications.
Namely, KEA+ doesn’t provide assurance that the other party actually com-
pleted the session. To address this issue, we add one more pass of communication
to KEA+ to obtain a protocol called KEA+C, or KEA+ with key confirmation.

KEA+C involves a message authentication code to construct a confirmation
message. KEA+C achieves a key confirmation property [11], namely it assures
that the other party is able to compute the session key. As well, KEA+C satisfies
the full perfect forward secrecy requirement lacking in KEA+. Finally, results of
Canetti and Krawczyk [9] imply that KEA+C satisfies Universally Composable
security defined by [6], which ensures that KEA+C can be securely executed
concurrently with arbitrary other protocols.
History and Related Work. Defining security of authenticated key exchange
dates back to the work Bellare and Rogaway [4] from 1993. Following work of
Bellare, Pointcheval and Rogaway [3] and Shoup [17], the current security defin-
ition was formulated by Canetti and Krawczyk [9]. We refer the reader to [7] for
a comparison and a discussion of existing security definitions for authenticated
key exchange.

To date, a great number of AKE protocols have been proposed and many
of them were subsequently broken. Currently, there exist a number of protocols
that satisfy AKE security against adversaries who cannot reveal ephemeral se-
cret keys (weak adversaries), and only a few protocols which are secure against
strong adversaries. AKE protocols proved to be secure against strong adversaries
include SIG-DH from [9], SIGMA [10] and HMQV [11].

We compare our KEA+ protocol with the recent HMQV protocol [11], which
combines great efficiency with the highest security level. KEA+ and HMQV are
both proven to achieve AKE security, security against KCI and wPFS3. However,
the security of HMQV relies on the knowledge of the exponent assumption4 [2]
and doesn’t have a concrete security analysis. As noted by Menezes [14], the

3 In fact, the wPFS requirement from [11] is stronger than ours. They allow an ad-
versary to reveal long-term keys of both parties, while we only allow revealing the
long-term key of at most one of the parties.

4 We remark that in the analysis of HMQV this assumption is only needed to ensure
security against strong adversaries (who can reveal ephemeral secret keys).



concrete security reduction of [11] appears to be inefficient. Our security proof
doesn’t employ the knowledge of exponent assumption and provides a tight se-
curity reduction (under the Pairing Diffie-Hellman assumption). Our protocol
requires the same number of exponentiations as HMQV (although one of the
exponentiations in HMQV involves half-size exponents).

After submitting our paper we discovered the parallel independent work of
Kudla and Paterson [13]. They use very similar techniques to prove the security
of a modification of Protocol 4 from Blake-Wilson et al [5], which can be viewed
as the KEA+ protocol where identities of the parties are excluded from the
key computation. We want to highlight some differences between our work and
theirs. First, their protocol is vulnerable to the UKS attack. This attack is not
captured by their security analysis, as the security model of [13] requires that
all parties (even ones controlled by the adversary) do key-generation properly.
Second, they only prove security against weak adversaries (which cannot reveal
ephemeral keys) and their security proof doesn’t contain a concrete security
analysis. Finally, we discuss a key-confirmation property and analyze the security
of our KEA+C protocol.

2 Definitions

Notation. All protocols in the paper use a mathematical group G of a known
prime order q where the Diffie-Hellman problem is computationally infeasible.
The group G can be implemented either as a multiplicative subgroup of a finite
field or as a group of points on an elliptic curve. We denote by g a generator of
G and write the group operation in a multiplicative manner.

Throughout the paper, we will apply hash functions and signature schemes to
lists of several arguments. In these cases, we write function arguments separated
by commas, for example H(X, Y, Z). Doing that, we assume that we have a
collision-free encoding which maps lists of arguments to binary strings. Also, we
assume that parties’ identities are arbitrary binary strings.
Gap Diffie-Hellman (GDH). A computational Diffie-Hellman (CDH) prob-
lem is, given gx and gy (for randomly chosen x and y) to compute gxy. A Deci-
sional Diffie-Hellman (DDH) Oracle DDH takes input a triple (gx, gy, Z) ∈ G3

