
Privacy and Verifiability in Voting Systems:

Methods, Developments and Trends

Hugo Jonkera,∗, Sjouke Mauwa,b, Jun Panga

aUniversity of Luxembourg, Faculty of Sciences, Technology and Communication
6, rue Coudenhove-Kalergi, L-1359 Luxembourg

bUniversity of Luxembourg, Interdisciplinary Centre for Security, Reliability and Trust
4, rue Alphonse Weicker, L-2721 Luxembourg

Abstract

One of the most challenging aspects in computer-supported voting is to combine the
apparently conflicting requirements of privacy and verifiability. On the one hand, privacy
requires that a vote cannot be traced back from the result to a voter, while on the other
hand, verifiability states that a voter can trace the effect of her vote on the result. This
can be addressed using various privacy-enabling cryptographic primitives which also offer
verifiability.

As more and more refined voting systems were proposed, understanding of first pri-
vacy and later verifiability in voting increased, and notions of privacy as well as notions
of verifiability in voting became increasingly more refined. This has culminated in a
variety of verifiable systems that use cryptographic primitives to ensure specific kinds of
privacy. However, the corresponding privacy and verifiability claims are not often veri-
fied independently. When they are investigated, claims have been invalidated sufficiently
often to warrant a cautious approach to them.

The multitude of notions, primitives and proposed solutions that claim to achieve both
privacy and verifiability form an interesting but complex landscape. The purpose of this
paper is to survey this landscape by providing an overview of the methods, developments
and current trends regarding privacy and verifiability in voting systems.

Key words: Privacy, voting systems, receipt-freeness, coercion-resistance, end-to-end
verifiability.

1. Evolution of privacy and verifiability requirements in voting systems

In a seminal paper Chaum proposed a technique to enable anonymous communica-
tion [Cha81]. In a single paragraph in this paper, he remarked on how such anonymous
communications could be leveraged for private electronic voting. This remark triggered
academic interest, which led to a plethora of voting system designs. These systems aimed

∗Corresponding author. Tel: +352 466 644 5483, fax: +352 466 644 35483
Email addresses: hugo.jonker@uni.lu (Hugo Jonker), sjouke.mauw@uni.lu (Sjouke Mauw),

jun.pang@uni.lu (Jun Pang)

Preprint submitted to Computer Science Review September 25, 2013

Cha81

ballot-privacy

indivual
verifiability

BT94
receipt-
freeness

JCJ05 coercion-resistance

SK95
universal

verifiability
Cha04 end-to-end verifiability

Figure 1: Evolution of privacy notions (top) and verifiability notions (bottom) in voting systems.

to achieve ballot-privacy – keeping the ballot’s contents secret – while allowing voters to
verify their vote counted towards the final result.

In order to ensure voter trust, most designs offered traceability of the voter’s vote.
Upon voting, the voter acquires a receipt, which she could use to trace her vote to
the results. Benaloh and Tuinstra showed in [BT94] that such receipts can be used to
nullify vote-privacy, when the voter shows her receipt to another party. They had the
insight that vote-privacy is not optional, but must be enforced by the system. None
of the classical systems that had been proposed up to then satisfied this requirement.
BT94 led to a new direction in voting systems: receipt-free voting systems. These are
systems that do not allow the voter to prove how she voted. Later, Juels, Catalano
and Jakobsson [JCJ05] further refined the notion of privacy by identifying the need for
coercion-resistance. This property extends the notion of receipt-freeness, by requiring
protection against forced abstention, against forced randomised voting and against being
forced to give up voter credentials. The evolution of these privacy notions is sketched in
the top row in Figure 1.

Ensuring correctness of receipt-free and coercion-resistant systems is achieved by com-
plex cryptographic operations. These operations also enable systems to satisfy individual
and universal verifiability. Individual verifiability ensures that a voter can verify that
her vote counts correctly, while universal verifiability (first recognised explicit by Sako
and Kilian [SK95]) ensures that any observer (who may be a voter) can verify that the
result is a correct reflection of the set of cast votes. However, the complexity of the
cryptographic verification process hindered the adoption of theoretical voting systems in
real-world elections. Practical and theoretical developments were not converging. Both
Chaum [Cha04] and Neff recognised this as a problem and sought to address this, with the
former’s work setting a trend. Chaum’s work [Cha04] (“Cha04” in Figure 1) took inspi-
ration from both election practice and theoretical developments and proposed a voting
system which offers a far easier approach (visual cryptography) to verify that the en-
cryption of a vote does indeed contain that vote. Neff [Nef04] used a challenge/response
protocol to achieve the same end. Their works led to a refinement of the notions of ver-
ifiability into cast-as-intended (as above), recorded-as-cast (the voter can verify that the
encryption of the vote was properly stored), and tallied-as-recorded (anyone can verify
that the announced result is correct w.r.t. the set of received votes). Chaum’s and, to a
lesser degree, Neff’s works inspired a shift in focus, from systems focused on achieving
strong privacy notions while being verifiable, to systems that focus on practical verifia-
bility while satisfying strong privacy notions, such as receipt-freeness. Such systems are
called end-to-end verifiable [Uni05] voting systems. The evolution of these verifiability
notions is sketched in the bottom row in Figure 1.

