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Abstract

LoRaWAN is a worldwide deployed IoT security proto-
col. We provide an extensive analysis of the current 1.0
version and show that the protocol suffers from several
weaknesses allowing to perform attacks, including prac-
tical ones. These attacks lead to breaches in the network
availability, data integrity, and data confidentiality.
Based on the inner weaknesses of the protocol, these at-
tacks do not lean on potential implementation or hard-
ware bugs. Likewise they do not entail a physical access
to the targeted equipment and are independent from the
means used to protect secret parameters.
Finally we propose practical recommendations aiming at
thwarting the attacks, while at the same time being com-
pliant with the specification, and keeping the interoper-
ability between patched and unmodified equipments.

1 Introduction

In parallel with the coming up of the Internet of Things,
several communication protocols have been proposed,
which technical specifics differ depending on the in-
tended use case. For instance the Bluetooth wireless
protocol [8] allows only short distance communication
(several meters).1 Technologies such as ZigBee [47] or
Z-Wave [46] afford medium range distance communica-
tion (roughly a hundred meters) and aim at reducing the
energy needed by the nodes to set up and maintain a mesh
network.

As for long range distance communication (several
kilometers), proposals have been made, such as LoRa.
LoRa, developed by Semtech company, aims to set up
a Low-Power Wide-Area Network (LPWAN), based on
a long range, low rate, wireless technology. It is some-
what similar to a cellular technology (2G/3G/4G mobile

1That limitation is claimed in order to forbid data eavesdropping on
the air interface.

systems) but optimised for IoT/M2M. LoRa does not re-
quire a spectrum license since it uses free (but regulated)
radio spectrum (e.g., 863-870 MHz in Europe, 902-928
MHz in the USA, 779-787 MHz in China) [25]. A LoRa
device, with an autonomous power-supply, is supposed
to communicate through several kilometers in an urban
area, and to have a lifespan up to eight or ten years.
LoRaWAN is a protocol aiming at securing the Medium
Access Control layer of a LoRa network. It is designed
by the LoRa Alliance, an association gathering more than
400 members (telecom operators, semiconductor manu-
facturers, digital security companies, hardware manufac-
turers, network suppliers,etc.).

Public and private LoRaWAN networks are deployed
in more than 50 countries worldwide [40] by telecom
operators (SK Telecom, FastNet, ZTE, KPN, Orange,
Proximus,etc.), private providers (e.g., LORIOT.io [26]),
and private initiatives (e.g., The Things Network [44]).
Several nationwide networks are already deployed in
Europe (France, Netherlands) [14], Asia (South Korea)
[27], Africa (South Africa) [6], Oceania (New Zealand)
[41], providing coverage to at least half of the population.
Trials are launched in Japan [9], the USA (starting with
a hundred cities) [22], China (the expected coverage ex-
tend to 100 million homes and 300 million people) [39],
India (the first phase network aims to cover 400 million
people across the country) [21]. See Figure 1 for a world-
wide map of LoRa networks.

The version 1.0.1 followed by version 1.0.2 of the Lo-
RaWAN specification has been released in 2016. In this
paper we focus on this last version which is the released
1.0 version currently worldwide deployed.

1.1 Protocol overview

The LoRaWAN network corresponds to a star-of-stars
topology: a set of devices communicates with several
gateways which relay the data to a Network Server (NS)
in the backend. In turn the NS delivers the data to



Figure 1: Worlwide map of LoRa networks (source:
[37])

one or more Application Servers (AS) which own the
corresponding device, optionally through intermediary
servers such an MQTT server (see Figure 2). The se-
curity mechanisms are based on a symmetric key (the
root key)AppKey shared between a device and the NS.
From this key, distinct per device, two session keys are
computed: the application session keyAppSKey guar-
antees the data confidentiality between the device and
the AS; the network session keyNwkSKey guarantees the
data integrity between the device and the NS (thus data
integrity is not end-to-end provided between the device
and the AS2). When a frame is exchanged exclusively
between a device and the NS, both data confidentiality
and data integrity are provided by the network session
key NwkSKey. An application payload, if present, is al-
ways encrypted. If no payload is carried the frame is
only authenticated. Encryption is done withAES [32] in
CTR mode [12, 33], and data integrity is provided with
AES in CMAC mode [35, 42]. A device may establish
an “activation” (namely a session) with the NS through
two ways. The pre-personalization (Activation by Per-
sonalization, ABP) consists in setting two session keys
(and other parameters but not theAppKey root key) into
the device before its deployment. An ABP device is then
able to communicate with the NS (and its AS) but not
to renew the “session” keys. The other possibility (Over
the Air Activation, OTAA) consists in provisioning the
device with anAppKey root key and other parameters,
allowing to perform key exchanges with the NS through
the radio interface once it is deployed.3

1.2 Contribution

Our contribution is twofold. Firstly we provide an ex-
tensive analysis of the protocol and show it suffers from

2As acknowledged by the specification ([43],§6.1.4).
3In this paper we focus on OTAA devices.

Figure 2: LoRaWAN network (simplified view)

several weaknesses. Then we describe how attacks, not
only theoretical but also practical, based on the protocol
flaws may be performed. Secondly we provide several
recommendations aiming at mitigating the attacks while
at the same time keeping the interoperability between a
patched equipment and a non modified one. Our results
show that all the attacks we describe may be thwarted if
the recommended corrections are applied to the NS and
the devices.

We emphasise that the aforementioned attacks, due to
the protocol weaknesses, do not lean on potential imple-
mentation or hardware bugs, and are likely to be succes-
sful against any equipment implementing LoRaWAN
1.0. Likewise the attacks do not entail a physical access
to the targeted equipment and are independent from the
means used to protect secret values (e.g., using a tamper
resistant module such as a Secure Element).
Thus our attacker, standing between a LoRaWAN device
and the NS, needs only to act on the air interface: she
needs to eavesdrop on data exchanged between the de-
vice and the server, and to send data to these equipment.
In particular the attacker do not need to get a physical
access to the targeted device (or server).

We think that the countermeasures we propose repre-
sent straightforward changes to be implemented. More-
over the attacks we describe may allow to appreciate the
security properties provided by the upcoming LoRaWAN
version 1.1.
Some assessments we make, based on an independent
study, are similar to other analyses [24]. However we
present new attacks and for each of them we provide a
precise description of its goal, its implementation, the
technical means used, and the tangible consequences.
Moreover our attacks do not lean on strong assumptions
such as the ability to get a physical access to, and to mon-
itor a device or the NS. In addition we describe attacks
targeting either a device or the NS.
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The attacks and their precise description, the adversary
model (which does not imply a physical access to any
equipment, in particular the device), and the two kinds
of targeted equipment (device and server) are the main
aspects that differentiate our work compared to previous
works.

1.3 Paper outline

The LoRaWAN protocol is detailed in Section 2. The-
oretical and practical attacks against LoRaWAN are de-
scribed in Section 3 and Section 4. In Section 5 recom-
mendations aiming at thwarting the attacks we describe
are listed. Section 6 summarises previous comments and
analysis on the protocol. And we conclude in Section 7.

2 The LoRaWAN protocol

The description provided in this section is based on the
LoRaWAN 1.0 specification [43].

2.1 Key exchange

The key exchange done over the air is triggered when
the device sends a Join Request message which the NS
responds with a Join Accept message to. The (unen-
crypted) Join Request message includes two static IEEE
EUI-64 identifiers (the device’sDevEUI, and the AS’
AppEUI), and a pseudo-random valueDevNonce gen-
erated by the device. The message is protected with a
4-byteCMAC authentication tag (calledMIC) computed
with the 128-bit (static) root keyAppKey. The Join Ac-
cept response from the NS contains the (static) identifier
of the latter (NetID), a pseudo-random value generated
by the NS (AppNonce), a value used as the device short
address (DevAddr), and several (optional) radio parame-
ters. The Join Accept message is protected with aCMAC

authentication tag, and encrypted withAES (both oper-
ations made with the root keyAppKey).4 Two 128-bit
session keys are then computed:

NwkSKey = AES(AppKey,0x01‖data)

AppSKey = AES(AppKey,0x02‖data)

with

data= AppNonce (3)‖NetID (3)‖DevNonce (2)

‖0x00 · · ·00 (7)

Thus the session keys depend mostly on a secret and
static value (the root keyAppKey), and two pseudo-
random values of 2 and 3 bytes. Once the Join Request

4More precisely theAES decryption function is used to protect the
Join Accept message, since the device implements the encryption func-
tion only.

and Join Accept messages are exchanged, the device, the
NS and the AS are able to communicate. After the NS
computes the session keys, it transmits the application
session keyAppSKey to the AS, which has thus no con-
trol on this key sharing phase, entirely handled by the
NS.5 The NS must keep the previous session keys, and
the corresponding security parameters, until it receives a
(valid) frame protected by the new security parameters.
The security mechanisms between NS and AS are out of
the LoRaWAN scope. Figure 3 depicts an activation.