and outputs 1 if Z = gxy and 0 otherwise. The Gap-Diffie-Hellman [16] prob-
lem is the CDH problem, where the solver algorithm is additionally given access
to a DDH oracle. The advantage of such a solver M, denoted as AdvGDH(M),
is M’s winning probability in the CDH problem. We say that G satisfies the
Gap-Diffie-Hellman (GDH) assumption if no feasible adversary exists to solve
the CDH problem, even provided with a DDH-oracle. Gap Diffie-Hellman is a
standard cryptographic assumption which was used to establish the security of
several key agreement protocols [1, 18, 12].
Pairing Diffie-Hellman (PDH). Let G′ be another mathematical group of
the same order as G with efficiently computable group operation. A function
e : G × G → G′ is a bilinear pairing if it is non-degenerate and if for any pair
ga, gb ∈ G, e(ga, gb) = e(g, g)ab. A pairing oracle P associated with the pairing



function e and the group G′ takes two elements X, Y ∈ G and returns e(X, Y ).
The Pairing Diffie-Hellman problem is the CDH problem, where the solver is
additionally given access to the pairing oracle P. The advantage AdvPDH(M) of
a PDH solver M is the probability of M solving the CDH problem. We say that
G satisfies the PDH assumption if no feasible adversary exists to solve the CDH
problem provided with an arbitrary PDH-oracle.

In the groups which have a bilinear pairing, PDH problem is equivalent to
the original CDH problem. As well, one can consider PDH problem in the groups
where no efficient pairing operation is known. We find the Pairing Diffie-Hellman
assumption to be as justified as GDH since the only known way to compute DDH
in groups where CDH is hard is via a pairing function.

AKE Security. The AKE experiment involves multiple honest parties and an
adversary M connected via an unauthenticated network. The adversary selects
parties to execute key-exchange sessions and selects an order of the sessions.
It can also corrupt some of the parties. An adversary has full control over the
communications and he can delay/cancel/modify any message.

There is a special party, CA, called the certificate authority, who registers
the public keys of the parties. We model a CA as a trusted directory. The CA
registers arbitrary keys (even those matching keys of other parties) with the
only restriction that no party can have more than one registered public key. In
the beginning of the AKE experiment all honest parties generate their public
keys and register them with the CA. The adversary can register public keys
of adversary-controlled parties at any time in the experiment, even during the
execution of an AKE session. That is, the adversary is allowed to mount the
Unknown Key Share attack and related attacks.

To start an AKE session, the adversary activates an honest party and specifies
that party’s role in the exchange (initiator or responder) and the identity of the
other participant. We identify an AKE session by a 4-tuple (A,B, role, Comm),
where A is the executing party, B is the other party, role ∈ {initiator, responder}
is A’s role in the protocol and Comm consists of all messages sent and received
by A. We stress that an AKE session is executed by a single party: since all
communication is controlled by an adversary, a party executing a session cannot
know for sure whom it is talking to. We call the session which is supposed
to be executed by the other party as the matching AKE session. For example
the session (A,B, initiator, Comm) matches (B,A, responder, Comm) and vice
versa. A party completes the session when it receives the last message from the
other party and computes the session key.

An adversary can corrupt honest parties as well as reveal session information.
When an adversary corrupts a party (often referred to as a Corrupt query),
he learns the long-term secret key of that party and gets full control of that
party from that moment on. Revealing session information (often referred to as
a Reveal query) only affects a single AKE session. We distinguish between 2
reveal scenarios. First, an adversary can learn only a session key of a completed
session. We call it a session key reveal and we call an adversary who only makes
session key reveals (in addition to total corruptions) a “weak” adversary. A



second type of adversary, called a “strong” adversary, is also allowed to reveal
an ephemeral secret key of a party executing a session.

We say that a completed session is “clean” if this session as well as its match-
ing session (if it exists) is not corrupted (neither session key nor ephemeral secret
key were revealed by M) and if none of the participating parties is corrupted.

Eventually an adversary should select a clean completed session (A, B, role,
Comm), which is called a test session. A challenger tosses a coin to obtain
b ∈ {0, 1}; if b = 0 he sets KC to be the session key of the test session and
otherwise he sets KC to be a random string of the same length. A challenger gives
the challenge KC to the adversary. After receiving the challenge, the adversary
continues the experiment, but is not allowed to corrupt the test session nor any of
the parties involved in the test session. The experiment ends when the adversary
outputs a guess bit b′.

