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Abstract. In this paper we introduce the method of bi-linear crypt-
analysis (BLC), designed specifically to attack Feistel ciphers. It allows
to construct periodic biased characteristics that combine for an arbitrary
number of rounds. In particular, we present a practical attack on DES
based on a 1-round invariant, the fastest known based on such invariant,
and about as fast as the best Matsui’s attack. For ciphers similar to DES,
based on small S-boxes, we claim that BLC is very closely related to LC,
and we do not expect to find a bi-linear attack much faster than by LC.
Nevertheless we have found bi-linear characteristics that are strictly bet-
ter than the best Matsui’s result for 3, 7, 11 and more rounds of DES.
We also study s5DES [22], substantially stronger than DES against LC,
yet for BLC we exhibit several unexpectedly strong biases, stronger even
than existing for DES itself.
For more general Feistel schemes there is no reason whatsoever for BLC
to remain only a small improvement over LC. We present a construction
of a family of practical ciphers based on a big Rijndael-type S-box that
are strongly resistant against linear cryptanalysis (LC) but can be easily
broken by BLC, even with 16 or more rounds.

Key Words: Block ciphers, Feistel schemes, S-box design, inverse-based
S-box, DES, s5DES, linear cryptanalysis, generalised linear cryptanalysis, I/O
sums, correlation attacks on block ciphers, multivariate quadratic equations.

1 Introduction
In spite of growing importance of AES, Feistel schemes and DES remain widely
used in practice, especially in financial/banking sector. The linear cryptanalysis
(LC), due to Gilbert and Matsui is the best known plaintext attack on DES, see
[5, 28, 30, 19, 24]. (For chosen plaintext attacks, see [24, 2]).

A straightforward way of extending linear attacks is to consider nonlinear
multivariate equations. Exact multivariate equations can give a tiny improve-
ment to the last round of a linear attack, as shown at Crypto’98 [21]. A more
powerful idea is to use probabilistic multivariate equations, for every round, and
replace Matsui’s biased linear I/O sums by nonlinear I/O sums as proposed by
Harpes, Kramer, and Massey at Eurocrypt’95 [12]. This is known as Generalized
Linear Cryptanalysis (GLC). In [13, 14] Harpes introduces partitioning crypt-
analysis (PC) and shows that it generalizes both LC and GLC. The correlation
cryptanalysis (CC) introduced in Jakobsen’s master thesis [16] is claimed even
more general. Moreover, in [15] it is shown that all these attacks, including also
Differential Cryptanalysis are closely related and can be studied in terms of the
? Work supported by the French Ministry of Research RNRT Project “X-CRYPT”.



2 Nicolas T. Courtois, extended version of Crypto 2004 paper

Fast Fourier Transform for the cipher round function. Unfortunately, computing
this transform is in general infeasible for a real-life cipher and up till now, non-
linear multivariate I/O sums played a marginal role in attacking real ciphers.
Accordingly, these attacks may be excessively general and there is probably no
substitute to finding and studying in details interesting special cases.

At Eurocrypt’96 Knudsen and Robshaw consider applying GLC to Feistel
schemes [23], and affirm that (cf. page 226 in [23]) in this case non-linear charac-
teristics cannot be joined together. In this paper we will demonstrate that GLC
can indeed be applied to Feistel ciphers. This is made possible with our new
“Bi-Linear Cryptanalysis” (BLC) attack.

2 Feistel Schemes and Bi-Linear Functions

Feistel schemes are a construction that allows to build a pseudo-random permu-
tation from a pseudo-random function, see [27]. In theory, neither their periodic
connection scheme nor the fact that the round functions are usually more or
less identical will be a weakness in itself. Indeed, when this round function is
[pseudo-]random, it is still possible to prove very strong security results on such
schemes, see for example [27] and [32]. However unfortunately, the round func-
tions used in all practical Feistel ciphers are not pseudo-random. In this case,
the regularity properties do help the attacker: if an interesting periodic property
is found for a few rounds of the cipher, it will be extended to a general attack
for an arbitrary number of rounds. Hence we may hope to find a good attack
without having to explore all possible combinations for an arbitrary number of
rounds. Thus differential [2] and linear attacks on DES [28, 1] have periodic pat-
terns with invariant equations for some 1, 3 or 8 rounds. In this paper we will
present several new practical attacks with periodic structure for DES, including
new 1-round invariants.

2.1 The Principle of the Bi-Linear Attack on Feistel Schemes

In one round of a Feistel scheme, one half is unchanged, and one half is linearly
combined with the output of the component connected to the other half. This will
allow bi-linear I/O expressions on the round function to be combined together.
First we will give an example with one product, and extend it to arbitrary bi-
linear expressions. Then in Section 3 we explain the full method in details (with
linear parts present too) for an arbitrary Feistel schemes. Later we will apply it
to get concrete working attacks for DES and other ciphers.

In this paper we represent Feistel schemes in a completely “untwisted” way,
allowing to see more clearly the part that is not changed in one round. As a
consequence, the orientation changes compared to most of the papers and we
obtain an apparent (but extremely useful) distinction between odd and even
rounds of a Feistel scheme. Otherwise, our notations are very similar to these
used for DES in [26, 21]. For example L0[α] denotes a sum (XOR) of some subset
α of bits of the left half of the plaintext. Combinations of inputs (or outputs) of
round function number r = 1, 2, . . . are denoted by Ir[α] (or Or[β]). Our exact
notations for DES will be explained in more details when needed, in Section 6.1.
For the time being, we start with a simple rather self-explaining example (cf.
Figure 1 below) that works for any Feistel cipher.
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L0[α] ∗R0[β]

?
�O1[α] ∗ I1[β]

�� �� = L1[α] ∗R1[β]− L0[α] ∗R0[β]

L1[α] ∗R1[β]

q

?
- I2[α] ∗ O2[β]

�� ��q = L2[α] ∗R2[β]− L1[α] ∗R1[β]

L2[α] ∗R2[β]

�O3[α] ∗ I3[β]
�� �� = L3[α] ∗R3[β]− L2[α] ∗R2[β]

L3[α] ∗R3[β]
?

q
?

Fig. 1. Fundamental remark: combining bi-linear expressions in a Feistel cipher

Proposition 2.1.1 (Combining bi-linear expressions in a Feistel cipher).
For all (even unbalanced) Feistel ciphers operating on n + n′ bits with arbitrary
round functions we have: ∀α ⊂ {1, . . . , n},∀β ⊂ {1, . . . , n′}, ∀r ≥ 0:

Lr[α]Rr[β]⊕ L0[α]R0[β] =
dr/2e∑
i=1

O2i−1[α]I2i−1[β] ⊕
br/2c∑
i=1

I2i[α]O2i[β]
ut

From one product this fundamental result extends immediately, by linearity,
to arbitrary bi-linear expressions. Moreover, we will see that these bi-linear ex-
pressions do not necessarily have to be the same in every round, and that they
can be freely combined with linear expressions (BLC contains LC).

3 Bi-linear Characteristics

For simplicity let n = n′. In this section we construct a completely general
bi-linear characteristic for one round of a Feistel cipher. Then we show how it
combines for the next round. Here we study bits locally and denote them by
Ai, Bj etc. Later for constructing attacks for many rounds of practical Feistel
ciphers we will use (again) the notations Li[j1, . . . , jk] (cf. Section 6.1).

3.1 Constructing a Bi-linear Characteristic for One Round
Let S be a homogeneous bi-linear Boolean function GF (2n)×GF (2n) → GF (2).
Let S(A1, . . . , An;B1, . . . , Bn) =

∑
sijAiBj .

Let fK be the round function of a Feistel cipher. We assume that there exist
two linear combinations u and v such that the function:

(B1, . . . , Bn) 7→
{ ∑

sijOiBj ⊕
∑

uiOi ⊕
∑

viBi

with (O1, . . . , On) = fK(B1, . . . , Bn)
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is biased and equal to 0 with some probability p 6= 1/2 with p = p(K)
depending in some way on the round key K.

We have Ci = Ai ⊕ Oi. By bi-linearity (or from Proposition 2.1.1) the fol-
lowing holds: ∑

sijAiBj ⊕
∑

sijOiBj =
∑

sijCiBj

From this, for the first round, (could be also any odd-numbered round), we
obtain the following characteristic:∑

sijAiBj ⊕
∑

uiAi ⊕
∑

viBi =∑
sijCiBj ⊕

∑
uiCi

}
with probability p(K)

Finally, we note that, the part linear in the Bi can be arbitrarily split in two
parts:

∑
viBi =

∑
v
(1)
i Bi ⊕

∑
v
(2)
i Bi with vi = v

(1)
i ⊕ v

(2)
i for all i = 1, . . . , n.

All this is summarized on the following picture:
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∑
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∑
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∑
v
(1)
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?
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q
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Fig. 2. Constructing a bi-linear characteristic for an odd round of a Feistel cipher

3.2 Application to the Next (Even) Round
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∑
tijCiBj ⊕

∑
w

(1)
i Ci ⊕

∑
xiBi

C1, . . . , Cn B1, . . . , Bn

?
C1

...
Cn

P1

...
Pn

-q ∑
tijCiPj ⊕

∑
wiCi ⊕

∑
xiPi

C1, . . . , Cn∑
tijCiDj ⊕

∑
w

(2)
i Ci ⊕

∑
xiDi

D1, . . . , Dn
?

�� ��
?

Fig. 3. Constructing a bi-linear characteristic for an even round of a Feistel cipher

The same method can be applied to the next, even, round of a Feistel scheme,
with the only difference that the round function is connected in the inverse
direction. In this case, to obtain a characteristic true with probability 6= 1/2, we
need to have a bias in the function:

(C1, . . . , Cn) 7→
{ ∑

tijCiPj ⊕
∑

wiCi ⊕
∑

xiPi

with (P1, . . . , Pn) = fK(C1, . . . , Cn)
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3.3 Combining Approximations to Get a Bi-Linear Attack for an
Arbitrary Number of Rounds

It is obvious that such I/O sums as specified above can be combined for an
arbitrary number of rounds (contradicting [23] page 226). To combine the two
characteristics specified above, we require the following three conditions:

1. We need u = w(1).
2. We need v(2) = x.
3. We need the homogenous quadratic parts s et t to be correlated (seen as

Boolean functions). They do not have to be the same (though in many
cases they will). In linear cryptanalysis (LC), a correlation between two
linear combinations means that these linear combinations have to be the
same. In generalized linear cryptanalysis (GLC) [12], and in particular here,
for bi-linear I/O sums, it is no longer true. Correlations between quadratic
Boolean functions are frequent, and does not imply that s = t. For these
reasons the number of possible bi-linear attacks is potentially very large.

Summary: We observe that bi-linear characteristics combine exactly as in LC
for their linear parts, and that their quadratic parts should be either identical
(with orientation that changes in every other round), or correlated.

4 Predicting the Behaviour of Bi-linear Attacks

The behaviour of LC is simple and the heuristic methods of Matsui [28] are
known to be able to predict the behaviour of the attacks with good precision
(see below). Some attacks work even better than predicted. As already suggested
in [12, 23] the study of generalised linear cryptanalysis is much harder.

4.1 Computing the Bias of Combined Approximations
A bi-linear attack will use an I/O sum for the whole cipher, being a sum of I/O
sums for each round of the cipher such that the terms in the internal variables do
cancel. To compute the probability the resulting equation is true, is in general not
obvious. Assuming that the I/O sum uses balanced Boolean functions, (otherwise
it will be even harder to analyse) one can apply the Matsui’s Piling-up Lemma
from [28]. This however can fail. It is known from [12] that a sum of two
very strongly biased characteristics can have a bias much weaker than expected.
The resulting bias can even be exactly zero: an explicit example can be found in
Section 6.1. of [12]. Such a problem can arise when the connecting characteristics
are not independent. This will happen more frequently in BLC than in LC:
two linear Boolean functions are perfectly independent unless equal, for non-
linear Boolean functions, correlations are frequent. Accordingly, we do not sum
independent random variables and the Matsui’s lemma may fail.