2.2 Data encryption and authentication

The frame payloadFRMPayload is encrypted inCTR
mode. From block counters

Ai = 0x01 (1)‖0x00 · · ·00 (4)‖dir (1)‖DevAddr (4)

‖cnt (4)‖0x00 (1)‖i (1)

a secret keystreamSi = AES(K,Ai), with K ∈
{AppSKey,NwkSKey}, is produced and used to mask the
payload:

[FRMPayload] = (S0‖· · ·‖Sn−1)⊕FRMPayload

dir specifies the direction (uplink= 0x00, downlink=
0x01). cnt is the frame counter (of 16 or 32 bits),
initialised to 0 when the session starts, and monoton-
ically increased when a (valid) frame is sent or re-
ceived. Two different counters are used depending on
the frame’s direction. DevAddr is the device address
(within a given LoRa network) chosen by the NS and
sent in the Join Accept message, and it remains constant
during the entire session. To computeDevAddr, seven
bits are chosen from the NS’ unique identifierNetID:
msb7(DevAddr) = lsb7(NetID), and 25 bits are “arbi-
trarily ” assigned by the NS. Thei value numbers theAES
blocks within the payload to encrypt.

A 4-byte authentication tag is computed withCMAC

and the network session keyNwkSKey on the whole
frame (headerhdr of size hlen∈ {8, . . . ,24} and en-
crypted payload[FRMPayload] of size plen) and a 16-
byte prefix block

B0 = 0x49 (1)‖0x00 · · ·00 (4)‖dir (1)‖DevAddr (4)

‖cnt (4)‖0x00 (1)‖(hlen+ plen) (1)

Note thatB0 andAi differ only on the first and last bytes,
and share the same parametersDevAddr andcnt. The

5Note that, if the NS computes the session keys, it knows the appli-
cation session keyAppSKey, which is neither necessary, nor desirable.
In practice, a third party may own the device’s root keyAppKey, de-
rive the session keysAppSKey, andNwkSKey, and securely transmit
the former to the AS, and the latter to the NS. This third party though
is not specified in the LoRaWAN protocol 1.0, nor in any companion
specification.
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Device Network Server
(secret keyAppKey, (secret keyAppKey,

identifiersDevEUI, AppEUI) identifiersDevEUI, AppEUI,
NetID)

DevNonce ∈R {0,1}16

Join Request = AppEUI

‖DevEUI

‖DevNonce

‖MICAppKey
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

AppNonce ∈R {0,1}24

Join Accept = AES−1(AppKey, AppNonce

‖NetID

‖DevAddr

‖radio parameters

‖MICAppKey)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

NwkSKey,AppSKey← key derivation(AppKey,
AppNonce,

DevNonce,

NetID)

UL f rame0 =

hdr
︷ ︸︸ ︷

DevAddr‖(ul cnt=0)‖FOpts

‖[FRMPayload]AppSKey

‖MICNwkSKey
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

DL f rame0 =

hdr
︷ ︸︸ ︷

DevAddr‖(dl cnt=0)‖FOpts

‖[FRMPayload]AppSKey

‖MICNwkSKey
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

...
UL f ramek(ul cnt=k)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

DL f ramek(dl cnt=k)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 3: LoRaWAN activation (simplified scheme).
Note that the frame direction (uplink, downlink) is in-
volved in the payload encryption and the authentication
tag computation.

frame eventually sent is

hdr (hlen)‖[FRMPayload] (plen)‖MIC (4)

Figure 4 depicts the generation of an application frame.
The frame headerhdr includes, among other fields,
DevAddr, the frame countercnt on 2 bytes6, and an
(optional) fieldFOpts which may contain commands7

exclusively exchanged between the device and the NS.8

6If the frame counter is 32-bit long, this field corresponds to the
least 16 significant bits.

7In the FOpts field these commands are in clear. If they have to
be encrypted they must be included in the frame payload. In sucha
case the payload cannot contain application data, and the encryption
key used is the network session keyNwkSKey.

8The header of an uplink frame is not (completely) transmitted to
the AS, as well as theMIC authentication tag.

AES-CMACNwkSKey

FRMPayload

AES-CTRAppSKey

B0‖ hdr‖[FRMPayload]
︸ ︷︷ ︸

‖MIC

f rame

Figure 4: Generation of an application frame. Note that
the session keyNwkSKey may also be used to encrypt the
FRMPayload payload.

2.3 Remark on encryption and authentica-
tion

At first glance the integrity and confidentiality mecha-
nisms used in LoRaWAN follow the Encrypt-then-MAC
paradigm, which generic security is proved by Bellare
and Namprempre [5].9 As for encryption the LoRaWAN
specification explicitly refers toCCM∗ [16], which de-
rives fromCCM [34]. Regarding the authentication, Lo-
RaWAN usesCMAC and notCBC-MAC as inCCM

∗.
Note that LoRaWAN does not refer toCCM∗ as for data
integrity but a prefix (B0 block) is used in the computa-
tion of the LoRaWAN authentication tag, which format
seems to be based on theB0 prefix used inCCM∗. The
rationale behind this choice is unclear.CBC-MAC does
not handle variable length inputs, and a way to tackle
this restriction is to prepend the input length to the in-
put [4] (CCM andCCM∗ follow that method). However
LoRaWAN usesCMAC which allows arbitrary length in-
puts, and notCBC-MAC.

3 Attacks against LoRaWAN

Hereinafter we present our findings regarding the Lo-
RaWAN protocol version 1.0, the currently deployed ver-
sion. Table 1 summarises the attacks we have found
against LoRaWAN.
We recall that our attacker stands between a device and
the NS, and needs only to act on the air interface (to
eavesdrop on data exchanged between the device and the
server, and to send data to these equipment).

3.1 Replay or decrypt

In LoRaWAN encryption is done inCTR mode [12, 33]
which security is proved by Bellare, Desai, Jokipii, and

9We do not claim that these security mechanismsas providedby
LoRaWAN are secure, as we will see below.
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Table 1: Attacks against LoRaWAN (n: number of
DevNonce values the NS keeps track of.m: number of
new session keys sets stored by the NS. D: device)

Attack
Cost (# Join
message)

Probability
of success

Impact

(A1) Replay
or decrypt (D,
§3.1.1)

≃ 216 1
downlink frame
replay, uplink
frame decryption

(A2) Replay or
decrypt method 1
(NS,§3.1.2)

1 2−24
uplink frame
replay, downlink
frame decryption

(A2) Replay or
decrypt method 2
(NS,§3.1.2)

≃
(n+1)×224 1

uplink frame
replay, downlink
frame decryption

(A3) DoS (D,
§3.2.1)

1 1
device disconnec-
tion

(A4) DoS (NS,
§3.2.2)

m 1
device disconnec-
tion

Rogaway [3]. LikewiseCMAC mode (namelyOMAC1

[18, 19]), used to compute a frame’s authentication tag,
is proved secure by Iwata and Kurosawa [20], and Nandi
[31]. Of course this does not necessarily imply that a
protocol based on these cryptographic primitives is se-
cure in turn [2, 11]. In particular the security of these
encryption and authentication modes is no longer guar-
anteed in case of a misuse, namely if same session keys,
counter blocks, andB0 prefix block are reused. Based on
the peculiarities of LoRaWAN, it is actually possible to
compel a device or the NS to reuse previous security pa-
rameters. We describe precisely how to perform such an
attack against a device or the NS, and its consequences.

3.1.1 Targeting a device

Goal The purpose of this attack is to compel the device
to reuse previous session keys and other security param-
eters. When this happens, frames picked from a previous
session become cryptographically valid anew, hence can
be replayed. Moreover the same secret keystream is then
used to protect the frames exchanged during the new ses-
sion. This allows to attempt frame decryption.

