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Maŕıa Isabel González Vasco1, Consuelo Mart́ınez1, Rainer Steinwandt2
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Abstract

The public key cryptosystems MST1 and MST2 make use of certain
kinds of factorizations of finite groups. We show that generalizing such
factorizations to infinite groups allows a uniform description of several
proposed cryptographic primitives. In particular, a generalization of
MST2 can be regarded as a unifying framework for several suggested
cryptosystems including the ElGamal public key system, a public key
system based on braid groups and the MOR cryptosystem.

1 Introduction

The security of many cryptographic tools relies on assumptions about the
hardness of certain algorithmic problems. Being able to group several such
problems and formalize them as particular instances of a general problem
helps us in identifying essential algorithmic requirements for cryptographic
applications. A good example is the identification of the integer factorization
and the discrete logarithm problem as instances of the abelian stabilizer pro-
blem which is solvable through a polynomial quantum algorithm (cf. [3]).
The abelian stabilizer problem can in turn be taken for an instance of an
abelian hidden subgroup problem (e. g. [6]). Another example for studying
common properties of several cryptographic primitives is provided by [13],
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where a construction for a private information retrieval (PIR) system based
on any subgroup membership problem is described.

It is worth remarking that in all these examples the identified general
problem originates in group theory. Two public key cryptosystems based on
the difficulty of computing certain factorizations in finite groups, have been
introduced in [5]: MST1 and MST2. Unfortunately it is still unclear how
to create practical instances of these conceptually rather appealing systems.
Subsequently we demonstrate that, after a suitable generalization, the fac-
torization concepts used in MST1 and MST2 allow a uniform description
of several cryptographic primitives. Also, it turns out that a generalization
of MST2 can serve as a unifying framework for several proposed public key
cryptosystems, e. g., the ElGamal and the braid group based system from [4].

The organization of our contribution is as follows: after defining suitable
generalizations of some of the factorization concepts considered in [5], we
give a uniform description of several known cryptographic primitives in this
framework. Thereafter we introduce a generalization of MST2 and show
how various known cryptosystems can be regarded as instances hereof. Some
comments on possible further research directions conclude the paper.

2 Factoring a set with respect to an action

Several kinds of finite group factorizations are introduced and discussed in
[5]. We want to generalize some of these concepts: instead of considering only
the usual product action in finite groups, we consider the action of a (possibly
infinite) semigroup with unit on a set. This more general setting proves to
be convenient for describing several well-known cryptographic primitives in
a uniform manner.

Definition 2.1 Let M = (M, ·, 1) be a semigroup with unit acting on a set
T by an action

◦ : M × T −→ T
(m, t) 7−→ m ◦ t

,

and Λ∗ a countable set that is totally ordered. Set Λ := Λ∗∪{>} with > /∈ Λ∗

and consider the extended order in Λ such that > is greater than each element
in Λ∗.
Let A = [Aλ]λ∈Λ be a sequence such that:
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• for each λ ∈ Λ∗, Aλ := [αλi]i∈Iλ
is a countable sequence over M such

that the unit appears in all but finitely many of the blocks Aλ;

• the block A> := [α>i]i∈I> is a countable sequence over T .

We call A an (M, ◦, Λ)-cover for T (or simply, a cover for T ) if each t ∈ T
can be expressed as t = m◦α>, for some α> ∈ A> and some element m ∈ M
which can be factored as a product

∏
λ∈Λ∗ αλ, where αλ ∈ Aλ and only finitely

many factors are different from the unit.

We will refer to the former factorization by writing

t = ©
λ∈Λ

αλ,

where ©λ∈Λ αλ denotes iterative application of ◦.
In the sequel, when Λ∗ = {1, . . . , n} ⊆ N with the natural order, we will
simply choose > := n+1, so that a cover A has the form A = [A1, . . . , An+1].

Some kinds of covers are of special interest for us, and we name them
in such a way that for the special case of M being a finite group acting on
itself through left-multiplication the definitions specialize essentially to those
given in [5] (cf. Remark 2.3).

Definition 2.2 Let A := [[αλi]i∈Iλ
]λ∈Λ be an (M, ◦, Λ)-cover for a set T , and

for t ∈ T consider the set

F (t) :=
{

[iλ]λ∈Λ ∈
∏
λ∈Λ

Iλ : t = ©
λ∈Λ

αλiλ

}
,

which characterizes the possible factorizations of t with respect to A. Then
we call A a

• logarithmic signature if card(F (t)) = 1 for all t ∈ T .