The advantage of the adversary M participating in the above AKE experi-
ment against AKE protocol Π is defined as

AdvAKE
Π (M) = Pr[b = b′]− 1

2
.

We say that an AKE protocol is secure if no feasible AKE adversary has more
than a negligible advantage in the AKE experiment.
Perfect Forward Secrecy (PFS). The Perfect Forward Secrecy property
of an AKE protocol guarantees that an adversary who corrupts a party cannot
gain any information about session keys of previous AKE sessions. We formally
define PFS by modifying the AKE experiment as follows. Now we allow the
adversary to corrupt at most one of the two participants of the test session after
the test session is completed. As in the original AKE experiment, the adversary
must distinguish between the session key of the test session and a random key.

Krawczyk [11] observed that no 2-pass AKE protocol can achieve full PFS in a
presence of strong adversaries. To address forward secrecy of 2-pass protocols, he
suggests a relaxed notion, called weak PFS (wPFS). Weak PFS only guarantees
security of those AKE sessions executed without active adversarial intrusion.
We define weak PFS by limiting the set of clean sessions to only those executed
without active adversarial intrusion. That is, the adversary is only allowed to
forward communications in the test session and its matching session and is not
allowed to cancel or modify them.

We remark that our definitions of PFS and wPFS are weaker than the ones
by Krawczyk [11]. Krawczyk’s definitions allow an adversary to corrupt both
participants of the test session, while our definition only allows corruption of at
most one of the participants.
Security against Key Compromise Impersonation (KCI). KCI security
considers a scenario when an adversary reveals a long-term secret key of some
party A without corrupting A (that is, without taking full control over A). Note
that in this case an adversary can impersonate A to anyone else. KCI security
guarantees that an adversary should be unable to impersonate other parties to
A.



We define KCI security by the following modification of the AKE experiment.
We allow an adversary to make a new type of corruption: to reveal a long-term
secret key of a party without taking control over it. Now, a test session is allowed
to be a clean session, where the party running the session had its long-term secret
key revealed. Still, an adversary is not allowed to corrupt or reveal the long-term
secret key of the other party.

3 Security of KEA+

AKE security of KEA+. We show that the KEA+ protocol with a hash
function modeled as a random oracle satisfies AKE security against a strong
adversary under the GDH or PDH assumptions in a group G.
Reduction to a Forging Attack. Assume by contradiction that there exists
some efficient adversaryM against the KEA+ protocol. Let (A,B, initiator,X, Y )
be a test session in some AKE experiment. Let A be the public key of A and B
be the public key of B. Denote by CDH(·, ·) the computational Diffie-Hellman
function. We observe that since the session key of a test session is computed as a
hash value of a 4-tuple {CDH(A, Y ), CDH(B, X),A,B}, the adversary M has
only 2 ways to distinguish K from a random string:

1. Forging attack. At some point M queries H on the tuple

σ = (CDH(A, Y ), CDH(B, X),A,B).

2. Key-replication attack. M succeeds in forcing the establishment of a session
that has the same signature (and subsequently, the same session key) as the
test session. In this case M can learn the test-session key by simply making
a reveal query on the session with the same key, without having to learn the
value of the test signature.

We denote a 4-tuple σ = (gay, gbx,A,B) as the “signature” of a key exchange
session. Recall that the key for the test session is the value of a random oracle
H on the test signature σ. Since H is a truly random function, an adversary has
only 2 ways of learning H(σ): M can either query σ to H himself or σ can be
queried to H by some honest party and M can reveal H(σ) by corrupting that
party. Otherwise, M cannot distinguish information-theoretically between H(σ)
and a random string. Note that these cases correspond to a forging attack and
a key-replication attack respectively. If M doesn’t mount either of these attacks,
then it cannot win the experiment with probability any better than 1/2.