Core The encryption keystreamSi = AES(K,Ai) used
to protect a frame payload is produced from a session key
K ∈ {AppSKey,NwkSKey} andAi block counters. Within
a given session the blocks

Ai = 0x01 (1)‖0x00 · · ·00 (4)‖dir (1)‖DevAddr (4)

‖cnt (4)‖0x00 (1)‖i (1)

(as well as the prefix blockB0) depend mostly on the
frame countercnt (set to 0 when the session starts and
monotonically increased frame after frame), and on the

DevAddr parameter (static during the whole session).
The other parameters are the directiondir unchanged
for a given direction, and thei block index which evolves
the same way for each frame. Hence the way the
keystreamSi changes depends only on theDevAddr pa-
rameter and the session key (usuallyAppSKey). For a
given device, which connects to the same NS (hence
uses the same staticNetID parameter), the session keys
depend mainly on a secret and static value (AppKey)
and two pseudo-random values (DevNonce, AppNonce).
Therefore, if one succeeds in compelling the device to
reuse the sameDevAddr, DevNonce andAppNonce pa-
rameters, this leads not only to the reuse of previous ses-
sion keysAppSKey, andNwkSKey, but also to the reuse
of previous keystreamSi and prefix blockB0.

Attack The purpose is to make the device use twice
the sameDevNonce, AppNonce, andDevAddr values.
The 2-byteDevNonce and 3-byteAppNonce parameters
are pseudo-random. Hence two such values repeat with
high probability (p= 1

2) after roughly
√

2ln(2)×240≃

1.23×106 activations done between the targeted device
and the NS, due to the birthday paradox. If a device per-
forms one activation per day, this corresponds to more
than 3382 years. Let us assume that an attacker is able to
impose theAppNonce value the device uses to compute
the session keys. Then the probability that the session
keys repeat depends only on theDevNonce parameter.
In such a case, the collision happens with high probabi-
lity after roughly

√

2ln(2)×216≃ 301 activations only.
Even if the device does one activation per day, the reuse
becomes possible after 10 months. Waiting for such a
collision is a way to perform an “opportunist” (and very
long) attack. In such a setting the attacker just waits for
the device to launch 301 different sessions, and passively
eavesdrops on the frames exchanged with the NS. Then
the attacker gets (with high probability) two different ses-
sions protected with the same security parameters.

Another option is to speed up the whole process. First
the attacker eavesdrops on a given session, and she com-
pels the device to generate multipleDevNonce values un-
til the expected value is produced once again. In such a
case only one value among 216 is useful to the attacker,
hence the device must generate on average 216 DevNonce

values.
The shortest receiving window of a Join Accept mes-

sage is 5 seconds [25]. Assuming that the time needed
to process the Join messages is negligible compared to
the communication duration, the attack is achieved after
roughly 91 hours.
A self-powered LoRaWAN device is expected to have a
lifespan up to ten years. The computations made to pro-
duce an application frame or a Join Request message,
or when receiving a Join Accept message are not the
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same. However the energy cost to transmit and to re-
ceive data usually exceeds the cost of cryptographic pro-
cessing, hence we may neglect the latter [38]. If the de-
vice sends one message per hour, including one Join Re-
quest per day, and receives one Join Accept per day, it
should be able to handle 25× 365× 10= 91,250 mes-
sages during its lifetime. The attack requires the de-
vice to handle two Join messages per try, that is on ave-
rage 2×216 = 131,072 messages. If the device is self-
powered the attack may run through its battery turning it
into a denial of service ending in the permanent device
deactivation. On the other hand the device may be con-
nected to an external power source.

Once this first phase of the attack is achieved, the at-
tacker ends with two different sessions protected with the
same security parameters. Letsnew be the (new) session
during which the same security parameters are used than
during a previous session (sold).

Technique 1 used to achieve the attack: replay of a
Join Accept message In order to compel the device to
use a givenAppNonce value, the attacker can replay a
previous Join Accept message to the device. Then the
device will reuse (once again) the parameters included in
the message. Indeed the data contained in a Join Accept
message correspond to

AppNonce (3)‖NetID (3)‖DevAddr (4)

‖radio parameters (2. . .18)‖MIC (4)

whereMIC is an authentication tag computed on the pre-
ceding fields with the (static) root keyAppKey. These
parameters are protected withAES andAppKey. Note
that all the parameters are chosen by the NS, in particular
AppNonce andDevAddr. NetID is the NS’ (static) iden-
tifier, and theradio parameters are also defined by the
NS. The only secret parameter involved in the message
calculation is static (AppKey). Hence the device is not
able to verify if the received Join Accept message cor-
responds to the Join Request it sent. Replaying a Join
Accept message allows the attacker to compel the device
to (re)use bothAppNonce andDevAddr parameters.

The possible choices for the attacker bear on the Join
Accept messages previsouly sent by the NS to the tar-
geted device. A Join Accept message intended to another
device is not usable since the message is protected with
the device’s root key.

Technique 2 used to achieve the attack: harvest of
Join messages The ability of the attacker to make the
device generate multipleDevNonce values is related to
the issue regarding the expected behaviour of the de-
vice when it sends a Join Request message but does not
receive a Join Accept response or receives an invalid

message. The specification is unclear about the follow-
ing alternative: send again the same Join Request mes-
sage (with the sameDevNonce value), or generate a new
DevNonce value and create a fresh Join Request mes-
sage. However, it states that the NS shall ignore Join
Request messages containing previously usedDevNonce

values in order to thwart a replay attack ([43],§6.2.4).
Hence we may assume that the device generates a new
pseudo-randomDevNonce value each time it computes
a Join Request message, even when a previous Join Re-
quest message did not receive a response. Otherwise the
device may fear the subsequent Join Request messages
to be dropped by the NS. This allows the attacker to col-
lect multiple new and valid Join Request messages. It is
enough for the attacker to send “false” Join Accept mes-
sages in response to the device’s messages. Moreover, if
the attacker forbids the NS from receiving the Join Re-
quest messages sent by the device, he gets “fresh” mes-
sages (i.e., unknown to the NS) for free. In order to make
the device start producing the Join Request messages, the
attacker may wait or force (once only) the device to start
a new session (e.g., the attacker may turn the device off
and on; once the power supply is re-established, the de-
vice likely starts a new activation).10

Note that every time the NS receives a Join Request
message, it sends a new Join Accept message. Hence,
this procedure is also a way to collect multiples Join Ac-
cept messages (when the attacker does not forbid the NS
from receiving each Join Request message).

Impact: frame replay Frames drawn from the previ-
ous session (sold) can be replayed to the device through-
out the new session (snew).11 These frames are valid
since they are protected with a cryptographically correct
keystream and authentication tag. The attacker has to
take care about the sequentiality. Indeed a frame shall
be rejected by the device if its counter does not belong
to {cnt, . . . ,MAX FCNT GAP}, wherecnt is the dowlink
frame counter (in that specific case) managed locally by
the device and used as reference (its initial value is 0),
andMAX FCNT GAP= 214. Hence the attacker may virtu-
ally choose up to 214+1 frames in order to deceive the
device (more precisely the number of available frames
depends on the number of frames actually sent by the NS

10Being able to influence on the power supply does not necessary
mean to have a physical access to the device. The attacker could turn off
or interrupt a remote electric generator the device is connected to, or the
link between the generator and the device (if the device is powered by
an external source), or use other means (e.g., electromagnetic impulse
targeting the device and leading to a power outage).

11We use the term “session”, yet it is a misuse of language. Indeed
this word does not depict precisely what are the actual exchanges since
the device, at this point, has no “partner”: neither the NS nor the AS
is able to communicate with the device, and the attacker is unable to
forge new valid frames.
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or the AS throughout sessionsold). Note that the first
frame the attacker replays may be any of these. How-
ever the subsequent replayed frames must have increas-
ing counter values.

Impact: frame decryption The frame payload is
encrypted inCTR mode. Once the attack is achieved,
the device uses twice the same keystream in order
to protect different frames. The frame of countert
sent during sessionsold contains an encrypted payload
csold

t = m⊕ ksold
t , where m is the clear data andksold

t
the keystream. The frame of same countert sent
during sessionsnew contains an encrypted payload
csnew

t = m′ ⊕ ksnew
t . Since ksold

t = ksnew
t , we have that

csold
t ⊕csnew

t = (m⊕ksold
t )⊕ (m′⊕ksnew

t ) = m⊕m′. Hence
m andm′ may (partially or completely) be retrieved (in
an obvious manner if one message,m or m′, is known,
or through analysis ofm⊕m′ [28]).