• mesh if either

– all F (t) are infinite, or

– all F (t) are finite, and if T is infinite, of equal cardinality, whereas
if T is finite, the probability distribution

[Pt = |F (t)|/|T | : t ∈ T ]

is approximately uniform (in the sense of [5]).
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• [card(Λ), r]-mesh if A is a mesh and all index sets Iλ (λ ∈ Λ) are of
equal cardinality r.

In particular, the elements within each block of a logarithmic signature A
must be pairwise different. Note also that the notions of cover, logarithmic
signature, and [card(Λ), r]-mesh used in the construction of MST1 and MST2

can indeed be taken for a special case of the above concepts:

Remark 2.3 Let M = T := G be a finite group, and denote by ◦ the action
of G on itself through left-multiplication. Choosing Λ := {1, . . . , s} with
s ∈ N and imposing Iλ to be finite (λ ∈ Λ), we obtain the original notions of
cover, logarithmic signature, and [card(Λ), r]-mesh from [5].

In addition, other cryptographic primitives can be related to the problem of
factoring elements with respect to some cover:

Example 2.4 [Prime factorization of natural numbers]
Let M = T := N be the multiplicative semigroup of natural numbers acting
on itself through left-multiplication.
Further on, set Λ∗ := N2 with the following (lexicographical) order �: for
(µ1, ν1), (µ2, ν2) ∈ N2 we have (µ1, ν1) � (µ2, ν2) iff µ1 < µ2 or µ1 = µ2 and
ν1 ≤ ν2.
Finally, denoting by pµ ∈ N the µth prime number (µ ∈ N), for (µ, ν) ∈ Λ∗

we set A(µ,ν) := [1, p2ν−1

µ ] and define A> := [1].
Factoring elements t ∈ T with respect to the cover A := [Aλ]λ∈Λ translates

into decomposing a natural number into its prime factors; in particular the
cover just defined is a logarithmic signature.

Example 2.5 [Discrete logarithm in F∗
pn]

Let p be a prime number, M = T := F∗
pn the cyclic group of order pn − 1,

and α some generator of M . Then M acts on T through left-multiplication,
and setting Aλ := [1, αpλ−1

, α2pλ−1
, . . . , α(p−1)pλ−1

] (1 ≤ λ ≤ n) yields an
[n, p]-mesh A := [A1, . . . , An] for T .

Obviously, factoring with respect to A translates into computing discrete
logarithms with respect to α.

Example 2.6 [Yamamura’s cryptosystem from [12]]
As explained in [12], SL2(Z) acts on the upper half plane

H := {z ∈ C : =(z) > 0}
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through application of the fractional (Möbius) transformation determined by
the corresponding matrix. Namely, for S := (sij)1≤i,j≤2 ∈ SL2(Z) and z ∈ H
we have

S ◦ z :=
s11z + s12

s21z + s22

.

Analogously, for B ∈ GL2(R) arbitrary, the group G := B−1SL2(Z)B acts
on B−1H := {B−1 ◦ z : z ∈ H}. We denote the latter action also by ◦.

In the cryptosystem from [12], a suitably chosen point p ∈ B−1H and
two matrices W0, W1 ∈ B−1SL2(Z)B satisfying certain restrictions (see [12]
for details) are made public. The ciphertext c ∈ B−1H corresponding to a
(plaintext) bitstring b = b1 . . . bl ∈ {0, 1}l is

c :=
( l∏

i=1

Wbi

)
◦ p

(
= Wb1 ◦ (Wb2 ◦ (. . . (Wbl

◦ p) . . . ))
)

.

In our terminology the problem of recovering a plaintext from a ciphertext
can be expressed as follows: let M be the subsemigroup (with unit) of SL2(R)
generated by the matrices W0, W1, and denote by T the M-orbit of the point
p under the action ◦. Then decrypting a ciphertext c ∈ T is equivalent to
finding a factorization of c with respect to the mesh1 A = [Aλ]λ∈N∪{>} where
Aλ := [I2, W0, W1] for λ ∈ N and A> := [p].