At this stage there are two approaches: one can try to define a class of
attacks that can be proved to work, and restrict oneself only to studying such
attacks, or try to explore all possible attacks, including those that do work
experimentally without proof. This first approach is adopted in [12]: the Lemma
6 gives a sufficient condition to guarantee that the Piling-up lemma will apply.
For this the probability, that the characteristic is true, for a random partial key,
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should be independent of the input (e.g. the input of the whole round). This
explains why Matsui’s attacks indeed work well. In [12] it allows to prove that
the proposed family of GLC attacks based on homomorphic properties will work
as predicted. We will also use this argument in Section 5.

In this paper we frequently adopt rather the second approach: try find as
many working attacks as possible, even if current theory does not allow to predict
their behaviour with accuracy. We claim that studying only attacks that satisfy
the assumption of Lemma 6 in [12] is fairly limitative: for an attack to work there
is obviously no necessity for the equations to be independent from their inputs
(it would however be nice if the sign of the bias remained the same with good
probability). Without this relaxation we would never find bi-linear characteristics
that are better than Matsui (Section 6.5): they are not independent on the
input. Thus we can go beyond homomorphic attacks related to the given group
operation that is used to combine the key in the cipher. We gain in freedom
and can find better attacks than previously known. A price to pay for this is
that each application of Matsui’s Lemma, and similar heuristic deductions will
be systematically questioned and confronted to experimental results.

4.2 Key Dependence in Bi-Linear Attacks
Another important property of bi-linear cryptanalysis is that the existence of
a bias for one characteristic does frequently depend on the key. This does not
really happen for LC applied DES, because in DES all key bits are combined
linearly and a linear equation will be true with probability either p or 1 − p
depending on the key. However it will happen for LC and other ciphers, if key
bits are involved in a more complex way, for example for ICE [25].

In bi-linear cryptanalysis, the behaviour becomes complex already when the
key bits are combined linearly as in DES. Adding a constant (a key bit) to
an input of an S-box, does not only modify the constant part in a bi-linear
characteristic, but also the linear part. (We note that for DES only the linear
part in the output variables will be modified when the key changes). From this,
quite frequently two bi-linear characteristics for two parts of a cipher (e.g. for
S-boxes) will only connect together for some keys. Such attacks are still very
interesting and frequently also do work, with only a slightly weaker bias, for all
the other keys. For simplicity, no key bits are displayed in bi-linear characteristics
for one or several rounds of a cipher that are studied/displayed in this paper.
The values of biases we will present (unless otherwise stated) are given for the
reference key being zero. Yet typically we observed that they exist, and slightly
vary in value, also for any other key (chosen at random). In rare cases, the bias
works well only for a fraction of keys (e.g. 25 %): this happens in Appendix B.1.

4.3 Exploring Bi-linear Cryptanalysis
There are different approaches to finding interesting bi-linear attacks to block
ciphers. In few cases one can construct attacks that will provably or arguably
work (see [12] and later Section 5). Another method is to construct characteristics
“by hand” around some particularly strong bias found for one S-box. This will
allow us to find attacks on DES better than Matsui in Section 6.5 and in the
Appendix. Unfortunately we have to check if it really works at every stage.
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We also propose a third method of “periodic constructions”: we build a large
class of plausible attacks exploring all the existing biases in the S-boxes that can
be connected in some specific way to another S-box in the next round, and finally
to itself after a few rounds. Then we explore this class by computer simulations
to find the best experimental characteristic for the whole/reduced cipher. This
method is used in Appendix E works well for up to about 5 rounds. For more
rounds it produces mostly attacks that does not work well, see Appendix E.

We noted the two major difficulties: predicting the bias of combined charac-
teristics, and huge number of possible characteristics (including fragmentation
due to the fact they the bias does in general depend on the key). These make
it very difficult to have a systematic method (a computer program) that would
compute the best bi-linear characteristic for a given cipher. To check if an attack
indeed works requires to be able to generate as many plaintexts as for the real
attack. To find the best attack is even much harder. It requires to exhaustively
search and reject lots of other combinations that should work well but they don’t.
Each of them has to be tested on an equally large set of plaintexts.

5 The Killer Example for Bi-Linear Cryptanalysis

We will construct a practical cipher that is very secure w.r.t. all known attacks
for block ciphers, in particular for LC, yet broken by BLC. It mixes two group
operations: the XOR and the multiplication in GF (2n) e.g. n = 32 or 64. It uses
the inverse in GF (2n) (cf. Rijndael): let Inv(X) = X−1 in GF (2n) when X 6= 0
and 0 otherwise. We build a 2n-bit Feistel cipher with the i-th round function
being:

fi(X) = Inv(X) · (Ki⊕G(X)) in GF (2n), (1)

with Ki being the partial key, and G being some function with S-boxes and
arbitrary components {0, 1}n → {0, 1}n. In order to get an insecure cipher, we
need to assume that some linear combination of outputs of G is biased. For
example, let Y1 ⊕ Y5 = 0 with probability 3/4. Building a cipher with G alone
would be insecure for LC, however here G is composed by a group operation ·
with Inv(X). The Inv(X) assures global diffusion and very high non-linearity
(cf. [4]). Accordingly our round function has very good resistance to linear and
differential cryptanalysis for most G, even when G = 0. But not against BLC.

First, we can consider a bi-linear attack with bi-linear equations over GF (2n):
∀r ≥ 0:

Lr ·Rr ⊕L0 ·R0 =
dr/2e∑
i=1

O2i−1 · I2i−1 ⊕
br/2c∑
i=1

I2i ·O2i =
r∑

i=1

Ii ·Oi (2)

We can, at any time, transform these to multivariate bi-linear equations with
n variables over GF (2). Any bi-linear function over GF (2n), e.g. the multiplica-
tion, can be re-written as n bi-linear multivariate functions GF (2)n → GF (2).
Let X · Y = (Z1, . . . , Zn) with Zk =

∑
ij M ij

k XiYj . From (2), or if we pre-
fer, directly from Proposition 2.1.1 and by using (very useful) the symmetry
M ij

k = M ji
k , we get:

∀k ∈ {1, . . . , n},∀r ≥ 0
∑
ij

M ij
k (LriRrj ⊕ L0iR0j) =

r∑
l=1

∑
ij

M ij
k IliOlj (3)
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Now, ∀l ≥ 1, Il ·Ol = Kl ⊕G(Il) with probability (1− 1/2n). We rewrite it:

∀k ∈ {1, . . . , n},∀l ≥ 0
∑
ij

M ij
k IliOlj = Kik ⊕Gk(Ii) (4)

Then we use the linear output bias of G: G1 ⊕G5 = 0 with probability 3/4.

∀l ≥ 0
∑
ij

M ij
1 IliOlj⊕

∑
ij

M ij
5 IliOlj = Ki1⊕G1(Ii)⊕Ki5⊕G5(Ii) ≈ Cl (5)

The last expression is equal to come constant denoted Cl with probability
3/4. Finally, we combine with (3) (or equivalently sum these bi-linear expressions
over the whole cipher with r rounds).∑
ij

(
M ij

1 ⊕M ij
5

)
(LriRrj ⊕ L0iR0j) =

r∑
l=1

Cl with probability
1
2

+
1

2r+1
(6)

What we obtained is a biased bi-linear I/O sum for the whole cipher. We can
distinguish this cipher from a random permutation given about 22r+2 plaintexts.
For example 16 rounds will be broken on a laptop PC.

Does it work as predicted ? In general, as we explain in Section 4.1, it is
hard to predict accurately the behaviour of a composed bi-linear attack. However
we have little doubt it will work: the Inv(X) should render possible correlation
between approximations being combined negligible. By Lemma 6 in [12], if the
characteristics are independent of the input (the input of the whole round), the
Piling-up lemma does apply. In real life the dependencies do exist, but due to
very good properties of Inv function they must be very weak: In equation (5) the
complex bi-linear part that comes from Inv() will assure that. This argument
is valid for most functions G. In some cases we can even prove that this attack
works: when G = 0, and also when one fixed linear combination of output bits of
G is 0, (the other parts can be arbitrary functions). In these cases, dependencies
cannot be a problem: we add equations (5) true with probability 1 to get the
equation (6) true with probability 1.

Related work: Similar results were previously obtained for some substitution-
permutation network (SPN) ciphers. In [12] Harpes, Kramer and Massey give
an example of 8-bit SPN that is secure against LC and DC, but insecure for
generalised linear cryptanalysis due to a probabilistic homomorphic property of
each round relative to quadratic residuosity function modulo 28 +1. The Jakob-
sen attack for substitution ciphers that uses probabilistic univariate polynomials
from [18] can also be seen as a special case of GLC. However, it is the first time
that GLC allows to break a Feistel cipher, which contradicts the impossibility
professed by Knudsen and Robshaw [23]. This cipher is built with state-of-art
components (inverse in GF (2n)) and can in addition incorporate any additional
fashionable component with lots of theory and designer tricks, as a part of G.
Due to G it will not have homomorphic properties. Moreover, by adjusting the
bias in G, the security of this cipher against BLC will be freely adjusted be-
tween (nearly) zero and infinity. It can therefore be arbitrarily weak for BLC,
and this even for a very large number of rounds. Yet, the security against the
usual attacks (LC, DC) should remain equally good (due to the big Inv S-box).
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6 Bi-Linear Attacks on DES

6.1 Notation
We ignore the initial and final permutations of DES that have no incidence on
the attacks. We use the “untwisted method” of representing DES, as on the
right-hand figure, page 254 in [31]. The bit numbering is compatible with the
FIPS standard [11], and [26, 21], and differs from the notations of Biham, Shamir
[2] or Matsui [28, 30, 20].

We denote the bits of the left hand side of the plaintext by L0[1] . . . L0[n]. The
bits of the right hand side are R0[1] . . . R0[n]. Similarly, as in other papers, the
plaintext after i rounds will be Li, Ri, except that we felt it necessary to have our
notations completely “untwisted” which implies that our Li and Ri for an odd
i = 1, 3, . . . will be inversed compared to [26, 21, 31], Then, we apply the popular
convention X[i1, . . . , in]being X[i1]⊕ . . .⊕X[in]. For example L0[9, 7, 23, 31] is
the XOR of 4 bits of the left half of the plaintext that are added to the outputs
of S1 in the first round. We denote the input bits to the i−th round function by
Ii[1], . . . , Ii[32]. Similarly the output bits will be Oi[1], . . . , Oi[1].
For odd i we have Ii[j] = Ri−1[j] = Ri[j] and Oi[j] = Li−1[j]⊕ Li[j].
For even i we have Ii[j] = Li−1[j] = Li[j] and Oi[j] = Ri−1[j]⊕Ri[j].

For individual S-boxes, we will denote the inputs/outputs by respectively
O[i] and J [j] with i, j being directly the numbers 1..32 in the round function
of DES. For example O[8], O[14], O[25], O[3] are the outputs of S-box S5, and
J [16], . . . , J [21] are the inputs of this S-box S5.

Finally, we call K
(Sx,i)
j the key bit that is XORed at the entry of S-box Sx,

in round i = 1, 2, 3, . . ., at the bit numbered j, with j = 1..32 coded as above (i.e.
corresponding to the position in the round function input). Depending on the
key in round i, we have Ii[k] = Ji[k] or Ii[k] = Ji[k] + 1. For better readability,
in most cases we avoid naming precisely the key bits involved.