According to the LoRaWAN specification
([43], §4.3.1.1), if the device sends more than
ADR ACK LIMIT = 64 frames to the NS, it has to
ask an explicit acknowledgment to the server (the device
sets theADRACKReq bit to 1 within the frame header).
The device can then send up toADR ACK DELAY = 32

more frames to the server. If still no frame has been re-
ceived from the server, the devicemayswitch to the next
lower data rate that provides a longer radio range. Fur-
thermore, if the device already uses its lowest available
data rate, itshall not ask for such an acknowledgment.
The specification provides no guidance on how the
device shall behave in the latter case, or if it still does not
receive an acknowledgment after it changed its data rate,
or if it decides not to change its rate. We may reasonably
assume that the device keeps sending frames “normally”.
This means that the attacker has at her disposal at least
ADR ACK LIMIT + ADR ACK DELAY = 64 + 32 = 96
frames usable for her decryption attempts. Moreover, if
the device asks for an acknowledgment (the attacker is
aware of that since the informationADRACKReq lies in
the – unencrypted – frame header), the attacker can use
any downlink frame drawn from sessionsold, and replay
it to the device. Indeed, according to the specification,
this is enough to respond to the acknowledgment request
sent by the device.

Cause This attack, allowing to compel the device
to reuse the same security parameters (session keys,
keystream, and prefixB0), is possible because the
DevNonce values are short and pseudo-random, hence
may repeat “quickly”, and the device has no means to
detect if theAppNonce andDevAddr values repeat. Be-
ing able to detect such a replay would not necessarily
allow the device to eventually compute shared session

keys with the NS, but this would at least prevent the de-
vice from sending (new) frames protected with reused
security parameters, hence avoiding the exploitability of
the attack.

3.1.2 Targeting the NS

Goal The same kind of attack can be performed against
the NS, aiming at compelling the server to use the same
security parameters throughout two different sessions.
The goal is then to compel the NS to use twice the same
DevNonce, AppNonce andDevAddr values.

Attack: method 1 The key exchange is triggered by
the Join Request message. Hence an attacker replaying
a Join Request message sets theDevNonce value before
knowing theDevAddr andAppNonce values the NS gen-
erates. These values must correspond to theDevNonce

value chosen by the attacker, hence only one such couple
among all possible values is of interest to the attacker.

According to the specification, the NS must keep track
of “a certain number” of receivedDevNonce values in
order to prevent replay attacks, without clarifying if this
means all values or a few of them. We may reason-
ably assume that the NS keeps track of a few values (say
n). Thus the attacker cannot choose any Join Request
she wants to replay. The correspondingDevNonce value
must not belong to the list ofn stored values. If the value
the attacker wants to replay still belongs to the server’s
list (let i be its index, with 0 andn−1 the index of the
oldest and of the latest received values), he has to wait
for i+1 additional (legitimate) key exchanges before the
NS “forgets” that value. The duration of such an “oppor-
tunist” attack depends on the frequency of the key ex-
changes.

The purpose of the attacker is to get the same two
AppNonce andDevAddr values as during a previous ses-
sion. AppNonce is a 3-byte pseudo-random value. The
32-bitDevAddr parameter is made of 7 bits fromNetID,
and 25 bits which are “arbitrarily ” chosen by the NS
([43], §6.1.1). If DevAddr is pseudo-random then the
probability of success is 2−(24+25) = 2−49. But “arbitrar-
ily” does not mean “pseudo-random” and experiments
we have made shows that theDevAddr parameter re-
mains unchanged for a given device throughout different
sessions.12 In such a case the probability of success in-
creases to 2−24, and the overall probability of success is
2−24 everyn+1 sessions. Note that the attacker can send
in parallel several Join Request messages (each suppos-
edly coming from a different device), hence increasing

12Thus some NS implementation derives theDevAddr parameter
from the unique device’s identifierDevEUI. Also theDevAddr value
may be chosen once and for all at the time of the device provisioning.
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the overall probability of success by the number of mes-
sages.

The attacker is successful when the NS sends the ex-
pectedAppNonce value. But, contrary to a Join Request
message (in clear), a Join Accept message is protected
with AES. Before encryption a Join Accept message cor-
responds to

AppNonce (3)‖NetID (3)‖DevAddr (4)

‖radio parameters (2. . .18)‖MIC (4)

NetID is the unique NS’ identifier, hence static. As
observed experimentally, theDevAddr parameter as-
signed to a given device remains unchanged. The
radio parameters (frequency plan) depend on the
gateway, hence likely remain the same for quite a long
time. And MIC is an authentication tag computed on
the preceding values with the device’s (static) root key.
Hence onlyAppNonce may vary from one Join Accept
message to another. Through direct comparison between
a Join Accept message (received during the attack) and
the one used as reference (beforehand eavesdropped by
the attacker during sessionsold), the attacker is able to
check if theAppNonce value repeats.

Attack: method 2 Alternatively the attacker can do
the following. In a first phase the attacker collects a set
of n+ k, k≥ 1, different Join Request messages from a
given device (hence the list exceeds the NS “memory”).
Necessarily at least one of these messages contains a
DevNonce value which is “forgotten” by the NS. The
other messages may carryDevNonce values known at the
moment to the NS. These messages must be ordered the
following way: first the “forgotten” messages, followed
by the others sorted in the same relative order than in
the NS’ list.13 In a second phase the attacker sends con-
tinuously each Join Request message of its circular list.
Hence the attacker has to make on average(n+k)×224

tries before getting one of the expectedAppNonce val-
ues. For instance, withn= 10, the duration of the attack
is higher than 29 years (with a key exchange done in 5
seconds).

Means used to achieve the attack In order to collect
the Join Request messages, the attacker can iteraten+k
times the procedure described in Section 3.1.1 and tar-
geting a device. Then the attacker gets a list of mes-
sages correctly sorted and ready to be used. The Join
Request messages usable by the attacker must come from

13More exactly the necessary condition is the following: eachmes-
sage collected by the attacker and common with the NS’ list must have
a greater index than the index in the server’s list (0 being the index of
the oldest message,n−1 the index of the latest), so that the message is
replayed once it has left the server’s list.

the same device since the session keys are computed with
the device’s root key (and also if theDevAddr parameter
is closely related to the device –e.g., computed from its
DevEUI identifier).

Impact Once the attacker succeeds in compelling the
NS to compute once again the same security parame-
ters, she eventually gets two different sessions (sold and
snew) protected with the same security parameters. The
attacker is then able to replay uplink frames and attempt
decryption of downlink frames.

According to the specification, when a new key ex-
change is done the NS shall keep the previous security
parameters until it receives a (valid) frame protected with
the new security parameters, and then it can remove the
previous ones ([43],§6.2.4). Yet, if the NS has to send
frames, likely it uses the latest security parameters. Yet,
since the session keys and other security parameters are
reused, the attacker can easily replay to the NS a frame
drawn from the previous sessionsold, thus “confirming”
the new keys to the NS. Then the server drops the current
keys and is ready to use the new ones.

Cause This attack, allowing to compel the NS to reuse
the same security parameters (session keys, keystream,
and prefixB0), is possible because theAppNonce values
are short and pseudo-random (hence may repeat), and the
means used by the NS in order to detect aDevNonce

reuse (storage of a – short – list of values) is not reliable.

3.2 Denial of service

3.2.1 Targeting a device

Goal This attack aims to “disconnect” the device from
the network. That is the device performs a successful key
exchange which ends with the device not sharing the new
session keys with the NS (the device has no “partner”).
Therefore the frames sent by the device are ignored by
the NS, and conversely.

Core The session keys are computed, by a given device
and the NS, with two static parameters (the NS’ unique
identifier NetID, and the device’s root keyAppKey),
and two variable parameters (the pseudo-random values
AppNonce computed by the NS, andDevNonce by the
device). As soon as the device receives a (valid) Join
Accept message it can derive the session keys and start
transmitting protected frames. If the device uses, in
the key derivation, values different from those actually
sent by the NS (say(DevNonce,AppNonce) = (x, ỹ) on
the one hand, and(DevNonce,AppNonce) = (x,y), on
the other hand,y 6= ỹ), it eventually computes different
session keys than those computed by the server. Yet
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this does not forbid the device to send protected frames.
However those frames will be dropped by the NS (since
they are invalid from the server perspective), and, con-
versely, the frames sent by the NS will be discarded by
the device. Thus the device, unable to communicate with
the NS, is “disconnected” from the network.

Attack In order to perform such a denial of service
(DoS) attack, an attacker can first passively eavesdrop on
a Join Accept message sent by the NS in response to the
device’s Join Request message. When the device starts
a new session and sends another Join Request message,
the attacker replies before the NS and replays the eaves-
dropped Join Accept message. Likely this message con-
tains anAppNonce= ỹ value different from the one sent
by the NS (AppNonce= y). Hence the device and the NS
compute different session keys and security parameters.