All these developments led to a wide variety of proposed voting systems. However, a

2

current overview that describes these trends accurately, that is, that highlights firstly
how strong notions of privacy were achieved, and later, how verifiability was made
practical, is to the best of our knowledge missing. This survey investigates and clar-
ifies the highlights of the above developments to provide such an overview. To that
end, we distinguish two classes of systems along the lines of the developments sketched
in Figure 1: systems focusing on privacy, and systems focusing on verifiability. We
remark that privacy-oriented systems tend towards theoretical results (e.g., satisfying
receipt-freeness), whereas verifiability-oriented systems additionally focus on practicality
of implementation (e.g., satisfying receipt-freeness without requiring a voter to perform
cryptographic computations). We consider a selection of voting systems, namely those
proposed in recent years that notably offer an innovative approach to privacy and/or
verifiability. We focus on the communication behaviour of each system, that is, which
messages are exchanged by the involved parties. The systems are described in order of
year of publication. The description of a system not only includes a sketch of how its
salient features work and what claims it makes, but also refers to those studies (including
non-security studies) we were aware of at the time of writing. Security breaks found by
these studies are mentioned explicitly. Finally, we focus on democratic elections (e.g.,
voting systems to elect the government). Application areas such as boardroom-style
voting are thus out of the scope of this survey.

Related surveys. In recent years, there have been few in-depth studies of developments in
voting literature. Three notable exceptions are the studies by Sampigethaya et al. [SP05],
by Smith [Smi05b], and by Cha et al. [CA12]. Smith’s study focuses on the cryptographic
blocks used to achieve privacy and verifiability. Cha et al. provide a brief survey of
methods to determine the result of an election given the number of votes per candidate.
Finally, the study by Sampigethaya et al. is closest of these three to our aim. They
classify systems according to whether they hide voter, vote or both. Their study focuses
on the cryptographic computations of the considered system.

In contrast, we set forth to sketch the recent developments and trends in voting
literature, focusing on privacy and verifiability requirements. As such, we selected a
group of papers that (in our view) have proven to be influential in the field, or added a
novel approach towards privacy and/or verifiability. Moreover, in line with the intruder
model due to Dolev and Yao [DY83], we focus on how communication flows and abstract
away from the cryptographic details. The goal of our study is threefold:

(1) To help the reader understand various approaches to achieving privacy and verifi-
ability in voting systems;

(2) To help the reader understand where these approaches originated, and how they
developed further;

(3) To help the reader to make a high-level comparison of the discussed voting systems.

Structure. The survey is organised as follows: we begin with explaining how we view
voting protocols in Section 2. In Sections 3 and 4, we review building blocks that are
commonly used in voting systems to achieve privacy and verifiability, respectively. Next,
voting systems are discussed. We distinguish between systems focused on achieving
privacy goals from systems additionally striving for verifiability. In Section 5, we survey
noteworthy voting systems focused on privacy, describing their operation and listing their

3

claims. This is followed by a survey of verifiability-oriented voting systems in Section 6.
We conclude the paper in Section 7 with trends and developments observed in voting.

2. Terminology and notation

2.1. Terminology

As discussed above, this paper focuses on privacy and verifiability requirements. As
remarked by Chevallier-Mames et al. [CFS+06], absolute privacy (no information leaked)
cannot coexist with verifiability (sufficient information leaked to verify the result). The
goal of voting system design is to find a way to enable as much privacy and verifiability
simultaneously as possible. To this end, several terms for privacy and verifiability have
arisen. In particular, we use the following terms:

Privacy:

• Ballot-privacy (BP): no outside observer can determine for whom a voter voted.