6.2 First Example of Bi-Linear Cryptanalysis of DES
Our simulations on DES S-boxes (cf. Appendix A) show that the following two
bi-linear characteristics exist for DES S-boxes S1 and S5:

O[8, 14, 25, 3]⊕ J [17] ·O[3] = 0 for S5 with probability 17/64

O[17]⊕ J [3] ·O[17] = 0 for S1 with probability 47/64
From these, acting as if all the key bits were zero (Ii[k] = Ji[k]), we deduce

the following bi-linear characteristic for two rounds:

(∗) L0[3, 8, 14, 25]⊕ L0[3]R0[17]⊕R0[17]⊕
L2[3, 8, 14, 25]⊕ L2[3]R2[17]⊕R2[17] = K[sth]

}
1
2
− 1.76 · 2−4

The explanation is given on the following picture (Figure 4):
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L0[8, 14, 25, 3] L0[3] ∗R0[17] R0[17]

?
�

S5
[8,14,25,3] []

[3]∗[17]

�� �� 17/64

L1[8, 14, 25, 3] L1[3] ∗R1[17] R1[17]

q

?
-

S1
[] [17]

[3]∗[17]

�� ��
?

q
?

47/64

L2[8, 14, 25, 3] L2[3] ∗R2[17] R2[17]

Fig. 4. Our first example - an invariant bi-linear attack on DES (∗)
We verified this bias experimentally, and the probability is (we were lucky)

equal to the probability that is predicted by Matsui’s Piling-Up Lemma.
Key Dependence: Very surprisingly, the above equation (∗) is biased, not

only when all key bits are 0, but for every DES key. This can be seen to come
from a couple of other (different) bi-linear characteristics from Appendix A.

More rounds: It is easy to see from the picture, and we verified it experi-
mentally, that (∗) is also biased for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . . rounds of DES,
and all this happens to work about equally well for an arbitrary key.

Relation to LC: The bias of (∗) is closely related to some prominent equa-
tions of Matsui, their difference is “naturally” biased, see Appendix F.

6.3 Invariant Attacks on DES
The equation (∗) is an invariant equation, i.e. the input and the output bi-linear
expressions are the same. We have found a simple invariant bi-linear I/O sum
for DES that is biased for any key and for any number of rounds. For LC and
DES, such simple invariant characteristics do exist, have been found by Biham
(page 347 in [1]) in close relation to Davies-Murphy attack. The example (∗)
above is one of the best we found for DES, and so far it also the only known
non-linear 1-round invariant attack on DES that works really well in practice.
Our invariant on DES is stronger than Biham’s. We recall that Biham uses a
bias on a sum of some outputs for two successive DES S-boxes. The best bias
obtained by Biham (also exhibited by Matsui in [29] and contained unnoticed in
the earlier Davies-Murphy attack [9, 10]) is equal to (35/64− 1/2) for 2 rounds
and for S-boxes S7-S8. This gives 1.4 · 2−22 for 12 rounds. Instead, (∗) gives
experimentally only about 1.3 · 2−18. Accordingly, (∗) is the strongest known
1-round invariant attack on DES.

To break full DES requires a bias for 14 rounds (Matsui’s 2R method) and
the Biham’s invariant requires then 250 plaintexts. Our invariant attack requires
about 243 plaintexts (the bias of (∗) for 14 rounds is expected to be about 2−22,
we did not dispose of a sufficient computing power to compute it exactly).
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6.4 How Good is Our First Example, BLC vs. LC

These new properties of DES give a chosen-plaintext attack on an arbitrary
number of rounds of DES, somewhat simpler than Matsui’s laborious search
for the best linear characteristic. If we try here to predict the resulting bias
for 14 rounds by applying the Matsui’s Piling-up formula, we would get for 14
rounds the bias of: 1.63 ·2−17 which means an attack on full DES with only 232.6

known plaintexts (!?). Unfortunately, unlike for LC in DES, such predictions are
frequently not valid for BLC. Starting from 3 rounds, the bias of our invariant
does not follow the prediction at all, yet remains significative (cf also Table
6). For example if we apply Matsui’s Piling-Up Lemma to predict the bias for
4 rounds as 2+2 rounds, we obtain 1.55 · 2−6, while in practice it is about
1.80 · 2−8 (cf. Table 6). Our invariant attack seems very bad for 4 rounds, and
unfortunately with (∗) we never get a bias better than obtained by Matsui. Yet,
it is the best invariant attack on DES known, and for more than 4 rounds the
results are again not so bad. Only slightly worse than Matsui. For example for
12 rounds the best result of Matsui from [28] gives 1.19 · 2−17, while for (∗) and
a random key our simulation gives 1.3 · 2−18, To break full DES Matsui requires
about 243 plaintexts, and with (∗) we also need about 243 (and both are related).
In general, in Appendix F we give a heuristic argumentation why for DES (but
not in general !) the complexity of the best bi-linear attack should be roughly
the same than for LC.

For DES and 1-round invariants attacks extended to an arbitrary number of
rounds, BLC gives strictly better results than LC. It is also so for more complex
periodic constructions and we are going to see that BLC attacks can also be
strictly better than any existing linear attack.

6.5 Second Example of Bi-Linear Cryptanalysis of DES

In order to exhibit biases really better than Matsui we looked what is the best
bi-linear characteristic that exists in DES:

J [16, 20]⊕O[8, 14, 25, 3]⊕J [16, 17, 20]·O[3] = 0 for S5 with probability 61/64.

We note that this equation can be seen as “causing” the existence of the
Matsui’s best equation (A) for S5: their difference is highly biased. Based mainly
on this, we constructed a periodic characteristic for 3,7, 11 and more rounds that
is strictly better than the best results of Matsui for the same number of rounds.
Proposition 6.5.1 (Our Best Attack on 11 Rounds of DES). For all keys,
the following equation is biased for 11 rounds of DES:

(∗∗)
L0[3, 8, 14, 25]⊕ L0[3]R0[16, 17, 20]⊕R0[17]⊕
L11[3, 8, 14, 25]⊕ L11[3]R11[16, 17, 20]⊕R11[17] =
K[sth] + K[sth′]L0[3] + K[sth′′]L11[3]

}
1
2
± around 1.2 · 2−15

The exact construction to achieve this is a bit complicated. (cf. Appendix
B). The bias of this equation is strictly better than the best linear characteristic
for 11 rounds obtained by Matsui (which gives 1.91 · 2−16 for 11 rounds). It has
been verified by computer simulations at every stage. We note also that both
are closely related: their difference, is a biased Boolean function.
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Our second example allows us to give an attack strictly better than Matsui
for 11+2=13 rounds of DES. For the full 16-round DES our results are roughly
as good as Matsui (but we hope to improve this soon too). For 17 rounds of
DES, as the construction of our second example (∗∗) is periodic, we expect that
for 11+4=15 rounds it should also be better than the best bias of Matsui, which
would allow to break 15+2=17 rounds of DES faster than by LC. We do not
dispose of a sufficient computing power to fully confirm this fact.

6.6 Bi-Linear Cryptanalysis of s5DES

S5DES is a version of DES with DES-boxes modified to be substantially more
secure than DES for all known attacks on DES [22] and in particular LC. It is not
so for bi-linear attacks. The S-boxes of s5DES have some bi-linear characteristics
true with probability 1 (best result for DES is 61/64), and for more rounds we
have already found a few examples (e.g. with 3 rounds), with biases for s5DES
being stronger than for DES itself. However so far we did not found very good
attacks for more than 4 rounds and it is likely that full s5DES remains secure
against BLC. Our results on s5DES are given in Appendix D.

7 Conclusion

It was stated that for Feistel ciphers non-linear characteristics cannot be joined
together for several rounds, see [23]. In this paper we show that generalised linear
cryptanalysis (GLC) is in fact possible for Feistel schemes. To achieve this goal,
we introduced bi-linear cryptanalysis (BLC). It gives a new (and the fastest
known) 1-round invariant attack on DES. Though more powerful, generalized
linear cryptanalysis is unfortunately much harder to study than LC. At present
heuristic constructions, to be confirmed (or not) by computer simulations are
the only method known to explore it. BLC is related to LC in multiple important
ways. It contains LC as a sub-set. LC can be used to construct good bi-linear
characteristics and vice-versa. BLC also contains LC as an extension: a combi-
nation of biased bi-linear characteristics may extend a concrete combination of
biased linear characteristics by adding quadratic polynomials. Yet BLC can be
strictly better than any (existing) linear attack. This was demonstrated for 3, 7,
11 and more rounds of DES, and also for s5DES.

In this paper we only initiate the study of bi-linear cryptanalysis. BLC and
GLC extend the role of LC as an essential tool to evaluate the real-life security
of many practical ciphers. An interesting contribution of this paper is to point
out that, though GLC is excessively general to be systematically explored, the
properties of the top-level structure of a cryptographic scheme (e.g. being a
Feistel scheme) will determine the type of the attacks (e.g. BLC) that may indeed
work. Our new attack can be quite devastating: we constructed a large family of
practical ciphers based on big Rijndael-type S-box, that are strongly resistant
against LC and all previously known attacks on Feistel ciphers, yet can be broken
in practice with BLC for an important number of rounds. Fortunately, for DES,
BLC gave only slight improvements over LC and does not cause excessive trouble.
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A Selected Bi-Linear Characteristics of DES S-boxes

In this section we give some bi-linear characteristics for DES S-boxes. Our results
are not exhaustive: the number of possible bi-linear characteristics is huge and
we do not have a fast method to find all interesting characteristics. Accordingly
we are not certain to have found the best existing characteristics. It is certain
that there is no characteristics true with probability 1, as these are easy to
check algebraically. Otherwise we explored all cases that use up to two products
of linear combinations of variables. We conjecture that the other does not have
practical relevance for the security of DES, (see Section F). We give here some
interesting results we have found.

Table 1. Selected bi-linear characteristics for DES S-boxes (extends on 2 pages)

equation remarks and
input output input*output comments

S5 12/64 17 8, 14, 25, 3 Matsui’s equation A

S5 27/64 17 8, 14, 25, 3 [17] ∗ [3] not very good

S5 6/64 17 8, 14, 25, 3 [17] ∗ [8, 14, 25, 3] gets better

S5 58/64 [17] ∗ [8, 14, 25, 3]

S5 56/64 [16, 20] ∗ [8, 14, 25]

S5 8/64 17 8, 14, 25, 3 [16, 17, 20] ∗ [8]

S5 8/64 16, 20 8, 14, 25 [16, 20] ∗ [8, 14, 25]

S5 61/64 16, 20 8, 14, 25, 3 [16, 17, 20] ∗ [3] the best in DES

S5 47/64 8, 14, 25 17 ∗ 3

S5 17/64 8, 14, 25, 3 17 ∗ 3

S5 47/64 17 ∗ 3

S5 49/64 3 17 ∗ 3

S5 49/64 17 17 ∗ 3

S5 17/64 17 3 17 ∗ 3

S5 25/64 17 14, 25 17 ∗ 3

S5 25/64 17 14, 25, 3 17 ∗ 3

S5 27/64 17 8, 14, 25 17 ∗ 3

S5 47/64 8, 14, 25 17 ∗ 3

S5 25/64 19, 20, 21 8, 14, 25 17 ∗ 3

S5 25/64 17, 18 8, 14, 25 17 ∗ 3

S5 19/64 16, 20 8, 14, 25 17 ∗ 3

S5 25/64 16, 17, 18, 20 8, 14, 25 17 ∗ 3

S5 25/64 16, 17, 18, 19 8, 14, 25 17 ∗ 3

S5 27/64 17 8, 14, 25, 3 17 ∗ 3

S5 17/64 8, 14, 25, 3 17 ∗ 3

S5 17/64 16, 20 8, 14, 25, 3 17 ∗ 3

S5 23/64 18, 21 8, 14, 25, 3 17 ∗ 3

S5 25/64 16, 18, 20, 21 8, 14, 25, 3 17 ∗ 3
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equation remarks and
input output input*output comments