Means used to achieve the attack The attacker is able
to replay a previous Join Accept message thanks to the
peculiarities of the LoRaWAN protocol: indeed the de-
vice has no means to verify neither if the message is a
replay, nor if it is an actual response to the Join Request
message it just sent. Moreover the attacker can use the
procedure described in Section 3.1.1 to collect several
Join Accept messages and use these “DoS ammunition”
anytime later. The Join Accept message used by the at-
tacker must be intended to the targeted device. Indeed
such a message is protected with the root key of the de-
vice it is sent to.

Impact Such a DoS attack may be harmful because it
can lastingly disturb the operating of a LoRaWAN net-
work. So then the usual behaviour of a sensor may
be to regularly send some measurements without ex-
pecting a response unless the server detects an anomaly
in the collected data. If the device sends its measure-
ment at a low rate, days or even weeks may elapse be-
fore something abnormal is noticed, even if the device
is supposed to react if it does not receive a downlink
frame after a fixed number of sent frames. For instance,
if the device sends one frame per hour, at least four
days (ADR ACK LIMIT+ADR ACK DELAY= 64+32= 96
hours) may slip.

Cause This DoS attack allowing to disconnect the de-
vice from the network is possible because the device is
not able to check if a received Join Accept message cor-
responds to the Join Request message it sent, and uses
new session keys without verifying it actually shares the
same keys with the NS [15].

3.2.2 Targeting the NS

Goal The same kind of DoS attack can be done against
the NS, aiming at disconnecting a given device from the
network. In that case, the NS completes the key ex-
change without being “partnered” with the intended de-
vice (i.e., identified by theDevEUI parameter within the
Join Request message). Therefore the frames the NS (or
the AS) may send are ignored by the device, and con-
versely.

Attack As soon as the NS receives a (valid) Join Re-
quest message it generates a newAppNonce value and
computes new session keys. If an attacker succeeds in
replaying to the NS a valid Join Request message, the
corresponding device will no longer share the same ses-
sion keys with the NS.

If the attacker owns a Join Request message she can
send it anytime to the NS. However if the attacker replays
a previous Join Request message, that message may be
rejected by the NS since it is supposed to keep track of
previously receivedDevNonce values. This means that
the attacker has to expect, or to wait, for theDevNonce

value included in the replayed Join Request message to
no longer belong to the server’s list (i.e., the attacker has
to wait for the targeted device to start enough activations
so that the server “forgets” thatDevNonce value). Alter-
natively the attacker may send a brand new Join Request
message to be sure that it is not rejected by the NS. How-
ever, the message is protected by a 32-bit authentication
tag computed with the device’s root keyAppKey. Hence
the probability for the attacker to forge such a valid mes-
sage is 2−32.

A trade-off is the following: the attacker uses a fresh
Join Request message, and leans on the targeted device to
compute such a message, while forbidding the NS from
receiving it (at the moment of its collection). Therefore
the message is at the same time valid and unknown to the
NS.

The attacker has another challenge to take up. The
specification states that the NS must keep the previous
session keys (and the corresponding counters) until it re-
ceives a valid frame protected with the new keys, and
then it can drop the previous security parameters and
keep only the new ones.14 Yet it is unclear about how
the NS should behave if it receives successively sev-
eral valid Join Request messages but no frames protected
with any of the new computed session keys. We may as-
sume that the NS stores at most a few number of security
parameters. Let us assume that the NS stores only two
sets of session keys: the latest valid one, and the latest

14Note that this is introduced in version 1.0.2 of the specification
and does not appear in version 1.0.1. Also the LoRaWAN specification
does not demand the same regarding the device.
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computed one. Letseskeyi be the current (valid) ses-
sion keys (used by the device and the NS to exchange
frames). The attacker can do the following. She waits
for the device to start a new activation. New session
keys (seskeysi+1) are then computed. The device stores
seskeysi+1 only while the NS stores bothseskeysi and
seskeysi+1. Before the device sends a frame, the at-
tacker immediately sends to the NS a Join Request mes-
sage she previously eavesdropped on (and not received,
hence new to the server). The server computes new ses-
sion keysseskeysi+2 which replace the unconfirmed
keys seskeysi+1. Then the NS storesseskeysi and
seskeysi+2 while the device storesseskeysi+1. Hence
the device and the NS do not share the same session
keys. More generally, if the NS keeps the latest valid
session keys andm new sets of keys, the attacker must
send successivelymnew Join Request messages in order
to “desynchronise” the NS and the device.

This attack is based on the ability for the attacker to
gather multiple and new Join Request messages (i.e.,
fresh DevNonce values). However if the device sends
again the same Join Request message when it does not
receive a valid answer from the NS, then it is possible to
disconnect the device once and for all. Indeed, in such
a case, if the device does not receive a valid Join Ac-
cept message when it starts a new activation (e.g., the
attacker sends a “false” Join Accept message before the
NS), it will keep sending the (same) request which is then
continuously discarded by the NS since it has already re-
ceived the message. Hence the device is stuck.

Means used to achieve the attack In order to get a
new Join Request message the attacker can use the tech-
nique described in Section 3.1.1 aiming at compelling the
device to generate multiple Join Request messages. The
attacker can gather several such messages and use these
anytime later as “DoS ammunition”.

Impact The consequences of this attack against the NS
are the same as the one against the device: the targeted
device is disconnected from the network. Unaware that
the NS does not share the same security parameters, it
may keep sending uplink frames for quite a long time
while the NS is unable to process them. Conversely, the
frames the NS may send cannot be understood by the
device.

Cause This DoS attack against the NS and targeting
the device is possible because the means used by the NS
to detect a replay of a Join Request message is not reli-
able, and the device uses new session keys without veri-
fying it actually shares the same keys with the NS.

3.3 Extended attack surface

The threats and attacks described in the previous sec-
tions assume that each device owns a different root key
AppKey, in accordance to what the specification de-
mands. However we may not exclude that an application
provider deploys the same root key on a set of devices
it owns. In such a case, the attacks described above in
sections 3.1 and 3.2 may be enhanced. We stress that the
specification demands to use a distinct root key per de-
vice (see [43],§6.2.2, p. 33). Here the purpose is to en-
lighten about the consequences (also due to the specifics
of the LoRaWAN protocol) of what can be seen by some
application providers as a slight deviation from the spec-
ification.

3.3.1 Replay or decrypt

Goal If several devices share the same root key
AppKey, an attacker is able to replay to some deviceB,
a Join Accept message sent by the NS to a deviceA. In
such a case, if both devices (connected to the same NS)
use, in addition, the sameDevNonce value, they neces-
sarily compute the same session keys, keystream, andB0

prefix (since they both received the sameDevAddr and
AppNonce parameters, and share the sameNetID value).
Note that, if the Join Accept message is accepted by both
devices, the Join Request message sent by each of them
differs (at least) on the device’s identifierDevEUI. How-
ever this parameter is not involved in the security param-
eters computation.

Attack In order to force a deviceB to generate a given
DevNonce value (similar to the one used by deviceA),
the attacker may compel deviceB to generate on av-
erage 216 Join Request messages until she gets the ex-
pected one (using the technique described in section
3.1.1). An alternate option is to lean on the number of
devices deployed (with the same root key). If more than√

2ln(2)×216≃ 301 devices are deployed, two of them
are going to generate the sameDevNonce value with high
probability (p= 1

2). As soon as the attacker detects such
a collision between two devicesA andB, he can replay
to B the Join Accept message received byA.15 Then the
attacker can exploit the (legitimate) session between de-
viceA and the NS to attack deviceB (trying frame replay
and frame decryption).

Conversely the attacker can exploit the “session”
started by deviceB to target the NS. Since devicesA and
B then share the sameDevAddr value, the NS is unable
to distinguish frames sent by each device. Hence the first
frames send byB, if received, are likely dropped by the

15Note that all devices transmit on a limited number of radio chan-
nels.
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NS which considers that they come fromA with an in-
correct counter. The attacker has to expect, or to force,
deviceB to send enough frames so that its uplink counter
reachesA’s one. Conversely if the NS receives from de-
viceB a frame with a higher counter than deviceA, some
frames sent byA may be discarded by the server as they
carry an invalid (lower) counter.16

3.3.2 Denial of service

Goal Sending, before the NS, a Join Accept message
to a device in response to its Join Request allows to dis-
connect the device from the network.

Attack In this setting the Join Accept messages usable
by an attacker are not only the previous messages sent by
the NS to the targeted device, but also any such message
sent by the NS to all devices (since they share the same
root key AppKey). Hence the number of usable “DoS
ammunition” is notably augmented.