Let’s see that a key-replication attack is impossible. In that case, if an ad-
versary finds some session with the same signature σ as the test session, then
this session must be executed by the same 2 parties, A and B. Let the ephemeral
public keys of this session be X ′ and Y ′. Since the session has the same signature
as the test session, CDH(A, Y ′) must be equal to CDH(A, Y ) and CDH(B, X ′)
– equal to CDH(B,X). This implies that X ′ = X and Y ′ = Y , and thus the
sessions must be identical.



We’re left to show impossibility of a forging attack. We are going to show
that given an efficient forging adversary against KEA+, we can construct an ad-
versary which efficiently solves the GDH problem. We first establish a reduction
to GDH and then show how to modify it to obtain an improved reduction to
PDH.
Security against a Simplistic Adversary. First we show how the reduction
works in the simplistic case of a certain (very limited) adversary and then proceed
to the general case. Assume that the AKE experiment only involves 2 honest
parties A and B and that the adversary M passively observes a single AKE
session executed by these parties and selects it as a test session. In this case the
reduction to the GDH problem is natural: given a GDH challenge (X0, Y0) the
GDH solver S runs the AKE experiment with parties A and B and the adversary
M. S sets the first challenge value X0 to be the long-term public key of A and
selects keys for B in the usual way. When A and B execute a test session, A picks
a random x and sends gx to B, while B responds with Y0. Note that a view of M
in this simulated AKE experiment is distributed identically to a view of M in a
true AKE experiment and thusM wins with the same probability. As we justified
earlier, if M wins, he should query H a signature σ = (CDH(X0, Y0), gbx,A,B).
Note that in this case σ contains CDH(X0, Y0), which is a solution to the original
CDH problem.
Idea of the General-Case Reduction. The idea of the reduction is very
similar to the simple case with the difference that S selects at random a party A
(to put a first challenge value in A’s public key) and a session executed by A and
some other party B (to put a second challenge value in B’s ephemeral public key).
The complication that arises in the general case is how to handle session-corrupt
queries involving the selected party A. Since S doesn’t know a secret key for A’s
public key, it cannot compute a signature (nor a session key) for such a session.
We handle this case by picking a session key at random without computing a
signature. Then S uses the DDH oracle to test if M queries H with a signature
for such a session and if “yes”, returns the previously selected session key. We
proceed with a formal description and analysis of the reduction.
Construction of a GDH Solver S. Let M be an AKE adversary against
KEA+. Consider the following GDH adversary S:
S takes input a pair (X0, Y0) ∈ G2. S is also given access to a DDH oracle

DDH. S creates an AKE experiment which includes a number of honest parties
and an adversary M. We assume that the experiment involves at most n parties
and that each party participates in at most k AKE sessions. S randomly selects
one of the honest parties (say, this is a party A) and sets the public key of A to
be X0. All the other parties compute their keys normally. S picks a number ik at
random from {1, . . . , k} and initializes the counter at i = 1 (i counts sessions that
A participates in). S runs an AKE experiment with adversary M and handles
queries made by M as follows:

1. WhenM queries a hash function H on a string v, return the value of Hsim(v).
The procedure Hsim(·) which simulates a random oracle H is described later
on.



2. When M starts a session (B,C, role) between parties B and C both different
from a selected party A, S follows the protocol for KEA+. Denote B’s secret
key as b, B’s public key as B = gb and C’s public key as C. If role = initiator,
B picks a random exponent x, returns X = gx, waits for the reply Y and
computes a session key K = Hsim(Y b, Cx,B,C). If role = responder, B
waits for C’s initiating message X, picks a random exponent y, replies with
gy and computes a session key K = Hsim(Cy, Xb,C,B).

3. When M starts a session (A,C, role) (here A is the special party whose
public key is a GDH challenge X0), S cannot follow the protocol since it
doesn’t know a secret for A’s public key. Denote C’s public key as C. If A
is an initiator, it picks a random exponent x, sends gx to C and waits for
the reply Y . Now it sets a session key to be Hspec(1, Y, Cx,A,C), see the
description of the procedure Hspec below. If A is the responder, it waits
for an initiating message X, picks a random exponent y, replies with gy and
computes a session key K = Hspec(2, X, Cy,C,A).

4. When M starts a session (B,A, role) for some party B, where the second
party is the selected party A, S first checks if i = ik. If “no”, S increments
the counter i and behaves according to the rule for Query 2. If the check
succeeds, S declares (B,A, role) to be a “special session”. In a special session,
B outputs a message Y0 (which is the second part of the GDH challenge)
and doesn’t compute a session key.