S1 30/64 3 17 Matsui’s equation C

S1 15/64 3 17 3 ∗ 17 gets better

S1 47/64 17 3 ∗ 17

S1 47/64 3 3 ∗ 17

S1 49/64 3 ∗ 17

S1 25/64 1, 2, 4, 5 17 3 ∗ 17

S1 25/64 1, 2, 3, 4, 5 17 3 ∗ 17

S1 22/64 32, 1, 2, 3, 4, 5 17 3 ∗ 17

S1 39/64 32, 1, 2, 4 3 ∗ 17

S1 39/64 32, 1, 2, 3, 4 3 ∗ 17

S1 39/64 9, 23 3 ∗ 17

S1 25/64 9, 17, 23 3 ∗ 17

S1 27/64 9, 23, 31 3 ∗ 17

S1 37/64 9, 17, 23, 31 3 ∗ 17

S1 29/64 9, 17, 31 3 ∗ 17

S1 35/64 9, 31 3 ∗ 17

S1 45/64 [1, 3] ∗ [9, 23, 31]

S1 57/64 [1] ∗ [9, 17, 23, 31]

equation remarks and
input output input*output comments

S2 8/64 5 13, 28, 18 8 ∗ 2

S4 56/64 [12, 16] ∗ [26, 20, 10, 1]

S4 56/64 [14, 17] ∗ [26, 20, 10, 1]

S4 56/64 [12, 14, 16, 17] ∗ [26, 1] (there are many similar)

S6 48/64 21 ∗ 29

S6 48/64 29 21 ∗ 29

S6 38/64 11, 19 21 ∗ 29

S6 24/64 4, 11, 19 21 ∗ 29

S7 11/64 25, 28 32, 12, 7 28 ∗ 12, 27 ∗ 22

S7 12/64 24, 28 32, 12, 22 27 ∗ 12, 29 ∗ 7

S8 48/64 29 ∗ 21

S8 48/64 21 29 ∗ 21

S8 40/64 5, 27, 15 29 ∗ 21

S8 24/64 5, 27, 15, 21 29 ∗ 21
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B Improved Bi-Linear Attacks for DES

The goal of this section is to find or construct examples where bi-linear crypt-
analysis gives strictly better bias on DES than the best Matsui’s result.

We look at the best Matsui’s characteristic on 3 rounds given at the last
page of [28]. By itself, it can be considered as very good, even compared to
other Matsui’s characteristics: it uses twice the best element (A) of Matsui, and
nothing between them. Moreover, this element (A) is in itself the best linear
characteristic that exist in DES, first discovered and described by Shamir in
1985 [33]:

(A) J [17]⊕O[8, 14, 25, 3] = 0 for S5 with probability 12/64

From this we get immediately, using Matsui’s Piling-Up Lemma from [28],
that for 3 rounds, and for any key, the following equation is biased:

L0[8, 14, 25, 3]⊕R0[17]⊕
L3[8, 14, 25, 3]⊕R3[17] = K[sth]

}
1
2
− 1.56 · 2−3

We call Matsui-3 this equation.

L0[8, 14, 25, 3] R0[17]

?
�

S5
[8,14,25,3] [17]

�� �� 12/64

L1[8, 14, 25, 3]

q

?
- �� ��q 64/64

L2[8, 14, 25, 3]

�
S5

[8,14,25,3] [17]
�� �� 12/64

L3[8, 14, 25, 3] R3[17]
?

q
?

Fig. 5. Matsui’s Best Linear Approximation on 3 Rounds of DES

B.1 Improving on Matsui-3
We will show that with bi-linear characteristics, there are strictly better equa-
tions than Matsui-3. Our simulations looking for the best bi-linear characteristics
for DES S-boxes (cf. Appendix A), showed that the best one is the following:

J [16, 20]⊕O[8, 14, 25, 3]⊕J [16, 17, 20]·O[3] = 0 for S5 with probability 61/64

Remark: It is clearly related to, and can be seen as “causing” the existence
of the Matsui’s equation (A): their difference is naturally biased.
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We will use this characteristic. Let KS5 denote the combination of the S-box
S5 and the key bits XORed to its inputs. It is easy to see that for KS5, if we
denote by K[sth] some constant linear combination of key bits, for any key, one
of the following equations is always strongly biased: (a1) I[16, 20]⊕O[8, 14, 25, 3]⊕ I[16, 17, 20] ·O[3] = K[sth]

or
(a2) I[16, 20]⊕O[8, 14, 25]⊕ I[16, 17, 20] ·O[3] = K[sth]

|bias| = 1/2−3/64

Remark: More precisely, in the i − th round we have (a1) exactly when
K

(S5,i)
16 ⊕K

(S5,i)
17 = 0⊕K

(S5,i)
20 = 0, and we have (a2) otherwise. (We recall that

K
(S5,i)
j is the key bit XORed in round i to S5 input corresponding to the number

j in the order of inputs of DES round function. )
In our construction, we will use one of the above, and we will also use another,

naturally biased equation, which will be one of the following: (b) O[16, 17, 20]⊕ I[3] ·O[16, 17, 20] = 0
and

(c) I[3]⊕O[16, 17, 20]⊕ I[3] ·O[16, 17, 20] ·O[3] = 0
|bias| = 1/2− 1/4

Now we are ready to construct characteristics for 3 rounds of DES.

L0[8, 14, 25, 3] L0[3]R0[16, 17, 20] R0[17]

?
�

KS5
[8,14,25,3] [16,20]

[3]∗[16,17,20]

�� �� 3/64

L1[8, 14, 25, 3] L1[3]R1[16, 17, 20] R1[16, 17, 20]

q

?
-

(natural)
[] [16,17,20]

[3]∗[16,17,20]

�� ��q 3/4

L2[8, 14, 25, 3] L2[3]R2[16, 17, 20] R2[16, 17, 20]

�
KS5

[8,14,25,3] [16,20]

[3]∗[16,17,20]

�� �� 3/64

L3[8, 14, 25, 3] L3[3] ∗R3[16, 17, 20] R3[17]
?

q
?

Fig. 6. Combining a1-b-a1 to get a characteristic for 3 rounds of DES
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L0[8, 14, 25] L0[3]R0[16, 17, 20] R0[17]

?
�

KS5
[8,14,25] [16,20]

[3]∗[16,17,20]

�� �� 3/64

L1[8, 14, 25] L1[3]R1[16, 17, 20] R1[16, 17, 20]

q

?
-

(natural)
[3] [16,17,20]

[3]∗[16,17,20]

�� ��q 1/4

L2[8, 14, 25, 3] L2[3]R2[16, 17, 20] R2[16, 17, 20]

�
KS5

[8,14,25,3] [16,20]

[3]∗[16,17,20]

�� �� 3/64

L3[8, 14, 25, 3] L3[3] ∗R3[16, 17, 20] R3[17]
?

q
?

Fig. 7. Combining a2-c-a1 to get a characteristic for 3 rounds of DES

As one should expect, our construction goes as follows:

� In round 1 and 3, depending on the key either a1 or a2 is strongly biased.
� To connect a1 to a1, or a2 with a2, we can use b, as in Figure 6.
� To connect a1 with a2 and the reverse, we use c, as in Figure 7.
� For 3 rounds and for any key, we always have a strong bias on one of the

four possibilities: a1-b-a1, a1-c-a2, a2-c-a1, a2-b-a2.
� From Matsui’s Piling-Up Lemma, we expect that the whole characteristic

will be true with probability 1
2 ± 1.64 · 2−3. Our simulations show that it is

between 1
2 ± 1.65 · 2−3 and 1

2 ± 1.67 · 2−3.
� Since, the choice of a1/a2 depends on a linear combination of key bits, We

can combine all these into one equation and we get the following result:

Proposition B.1.1 (Our Best Attack on 3 Rounds of DES). For all keys,
the following equation is biased for 3 rounds of DES: :

(∗∗)
L0[3, 8, 14, 25]⊕ L0[3]R0[16, 17, 20]⊕R0[17]⊕
L3[3, 8, 14, 25]⊕ L3[3]R3[16, 17, 20]⊕R3[17] =
K[sth] + K[sth′]L0[3] + K[sth′′]R3[3]

}
1
2
± 1.66 · 2−3

In comparison, Matsui-3 gives 1
2 − 1.56 · 2−3. Bi-linear cryptanalysis works

better than LC. In the next section we will extend this result (and again beat
Matsui) to 7, 11 and more rounds.

Remark: The equation above can be seen as 4 different equations, each
of them is highly biased for 1/4 of all keys. We observed that each of the 4
equations is also biased for all DES keys, except that for 3/4 of them the bias is
much weaker, we get about 1

2 ± 1.6 · 2−7.
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B.2 Extending the Result for 7, 11 and More Rounds

The idea is to find an element (maybe not very good in itself) that will allow to
connect together our (very good) characteristics on 3 rounds. For example, to
connect Figure 6 with Figure 7 we use the following element:

L3[8, 14, 25, 3] L3[3]R3[16, 17, 20] R3[17]

?
-

S1+natural
[3] [17]

[3]∗[16,17,20]

�� ��
?

q
?

1/2± 0.8/64

L4[8, 14, 25] L4[3]R4[16, 17, 20] R4[17]

Fig. 8. Connecting the output of a1 to the input of a2

Simulations show that, for any key, this characteristic is true with probability
about 1/2 ± 0.8/64. The explanation is as follows: the bias is due to to the
combination of Matsui’s equation (C)

(C) J [3]⊕O[17] = 0 for S1 with probability 30/64

and of the fact that I[3] ·O[16, 17, 20] is naturally biased. The same element
(Figure 8) does also work to connect a2 to a1.

It remains to be seen how the connection between a1 and a1 or a2 and a2.
This is done in a very similar way: we combine (C) with I[3]⊕ I[3] ·O[16, 17, 20]
that is also naturally biased.

Summary: In every of 4 possible cases, there is a connecting element based
on (C). This means that, also for 7 rounds and for any key, again one of the
four possibilities is quite biased: a1-b-a1, a1-c-a2, a2-c-a1, a2-b-a2. Again we
can recompose it in a single attack:

Proposition B.2.1 (Extension to 7 Rounds of DES). For all keys, the
following equation is biased for 7 rounds of DES:

L0[3, 8, 14, 25]⊕ L0[3]R0[16, 17, 20]⊕R0[17]⊕
L7[3, 8, 14, 25]⊕ L7[3]R7[16, 17, 20]⊕R3[17] =
K[sth] + K[sth′]L0[3] + K[sth′′]L7[3]

}
1
2
± about 2−9

This bias is, depending on the key, sometimes better, sometimes worse than
Matsui-7 that gives 1

2 − 1.95 · 2−10.
Finally, it is now obvious, that our construction works also for 11, 15, 19

rounds etc. We verified experimentally that for 11 rounds we have:

Proposition B.2.2 (Our Best Attack on 11 Rounds of DES). For all
keys, the following equation is biased for 11 rounds of DES: :

L0[3, 8, 14, 25]⊕ L0[3]R0[16, 17, 20]⊕R0[17]⊕
L11[3, 8, 14, 25]⊕ L11[3]R11[16, 17, 20]⊕R11[17] =
K[sth] + K[sth′]L0[3] + K[sth′′]L11[3]

}
1
2
± around 1.2 · 2−15



Feistel Schemes and Bi-Linear Cryptanalysis 21

For a few different keys we have tried (long computation on a PC) the bias
was always strictly better than Matsui-11 that gives 1

2 − 1.91 · 2−16.
Remark: The best characteristics found by Matsui for 3 and 11 rounds [28]

are closely related to those presented here: their difference is a biased Boolean
function. BLC contains LC not only as a subset, but also as an extension allowing
to strictly improve the best linear attacks on DES by adding higher degree
monomials.