4 Lack of data integrity

The LoRaWAN protocol aims to provide data confiden-
tiality and data integrity on the air interface, between the
device and the NS. However the data exchanged between
the NS and the AS are only encrypted but not integrity
protected since the NS is the only one to own the key
used to compute an authentication tag. Therefore the AS
is not able to verify if a (encrypted) payload has been
modified. The specification recommends to implement
(at the application level) an integrity protection mecha-
nism if the application provider wishes to do so. More-
over the specification seems to imply that such a mecha-
nism is in fact optional since “Network servers are con-
sidered as trusted” ([43], §6.1.4, p. 32). This is a bold
statement. Firstly the threat may not come only from the
NS (even if it can be dishonest or compromised). In-
deed an attacker may target the link (and intermediary
servers) between the NS and the AS. Secondly encryp-
tion only does obviously not provide data integrity, but
it may even not be sufficient to guarantee data confiden-
tiality (in particular in the LoRaWAN case).

Goal The purpose of the attacker is either to modify or
to decrypt an encrypted payload. The frame carrying the
payload may be sent by the device to the AS or sent in
the converse direction. Contrary to the attacks described
in Section 3, our attacker here is able to act on the link
between the NS and the AS. For instance the attacker

16And the attacker must use another criterion thanDevAddr to dis-
criminate the frames sent by the two devices (e.g., some characteristics
of the radio signal, such as its intensity).

could target and try to intrude on a (not or poorly pro-
tected) MQTT server used to relay data between NS and
AS [36].

Attack on data integrity Data encryption is done in
counter mode, therefore it is possible to change the plain-
text by flipping bits of the ciphertext. If the content of
an encrypted payload or merely the format of the unen-
crypted content is known, the attacker can replace or al-
ter the data with accuracy. For instance, if the device is a
sensor the attacker could change the measurement (tem-
perature, humidity,etc.) sent. If the device is a presence
sensor, the attacker may change a (binary) value notify-
ing an intrusion into the opposite value notifying that ev-
erything is quiet. If the device is an actuator, the attacker
could change a command ordering to close a window into
a command ordering to open it. The attacker could also
truncate the encrypted payload in order to hide informa-
tion to the AS or to the device.

If the recipient is the AS, it is not able to detect that the
payload is modified since there is no authentication tag.
If the recipient is the device, it is not able to detect the
modification since the authentication tag is computed by
the NS after the attacker modifies the frame (in fact the
device will validate the frame).

Attack on data confidentiality The attacker may try
to guess the plaintext corresponding to an encrypted
frame as follows. The attacker eavesdrops on a frame
which payload is of the formc = k⊕m, wherek is the
keystream, andm the plaintext to recover. She makes a
guessm′ regarding the plaintext, and chooses a message
u from a set of valid applicative messages (e.g., a finished
list of commands shared by the device and the AS). The
attacker computesc′ = c⊕ (m′⊕u), and sendsc′ (to the
server or the device). If the guess is correct (m= m′)
thenc′ = c⊕ (u⊕m′) = c⊕ (u⊕m) = k⊕u. Hence the
decryption will be correct and the command will likely
be completed. Using this kind of “command oracle” at-
tack [1, 10, 17], the attacker may rely on the expected
behaviour of the recipient (either the device or the AS)
to understand if his guess is correct.17

If the recipient is the AS, the attacker can make sev-
eral tries (using the same encrypted payload and frame
counter), because unlikely the AS verifies the frame
counter (since the NS does it). On the contrary, if the
recipient is the device, likely the attacker can make one
try only, because the device verifies the frame counter
and will reject subsequent downlink frames carrying a
reused counter.

17If the attacker targets the device, he may do experiments with one
such specimen he owns in order to learn first how the device behaves,
before acting.
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Attack on data authenticity If the attacker suc-
ceeds in recovering a keystreamk it can forge any
ciphertext of her choice. For instance the attacker can
change a set of data(DevAddr,FCntUp,c = k⊕ m)
into (DevAddr,FCntUp,c′ = k⊕m′). Since the up-
link counter is verified by the NS, likely the AS
does not check it, and uses the receivedDevAddr
and FCntUp values in order to decryptc′. Con-
versely the attacker can change a set of data
(DevAddr,FCntDown,c = k⊕m) laying on the MQTT
server into (DevAddr,FCntDown,c′ = k⊕m′), hence
deceives the device.

The attacker can recover the keystream if he knows
the corresponding plaintext. If the attacker succeeds
in decrypting data through the “command oracle”
attack described above, he also gets the corresponding
keystream (partially or totally). Then he can use it to
forge encrypted payloads intended to the AS. However,
it is unlikely that the device accepts the forged payload.
Indeed in such a case, the device has already received
the frame corresponding to some counterFCntDown,
hence it will discard any other frame (the one forged by
the attacker) carrying the same counterFCntDown.

This attack is not due to a lack of protection of some
intermediary server (between the NS and the AS, such as
an MQTT server). If the application frames were duly
protected, the worst an attacker could do would be to
delete frames. However, since LoRaWAN does not pro-
vide end-to-end integrity protection between the device
and the AS, it is possible to deceive both of them. There-
fore we strongly recommend to implement integrity pro-
tection between the device and the AS.

Moreover the AS should not blindly trust the NS and
should verify every security parameter it receives from
third parties. In particular, if the AS receives the applica-
tion session keyAppSKey from the NS, it should verify
that the key is fresh (not reused). Similarly the AS must
keep track of the frame counters (both uplink and down-
link counters) in order to avoid frame replays.

5 Recommendations

In this section we aim at providing recommendations that
thwart the attacks described in Section 3. This may lead
to major changes in the protocol specification and break
the interoperability between patched and non-modified
equipment. Hence, as an additional constraint, we aim
at proposing improvements that could solve the issues as
best as possible while retaining at the same time the com-
pliance with unchanged version of devices or servers, in
particular equipment that are already deployed and may
not be easily patched.

Table 2 summarises the proposed countermeasures.

5.1 List of the possible recommendations

5.1.1 Detect the replay of a value

The crux of the “replay or decrypt” attack is to compel
the victim (device or NS) to use a parameter (AppNonce

or DevNonce) the attacker picks from previous values.
A natural mitigation is to detect that such a value is re-
played. This may be done thanks to computationally
and memory efficient techniques such as Bloom filters
[7, 13].
Another option is to use a counter (instead of pseudo-
randomly generating theDevNonce andAppNonce va-
lues) which allows to reject already used values in a
straightforward manner. This countermeasure has to be
implemented both by the device and the NS.

5.1.2 Generate values with no repetition

Another approach to thwart the “replay or decrypt” at-
tack could be to increase the size ofDevNonce and
AppNonce values so that the birthday bound is unlikely
reached, hence preventing the values to repeat. Yet this
is crippling since it breaks the compatibility between
patched and unmodified equipment. Using a permutation
π on {0, . . . , r−1} wherer is the number of all possible
values (r = 216 for DevNonce andr = 224 for AppNonce)
is an alternative way. In the special case whereπ = idr

then the value is simply a counter.

5.1.3 Verify if a response is bound to a request

The DoS attack against the device relies on the fact
that the device blindly accepts any Join Accept mes-
sage it receives (as long as it is cryptographically valid).
Hence the device must be able to discriminate the re-
sponses and to verify which one is bound to the re-
quest it has sent. Thus a field of the latter (DevNonce,
MIC, the whole Join Request message) can be used to
compute a field of the former (AppNonce, DevAddr,
MIC). Computing the authentication tag on the Join
Accept message as well as on theDevNonce value is
an option, yet it breaks the compliance between equip-
ment. Instead we propose to compute theDevAddr

parameter the following way. LetNwkAddr be the
least 25 significant bits. NwkAddr is computed as
NwkAddr = H(DevNonce,AppNonce,DevEUI) whereH
is a collision-resistant function. Using as supplementary
input the device’s identifierDevEUI allows to discrimi-
nate two Join Accept messages in the case the same root
key AppKey is shared by several devices. The addition
of the parameterAppNonce in the calculation aims to in-
volve the NS. Moreover this formula allows to diversify
theDevAddr values among different sessions.

For a given device (i.e., a fixed DevEUI value), a
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Table 2: Countermeasures to mitigate the attacks against LoRaWAN (D: device. X∗: X is optional depending on the
technical choice for the countermeasure.)