5. When M makes a session key-reveal or ephemeral secret key-reveal query
against some session (different from the special session), S returns to M a
session key or an ephemeral secret key for this session (which was computed
previously in Queries 2, 3 or 4). If M tries to reveal a session key or an
ephemeral secret key of the special session, S declares failure and stops the
experiment.

6. When M makes a corruption on some party C (different from A and B), S
returns the secret key of C as well as ephemeral secret keys of all current
AKE sessions executed by C and gives M full control over C. If M tries to
corrupt A or B (after a special session is selected), S declares failure.

When M stops, S goes over all random oracle queries made by M and checks
(using a DDH oracle DDH) if any of them includes the value of CDH(X0, Y0).
If “yes”, return CDH(X0, Y0) to the GDH challenger. If “no”, S declares failure.

Function Hsim(Z1, Z2,B,C). This function implements a random oracle on valid
signatures of the KEA+ protocol. The function proceeds as follows:

– If the value of the function on that input has been previously defined, return
it.

– If not defined, go over all the previous calls to Hspec(·) and for each previous
call of the form Hspec(i, Y, Z,B′,C′) = v check if

B = B′, C = C′, Z = Z3−i and DDH(X0, Y, Zi) = 1.

If all these conditions hold, return v.



– If not found, pick a random w from {0, 1}l, define Hsim(Z1, Z2,B, C) = w
and return w.

Function Hspec(i, Y, Z,B,C). Informally, Hspec implements a random oracle
on signatures which are not known to S. Specifically, the input corresponds to
a signature (Z1, Z2,B,C), where Zi = CDH(X0, Y ) (here X0 is a part of the
GDH challenge) and Z3−i = Z. This signature is not known to S since S cannot
compute CDH(X0, Y ). The function proceeds as follows:

– If the value of the function on that input has been previously defined, return
it.

– If not defined, go over all the previous calls to Hsim(·) and for each previous
call of the form Hsim(Z1, Z2,B′,C′) = v check if

B = B′, C = C′, Z = Z3−i and DDH(X0, Y, Zi) = 1.

If all these conditions hold, return v.
– If the check failed for all the calls, pick a random w from {0, 1}l, define

Hspec(i, Y, Z,B,C) to be w and return w.

Analysis of S. The the running time of S is the time needed to run an AKE
experiment and M plus the time needed to handle H-queries. Each call to Hsim
or Hspec requires S to pass over all the previously made queries. Thus, time
needed to handle H-queries is proportional to a squared number of queries. Since
the number of H-queries is upper-bounded by the running time of M, we can
bound the running time of S by O(t2), where t is the running time of M.

We are now going to show that if M doesn’t corrupt A and doesn’t reveal a
session key or an ephemeral secret key for the special session, then the simulation
of an AKE experiment is perfect. That is, the view of M in the experiment run
by S is identically distributed to the view of M in an authentic experiment. To
be precise, the view of M consists of public keys of all the parties, secret keys
of the corrupted parties, ephemeral public keys of all the sessions, ephemeral
secret keys and session keys of the corrupted sessions and of the random oracle’s
responses.

We start by observing that secret/public key pairs of all honest parties ex-
cept A are distributed correctly. A public key of A is also distributed correctly,
however S doesn’t know the secret key for it. By assumption, M doesn’t corrupt
A and thus M wouldn’t notice that. Similarly, ephemeral secret/public values of
all sessions except the test session are distributed as in the original protocol. The
ephemeral public key Y0 in the test session is also distributed correctly, although
S doesn’t know a secret for it. Again, we assume that M doesn’t corrupt the test
session and so S wouldn’t have to reveal it.

The adversary can obtain the random oracle’s responses either by querying
H directly or by revealing session keys from honest parties. Without loss of
generality, we can assume that the adversary queries a random oracle only on
tuples of the form (Z1, Z2,B1,B2), where Z1, Z2 ∈ G and B1 and B2 are identities
of some parties. To ensure that the simulation is perfect, we need to verify that



i) the oracle responses are selected at random and ii) if the same argument is
queried several times, the same value is returned.