B.3 Beyond Bi-Linear Attacks: Using Cubic Equations
We observed that, for 3 rounds, even better results can be achieved using cu-
bic partially bi-linear characteristics, instead of quadratic bi-linear (**) from
Proposition B.1.1. Our simulations show that, for an important fraction of keys:

(∗ ∗ ∗)
L0[3, 8, 14, 25]⊕ L0[3]R0[16, 17, 20]R0[17, 18, 19, 20]⊕
L3[3, 8, 14, 25]⊕ L3[3]R3[16, 17, 20]R3[17, 18, 19, 20]⊕
R0[17]⊕R3[17] = K[sth]

}
1
2
− 1.82 · 2−3

The explanation why this works is quite similar. Though the non-linear part
of this equation is not bi-linear, it is well correlated with a truly bi-linear func-
tion:

L[3]R[16, 17, 20]R[17, 18, 19, 20] = L[3]R[16, 17, 20] with probability 7/8

Unfortunately, the bias of (∗ ∗ ∗) is worse for other keys. On average, the
best bias we know for 3 rounds remains (∗∗) from Proposition B.1.1. We also
observed that that (∗ ∗ ∗) works for any number of DES rounds and for any key,
but again the results are not as good as with (∗∗).

B.4 Some Other Examples of Bi-Linear Characteristics for DES
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Table 2. Selected bi-linear characteristics for DES found by various methods. Biases
are given for key = 0, for other keys they are usually very close. Results strictly better
than the best result of Matsui are marked with a “!”).

scheme rounds characteristic result

DES 3 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1.84 · 2−5

DES 3 L[3, 8, 14, 25]⊕R[16, 20]⊕L[3, 14]R[16, 17, 20] 1.04 · 2−3

DES 3 L[3, 8, 14, 25]⊕R[17]⊕L[3, 7]R[16, 17, 20] 1.05 · 2−3

DES 3 L[3, 8, 14, 25]⊕R[17]⊕L[3, 19]R[16, 17, 20] 1.08 · 2−3

DES 3 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[16, 17, 20] 1.65 · 2−3 !
DES 3 L[3, 8, 14, 25]⊕R[16, 20]⊕L[3]R[16, 17, 20] 1.67 · 2−3 !

DES 4 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1.83 · 2−8

DES 4 L[3, 8, 14, 25]⊕R[17]⊕L[2]R[17] 1.16 · 2−7

DES 4 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[16, 17, 20] 1.92 · 2−8

DES 4 L[3, 8, 14, 25]⊕R[17]⊕L[3] ∗R[16, 17, 20]⊕L[1] ∗R[32] 1.35 · 2−7

DES 4 L[3, 8, 14, 25]⊕R[17]⊕L[3] ∗R[16, 17, 20]⊕L[1, 3] ∗R[31] 1.57 · 2−7

DES 4 L[3, 8, 14, 25]⊕R[17]⊕L[3] ∗R[16, 17, 20]⊕L[1, 3] ∗R[16, 20] 1.65 · 2−7

DES 4 L[3, 8, 14, 25]⊕R[17]⊕L[3, 4, 32] ∗R[16, 17, 20] 1.27 · 2−6

DES 4 L[3, 8, 14, 25]⊕R[17]⊕L[3, 4, 5, 32] ∗R[16, 17, 20] 1.27 · 2−6

DES 4 L[3, 8, 14, 25]⊕R[17]⊕L[1, 3] ∗R[16, 17, 20] 1.30 · 2−6

DES 5 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1.59 · 2−9

DES 5 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[16, 17, 20] 1.4 · 2−11

DES 5 L[8, 14, 25]⊕R[17]⊕L[3]R[17] 1.70 · 2−9

DES 5 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[16, 17, 20]⊕L[1, 25]R[16, 20] 1.12 · 2−8

DES 5 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[16, 17, 20]⊕L[1]R[12, 15, 20] 1.30 · 2−8

DES 5 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[16, 17, 20]⊕L[1]R[12, 14, 15, 17, 20] 1.34 · 2−8

DES 6 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1.3 · 2−10

DES 6 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[16, 17, 20] 1.6 · 2−12

DES 6 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17]⊕L[4, 32]R[16, 20] 1.9 · 2−11

DES 6 L[8, 14, 25]⊕R[17]⊕L[3]R[17] 1.65 · 2−10

DES 7 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1.2 · 2−11

DES 7 L[3, 8, 14, 25]⊕L[3]R[17] 1.45 · 2−11

DES 7 L[3, 8, 14, 25]⊕R[16, 20]⊕L[3]R[16, 17, 20] 1.15 · 2−9 !
DES 7 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[16, 17, 20] 1.42 · 2−9 !

DES 8 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[16, 17, 20] 1.8 · 2−14

DES 8 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1.9 · 2−14

DES 8 L[3, 8, 14, 25]⊕R[17]⊕L[3] ∗R[16, 17, 20]⊕L[1, 3] ∗R[16, 20] 1.42 · 2−13

DES 9 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1.8 · 2−15

DES 9 L[3, 8, 14, 25]⊕R[17]⊕L[3] ∗R[16, 17, 20]⊕L[1, 3] ∗R[16, 20] 1.9 · 2−15

DES 9 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[16, 17, 20]⊕L[1]R[12, 14, 15, 17, 20] 1.3 · 2−14

DES 10 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1.2 · 2−16

DES 11 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1.7 · 2−18

DES 11 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[16, 17, 20] 1.2 · 2−15 !

DES 12 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1.1 · 2−18

DES 13 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] ≈ 2−20

DES 14 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] ≈ 2−21

DES 14 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[16, 17, 20] 2−20
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C Complementation Theorem for Bi-Linear
Cryptanalysis of DES

Theorem C.0.1 ( Complementation Result for DES). Let Xi, i = 1 . . .m
be a freely chosen subset of input and output bits of DES (or a reduced version
of DES for k rounds). Let Ki, i = 1 . . . n be some key bits. If the equation
F (X1, . . . , Xm;K1 . . .Kn) is biased for some fraction of keys, then the equation
F (X1 +1, . . . , Xm +1;K1 +1 . . .Kn +1) has exactly the same bias for the same
fraction of keys.

Proof: Follows immediately from the complementation property of DES. ut
For LC this result is trivial and gives no information. For BLC it is non-trivial,

and gives interesting information. We see that the complementation property of
DES does not only have security implications on the exhaustive search, but can
be used much more frequently to derive bi-linear attacks from the existing ones.

Example: Our equation (∗∗) is the best known bi-linear characteristic for
11 rounds of DES.

(∗∗)
L0[3, 8, 14, 25]⊕ L0[3]R0[16, 17, 20]⊕R0[17]⊕
L3[3, 8, 14, 25]⊕ L3[3]R3[16, 17, 20]⊕R3[17] =
K[sth] + K[sth′]L0[3] + K[sth′′]R3[3]

}
1
2
± around 1.2 · 2−15

From our theorem we deduce that the following equation is equally good (the
parts K[sth] are the same than in (∗∗)):

(∗∗)
L0[3, 8, 14, 25]⊕ L0[3]R0[16, 17, 20]⊕R0[16, 20]⊕
L11[3, 8, 14, 25]⊕ L11[3]R11[16, 17, 20]⊕R11[16, 20] =
(K[sth]+K[sth′]+K[sth′′])+K[sth′]L0[3]+K[sth′′]L11[3]

}
1
2
±around 1.2·2−15

Remark: Looking at these equations, and knowing that their bias depends
(slightly) on the key, presumably in a linear way, the following question can be
asked: is it possible to combine (∗∗) and (∗∗) in an even better characteristic
? The answer is negative. We have verified experimentally (100 random keys
tried) that their current dependence on the key bits already allows to achieve
the best possible bias for every key, and the “mirror” equation allows to achieve
the same bias and not a better one. It turns out that, for any fixed key, the best
bi-linear characteristic we know is simultaneously attained by two different
equations. Such a situation, as far as we know, did not happen so far in LC
(except the usual rigt/left and up/down symmetries).
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D Bi-Linear Attacks on s5DES

S5DES is a version of DES with DES-boxes modified to resist all known attacks
on DES [22]. In particular it is a good deal more resistant than DES against
linear cryptanalysis. However, for bi-linear cryptanalysis we have already found
a few examples (for now with a small number of rounds), where s5DES is worse
than even DES itself (!). This work is still in progress.

D.1 Bi-Linear Properties of s5DES S-boxes
In this section we give some interesting bi-linear characteristics for s5DES S-
boxes. Surprisingly, s5DES, designed to be much more secure than DES against
LC and other known attacks, is much weaker than DES at this point. Indeed,
for each of the S-boxes, there is exactly one bi-linear equation that is true with
probability 1:

Table 3. Selected bi-linear characteristics for s5DES S-boxes

equation
input output input*output

S1 0/64 1 17, 23, 31 5 ∗ 9

S2 64/64 5 28, 2, 18 9 ∗ 13

S3 0/64 9 24, 30, 6 13 ∗ 16

S4 64/64 13 20, 10, 1 17 ∗ 26

S5 0/64 17, 21 8, 25, 3 21 ∗ 14

S6 0/64 21 4, 29, 11 25 ∗ 19

S7 64/64 25 32, 22, 7 29 ∗ 12

S8 0/64 29 27, 15, 21 1 ∗ 5

These equations have a lot in common. If we change the notations and de-
note the inputs of the S-box x1, . . . , x6 and the outputs by y1, . . . , y4, the same
equations become:

S1. 1+x[2]+ y[2]+y[3]+y[4]+x[6]*y[1] = 0
S2. x[2]+ y[2]+y[3]+y[4]+x[6]*y[1] = 0
S3. 1+x[2]+ y[1]+ y[3]+y[4]+x[6]*y[2] = 0
S4. x[2]+ y[2]+y[3]+y[4]+x[6]*y[1] = 0
S5. 1+x[2]+x[6]+y[1]+ y[3]+y[4]+x[6]*y[2] = 0
S6. 1+x[2]+ y[1]+y[2]+y[3]+ x[6]*y[4] = 0
S7. x[2]+ y[1]+ y[3]+y[4]+x[6]*y[2] = 0
S8. 1+x[2]+ y[2]+y[3]+y[4]+x[6]*y[1] = 0

We see that the input bit is (almost) always x2, the same that correspond
to left/right half in the DES tables. The input bit in the product is always
x6, and x6 = 1 corresponds to the second and last line in DES S-boxes. This
gives the impression that the authors of s5DES have derived all its S-boxes from
a single (and apparently not so good) S-box. This is very closely related to
strange properties of s5DES discovered by Guilhem Castagnos and described in
the Appendix of [6].



Feistel Schemes and Bi-Linear Cryptanalysis 25

D.2 Interesting Approximations for 3 Rounds of s5DES

It is possible to see, that each of the above 8 equations, allows to build a char-
acteristic for 3 rounds of s5DES as follows:

L0[17, 23, 31] L0[9] ∗R0[5] R0[1, 5]

?
�

s5DES S1
[17,23,31] [1]

[9]∗[5]

�� �� 0/64

L1[17, 23, 31] L1[9] ∗R1[5] R1[5]

q

?
-

(natural)
[] [5]

[9]∗[5]

�� ��q 3/4

L2[17, 23, 31] L2[9] ∗R2[5] R2[5]

�
s5DES S1

[17,23,31] [1]

[9]∗[5]

�� �� 0/64

L3[17, 23, 31] L3[9] ∗R3[5] R3[1, 5]
?

q
?

Fig. 9. A bi-linear attack on 3 rounds of s5DES

We see that, at least when all key bits are 0, we have 8 bi-linear characteristics
for s5DES that are true with probability about 1/2 ± 1/4. This is better than
Matsui-3 for DES, and better than the best bi-linear characteristic we found for
3 rounds of DES itself.