To be
implemented by

Attack
Countermeasure

(A1) Replay or
decrypt (D,
§3.1.1)

(A2) Replay or
decrypt (NS,

§3.1.2)

(A3) DoS (D,
§3.2.1)

(A4) DoS (NS,
§3.2.2)

D and NS∗
(C1) Detect a replay of
AppNonce, DevAddr

• •

NS and D∗
(C2) Detect a replay of
DevNonce

• •

D
(C3) GenerateDevNonce va-
lues with no repetition

• •

NS
(C4) GenerateAppNonce va-
lues with no repetition

• •

D and NS

(C5) Verify that the received
Join Accept message cor-
responds to the sent Join Re-
quest message

•

NS
(C6 (NS)) Verify that the ses-
sion keys are shared

•

D
(C6 (D)) Verify that the ses-
sion keys are shared

•

DevAddr value computed that way depends only on
the DevNonce and AppNonce values. Therefore, if
DevNonce repeats either “naturally” (birthday paradox)
or under coercion (e.g., “replay or decrypt” attack), an-
other Join Accept message than the one actually sent by
the NS may be cryptographically valid. Thus this coun-
termeasure (C5 in Table 2) must come with the guarantee
that either theDevNonce values do not repeat (C3), or
the device is able to detect a replay ofAppNonce values
(C1).18

This countermeasure based on theDevAddr calculation
must be implemented by both the device and the NS.

5.1.4 Key confirmation

Each key exchange in LoRaWAN leads to a conundrum
with regard to whether the device and the NS actually
share the same session keys. In order to eventually solve
the riddle both peer may exchange, as soon as the new
keys are computed, a protected frame and verify its au-
thentication tag. That frame could be a so called “con-
firmed” frame requiring an acknowledgment (without
any applicative payload though), or a command requi-
ring a response (e.g., LinkCheckReqsent by the device,
or DevStatusReqsent by the NS).

Of course if the same session keys are computed twice
(e.g., through a “replay or decrypt” attack), the same
frames can be replayed to confirm the key exchange.
Therefore this countermeasure (C6 (D), C6 (NS) in Ta-
ble 2) must come with another one aiming at precluding
the reuse of previous security parameters (respectively
C1 or C3, and C2 or C4).

18GeneratingAppNonce values with no repetition is not enough
since an attacker could still replay such a value.

5.2 Recommended countermeasures

The reduced LoRaWAN parameters size limits the effi-
ciency of some countermeasures we propose by paving
the way to new attacks. Indeed, generating a parameter
(DevNonce, AppNonce) with no repetition (C3, C4), and
detecting replays (C1, C2) are some countermeasures
we propose. Yet applying one of these methodswhile
keeping at the same timethe original parameter size (for
compliance reasons) may allow to exhaust all possible
DevNonce or AppNonce values. This can be done if an
attacker succeeds in compelling the device or the NS to
reach the maximum parameter value (if the parameter
is a counter), or to record all values (if replays are de-
tected).19 Therefore the methods to be implemented in
order to thwart the attacks against LoRaWAN must be
chosen with caution. We recommend to implement the
following.

Apply C4 This countermeasure aims at thwarting at-
tack A2. A counter may be used to produce the
AppNonce values. The counter must not overlap, and
one different counter should be used for each device in
order not to artificially lower the number of activations
per device.

C4 has to be implemented by the NS.

Apply C1 This countermeasure aims at thwarting at-
tack A1. It may be implemented using computation-
ally and memory efficient techniques such as Bloom fil-
ters. However theAppNonce parameter being a counter
(C4), it is enough for the device to store the last received

19See Appendix A for details.
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AppNonce value in order to detect a replay.
C1 has to be implemented by the device.

Do not apply C2 The NS must not keep track of all
DevNonce values. Hence an attack aiming at exhaust-
ing all possibleDevNonce values and targeting the NS is
avoided (see Section A).

Do not apply C3 The device must not generate
DevNonce values in such a way as to guarantee their
uniqueness (keep using pseudo-random values). Hence
an attack aiming at exhausting all possibleDevNonce
values and targeting the device is avoided (see Sec-
tion A).

Apply C5 This countermeasure aims to check that the
Join Request and Join Accept messages are bound in or-
der to thwart attack A3. We recommend to compute the
DevAddr parameter the following way. LetNwkAddr be
the least 25 significant bits.NwkAddr is computed as
NwkAddr = H(DevNonce,AppNonce,DevEUI) whereH
is a collision-resistant function.

C5 has to be implemented both by the device and the
NS.

Apply C6 (NS) This countermeasure aims at thwarting
attack A4. We suggest to implement it the following
way. Straight after the key exchange is done, the
NS must send aDevStatusReqcommand and verify
(authentication tag) theDevStatusAnsresponse from the
device, or verify, if it comes earlier, the first frame sent
by the device. The lack of response must be read into
this as an issue (device or NS under attack).

In addition the NS must keep all sets of session
keys from the last valid one up to the latest computed
one. When the NS receives an uplink frame (carrying
a DevStatusAnsresponse, or another uplink frame), it
checks the authentication tag with all keys, starting from
the latest. If the keys that match with the authentication
tag belong to one of the (currently) unapproved sets,
then the NS keeps this set of session keys only an drops
all the others. This set becomes then the last valid one.

C6 has to be implemented by the NS.

These countermeasures are recommended if both NS
and devices can be modified. If not, we recommend the
following. Regarding the NS, apply all recommended
countermeasures above.
Regarding the device, apply the following countermea-
sures instead.

Apply C1 This countermeasure aims at thwarting at-
tack A1. The device must keep track of all theAppNonce

values it receives (e.g., using Bloom filters). When the
device receives a Join Accept message it must verify
the AppNonce parameter and reject the message if the
AppNonce is a reused value.

Apply C6 (D) This countermeasure aims at thwarting
attack A3. Straight after the key exchange is done (Join
procedure), the device must send aLinkCheckReqcom-
mand (with no frame payload) and verify (authentication
tag) theLinkCheckAnsresponse from the NS, or verify,
if it comes earlier, the first frame sent by the NS. If the
LinkCheckAnsresponse is not valid or if no valid down-
link frame is received this must be read into an issue (de-
vice under attack).

6 Related work

Few analyses on LoRaWAN have been done and publicly
released. Most of the public reviews deal with technical
consideration such as the network management (secret
keys storage,etc.) and generic attacks (e.g., hardware at-
tacks, web attacks) unrelated to the LoRaWAN protocol.
Some attacks, which exploit specific features of the pro-
tocol, are mentioned but without excess of details.

Regarding the presentation [24], no paper nor slides
were made publicly available after the conference (to the
best of our knowledge), however we got a summary of
the talk. Yet we cannot claim to be aware of all the
specifics provided during the talk.

DoS against a device Lifchitz notes that, since the
DevNonce parameter is pseudo-random, a reuse is pos-
sible due to the birthday paradox [24].

According to L’Héŕeec and Joulain, a way to perform
a DoS attack is to flood the device with repeated Join Ac-
cept messages [23].

The previous authors and Miller note that an alter-
native way to attack the device is to replay to the NS
a previous Join Request message (because the server
keeps track of a “certain number of DevNonce values”),
leading to the device “disconnection” from the network
[24, 23, 30].

According to Tomasin, Zulian, and Vangelista, a de-
vice may be precluded from joining the network after a
certain number of sessions, depending on the NS’ be-
haviour [45]. This may happen either “naturally” (if
the NS keeps track of all receivedDevNonce values), or
due to an attack (if the NS decides to exclude a device
which it repeatedly receives Join Request messages re-
plays from – the replays being sent by an attacker). We
note that if theDevNonce value repeats there is a more
valuable attack than a DoS (namely the “replay or de-
crypt” attack described in Section 3.1.1).
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Moreover the authors erroneously recommend to use a
2-byte counter forDevNonce instead of a pseudo-random
value, and to increment the counter only when a (valid)
Join Accept message is received. According to the au-
thors the latter ensures that theDevNonce counter is
shared by the device and the NS. Firstly this is wrong
since it is possible to replay any Join Accept message.
Secondly this recommendation leads to a simple attack
which allows to disconnect the device from the network
once and for all. This attack is of the same kind than the
one described in Section 3.2.2. The attacker does the fol-
lowing: when the device sends a Join Request message,
the attacker forbids (once only) the device from receiv-
ing the Join Accept message sent by the NS. Hence the
device reuses the sameDevNonce value in subsequent
Join Request messages. And these messages are then dis-
carded by the NS since they carry an invalid (i.e., already
received)DevNonce value. Therefore the device is stuck
since it keeps using the sameDevNonce value (which is
continuously discarder by the NS).