When using a cover A in a cryptographic context, the following question
arises: how difficult is it to actually compute factorizations with respect to
A? E. g., factoring with respect to the cover defined in the last example is
equivalent to decrypting ciphertexts in Yamamura’s cryptosystem [12], and
one could be tempted to believe that this is a difficult task. However, the
successful attacks in [1, 9] against Yamamura’s system show that this task is
not difficult enough to offer acceptable cryptographic security.

To describe more precisely whether factoring with respect to some cover
is difficult, one might think of adopting some terminology used in [5] for
logarithmic signatures, namely to introduce a notion of wild and tame covers:

Definition 2.7 We call an (M, ◦, Λ)-cover A = [Aλ]λ∈Λ for a set T tame
if there exists a polynomial time algorithm2 which on input t ∈ T computes

1Note that each t ∈ T admits ℵ0 ‘different’ factorizations with respect to A.
2Polynomial in the size of the input; this parameter should be specified depending on

the used representation of the elements in M and T .
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elements αλ ∈ Aλ (λ ∈ Λ) so that t = ©λ∈Λ αλ. A cover which is not tame
is called wild.

However, being wild in such a sense does not necessarily imply a oneway-
property which is often desired in cryptographic contexts: even if no efficient
algorithm for factoring arbitrary elements from T with respect to A is known,
it might still be feasible to factor efficiently a non-negligible fraction of the
elements in T with respect to A. For ‘wild-like’ logarithmic signatures for
finite groups the problem of such a partial inversion is addressed in [11].
Both for the original MST2 and for the generalization of MST2 introduced
below, it is crucial that such partial inversion attacks are infeasible.

3 Generalizing MST2

To describe the generalization of MST2 we do not need Definition 2.1 in full
generality and thus we focus on a more specialized situation: throughout this
section M is required to be a finitely presented group, instead of arbitrary
covers we restrict our attention to meshes, and we require the index set Λ
to be finite. It turns out that the definition of the cryptosystem MST2 from
[5] can then easily be adapted to our notion of meshes of groups and that
several known group based cryptosystems can be regarded as instances of
such a generalized MST2 scheme: the ElGamal public key system [2], the
braid group based public key system from [4], and the MOR cryptosystem
from [7, 8].

Let M = G = 〈X; R〉 be a finitely presented group acting on two sets T ,
T ′. We denote the action of G on the G-sets T and T ′ by ◦ and •, respectively.
Further on, let A = [Aλ]1≤λ≤s be a mesh for T with s ∈ N and Aλ = [αλi]i∈Iλ

for all λ ∈ Λ. Then we can define a map

ᾰ : I1 × · · · × Is −→ T
(r1, . . . , rs) 7−→ ©s

λ=1 αλrλ

.

Now let f : T −→ T ′ be a G-map (i. e. f(g ◦ t) = g •f(t) for all t ∈ T , g ∈ G)
such that B := [A1, . . . , As−1, f(As)] is a mesh of T ′. Analogously as above,
we define a corresponding mapping β̆ : I1 × · · · × Is −→ T ′.

We also need some set T (that will serve as plaintext space) along with
a (public) map τ : T ′ −→ ST that associates to each t′ ∈ T ′ a permutation
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on T . With this notation we can formulate the following framework for a
public key cryptosystem:

• Public key: ᾰ and β̆

• Secret key: the G-map f

• Encryption: to send a message m ∈ T to Alice, Bob

1. chooses (r1, . . . , rs) ∈ I1 × · · · × Is at random,

2. computes y1 := ᾰ(r1, . . . , rs) ∈ T , y2 := β̆(r1, . . . , rs) ∈ T ′ and

3. sends the pair (y1, τ(y2)(m)) ∈ T × T to Alice.

• Decryption: From y2 = f(y1), Alice derives m = τ(y2)
−1(τ(y2)(m)).

The security of the system relies on the hardness of computing y2 from the
public information. As β̆ is public, the sequence r1, . . . , rs should be hard to
retrieve from y1; in particular α should be ‘wild’. Of course, τ(y2)(m) must
not leak significant information about m, either.

The only concrete example of the original MST2, i. e., without our genera-
lizations, we are aware of is the ElGamal cryptosystem. Before demonstrating
that our generalization allows to give further examples, let us verify that the
above scheme is really a generalization of the original MST2 described in [5]:

Remark 3.1 Let f : G −→ H be a group epimorphism. Then G acts on
T := G through left-multiplication (◦), and on T ′ := H via g • h := f(g) · h
(the ordinary product of f(g) with h in H). In particular, f is a G-map.