For some keys, one of these biases is even better than 1/2± 1/4:

L0[4, 11, 29]⊕ L0[19]R0[25]⊕R0[21, 25]⊕
L3[4, 11, 29]⊕ L3[19]R3[25]⊕R3[21, 25] = K[sth]

}
1
2
− 1.06 · 2−2

In comparison, the best linear characteristic for DES gives 1.56·2−3 (improved
to 1.82 · 2−3 in Section B). Clearly, for 3-round I/O sums, s5DES is weaker than
DES itself.

D.3 Bi-Linear Attacks for s5DES - 4 rounds

Unfortunately, it is possible to see that the above characteristics work only for
one half of all keys. Moreover, we were not able to extend it for 4 rounds. This
fails in fact for all the 8 “good” characteristics on 3 rounds that can be built (in
the same way) from table 3.
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For s5DES the best characteristics for 3 rounds are better than for DES.
However, very surprisingly, for 4 rounds, it is very difficult to find many biased
characteristics for s5DES, it is clearly harder than for DES. The method of
combining known characteristics exploited by Matsui with success [28, 30], fails
quite badly here. We tried many combinations of 2+2 or 3+1 rounds, that in
theory should work... yet in practice they don’t at all: the combined characteristic
is not biased or the bias was so small that we could not detect it. Finally we
have found some biased bi-linear characteristics for 4 rounds. Currently, (one of)
the best we know is the following:

L0[29]⊕R0[15, 21, 27]⊕ L0[29]R0[20, 21, 22, 24, 25]⊕
R4[29]⊕ L4[15, 21, 27]⊕R4[29]L4[20, 21, 22, 24, 25] = K[sth]

}
With this, for a fraction of keys, we get 1/2 − 1.85 ∗ 2−7 for 4 rounds, and

1/2− 1.54 ∗ 2−8 for 5 rounds.

D.4 Bi-Linear Attacks for More than 4 Rounds of s5DES

The later bias seems to disappear for 6 rounds (10 billions of plaintexts tried).
However, we have found some other similar characteristics that work for 6
rounds... These are given in Table 4, Appendix E. It may be possible to find
better results. Our work on s5 DES is still in progress but at present at seems
that the whole cipher should have a sufficient security margin to remain secure
against BLC, as it is quite secure for LC, and this probably for reasons we give
in Appendix F.

D.5 Cubic GLC Attacks for s5DES

As for DES, we have also found some very strongly biased cubic I/O sums, for
example for 3 rounds and for a fraction of keys:

L0[15, 21, 27]⊕ L0[5]R0[1]R0[28, 29, 31, 32]⊕R0[1, 29]⊕
L3[15, 21, 27]⊕ L3[5]L3[1]R3[28, 29, 31, 32]⊕R3[1, 29] = K[sth]

}
1
2
− 1.02 · 2−2

L0[15, 21, 27]⊕ L0[5]R0[1]R0[1, 28, 29, 31, 32]⊕R0[29]⊕
L3[15, 21, 27]⊕ L3[5]R3[1]R3[1, 28, 29, 31, 32]⊕R3[29] = K[sth]

}
1
2
− 1.01 · 2−2
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E A General Heuristic Construction for Feistel Ciphers

We present here a very general, rather surprising and even controversial result:
we construct a large family of simple invariant bi-linear attacks that work for
1,2,3,4 etc.. rounds for a large family of Feistel ciphers, and with a fairly weak
requirement on the S-boxes. Later we will see however that that only a tiny
fraction of them will work well for an important number of rounds.

To begin with, let us assume that the block cipher is as follows:
1. It is a Feistel cipher.
2. Every even round is arbitrary, (could even be a truly random function).
3. Every odd round has “almost the same” round function. More precisely we

require that every odd round function is built as follows:
a. A fixed (identical in every odd round) injective multivariate linear oper-

ation (for example expansion in DES).
b. Then a different session key is XORed (as in DES),
c. Then we apply an arbitrary fixed non-linear component (e.g. the lot of

DES S-boxes).
4. The non-linear part of the round functions used for all odd rounds have one

common linear characteristic that is biased (one will be sufficient).

Then the following invariant bi-linear characteristic will be biased
for 1, 2, 3, and more rounds:

L0[β] L0[γ] ∗R0[α] R0[]

?
�

odd round

[β] [∅]
[γ] ∗ [α]

�� ��

3/4

L1[β] L1[γ] ∗R1[α] R1[]

q

?
-

even round

[∅] [∅]
[γ] ∗ [α]

�� ��
?

q
?

3/4; Biasα→β

L2[β] L2[γ] ∗R2[α] R2[]

Fig. 10. How to use any linear characteristic in every other round in a bi-linear attack

Explanation: In the even rounds we use the fact that I[γ]O[α] is naturally
biased. In the odd rounds we use the analogous bias on I[α](O[γ] + 1) combined
with the linear bias on I[α] ⊕ O[β]. In LC I[α] may be in general difficult to
connect with the previous/next rounds, especially if α is a large subset of bits.
Here it gets simply eliminated.
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E.1 Extending the General Construction
We construct 24 similar characteristics as shown on Figure 11. In the even rounds
we use the fact that each of these four Boolean functions is always biased:
I[γ]O[α] ⊕ I[γ] ⊕ O[α], or I[γ]O[α] ⊕ I[γ] or I[γ]O[α] ⊕ O[α] or I[γ]O[α]. In
the odd rounds we use the analogous fact that is combined with the linear bias
on I[α]⊕O[β].

L0[β or β ⊕ γ] L0[γ] ∗R0[α] R0[∅ or α]

?
�

odd round

[ β or
β⊕γ ] [∅ or α]

[γ] ∗ [α]

�� ��

3/4

L1[β or β ⊕ γ] L1[γ] ∗R1[α] R1[∅ or α]

q

?
-

even round

[∅ or γ] [∅ or α]

[γ] ∗ [α]

�� ��
?

q
?

3/4; Biasα→β

L2[β or β ⊕ γ] L2[γ] ∗R2[α] R2[∅ or α]

Fig. 11. Deriving more bi-linear attacks given one linear characteristic in every other
round

In this extended version all the choices are not allowed: when composing
characteristics together, the quadratic parts do not change, linear parts combine
as in linear cryptanalysis. As a consequence all the masks connected to a ⊕ have
to be the same. Still it is possible to see that for 2 rounds, with an arbitrary
choice of any of 24 possibilities, we may adjust the internal masks for the round
functions in such a way that the whole will still be biased (based on any of the
biased equations in I[α] etc. listed above). Extension for more than 2 rounds is
immediate, and for 1 round it also works except that the masks on the left side
must be identical.

Thus, given a Feistel cipher with 64-bit block size, from one single linear
characteristic α → β for the even rounds, this construction gives as many as
24 · 232 or 23 · 232 bi-linear characteristics. Our construction applies to DES
and many other similar ciphers (for some other ciphers, such as ICE [25], our
initial requirements can be relaxed and our still applies with good probability).
There are also other similar constructions. For example clearly if the output γ
is be different from the input γ, the attack should still work (both product will
be correlated). We expect that all these characteristics are always or (almost
always) biased for any number for rounds > 1.
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Remark: This construction is quite nice and simple. It is easy to see that
if this construction worked as predicted by Matsui’s Piling-up lemma from [28],
then with the best linear approximation known in DES used 7 times, and the
natural bias 3/4 used 14 times, we get a characteristic for 14 rounds (one example
is displayed on Figure 4) with a theoretical bias of 1.19 · 2−20 which would allow
ot break full DES given about 239.5 plaintexts. It turns out that for our example
of Figure 4 the actual bias is not much worse than this for 14 rounds, yet in
most other cases the biases obtained by our method work as predicted only for
a small number of rounds.

E.2 Real-Life Behaviour of Our Heuristic Attack on Feistel Ciphers
For 2 rounds the method works perfectly well for any α, β and γ. The bias
is with good precision equal to combining with Matsui’s Piling-up rule, the
3 biases (3/4, 3/4,Biasα→β) with Biasα→β being the bias of the initial linear
characteristic. In general very good results are obtained for 1, 2 or 3 rounds.

For 4 rounds the bias is very frequently substantially lower than expected.
For 5,6 and more rounds in most cases our construction does not give good
results at all. This construction is a general framework, and one should not use
this construction to build many good attacks for ciphers that have many rounds
However, this (and similar) constructions proved to be a great tool for finding
very good attacks on practical ciphers. This is because, we expect that when
exploring by computer simulations a large number (here 236) of very weak attacks
we occasionally find a very good attack. Besides, since in most bi-linear attacks
the expected bias turns out to be very different from Matsui’s predictions, this
method is as good as any other method. In fact it is about the only method
we know to systematically find working attacks on practical ciphers (it allowed
to find our invariant attack on DES).

We did a lot of simulations for this (and similar) constructions, to see what
will be the best values for (α, β, γ) for DES, s5DES and ICE. Below we give the
best results obtained. Only invariant characteristics are displayed (input and
output expressions the same). Remark: For DES we have found better attacks,
by different methods. These are displayed in Table 2 in Appendix B.4.

For DES and s5DES the bias values given here are true when all the key bits
are zero. For other keys they are usually very close but not always identical. All
the displayed characteristics are systematically biased for any number of rounds
(but if one characteristic may be the best for 2 rounds, in general a different
one will be the leading result for a different number of rounds.) Exceptionally
for ICE [25], that has key-dependent bit permutations the biases displayed work
only for a (substantial) fraction of keys. (This cipher has big S-boxes that have
no interesting bi-linear approximations and we did not find very interesting bi-
linear attacks on it for ≥ 6 rounds.)
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Table 4. Some Experimental Results on Our General Construction