Recall that S handles two types of queries differently. Queries of the first type
are fully specified 4-tuples and such queries are made both by M and by honest
parties. They are handled by the function Hsim. Queries of the second type are
made only by A and such queries have one of the components unspecified. That
is, a value Zi (for some i = 1, 2) is unknown and it is specified by Y ∈ G such
that Zi = CDH(X0, Y ). These queries are handled by Hspec. Note that distinct
Hspec arguments correspond to distinct queries to H.

In our construction of Hsim and Hspec, a new random value of H is chosen
every time the argument wasn’t found in the record of previous queries. Thus,
condition i) is satisfied and we only need to show that by querying the same
argument several times, M always receives the same answers. If the same query
is made for the second time either to Hsim or to Hspec, the same answer is
returned. The only conflicts can arise if a query previously handled by Hsim
is queried again to Hspec or vice versa. That is, Hsim was called on a tuple
(Z1, Z2,B,C) and Hspec — on (i, Y, Z,B,C) where Zi = CDH(X0, Y ) and
Z3−i = Z. Note that one can check whether these queries correspond to identical
signatures by checking that Z3−i = Z and that DDH(X0, Y, Zi) = 1. Whichever
of the functions was called first, on the second call (to the other function) S will
go over all previous calls to the first function and do such a check. If a match is
found, the previously defined value is returned. This guarantees that condition
ii) is also satisfied.

We showed that, provided M doesn’t corrupt A or the special session, the
simulation of the AKE experiment is perfect. Since the party A and the special
session are chosen at random, a test session selected by M matches the special
session with probability 1/nk (recall that n is the number of parties in the
experiment and k is the maximal number of sessions any party can participate
in). In this case, the simulation is perfect sinceM doesn’t corrupt the test session.
We know that a successful adversary must reveal the signature of the test session.
Whenever M wins in the AKE experiment and the test session was guessed
correctly, S reveals the signature of the test session which contains CDH(X0, Y0),
and therefore wins in the GDH experiment. To summarize the lengthy proof, for
any AKE adversary M running in time t we constructed a GDH solver S which
runs in time O(t2) such that

AdvGDH(S) ≥ 1
nk

AdvAKE
KEA+(M).

Improving Concrete Security Reduction. The above reduction trans-
forms a time t AKE adversary to a GDH solver which runs in time O(t2) and
makes O(t2) calls to a DDH oracle, which is fairly inefficient. We observe that
given access to a pairing oracle, we can solve the CDH problem in time O(t log t)
by making O(t) calls to a pairing oracle.

The construction of the solver S remains the same except for the Hsim and
Hspec functions. We create an array T and implement Hsim and Hspec as
follows:



Function Hsim(Z1, Z2,B,C):

– Compute δ = (P(g, Z1), P(g, Z2),B,C).
– Look up δ in T .
– If T contains a record (δ, v), return v.
– If not, pick w at random, add a record (δ, w) to T and return w.

Function Hspec(i, Y, Z,B,C).

– Compute Z ′i = P(X0, Y ), Z ′3−i = P(g, Z) and set δ = (Z ′1, Z
′
2,B,C).

– Look up δ in T .
– If T contains a record (δ, v), return v.
– If not, pick w at random, add a record (δ, w) to T and return w.

First, note that the queries to Hsim and Hspec which correspond to the same
arguments to a random oracle will be mapped to the same values of δ. Thus a
random oracle will be perfectly simulated and S will win the CDH experiment
with the same probability as in the original proof.

Second, each call to Hsim or Hspec requires only one oracle call to P. More-
over, if T is implemented as a balanced search tree indexed by values of δ, each
search and insert operation in T takes logarithmic time in the size of T . Thus
the processing of each call to Hsim or Hspec takes at most O(log t) time, where
t is the maximal running time of M.

For any AKE adversary M running in time t we have a PDH solver S which
runs in time O(t log t) and makes O(t) oracle queries such that

AdvPDH(S) ≥ 1
nk

AdvAKE
KEA+(M).