Now each [s, r]-mesh for T in the sense of [5] is also an [s, r]-mesh
A = [A1, . . . , As] for T in the sense of Definition 2.2. Finally, we set T := H
and define the map τ : H −→ SH via τ(h)(x) := x · h.

To publish the maps ᾰ, β̆, Alice makes both sequences A = [A1, . . . , As]
and f(A) = [f(A1), . . . , f(As)] public. The scheme obtained in this way is
nothing but a more complicated description of the original MST2 defined
in [5].

4 Known systems as instances of MST2

In this section we show that several group based public key cryptosystems
that have been suggested can be seen as instances of the above framework.
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As we have just seen, the original MST2 is a special case of our setting, and
hence it comes to no surprise that we can express the ElGamal cryptosystem
[2] in our framework, too (cf. [5]):

Example 4.1 [ElGamal cryptosystem]
Let p be a prime number, α some generator of the cyclic group G := F∗

pn

of pn − 1 elements, and T = T ′ = T := G. Next, by choosing an integer
1 < d < pn−1 with gcd(d, pn−1) = 1 we define an isomorphism f : G −→ G
via f(g) := gd.

Consider the actions of G on T through left-multiplication and on T ′

through g•t′ := f(g)◦t′ = f(g)·t′. Further on, fix A as in Example 2.5. Then
f is a G-map, and it is easy to see that A and B := [A1, . . . , An−1, f(An)]
are [n, p]-meshes of T , T ′, respectively. Finally, we set

τ(g)(x) := x · g

and publish the mappings ᾰ, β̆ by making A and f(A) = [f(A1), . . . , f(An)]
public. So we obtain the following scheme:

• Public key: A (that is essentially given by α) and f(A) (which is
essentially specified by αd)

• Secret key: f (that is determined by d)

• Encryption: to send a message m ∈ G to Alice, Bob

1. chooses (r1, . . . , rn) ∈ {0, . . . , p− 1}n at random,

2. computes y1 := ᾰ(r1, . . . , rn), i. e., y1 is a random power of α,
y2 := β̆(r1, . . . , rn) = yd

1, and

3. sends (y1, m · yd
1) to Alice.

• Decryption: Alice computes y2 = yd
1 and obtains m = (m · yd

1) · y−1
2 .

Thus we get a (slightly complicated) description of the ElGamal cryptosystem.

While the ElGamal cryptosystem also fits into the original MST2 framework,
the next example exploits our more general setting:
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Example 4.2 [Braid group based cryptosystem from [4]]
For braid groups we adopt the terminology from [4]. Let Bn be the braid
group on n = l + r strands for a suitably chosen n ∈ N, and denote by LBl

(resp. RBr) the subgroup of Bn where only the left l (resp. right r) strands
are braided.

Fixing suitable (see [4]) x ∈ Bn and a ∈ LBl, the group G := RBr acts
on the sets T := GxG−1 and T ′ := aTa−1 by conjugation.
Moreover, the map f : T −→ T ′, t 7→ ata−1 is a G-map, and one easily
checks that A := [A1, A2], where A1 := [b]b∈RBr and A2 := [x], is a mesh
for T : given any t = b0xb−1

0 ∈ T , for b ∈ G we have b ◦ x = t if and only
if b−1b0 ∈ CG(x) (i. e. b−1b0x = xb−1b0), and therefore each element of T
admits exactly card(CG(x)) factorizations with respect to A. Analogously, we
recognize B := [[b]b∈RBr , [f(x)]] as mesh for T ′.
Finally, the plaintext space T := {0, 1}k consists of the bitstrings of some
fixed length k, and by means of an ideal hash funtion h : Bn −→ T we define

τ : T ′ −→ ST
b 7−→ (m 7→ h(b)⊕m)

,

where ⊕ denotes the usual ‘XOR’ operation of bitstrings.
The resulting system reads as follows:

• Public key: ᾰ (given by x) and β̆ (given by f(x) = axa−1)

• Secret key: f (that is determined by a)

• Encryption: to send a message m ∈ {0, 1}k to Alice, Bob

1. chooses some b ∈ RBr at random,

2. computes y1 := ᾰ(b, 1) = bxb−1 (note that card(A2) = 1),
y2 := β̆(b, 1) = baxa−1b−1, and

3. sends (y1, h(y2)⊕m) to Alice.