scheme rounds characteristic result

DES 2 L[8, 14, 25]⊕R[]⊕L[3]R[17] 1
2
− 1.00 · 2−3

DES 2 L[8, 14, 25, 3]⊕R[]⊕L[3]R[17] 1
2

+ 1.00 · 2−3

DES 2 L[4, 29, 11, 19]⊕R[]⊕L[4]R[21] 1
2
− 1.50 · 2−4

s5DES 2 L[5, 15, 21, 27]⊕R[29]⊕L[20, 21, 22, 24, 25]R[29] 1
2
− 1.47 · 2−4

s5DES 2 L[3, 8, 25]⊕R[17]⊕L[14]R[17] 1
2

+ 1.00 · 2−3

ICE 2 L[2, 22, 27]⊕R[]⊕ L[9]R[18] 1
2
− 1.91 · 2−7

DES 4 L[5, 15, 21, 27]⊕R[29]⊕L[20, 21, 22, 23, 24, 25]R[29] 1
2
− 1.56 · 2−7

DES 4 L[9, 17, 23, 31]⊕R[1]⊕L[12, 13, 14, 16, 17]R[1] 1
2
− 1.55 · 2−7

DES 4 L[8, 14, 25]⊕R[17]⊕L[3]R[17] 1
2
− 1.87 · 2−8

DES 4 L[3, 8, 14, 25]⊕L[1, 2, 4, 5]R[17] 1
2
− 1.95 · 2−7

s5DES 4 L[3, 8, 14, 25]⊕R[17]⊕L[1, 2, 3, 5, 32]R[17] 1
2
− 1.55 · 2−7

s5DES 4 L[15, 21, 27]⊕R[29]⊕L[29]R[20, 21, 22, 24, 25]R[29] 1
2
− 1.85 · 2−7

ICE 4 L[2, 22, 27]⊕R[]⊕L[9]R[18] 1
2
− 1.05 · 2−14

DES 5 R[17]⊕L[8, 14, 25]⊕L[3]R[17] 1
2

+ 1.70 · 2−9

s5DES 5 L[1, 10, 20]⊕R[13]⊕L[5, 6, 9]R[13] 1
2
− 1.12 · 2−8

s5DES 5 L[15, 21, 27]⊕R[29]⊕L[20, 21, 22, 24, 25]R[29] 1
2
− 1.54 · 2−8

DES 6 L[3]⊕R[9, 23]⊕L[3]R[17] 1
2

+ 1.6 · 2−13

DES 6 L[3]⊕R[9, 17, 23]⊕L[3]R[17] 1
2

+ 1.5 · 2−13

DES 6 L[6, 16, 24, 30]⊕R[10]⊕L[16]R[10] 1
2
− 1.7 · 2−13

DES 6 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1
2

+ 1.30 · 2−10

DES 6 L[8, 14, 25]⊕R[17]⊕L[3]R[17] 1
2
− 1.65 · 2−10

s5DES 6 L[17, 23, 31]⊕R[1]⊕L[13, 14, 15]R[1] 1
2
− 1.46 · 2−13

s5DES 6 L[5, 15, 21, 27]⊕R[29]⊕L[20, 22, 23, 25]R[29] 1
2
− 1.30 · 2−13

DES 7 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1
2

+ 1.2 · 2−11

DES 7 L[3, 8, 14, 25]⊕R[]⊕L[3]R[17] 1
2

+ 1.45 · 2−11

DES 11 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1
2

+ 1.7 · 2−18

DES 12 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1
2

+ 1.1 · 2−18

DES 13 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1
2

+ 1 · 2−19

DES 14 L[3, 8, 14, 25]⊕R[17]⊕L[3]R[17] 1
2

+ 1.? · 2−20

E.3 Downsizing Our General Construction and Gaining Insights
In this section we will give some conjectured necessary conditions for our con-
struction to work well for a substantial number of rounds of a Feistel cipher
similar to DES. This result is heuristic but of great practical value: allows to
construct realistic bi-linear attacks on practical ciphers such as DES or s5DES.
In the general case, we don’t think that such restrictions exist and there are
probably many block ciphers for which specific special cases of our construction
will work well.
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By looking at the leading results obtained by intensive computer simulations,
we observed that for 4, 5, 6 and more rounds all really “good” results are such
that:

(A) α → β is a good linear approximation for some S-box Si.
This is required already be the construction, we assume in addition that it
uses only one S-box, since the bias of α → β is used many times in every
second round of the attack, it is very reasonable to think that using several
S-boxes for this leads to much weaker attacks)

(B) γ → α is a biased linear approximation for another S-box Sj (the bias has
not be as good as (A)).

With these two the construction uses one linear approximation in each round.

We remark that for DES, since the P-box always distribute that outputs of
one S-box to 4 different S-boxes in the next round, these two conditions (A) and
(B) can be satisfied only if i 6= j and the set α has one element.

E.4 Additional Criteria (More Heuristic)
We also observed that in DES, for these few examples we know that work really
well for 6, 8 and more rounds, the following two conditions are also satisfied:

(C) α → β ⊕ γ is a biased linear approximation for the same S-box Si.
(C’) α → γ is a biased linear approximation for the same S-box Si.

Equivalence of (C) and (C ′): Each of these two properties (C) and (C ′),
when combined with (A), implies the other property.

Strictly speaking, the best examples that we know for 6 rounds do satisfy
(A−C). This is not any longer an exact science, very few pairs of strong linear
characteristic in DES exist and very few applications of our construction give
biases for 6 and more rounds being large enough to be tested in practice on
a regular basis. Yet we know that (at least for 6 rounds), the condition (C)
is not at all necessary. In Table 4 the first three examples for 6 rounds do
not satisfy it at all. Finally it is probably possible (open problem) to construct
contrived ciphers to see that the condition (B) is not absolutely necessary either.

E.5 Summary and Further Research
Our construction always works well for a small number of rounds. It is an open
problem to give a necessary and sufficient condition for our construction to
work for an important number of rounds. At present testing experimentally all
possibilities that satisfy (A) and (B) and selecting the best results seems to be
the best method. It applied to nearly arbitrary Feistel schemes and allows (at
least for DES) to find some interesting attacks on them.
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F Links Between BLC and LC

It is natural to assume that equations on different round of a cipher are (at
least to some extent) independent and to estimate the bias of composed BLC
characteristics using the Matsui’s Piling-up Lemma. Our experience on real-
life ciphers shows however that, though this does allow to construct very few
efficient and interesting attacks, very frequently it will give both misleading and
disappointing results, especially when the number of rounds is large. In this
section we will explain that there are somewhat deep reasons for this. We claim
that beyond composition, there is another (heuristic) law that (apparently) does
govern bi-linear attacks. It seems that, due to the construction of DES, BLC
should always remain correlated to LC, and thus can be only slightly better, but
probably not be much better. The argument however does not apply to other
Feistel ciphers, and in general there is no doubt that BLC can be much faster
than LC (see Section 5).

F.1 Preliminaries: Observations on DES and Similar Ciphers

The idea is as follows: if we want to have good bi-linear characteristic on one
round of DES, we need to use good bi-linear characteristics for one S-box in a
round (attacks using two or more S-boxes per round will probably be worse).
Let A be the set of inputs and B set of outputs of this S-box. Then in the follow-
ing round, in which the S-boxes are connected in the opposite direction, let C
and D be the set of input/outputs used. Following Section 3.3, the homogenous
quadratic parts in the successive rounds should be correlated. This, again heuris-
tically, means that for “really efficient” attacks they will probably be equal, and
therefore we probably have A = D and B = C. We know however that the
DES P-box scatters outputs of one S-box over inputs of different S-boxes in the
next round. Thus, assuming that these sets are nonempty, by inspection we see
that this implies that each set A and B contains one element. We come to the
preliminary conclusion than to have a “very good” attack on DES with period 2,
we need two positions a and b such that one S-box in even round a connected to
an input and b to an output, and for another S-box in odd rounds, b connected
to an input and a to an output.
Table 5. Pairs of S-boxes in DES that are connected to one another in the previ-
ous/next round by the DES P-box

1 15 S8− S4

1 17 S1− S4

2 9 S1− S2

3 17 S1− S5

4 23 S1− S6

5 28 S2− S8

5 31 S1− S8

6 13 S2− S3

7 28 S2− S7

8 16 S3− S5

8 18 S2− S5

9 2 S2− S1

10 16 S3− S4

11 24 S3− S6

12 24 S3− S7

12 26 S4− S7

13 6 S3− S2

14 20 S4− S5

15 1 S4− S8

16 8 S5− S3

16 10 S4− S3

17 1 S4− S1

17 3 S5− S1

18 8 S5− S2

19 25 S5− S6

20 14 S5− S4

21 29 S6− S8

22 29 S6− S7

23 4 S6− S1

24 11 S6− S3

24 12 S7− S3

25 19 S6− S5

26 12 S7− S4

27 32 S7− S8

28 5 S8− S2

28 7 S7− S2

29 21 S8− S6

29 22 S7− S6

31 5 S8− S1

32 27 S8− S7
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This is possible, and we verified that for DES there are exactly 20 such
couples. We we list them in Table 5. Accordingly, it seems that the best bi-
linear attack on DES should probably use only one product in the homogenous
quadratic part. This may not always be true, but we would expect that:

Conjecture F.1.1 (Heuristic Remark). The best bi-linear attack on ciphers
similar to DES with small S-boxes and a P-box with “good diffusion properties”
will probably use a small number (e.g. 1 or 2) of products of variables.

Remark: For general Feistel ciphers other than DES, things are very differ-
ent as demonstrated by our “Killer Example” of Section 5.

F.2 “Gravity Law” for Bi-Linear Cryptanalysis of DES

Our Conjecture F.1.1 above suggests that for DES, and similar ciphers, the best
bi-linear attack is likely to use only a few products. We fix the key and look
at the best bi-linear characteristic on, for example 12 rounds. It is composed
of a linear part, and of a Boolean function with a “very strong” bias (only few
products are present). Yet, if the whole is strongly biased, the linear part of it
can be seen as a sum of two “strongly” biased expressions, and in turn should
still be “strongly” biased. We come to the conclusion that:

Conjecture F.2.1 (Gravity Law for Bi-Linear Cryptanalysis). A Bilin-
ear attack with a quadratic part using only few products should not be much
better than a linear attack with its linear part alone. Consequently it will not
be much better either than the best linear attack.

For example if we assume that there is one input and one output product
in a bi-linear characteristic on 12 rounds having a bias of about 2−15, then by
Matsui’s Piling-up Lemma [28] we expect that the bias of its linear part should
not be worse than about 2−17. (We expect that the bias of the linear part will
be between 2−15−2 = 2−13 and 2−15+2 = 2−17).

It seems that the best bi-linear attack on ciphers similar to DES can only be
slightly better than the best linear attack. However:

– Still, a bi-linear attack can be strictly better than the best existing linear
attack for the same number of rounds. In Appendix B we show such examples
for 3, 7, 11, . . . rounds of DES.

– It is possible to see that with the average bias per round that is achieved
by Matsui in his best characteristics, a bi-linear attack with one product
can potentially allow a gain of about 2 rounds. Examples we exhibit in this
paper are better than Matsui but the gain rather compares to removing one
round. This suggests that even better examples may exist.

– A bi-linear attack with two products can potentially allow a gain of up to
4 rounds compared to the best linear attack. The best non-linear approxi-
mation we know for 5 rounds, given in Table 2, does indeed use 2 products.
However so far we did not find so far an example where such an approxima-
tion would be better than the best linear attack.
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– For ciphers other than DES, we expect that a bi-linear attack that is much
better than LC will use many products. Following Conjecture F.1.1 this could
probably happen only for ciphers using large S-boxes (or a poor P-box). It
seems that for large S-boxes the designer will be able to prevent BLC by
making sure that there is no good bi-linear approximations at all. In Section
5 we show however than even then he could be unlucky and though at first
sight the cipher would look stronger than any other practical block cipher,
it can contain a subtle but fatal flaw (cf. Section 5).

Simulations on the “Gravity Law” (Conjecture F.2.1): One should
understand that this “Gravity Law” (Conjecture F.2.1) is heuristic, and though
we observed that it is usually verified for DES, we have also found many counter-
examples. In our simulations, the masks at the input and at the output of the ci-
pher are the same. We call L a linear part of a characteristic and Q the quadratic
part. Then we compare the bias for the two probabilities: for the linear part
only Pr(L), and Pr(L ⊕Q) in which both the quadratic and the linear parts
are present. Some results are given in Table 6.