• Receipt-freeness (RF): a voter cannot prove after the election how she voted.

• Coercion-resistance (CR): a voter cannot interact with a coercer during the election
to prove how she is voting.

Note that if a voter cannot prove how she voted, she must have had ballot-privacy
(otherwise the empty proof suffices as such a proof). As such, we will view a claim of
RF or CR as a claim of BP as well.

Verifiability:

• Individual verifiability (IV): a voter can verify that the ballot containing her vote
is in the published set of “all” (as claimed by the system) votes.

• Universal verifiability (UV): anyone can verify that the result corresponds with the
published set of “all” votes.

• End-to-end verifiability: a voter can verify that:

– cast-as-intended (CAI): her choice was correctly denoted on the ballot by the
system,

– recorded-as-cast (RAC): her ballot was received the way she cast it,

– tallied-as-recorded (TAR): her ballot counts as received.

Note that Kremer et al. [KRS10] identify another type of verifiability, eligibility verifia-
bility: anyone can verify that each vote in the published set of “all” votes was cast by
an eligible voter, and anyone can verify that each eligible voter cast at most one vote.
Due to a lack of systems proposed in literature that claim to satisfy this requirement, we
consider this type of verifiability not in scope for the current study.

Since the introduction of the notion of coercion-resistance, efforts have been made
towards formal verification of privacy notions. This work has progressed along two lines.
Firstly, there are efforts to model privacy properties in process algebras, such as in

4

applied π by Kremer and Ryan [KR05] and later Kremer, Ryan and Delaune [DKR06,
DKR09], and in a specifically designed process algebra by Jonker, Mauw and Pang [JMP09b].
Verification using process algebras culminated in the successful automatic verification of
protocols by Backes, Hriţcu and Maffei [BHM08]. Secondly, there are works formal-
ising privacy in logics, including work by Jonker and De Vink [JdV06] and Bräunlich
and Grimm [BG11] in first-order logic, and privacy in epistemic logic by Jonker and
Pieters [JP06] and later Baskar, Ramanujam and Suresh [BRS07].

In addition to privacy and verifiability claims, there are a plethora of other security
requirements for voting systems. For the sake of completeness, we list the claimed security
requirements as well. Please be advised: we use the appellations the authors gave these,
and, unlike for privacy and verifiability, make no attempt to harmonise terminology.

2.2. Notation

Encryption of a message m with key k is denoted as enck (m). This ciphertext can
be decrypted using the decryption key k−1. In the case of symmetric cryptography, the
encryption key k is equal to its inverse k−1. For asymmetric cryptography, we denote
the public key and private key of an agent A as pk (A) and sk(A), respectively.

name

Behavioural description of agent name. Capitalised Name de-
notes a group of agents.

action Execution of action by an agent.

publish m Publish m, so that m is from here on out readable to any
observer.

msg
Sending msg over a normal channel.

msg
Sending msg over a sender-anonymous channel.

msg
Sending msg over an untappable channel.

phase label Synchronised start of phase label.

Figure 2: Legend for the interaction diagrams.

As an aid to comprehension, we provide interaction diagrams [MB01] for most of
the privacy-oriented systems. The legend for these interaction diagrams is shown in
Figure 2. From this legend, we emphasise that there exist a variety of actions, including
the verification of signatures, validity checks, and publication of a message. Precise
communication details concerning publication of a message are hardly ever given. To
avoid suggesting or inadvertently introducting such details, we denote publication by
one action.

5

Note that unless otherwise stated, all agents know their own private key and all other
public keys (that is, key generation/distribution is not part of the diagrams).

3. Privacy building blocks

Several techniques have been introduced that enable electronic voting systems to
provide privacy whilst preserving verifiability. In this and the next section we introduce
some of the concepts that are prevalent in current voting systems. While we categorise
these as privacy building blocks or verifiability building blocks, we stress that many of
them specifically maintain privacy while allowing some form of verification, and can in
fact be leveraged for both privacy and verifiability.

This section discusses building blocks for privacy. The building blocks here are homo-
morphic encryption, re-encryption, blind signatures, zero knowledge proofs, designated
verifier proofs, secret sharing, mixnets, communication channels with privacy properties,
and tamper-resistant hardware. Verifiability building blocks are discussed in the next
session.