DoS against the NS Miller proposes a denial of service
attack against the NS by flooding the server [30, 29].

Frame replay and frame decryption Lifchitz notes
that the pseudo-randomAppNonce parameter may re-
peat due to the birthday paradox [24]. Hence, un-
der the strong assumption that theDevNonce value
is “forced” (device controlled by an attacker), a
keystream reuse is possible with high probability after√

2ln(2)×11×224 ≃ 16,000 activations, or 22 hours
if a key exchange is done in 5 seconds. In fact such a
statement is wrong or, at least, hazy: if bothDevNonce
andAppNonce values repeat, this leads to asession keys
reuse. In order to get akeystreamreuse, it is necessary
for theDevAddr parameter to repeat as well. Moreover
this means a continuous series of key exchanges without
any intermediary application frame. Hence the sake of
such an attack may be questioned.

Furthermore it is unclear where the numbers come
from. We may assume that the NS keeps track of 10
DevNonce values, and the attacker uses 11 different
Join Request messages, randomly choosing one at each
try. However the NS unlikely accepts every such mes-
sage since the same message (hence the sameDevNonce

value) is picked after roughly 4 tries. Hence the number
of activations needed to get a reuse of bothDevNonce

andAppNonce values is higher than the provided num-
ber 16,000, as well as the duration of the attack. And the
number of 10 stored values seems to be implementation
specific. Yet we cannot claim this is the genuine purpose
of [24].

Finally this attack is unlikely successful against a NS

implementing version 1.0.2 (the current 1.0 version). In-
deed, according to the specification, the NS must receive
a valid uplink frame protected by the new security pa-
rameters before dropping the current ones and using the
new ones. The attack leads to the computation of the
same session keys two different times. Yet, with high
probability, these keys are fresh (i.e., never used previ-
ously by the NS with a legitimate device) because the
attacker has no control on theAppNonce parameter. This
means that the attacker has to forge a valid uplink frame
if she wants to compel the NS to use these keys. That is
the attacker must forge a valid 32-bit authentication tag
(without the corresponding key). That being said, we are
not aware of the LoRaWAN version analysed in that talk
(1.0.1 or 1.0.2).

Authentication tag forgery The application frames
are protected with a 4-byte authentication tag, hence, ac-
cording to Miller, forgery attempts may be tried mainly
against the NS [30, 29].

Random bit generation Tomasinet al. show also that
it is possible to make the distribution of the random bit
generator output produced by a device (hence the distri-
bution of theDevNonce values) deviate by influencing
on the signal strength [45].

7 Conclusion

The extensive analysis we perform of the security pro-
tocol LoRaWAN 1.0 shows that it suffers from several
weaknesses. We describe precisely how these flaws
can be exploited to carry out attacks, including practi-
cal ones. These attacks lead to a breach in the network
availability, data integrity, and data confidentiality.

The first type of attacks ends up with the device dis-
connection from the network. The second kind allows an
attacker to replay and to decrypt frames, hence to deceive
the NS (or the AS) or the device (which may be an ac-
tuator). We emphasise that the aforementioned attacks,
due to the protocol flaws, do not lean on potential im-
plementation or hardware bugs, and are likely to be suc-
cessful against any equipment implementing LoRaWAN
1.0. Likewise the attacks do not entail a physical access
to the targeted equipment and are independent from the
means used to protect secret values (e.g., using a tamper
resistant module such as a Secure Element).

We present new attacks and, contrary to previous
works (to the best of our knowledge), the attacks we
describe target both types of equipment (device or NS).
Moreover our attacker needs only to act on the air inter-
face (to eavesdrop and send data), but she does not need
to get a physical access to any equipment (in particular
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the device).
In addition we provide practical recommendations al-

lowing to thwart the attacks we have found, while at
the same time being compliant with the specification,
and keeping the interoperability between patched and un-
modified equipment. According to us, the recommended
countermeasures can be implemented in a straightfor-
ward manner.

Furthermore the attacks we describe may allow to ap-
preciate the security properties provided by the upcom-
ing version 1.1 of LoRaWAN, and to bridge the gap if
these properties do not fulfill their intended purpose.

A Exhaustion attack

Generating a parameter (DevNonce, AppNonce) with no
repetition (C3, C4), and detecting replays (C1, C2) are
some countermeasures we propose. Yet, in LoRaWAN,
size does matter. Applying one of these methodswhile
keeping at the same timethe original parameter size (for
compliance reasons) may lead to an attack aiming at
exhausting all possibleDevNonce or AppNonce values,
hence forbidding the NS or the device to start a new ac-
tivation. Therefore this exhaustion attack, targeting the
device or the NS it connects to, may lead to an irrevoca-
ble disconnection of the device.

A.1 Against theDevNonce parameter

Core If the device generatesDevNonce values with no
repetition (C3) or if the NS keeps track of allDevNonce
values it receives (C2), it is possible to disconnect the
device once and for all.

Attack Every time the device sends a Join Request
message, the attacker replies with a “false” Join Ac-
cept message. Hence the device generates a new mes-
sage once again. If countermeasure C3 is applied, all
DevNonce values will be eventually used. If countermea-
sure C2 is applied, the NS will refuse further Join Re-
quest messages once all possibleDevNonce values have
been received, be these values pseudo-random or not.

Numerical sample Let us assume that a key exchange
is done in 5 seconds. If theDevNonce values never re-
peat, the attack targeting the device is achieved in 91
hours.

Let us consider the case when the NS keeps track of
all DevNonce values. If the values are pseudo-random,
the proportion effectively generated by the device, hence
received by the NS afterℓ key exchanges, isp = 1−
exp(− ℓ

216). For this proportion to bep= 99%, the num-

ber of key exchanges must be at leastℓ=−216× ln(1−

p). This corresponds toℓ ≃ 301,804 activations and
more than 17 days to exhaust almost allDevNonce va-
lues.

A.2 Against theAppNonce parameter

Core If the NS generates theAppNonce parameter so
that it never repeats (C4), or if the device keeps track of
all AppNonce values it receives (C1), then it is possible
to disconnect the device once and for all.

Attack Let us consider the first case (C4). The purpose
is to compel the NS to use all possibleAppNonce values.
The NS generates a Join Accept message (hence a new
AppNonce value) only if it receives a valid Join Request
message. Therefore the NS must accept as many Join
Request messages as possibleAppNonce values. Since
|DevNonce| < |AppNonce|, this is possible only if the
NS does not keep track of allDevNonce values it re-
ceives (namely if the NS does not apply C2, which is
likely its behaviour). Then the attacker can use a circu-
lar list of Join Request messages. Such messages can be
collected using the technique described in Section 3.1.1,
and then used in a similar way than the one described in
Section 3.1.2.
Note that if the NS uses the same pool ofAppNonce va-
lues for all the devices, this leads to the definitive discon-
nection of all these devices. In such a case the attack may
be distributed among several “false” devices (controlled
by the attacker; no duty cycle enforced).

Let us consider the second case (C1). The purpose of
this attack is to make the device keep track, hence re-
ceive, all possibleAppNonce values. This means that
the NS has to accept as many Join Request messages as
possibleAppNonce values. Therefore the NS must not
keep track of all theDevNonce values it receives (since
|DevNonce| < |AppNonce|). Namely the NS must not
apply C2. Yet this is not sufficient. Indeed the device ac-
cepts as many Join Accept messages (henceAppNonce

values) as Join Request messages it sends. Therefore if
the device generatesDevNonce values with no repetition,
it limits the number of receivedAppNonce values. Hence
the device must not apply C3. Therefore this attack is
possible if the NS does not apply C2 and the device does
not apply C3 (which is likely their basic behaviour).

Moreover the implementation of this attack implies to
be able to compel the device to send multiples Join Re-
quest messageswhile receivingthe corresponding Join
Accept responses. We have not identified such means
but to be able to influence on the device power supply.
Yet, if the device is switched off, it may lose memory of
the storedAppNonce values, which is orthogonal to the
goal of this attack.
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Numerical sample If the AppNonce values do not re-
peat (C4), they are all produced after 224×5 seconds=
2.66 years (using one device).
If the same pool ofAppNonce values is used by the NS
for all devices, the attack may be distributed among sev-
eral devices controlled by the attacker. If 300 such de-
vices are used in parallel, the attack is achieved in 3 days
approximately.

If the device keeps track of allAppNonce values (C1),
and if the values are pseudo-random,p = 99% values
are received by the device afterℓ = −224× ln(1− p) ≃
77.26×106 activations. This means more than 12 years
to exhaust almost allAppNonce values.
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