Weak PFS. We observe that our proof of AKE security can be modified to
establish wPFS security of KEA+. Consider the same party S who runs an AKE
experiment with an adversary M. Consider the test session selected by M and
its matching session. By the definition of wPFS, M did not cancel or modify
communications sent between the parties involved in these sessions. The test
session (as well as its matching session) must be clean at the time of completion.
After the test session and its matching session are completed, M can corrupt
either one of the involved parties but not both of them. Now consider that
session, (out of the test session and its matching session), where the executing
party can be corrupted and the other party is not corrupted. We observe that
with probability 1/nk this session matches the special session (B,A, role), which
is randomly selected by S.

Since S knows the long-term secret key of the party B executing the special
session, S can handle corruptions of B which are made after the test session is
completed. When M launches a corruption of B, S hands to M the long-term
secret key of B and ephemeral secret keys of all current sessions being executed
by B. Since the test session is already completed, B will know all the ephemeral
secret keys for the current session (provided that the test session matches the



A : a, ga B : b, gb

x
gx

- y

L = H(0, gay, gbx,A,B)

sigB = MACL(0)
gy, sigB¾

L = H(0, gay, gbx,A,B)

sigB
?
= MACL(0)

sigA = MACL(1) sigA - sigA
?
= MACL(1)

K = H(1, gay, gbx,A,B) K = H(1, gay, gbx,A,B)

Fig. 3. KEA+C protocol

special session). Therefore, the simulation of an AKE experiment remains perfect
and the GDH/PDH solver S has the same advantage.
KCI Security. The same proof of AKE security can be used to show that
KEA+ also satisfies KCI security. The only difference is that now S has to
handle long-term secret key reveals made by M. Since S knows the long-term
secret keys of all the parties other than A, S can answer all such long-term
secret key reveals anytime. We note that in the event that the special session
matches the test session, M is not allowed to reveal the long-term secret key of
A. Therefore, in this case the simulation remains perfect and the GDH/PDH
solver S has the same advantage in a CDH experiment.

4 Key Confirmation: KEA+C

Protocol Description. We assume that both parties know each other’s regis-
tered public keys. Let H be an arbitrary cryptographic hash function and MAC
be an arbitrary message authentication code.

The KEA+C protocol is illustrated in Figure 3. First, A selects a random
ephemeral secret key x and sends an ephemeral public key gx to B. In turn, B
verifies that gx ∈ G, selects a random ephemeral secret key y and computes a
verification key L = H(0, gay, gbx,A,B). B then sends back to A an ephemeral
public key gy together with a key confirmation value sigB = MACL(0). On
receipt of the tuple (gy, sigB), the party A first verifies that gy ∈ G and if ac-
cepted, computes a verification key L = H(0, gay, gbx,A,B), checks that sigB
is valid, sends to B a key confirmation value sigA and computes a session key
K = H(1, gay, gbx,A,B). Finally, B verifies the validity of sigA and if accepted,
computes a session key K = H(1, gay, gbx,A,B). The session key K should be
used as a shared key between the parties while the confirmation key L as well as
all the intermediate information (except possibly ephemeral secret keys) should
be erased immediately after completion of a session. We remark that despite
the visible similarity, the keys K and L are computationally independent. In a
practical implementation, one might alternatively derive them from a 4-tuple



(gay, gbx,A,B) by applying 2 independent hash functions. When a hash func-
tion is modeled by a random oracle H(0, ·) and H(1, ·) are independent random
oracles.
Security Analysis. We show that KEA+C has key confirmation, AKE secu-
rity against a strong adversary, full PFS, KCI security and is also secure in the
Universally Composable model as defined by Canetti and Krawczyk [9].

First of all, we observe that repeating the proof of security for KEA+ we
obtain the same security guarantees for KEA+C, namely AKE security against
a strong adversary, weak PFS and KCI security. Universally Composable secu-
rity [6, 9] ensures that a key-exchange protocol can securely run concurrently
with arbitrary other applications. In fact, UC-security of KEA+C automatically
follows from the result of Canetti and Krawczyk [9]. They establish UC security
of authenticated key exchange provided that the protocol satisfies AKE security
and also enjoys the so-called “ACK property”. The latter requires that at the
time when the initiator party outputs its session key, the other party’s state can
be “simulated” given only the session key and public information in the protocol.
We observe that Claim 15 in [9] implies that KEA+C has this property, thus
establishing UC security of KEA+C. Finally, we observe that the full Perfect
Forward Secrecy property follows from UC security.