3.1. Homomorphic encryption

In a homomorphic cryptosystem, there is a homomorphism between an algebra based
on the plaintext domain and an algebra based on the ciphertext domain. More precisely,
using ⊕ to denote an appropriate operation on plain text messages and ⊗ to denote
an appropriate operation on ciphertext messages, the following equality is the defining
property of homomorphic encryption:

enck(m1)⊗ enck(m2) = enck(m1 ⊕m2).

This property allows two encrypted messages to be combined meaningfully (using
⊗) into one encrypted message without using a key. The actual operations represented
by ⊗ and ⊕ depend on the used cryptographic system. Examples of homomorphic
cryptographic systems include RSA [RSA78] (where both ⊗ and ⊕ are multiplication),
ElGamal [ElG85] (where ⊗ is component-wise multiplication, and ⊕ is multiplication in
the underlying group), and Paillier [Pai99] (where ⊗ is multiplication and ⊕ is addition).
A detailed survey of homomorphic systems is given in [FG07].

Homomorphic encryption can be applied to tally votes using asymmetric cryptog-
raphy. In such a setting, every voter v can encrypt her vote votev with the election
public key pk(C), which yields encpk(C)(votev). Using the homomorphic property of
the encryption system, the authorities can add all votes together without opening the
individual votes. This results in the encrypted tally:

encpk(C)(vote1)⊗ . . .⊗ encpk(C)(voten) = encpk(C)(vote1 ⊕ . . .⊕ voten).

Anyone can verify the calculation of the tally and thus verify that her vote contributes
to the result. However, no one except for the authorities that possess the decryption key
can see for which candidate a particular voter voted. This preserves vote-privacy while
offering verifiability.

There is one caveat with such processing of encrypted votes though: each encrypted
vote must contain precisely one valid candidate. This is to avoid encryptions that contain

6

votes for two candidates, encryptions of a negative number (which translates as a “minus”
vote for a candidate), and other such shenanigans. To ensure such fraudulent encryptions
can be detected, each voter must also submit a proof of validity – a proof that her
encrypted vote contains precisely one valid candidate (see e.g. [CGS97]).

3.2. Re-encryption

Re-encrypting a message means changing the ciphertext, without changing the cor-
responding plaintext. Knowledge of the decryption key is not needed for re-encryption,
though the encryption key must be known. Recall that in symmetric cryptoschemes
these keys are the same, so in any symmetric cryptosystem that allows re-encryption,
the agent performing the re-encryption must possess the decryption key.

Re-encryption is related to probabilistic encryption, in which the ciphertext not only
depends on the plaintext, but also on some random factor. More precisely, if a cryptosys-
tem is not probabilistic, there is no random factor in the ciphertext that can be changed
without changing the plaintext. We use enck,r(m) to denote the probabilistic encryption
of message m with key k and random factor r. A re-encryption of this message results in
enck,r′(m), where r′ is the new random factor (r′ 6= r). The re-encryption with random
factor r of a given ciphertext c is denoted by renck,r(c). A re-encrypted ciphertext is
distinct from the original ciphertext. However, both decrypt to the same plaintext. The
most relevant property of re-encryption is

renck,r′(enck,r(m)) = enck,r′′(m),

where r′′ denotes the random factor of the re-encrypted ciphertext, which depends only
on r and r′. When the encryption key k is clear from the context, we will often write
rencr(c) for renck,r(c).

Examples of cryptographic systems allowing re-encryption include ElGamal [ElG85],
Goldwasser-Micali [GM84], and Paillier [Pai99]. In fact, in any homomorphic cryptosys-
tem which is probabilistic (that is, there are multiple encryptions c for every plaintext
m), one can just homomorphically add encryptions of 0 to any ciphertext to obtain a
different ciphertext without changing the plaintext.

In voting, re-encryption is used to break the link between a voter and her cast vote.
By re-encrypting a cast vote, the vote remains unchanged, while the encrypted message
can no longer be linked to the message sent by the voter while casting her vote.

3.3. Blind signatures

A party can authenticate a message by applying its digital signature to that message.
Assuming an agent a’s signing key sk(a) and the corresponding public verification key
pk (a), we denote the signing of a message m by signsk(a)(m). This signature can be
verified with the operation checksignpk(a), satisfying the following equation:

checksignpk(a)(signsk(a)(m)) = m.

If the keys and message are clear from the context, we will use signature-ok? to
denote the verification of a signature by testing the above equality.

A blind signature [Cha82] is a way for a party to sign a message without knowing
the message. Compare this to a sealed envelope, containing a piece of carbon paper and

7

a message to be signed. The carbon paper will copy anything written on the envelope
to the message, including a signature. Thus, a notary can sign the envelope, while the
secret message is not revealed to him. The envelope (the blind) can later be removed,
revealing a signed message.