• Decryption: Alice computes y2 = ay1a
−1 and m = h(y2)⊕(h(y2)⊕m).

In other words, we get a description of the braid group based system from [4].

Finally, we show that the MOR schemes from [7, 8] also fit into our setting:
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Example 4.3 [MOR cryptosystem]
Let K, K ′ be finite groups and ϕ : K −→ Aut(K ′) a suitable homomorphism
(see [8]). For some element g ∈ K, define G as the subgroup of Aut(K ′)
generated by Φ := ϕ(g). Moreover, let Γ = [γi]i∈I be a sequence of generators
of K ′. Define T := G(Γ), namely,

T :=
{
Ψ(Γ) = [Ψ(γi)]i∈I : Ψ ∈ G

}
.

Choosing a (secret) integer a, the set T ′ is defined as Ga(Γ), that is,

T ′ :=
{
Ψa(Γ) : Ψ ∈ G

}
.

The group G acts on the set T through Φk ◦ Υ := Φk(Υ) and on T ′ through
Φk • (Φa)i(Γ) := (Φa)i+k(Γ). Moreover, f : T −→ T ′, Φi(Γ) 7−→ (Φi)a(Γ) is
a G-map.

The plaintext space T is the group K ′, and the map τ : T ′ −→ ST is
defined through

τ(Φak(Γ))(x) := Φak(x).

Suppose the order of Φ is m = p1 · · · ps−1, and for 1 ≤ λ ≤ s− 1 define

mλ :=
λ−1∏
i=1

pi (‘mixed radix representation’).

Now consider the sequence A := [A1, . . . , As] where Aλ := [Φimλ ]0≤i≤pλ−1

for 1 ≤ λ ≤ s − 1 and As := [Γ]. Owing to the uniqueness of the mixed
radix representation, A is easily verified to be a mesh for T . Similarly, we
recognize B := [A1, . . . , As−1, f(As)] as mesh for T ′. The corresponding map
β̆ can be published by making f(A) = [f(A1), . . . , f(As)] public. In summary,
the resulting cryptosystem may be described as follows:

• Public key: A and f(A) (given by Φ and Φa)

• Secret key: f (that is determined by a)

• Encryption: We assume that an efficient algorithm for expressing a
given x ∈ K ′ as a word in the generators Γ is available (see [7, 8]).
Then computing images under τ(Φak(Γ)) is straightforward. To send a
message m to Alice, Bob

1. chooses at random integers rλ with 0 ≤ rλ ≤ pλ−1 (1 ≤ λ ≤ s−1)
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2. computes
y1 := ᾰ(r1, . . . , rs−1, 1) = Φb(Γ),

y2 := β̆(r1, . . . , rs−1, 1) = Φab(Γ)

where b =
∑s−1

i=1 rimi, and

3. sends (y1, Φ
ab(m)) to Alice.

• Decryption: From f(y1) = Φab(Γ) Alice derives m = Φ−ab(Φab(m)).

In other words, we obtain a description of the generalized MOR scheme
from [8] (and thus also for the basic MOR system introduced in [7]).

5 Concluding remarks

The generalizations of the concepts of cover, mesh, and logarithmic signature
introduced in this paper are, in our opinion, of interest in their own. Not
only may it be interesting to search for analogues of the existing results
and algorithms for the ‘old’ group factorizations valid for the more general
definition, but also to find new ones. Indeed, a crucial question remains
unanswered (for both the ‘classical’ and our generalized definition): how to
identify ‘truly wild’ covers, i.e. covers for which computing factorizations is
almost always very hard.

As we have seen in the above examples, several proposed cryptographic
primitives and schemes rely on the difficulty of computing factorizations with
respect to a certain cover. It might be worthwhile to explore the question of
which cryptographic algorithms can be constructed having at hand a ‘truly
wild’ cover, or to identify some guidelines on how such algorithms could look
like (as it is done in [13], where a general construction for a PIR system based
on any subgroup membership problem is given).

Various ideas motivate the introduction of the generalized MST2 scheme:
in the spirit just mentioned, it provides an abstract construction of a pu-
blic key cryptosystem feasible whenever we have certain mathematical tools
available. But it also yields a uniform description of several well-known
cryptosystems, which may be useful for studying their common properties.
In addition, this framework may also encourage the proposal of new schemes
inspired by the existing examples.
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