Table 6. Some examples for the “Gravity Law” (Conjecture F.2.1)

DES linear part quad. part biases

rounds L Q
∣∣Pr(L⊕Q)− 1

2

∣∣ ∣∣Pr(L)− 1
2

∣∣
1 L[3, 8, 14, 25]⊕R[17] L[3]R[17] 1.88 · 2−3 < 2−10

1 L[3, 8, 14, 25]⊕R[17] L[3]R[16, 17, 20] 1.00 · 2−6 < 2−10

2 L[3, 8, 14, 25]⊕R[17] L[3]R[17] 1.75 · 2−4 < 2−15

2 L[3, 8, 14, 25]⊕R[17] L[3]R[16, 17, 20] 1.0 · 2−11 < 2−15

3 L[3, 8, 14, 25]⊕R[17] L[3]R[17] 1.84 · 2−5 1.56 · 2−3

3 L[3, 8, 14, 25]⊕R[17] L[3]R[16, 17, 20] 1.65 · 2−3 1.56 · 2−3

4 L[3, 8, 14, 25]⊕R[17] L[3]R[17] 1.83 · 2−8 < 2−17

4 L[3, 8, 14, 25]⊕R[17] L[3]R[16, 17, 20] 1.92 · 2−8 < 2−17

5 L[3, 8, 14, 25]⊕R[17] L[3]R[17] 1.59 · 2−9 < 2−17

5 L[3, 8, 14, 25]⊕R[17] L[3]R[16, 17, 20] 1.4 · 2−11 < 2−17

6 L[3, 8, 14, 25]⊕R[17] L[3]R[17] 1.3 · 2−10 1.3 · 2−14

6 L[3, 8, 14, 25]⊕R[17] L[3]R[16, 17, 20] 1.2 · 2−13 1.3 · 2−14

7 L[3, 8, 14, 25]⊕R[17] L[3]R[17] 1.2 · 2−11 1.8 · 2−13

7 L[3, 8, 14, 25]⊕R[17] L[3]R[16, 17, 20] 1.41 · 2−9 1.8 · 2−13

11 L[3, 8, 14, 25]⊕R[17] L[3]R[17] 1.7 · 2−18 1.91 · 2−16

11 L[3, 8, 14, 25]⊕R[17] L[3]R[16, 17, 20] 1.2 · 2−15 1.91 · 2−16

We used here two interesting bi-linear characteristics from our first example
(Section 6.2) and from our second example (Appendix B). The “Gravity Law”
is confirmed for 3 and 11 rounds, and partially for 7 and 6 rounds. The bias of
the linear part is sometimes better, sometimes worse than for the full bi-linear
characteristics. We distinguish in bold characters biases that are strictly stronger
than the best existing linear attack found by Matsui. For 3 and 11 rounds their
linear part is precisely the best characteristic of Matsui.
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Counter-examples for the “Gravity Law”. Nothing should be taken
for granted with generalized linear attacks. For the first example for 6 and 11
rounds, and in the second example for 7 rounds, we observe that the gap between
the two probabilities is too big to be explained by the bias of the difference (the
quadratic part). It gets worse for 2, 4 and 5 rounds: here the “Gravity Law” is
not confirmed at all. For example, for 4 rounds the bi-linear bias is 1.83 · 2−8

and since we have only one product, by an application of Matsui’s Piling-up
Lemma the bias of the linear part should not be worse than 1.83 · 2−10. Yet we
found that it is rather negligible, at most 2−17 and probably even much less. We
see that though our heuristic law says that these two bi-linear attacks
cannot work for 2, 4 and 5 rounds, clearly they do always work, and
for any number of rounds.

In fact the examples in which the difference in the bias of two correlated
expressions is higher than expected are frequent, and it has to be so. A non-
linear function is usually correlated to many linear functions and the bias of the
function applied to the (plaintext, ciphertext) pairs cannot be at close distance
to all of them at the same time (there is usually no correlation between two
different linear characteristics and their biases can differ in order of magnitude
quite arbitrarily).

G Paradoxes and Pitfalls of Generalised Linear
Cryptanalysis

Bi-linear cryptanalysis is harder than it looks. In Section F we explain that it is
usually in some way “tied” to LC. Attacks with a small number of products are in
most cases strongly correlated to linear attacks and they cannot be much better
than the best linear attack. This remark holds for all ciphers, not specifically
Feistel ciphers. We will explain now that there is another reason, very specific
to the structure of Feistel schemes, why BLC attack cannot work as well as one
would sometime expect.

We consider three consecutive rounds an arbitrary Feistel cipher, it can be
DES, but the round functions can be also random functions. We choose two
arbitrary linear combinations of bits, for example bit 3 and bit 17. We assume
that input bit 3 and the output bit 17 are statistically independent (for example
they are not connected in the round function or they are connected by a be a very
good S-box). We also assume the same independence for the reverse direction:
for the input bit 17 and the output bit 3.

For 1 round we have the following characteristic:
L0[3]R0[17]⊕
L1[3]R1[17] = 0

}
1
2

+ 1.00 · 2−2

For 2 rounds we have the following characteristic:
L0[3]R0[17]⊕
L2[3]R2[17] = 0

}
1
2

+ 1.00 · 2−3

We observe that this later equation can be written in two different ways as
a sum of two products:
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L0[3] ∗R0[17]

?
�

some round

[] []

O[3] ∗ I[17]

�� �� 3/4

L1[3] ∗R1[17]

q

?
-

some round

[] []

I[3] ∗ O[17]

�� ��q 3/4

L2[3] ∗R2[17]

�
some round

[] []

O[3] ∗ I[17]

�� �� 3/4

L3[3] ∗R3[17]
?

q
?

Fig. 12. Generic bi-linear attack that cannot work in general

(a) L0[3]R0[17]⊕ L2[3]R2[17] = I1[3]O1[17]⊕O2[3]I2[17]

Each of them suggests that it should be equal to 0 with probability 3/8 =
1/2 + 1.00 · 2−3. For a perfect cipher with random round functions will give a
prediction of exactly 3/8 = 1/2 + 1.00 · 2−3 (though strictly speaking it is not
yet a proof that the bias will indeed be such, see below).

Now, if for our cipher the round functions are not perfect the predictions of
the bias by the two methods (both heuristic) may differ.

Assume that, due to the weakness of one S-box in the round function both
products I1[3]O1[17] and O2[3]I2[17] are equal to 0 not with probability 3/4 but
with, say probability 9/10, from the Matsui’s lemma we expect that L0[3]R0[17]⊕
L2[3]R2[17] = 0 with probability 0.82, stronger than 0.75 expected looking at
the left side of the equation. Obviously the stronger bias will prevail and our
characteristic will indeed be true with probability 0.82 instead of 0.75 for this
specific cipher.

Now if the biases of I1[3]O1[17] and O2[3]I2[17] are in turn weaker than 3/4
something very different will happen. Our characteristic will remain true with
probability about 0.75 (as for a random cipher). Though the right side of our
equation does suggest a weaker bias, this in fact is not true for other reasons
(left side) and we have to infer that the two products on the right side cannot be
independent. In general the bias of the characteristics and their correlation will
vary depending on the key, and we expect that the right side of our equation still
has some but very weak incidence on the actually observed bias for 2 rounds.
Yet we have here clearly a highly non-linear behaviour: the bias of an equation
will depend on the comparison of two biases.
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If one of the values is fixed, as in our example, we will have a type of “thresh-
old behaviour”. In general, in a generalised linear attack there may be two or
several ways of decomposing an equation as a sum of biased expressions, the bias
of each method will depend on the key in a complex way. All this will make the
analysis of the actual behaviour of the attack fairly intricate, if not impossible.
These phenomena do obviously exist also in LC, however in LC of DES the bias
of an equation does never depend on the key, and this is in fact the main reason
why linear cryptanalysis of DES behaves well w.r.t. predictions (related work:
[12]). For other ciphers, such as ICE, the existence of linear approximations de-
pends on some key bits, and then the threshold behaviours will appear and it
will become really harder to analyse the complexity of linear attacks.

3 and more rounds. Having gained some insights, we can modestly try to
predict the behaviour of some attack for 3 rounds, maybe not beyond. We go
back to our example that is very interesting. We have:

(a) L0[3]R0[17]⊕ L3[3]R3[17] = I1[3]O1[17]⊕O2[3]I2[17]⊕ I3[3]O3[17]

From the left side we expect the bias of the characteristic to be about 3/8 =
1/2+1.00 · 2−3, as for a perfect cipher, from the right hand the Matsui’s lemma
gives 1/2 + 1.00 · 2−4, (though since the Boolean functions used here are not
balanced, it is possible to see that it should not be applied here, and the real
result is probably even less).

The attack cannot work. The threshold behaviour will make that our
generic attack on Feistel ciphers cannot work. We can even mathematically prove
that it cannot work for reasonable good ciphers. For example, if the probability
distribution of round functions for a random key of our cipher is indistinguishable
from a randomly chosen function, then by the Luby-Rackoff theorem [27] we have
that:

L0[3]R0[17]⊕
L3[3]R3[17] = 0

}
1
2

+ 1.00 · 2−3

and this exactly, i.e. we are not able to distinguish if the probability is differ-
ent than 1

2 +1.00·2−3 with non-negligible advantage, because otherwise we would
distinguish this cipher from a random permutation with a small (polynomial)
number of queries.

The attack can work after all. Nevertheless, even this very naive and
badly designed attack will work for some ciphers. It is sufficient for this that due
to a weakness of S-boxes the biases for the two products I[3]O[17] and O[3]I[17]
are very strong for some fraction of keys, and the resulting bias of I1[3]O1[17]⊕
O2[3]I2[17] ⊕ I3[3]O3[17] will occasionally be lower than our threshold of 3/8.
Then we get an attack that will work for a fraction of keys.

Relation to the design criteria for DES S-boxes The known design
criteria for DES S-boxes already prevent such attacks. The equations such as
I[3]O[17] and O[3]I[17] cannot be strongly biased, because this would imply
that one input is strongly correlated with one output. Nevertheless in DES we
have for example:
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(X) (J [17] + 1)(O[8, 14, 25, 3] + 1) = 0 for S5 with probability 58/64

which can be used in a very similar way to mount attack (if we had a matching
equation for the next round and if the biases were strong enough). Similarly, and
this is even more tricky, we could conduct a very fast attack on a Feistel cipher in
which, for example O[α]⊕ I[17]O[3] = 0 is very highly biased for some keys and
for all the odd rounds, and O[β]⊕O[17]I[3] = 0 is very highly biased for some keys
and for all the even rounds, for some well chosen sets of outputs α and β. This
attack is not prevented by the historically known design criteria of DES, but it
is arguably (but not provably) prevented by the (still relatively good) resistance
of DES to linear cryptanalysis. Indeed, if the equation O[α] ⊕ I[17]O[3] = 0 is
very highly biased, it is also presumably so for O[α]⊕ I[17] = 0 and a few other
equations. Thus basically only ciphers with S-boxes having very bad S-boxes
for linear cryptanalysis could be broken by this attack. (Yet it is possible to
construct very special S-boxes such that O[α] ⊕ I[17]O[3] = 0 is very highly
biased and O[α]⊕ I[17] = 0 just isn’t.)

Summary: There are many non-linearities and threshold behaviours in pre-
dicting the bias of composed characteristic in a real cipher. Some biases are
due to the structure of the Feistel scheme itself, and alone cannot allow to dis-
tinguish the cipher from a random permutation. Sufficiently strong biases will
always combine well and allow working attacks (no doubt about this), other
biases will prevail otherwise.

This may explain why in Appendix E we found very few examples that work
as predicted for an important number of rounds: these examples use one I/O
product for every round of the Feistel scheme and for reasons very similar than
in (a) above, except the equations are also combined with linear parts, have
multiple threshold behaviours in which we are in fact systematically below the
threshold.

This leads to think that for ciphers such as DES with small S-boxes, interest-
ing constructions of bi-linear attacks for DES with a small number of products
such as found in this paper, are in a very limited number. They do depend on
the existence of some bi-linear characteristics stronger than some threshold that
could (in theory) be computed exactly. Our research shows that DES has “rea-
sonably good” S-boxes for which such constructions exist but do not significantly
lower the security of DES w.r.t. previously known attacks. We came to the same
conclusion that in Appendix F.
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H Beyond BLC - Multi-Linear Cryptanalysis

The Bi-Linear Cryptanalysis described in this paper applies not only to regular
Feistel ciphers with two identical halves, and unbalanced Feistel schemes with 2
halves of different size, but also to generalised Feistel schemes with more than two
branches, as used in SHAx and related block ciphers, or Skipjack. In this latter
case, a much more general attack, called Multi-Linear Cryptanalysis (MLC) is
possible, as briefly outlined in [7]. However, we believe that in practice the gain
achieved with MLC compared to LC should be rather disappointing. We expect
that, as in this paper, though it is possible to construct contrived ciphers that
are very weak for Multi-Linear Cryptanalysis (some are given in [7], more in
the extended version of this paper available form the authors) for most real-life
ciphers our heuristic law should hold: this type of attack will not be much better
than the best linear attack.