We denote a message m blinded with blinding key b by blind b(m). If a blinded
message is signed, the message can be unblinded without removing the signature. For a
message m, signed with agent a’s key sk(a), we have the following:

deblind b(signsk(a)(blind b(m))) = signsk(a)(m).

Blind signatures can be used to ensure that only eligible voters can vote (see Figure 3;
the used notation is explained in Figure 2). A voter v blinds her vote votev using blinding
key b. She signs that and sends her signed, blinded vote to the registrar. The registrar
separates the blinded message and the signature, and verifies that the voter is eligible
and has not yet voted. If so, the registrar signs the blinded vote and sends it back to
the voter. The voter unblinds the received message using b and sends the signed vote to
a counter.

registrar r voter v counter

signsk(v)(blind b(votev))

signsk(R)(blindb(votev))

signsk(R)(votev)

Figure 3: An example of the use of blind signatures.

3.4. Zero knowledge proofs

A zero knowledge proof (ZKP) is a proof of a statement s which reveals nothing about
statement s, except that it is true. An informal example is the following: the prover sets
out to prove to a color-blind friend that two billiard balls have a different color. The
friend takes one ball in each hand, showing the prover which ball is in which hand. Then,
the friend puts the balls behind his back and may or may not switch them. Finally, the
friend shows the balls again, and the prover has to tell whether the balls were switched.

In the example, if the balls are truly indistinguishable, the prover only has a 50%
chance of guessing correctly. Therefore, by repeating this process a few times, the friend
can reduce the chance of the prover guessing correctly as much as he wishes.

Remark that in the example, a zero knowledge proof deals with some public knowledge
and some private knowledge. In the example, the order of the balls in the beginning is
public knowledge, while the knowledge of whether they switched hand is private. In
general, a zero knowledge proof proves a boolean statement over publicly and privately
known arguments, without revealing the private knowledge.

A common type of zero knowledge proofs is based on a commit-challenge-response
cycle: the prover commits to a certain solution based on his secret knowledge, the verifier
challenges the prover, and the prover reveals a part of the commit, showing it is consistent
with the prover’s claim. With repeated execution the verifier becomes more and more
assured that the claim is true. Zero knowledge proofs based on such interactions are called

8

interactive. Fiat and Shamir [FS86] proposed a method to transform such interactive
proofs into non-interactive zero knowledge proofs. This relies on the prover generating a
(to him) unpredictable challenge based on his commitment and public knowledge, such
as the hash of the commitment. Since this is unpredictable, the prover cannot tweak the
commitment to give him an advantage.

Zero knowledge proofs are often used in voting to prove to a voter how her vote is
being processed by the system. This enables a voter to verify that her vote is being
handled correctly, without her being able to prove to an outsider how she voted. An
example of this is proving a certain ciphertext is indeed a correct (re-)encryption of a
message, without revealing the encryption key. This is done in mixnets (see Section 3.7).

3.5. Designated verifier proofs

Regular non-interactive proofs are transferable, i.e., a voter who possesses a proof of
a boolean statement can transfer that proof to anyone. This is not always desirable, for
example a voter selling a proof of how she voted. Suppose prover P wants to prove the
truth of statement s to verifier V , but doesn’t want V to be able to prove s to anyone
else. What P can do, is prove the following to V :

“I am V OR s.”

As the verifier knows that the prover is not V , the statement s must be true. As “I am
V ” holds true for the verifier, the verifier can prove “I am V OR x.” for any x (by proving
that the verifier is V). Hence, V cannot use the above proof to convince anyone else of
statement s. Such a non-transferable proof is called a designated verifier proof [JSI96].

3.6. Secret sharing

Secure operation of a system can often only be guaranteed under the assumption
that one of the agents is trusted. An authority in a voting system is an example of such
a trusted agent. However, access to information is sometimes deemed too sensitive to
be left to one agent. Compromising a single agent then would suffice for an attacker
to break the system’s security. To avoid this, cryptographic mechanisms have been
developed that allow the sharing of a secret by a number of authorities. This is done in
such a way that only by putting their shares together, the authorities can recover the
secret [Sha79, Bla79].

A simple way to share a secret is to encode the secret into a bitstring, and choose the
shares such that the exclusive or of all shares produces the secret. While this works, this
requires each agent holding a share to be honest about their share. Failing one share,
the secret becomes unrecoverable.