Acknowledgements

The work for this paper was done while the second author was visiting Microsoft
Research. The authors thank Josh Benaloh, Brian LaMacchia, Gideon Yuval and
anonymous reviewers for helpful comments and suggestions.

References

1. M. Abdalla, O. Chevassut and D. Pointcheval, One-Time Verifier-Based En-
crypted Key Exchange, Public Key Cryptography — PKC ’05, pp. 47–64,
Springer-Verlag, 2005

2. M. Bellare, A. Palacio, The Knowledge-of-Exponent Assumptions and 3-Round
Zero-Knowledge Protocols, Advances in Cryptology — CRYPTO ’04, pp. 273–
289, Springer-Verlag, 2004

3. M. Bellare, D. Pointcheval, P. Rogaway, Authenticated Key Exchange Secure
Against Dictionary Attacks, Advances in Cryptology — Eurocrypt ’00, pp. 139–
155, Springer-Verlag, 2000

4. M. Bellare and P. Rogaway, Entity Authentication and Key Distribution, Advances
in Cryptology — CRYPTO ’93, pp. 110–125, Springer-Verlag, 1993

5. S. Blake-Wilson, D. Johnson, and A. Menezes, Key Agreement Protocols and their
Security Analysis, 6th IMA International Conference on Cryptography and Cod-
ing, LNCS 1355, pp. 30-45, Springer-Verlag, 1997

6. R. Canetti, Universally Composable Security: A New Paradigm for Cryptographic
Protocols, FOCS ’01: Proceedings of the 42nd IEEE symposium on Foundations
of Computer Science, IEEE Computer Society, 2001



7. K.-K. R. Choo, C. Boyd and Y. Hitchcock, Examining Indistinguishability-Based
Proof Models for Key Establishment Protocols, to appear in Advances in Cryptol-
ogy — Asiacrypt ’05, Springer-Verlag, 2005

8. I. R. Jeong, J. Katz, D. H. Lee, One-Round Protocols for Two-Party Authenticated
Key Exchange, ACNS ’04, 2004

9. R. Canetti and H. Krawczyk, Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels, Advances in Cryptology — EUROCRYPT ’01, pp.
453–474, Springer-Verlag, 2001

10. H. Krawczyk, SIGMA: The “SIGn-and-MAc” Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols, Advances in Cryptology —
CRYPTO ’03, LNCS 2729, pp. 400–425, Springer-Verlag, 2003

11. H. Krawczyk, HMQV: A High-Performance Secure Diffie-Hellman Protocol, Ad-
vances in Cryptology — CRYPTO ’05, LNCS 3621, pp. 546–566, Springer-Verlag,
2005

12. M. Jakobsson and D. Pointcheval, Mutual Authentication for Low-Power Mobile
Devices, Financial Cryptography ’01, pp. 178–195, Springer-Verlag, 2001

13. C. Kudla and K. G. Paterson, Modular Security Proofs for Key Agreement Proto-
cols, Advances in Cryptology — ASIACRYPT ’05, pp. 549–565, Springer-Verlag,
2005

14. A. Menezes, Another look at HMQV, IACR Eprint archive,
http://eprint.iacr.org/2005/205, 2005

15. NIST, SKIPJACK and KEA Algorithm Specification,
http://csrc.nist.gov/encryption/skipjack/skipjack.pdf, 1998

16. T. Okamoto and D. Pointcheval, The Gap Problems: A New Class of Problems
for the Security of Cryptographic Schemes, Public Key Cryptology — PKC ’01,
LNCS 1992, pp. 104–118, Springer-Verlag, 2001

17. V. Shoup, On Formal Models for Secure Key Exchange, Theory of Cryptography
Library, http://www.shoup.net/papers/skey.ps, 1999

18. Y. S. T. Tin, C. Boyd and J. M. González Nieto, Provably Secure Mobile Key
Exchange: Applying the Canetti-Krawczyk Approach, ACISP ’03, pp. 166–179,
Springer-Verlag, 2003