To counter this, more complex secret sharing schemes have been proposed. One
method works by interpolation of polynomials (see Figure 4). To share a secret over n
parties, the secret is encoded as a number m. Then, a random polynomial of degree t is
chosen that covers the point (0,m) (in Figure 4: −0.2x3 +0.5x2 +0.7x+1). Each share
is then given by a random point on the polynomial. The example shows a polynomial of
degree three. There are four shares, since a polynomial of degree three is fully determined
by four points.

To avoid a block by any one share holder, a random polynomial of lower degree can
be used (e.g. of degree 2) to share the secret. In this case, only three of the four shares

9

s0 s1 s2 s3

m
bC

bC

bC

bC

bC

Figure 4: Secret m shared over s0, s1, s2 and s3 using polynomial −0.2x3 + 0.5x2 + 0.7x+ 1.

are needed to recover the secret. This is called threshold cryptography. Often, a secret
sharing scheme is referred to as (t, n) meaning that t (for threshold) shares are needed,
and that there are n shares in total.

Secret sharing can be used in voting to distribute a decryption key. Suppose all voters
encrypt their votes with the same public key. The corresponding private key is then split
over all authorities, to ensure that only the authorities acting in concert can decrypt the
votes. In some cryptosystems such as ElGamal, it is even possible to decrypt a ciphertext
without reconstructing the key – see e.g. [CGS97].

Example of decryption without reconstructing the key. Encryption in ElGamal works
as follows. The public key is given by raising the generator g of a given group to the
private key k: gk. Encrypting message m results in (gr, (gk)rm), where r is chosen by
the encrypting agent. To decrypt, one raises the first element gr to the power k, which
results in the term grk. Then, the second element (gk)rm is divided by grk, resulting
in m. Note that the private key k is not needed for decryption. Decryption only requires
grk, which is derived from k.

A joint decryption of (gr, (gk)rm) without reconstructing the key transpires as follows.
Assume the private key k is split into n shares s1, . . . , sn, such that gk = gs1+s2+···+sn.
Each shareholder i raises gr to his share and sends (gr)si to the others. Now, the share-
holders can compute Πi(g

r)si = (gr)k, which is the term needed to decrypt (gr, (gk)rm).
In this fashion, the message can be recovered without constructing k.

3.7. Mixnets

A simple way to achieve privacy of one’s vote is to shuffle it with a number of votes
from other voters. This can be achieved by the use of mixes [Cha81]. A mix shuffles its
input in such a way that no element of the output can be linked back to an element in the
input. To ensure that the link between the input list and the output list is not trivially
retrieved, the mix needs to change the appearance of every message without changing
the meaning of any message.

There are basically two ways in which the shuffling can be implemented, viz. using
re-encryption mixes and using decryption mixes. A re-encryption mix works as follows.
To shuffle a list, a mix receives encrypted elements, re-encrypts them, and randomises

10

Mix 1 Mix 2 Mix 3

✐w

✐x

✐y

✐z

❍❍❥

❳❳③

✘✘✿

✟✟✯

✟✟✯

✘✘✿

❳❳③

❍❍❥

✐x

✐w

✐y

✐z

❍❍❥

❳❳③

✘✘✿

✟✟✯

✟✟✯

✘✘✿

❳❳③

❍❍❥

✐y

✐x

✐w

✐z

❍❍❥

❳❳③

✘✘✿

✟✟✯

✟✟✯

✘✘✿

❳❳③

❍❍❥

✐z

✐w

✐y

✐x

Figure 5: An example of a mixnet in operation (adapted from [HS00]).

the order in which the elements are output. In order to ensure that no single entity
can recover the ordering, multiple mixes can be chained to form a mixnet. The final
output elements then can only be linked to their corresponding input elements if all
mixes collude.

When using decryption mixes, the initial input consists of several layers of encryption,
each layer specifically targeted at one mix. On its way through the mixnet, the original
message changes its shape because each mix peels off one layer of encryption. This
approach is used in onion routing [SGR97], which provides anonymous routing.

Figure 5 sketches the working of a mixnet. The first mix takes an input list of
messages (here, w, x, y, z) and outputs a shuffled list (x,w, y, z) in such a way that the
individual messages cannot be linked to its input (denoted in Figure 5 by rotation of the
messages). The output of the first mix becomes the input of the second mix, which in
turn provides the input to the last mix. The output of the last mix is not linkable to the
input of the first mix, nor to any of the intermediate stages.

To prove that the output is indeed a permutation of the input, the mix can use
zero-knowledge proofs or designated verifier proofs. A pair of mixes has another option
available, called randomised partial checking [JJR02]: they shuffle and publish their
results. An independent party then selects for each message in the intermediate set (i.e.,
the output of the first mix, which is the input of the second mix) whether the link to the
input or the link to the final output is revealed. A variant of this is shown in Figure 25.
As the mixes do not know in advance which link they must reveal, the likelihood of being
caught should they mix fraudulently is substantial. At the same time, input messages
cannot be linked to the output messages as only one of the two links necessary for linking
is revealed for any message.

Mixnets are used to provide anonymity in various ways in voting systems. One
approach is to use mixnets to construct an anonymous channel (a communication channel
that hides who put a message on the channel). Another use is to shuffle the list of
candidates on a specific ballot. The order of the candidate is then revealed to the voter
(using a designated verifier proof) and correctness of the shuffle is proven publicly (using
zero knowledge proofs). A third option, proposed in [Nef01], is to mix voter credentials
together, such that the voters are no longer individually identifiable, but only as a group.

11

3.8. Anonymous and untappable communication channels

To ensure privacy, many voting systems rely on communication channels with special
properties: anonymous channels and untappable channels. Sender-anonymous channels
hide the sender of a message, and can be implemented using a mixnet as first suggested by
Chaum [Cha81]. An untappable channel is a channel where no party except sender and
receiver can learn anything about the communication, including whether communication
occurred or not. One approach to achieve this, is to offer multiple channels, where the
sender picks one at random. Under the assumption that an adversary cannot tap all
channels simultaneously, the adversary cannot be certain that none of the channels was
used. Nevertheless, an untappable channel remains a very strong physical assumption.
Replacing this with less strict assumptions (such as by a threshold homomorphic deniable
encryption scheme as suggested by [CGS97]) remains currently an open problem.

3.9. Tamper-resistant hardware

Another approach to achieving privacy is to rely on special hardware, designed so
that it is very difficult to modify or inspect the internal functioning of the hardware
(tamper-resistant). An everyday example of this is a smart card. Given the assumption
of tamper-resistance, the hardware can be viewed as a trusted computing base whose
computations can neither be inspected nor disturbed. Voting systems can leverage this
to re-encrypt a vote, ensuring that the voter cannot prove how she voted by decrypting
her vote.

3.10. Security implications of cryptographic primitives

The cryptographic primitives discussed above depend on specific assumptions and
may introduce their own limitations. For example, homomorphic encryption, re-en-
cryption (and thus re-encryption mixnets) and blind signatures each allow a ciphertext
to be altered in a meaningful way without access to the decryption key. Cryptographic
systems with this property are called malleable [DDN00]. Malleability of the crypto-
graphic system can be leveraged for privacy, because ciphertext(s) can be meaningfully
changed (e.g., adding two ciphertexts together) by someone who does not know the
plaintext(s). However, a malleable ciphertext can be changed in a meaningful way by an
attacker as well. Therefore, such cryptosystems must be used with care and awareness
of their limitations and vulnerabilities.

Moreover, most of the cryptographic primitives are computationally secure. This
means that security relies on a mathematical problem (such as factorisation, or dis-
crete log) believed to be intractable to solve. In contrast, a primitive that cannot be
broken even when the adversary has unlimited computing power is called information-
theoretically secure.

Finally, remark that a deterministic cryptosystem – that is, a cryptosystem such that
for every plaintext p there is precisely one ciphertext c – will trivially reveal who voted
for whom. The attacker simply encrypts each possible vote, and so acquires a mapping
from each candidate to his ciphertext. The attacker can then use this mapping to decrypt
any ciphertext. Therefore, any cryptosystem used in voting must be non-deterministic.

12

4. Building blocks for verifiability

The building blocks for verifiability discussed below are secure bulletin boards, bal-
lot auditing (cast-or-audit, continuous auditing, Markpledge-style auditing), plaintext
equivalence tests, and commitment schemes.

4.1. Bulletin boards

Many voting systems from literature assume the use of secure bulletin boards. Typ-
ically, this is used to provide a verifiable log of communications. To this end, a secure
bulletin board provides an append-only, publicly available communication medium with
memory. The basic properties (see e.g. [JP11]) are:

• information cannot be removed or modified, only added to the board;

• anyone may read the board,

• the board provides a consistent view to everyone.

Most systems discussed in this survey state that there is a bulletin board, but not how to
communicate with it. To avoid suggesting any specific type of interaction, in the inter-
action diagrams the act of publishing is denoted by an action “publish ” (cf. Figure 2).

4.2. Ballot auditing and ballot verification

To preserve privacy, many systems opt to record a voter’s choice in an encrypted way.
As Chaum [Cha04] pointed out, there should be some mechanism to ensure the voter
that the encryption indeed contains the voter’s choice. This can be achieved with cryp-
tographic proofs (e.g., visual cryptography as Chaum proposed, zero-knowledge proofs
or designated-verifier proofs), but such proofs cannot convince voters who are not cryp-
tographic experts. In literature, three alternative approaches have been proposed: veri-
fication by means of short strings (Markpledge), continuous auditing (Prêt à Voter), and
cast-or-audit (Benaloh challenges).

Verification using short strings. Neff [Nef01] proposed the Markpledge system (Sec-
tion 6.5), that uses short strings to enable voters to verify that the ballot posted publicly
was the one they saw in the voting booth. While full verification relies on helper organi-
sations, this approach does put some power in the hands of the voter as follows: the voter
makes her choice for candidate A. Next, the voting system prints a ballot that contains
encryptions for all candidates. The machine prints a commitment to the encryption of
the chosen candidate. The voter inserts her challenge (a short string), and the machine
prints the challenge and the answer for the chosen candidate. Finally, the machine prints
a cryptographic proof that the printed receipt contains precisely one “yes” vote. (To
preserve privacy, the machine also computes fake commitments matching the challenge
and prints fake answers for the other candidates.)

As the challenge string is short, the voter can easily remember it. This lets the
voter easily verify that the challenge printed is indeed the one she put in. In addition,
she can take the printed receipt to a helper organisation, who verifies the cryptographic
details (there is only one “yes” vote, and all the answers match the commitments and
the challenge).

13

Continuous auditing (Prêt à Voter). Ryan [Rya05] suggested to have continuous audits
of the ballot encryptions in the Prêt à Voter (Section 6.6) system. In Prêt à Voter , the
authorities prepare ballots in which the candidate order is randomised, and encrypted.
To be sure that the order that is claimed is indeed the order that is encrypted, voters can
submit a blank ballot and have that ballot’s order decrypted, spoiling the ballot. After
repeated testing, the voter is convinced that the candidate order shown on the form is
the one encrypted. At this point, the voter selects a random blank ballot, marks her
choice and casts her vote.

Cast-and-audit (Benaloh challenges). Benolah [Ben06, Ben07] elaborated this auditing
approach to a system where the voter marks her choice, the system prepares the ballot,
and then the voter is presented with the option to either decrypt the prepared ballot, or
to cast the prepared ballot.

The paper coming out of the voting device can now act either as a ballot or as an
auditing tool. Since the voting device is irrevocably committed to a particular encryption,
and as the device cannot predict whether the voter will choose to cast or choose to audit,
any cheating by the voting device has a 50% chance of being audited (and, thus, detected).
By repeating the audit as often as desired, the voter can test the machine as often as
desired and thus increase her confidence in the correctness of the machine’s operation.

4.3. Plaintext equivalence tests

A plaintext equivalence test (PET) is a test of two ciphertexts, that results in true if
the two respective plaintexts are equal, without revealing anything else. In other words,

PET ({ma}k, {mb}k) ≡ ma = mb.

Such tests are used in various systems. For example, the JCJ05 system uses such tests to
identify and remove duplicate votes from the bulletin board without revealing anything
about the duplicated votes.

4.4. Encoding candidates

To ease the tallying process, candidates can be encoded as numbers, while the operator
⊕ represents addition. If we assume, for instance, 3 candidates and 9 voters, then a vote
for the first candidate is represented by 1, a vote for the second candidate by 10, and
a vote for the third candidate by 100. The addition of nine such votes then results in
a number with at most 3 digits that represents the outcome of the voting process. For
instance, if the sum of the votes equals 315, then there were 5 votes for the first candidate,
1 for the second and 3 for the third. The generalisation of this encoding to more voters
requires the numbers to be represented in a different base. Such an encoding is due to
Baudron et al. [BFP+01], and can be combined with homomorphic tallying to enable
anyone to verify correctness of the result.

Note that if the encoded votes are encrypted, care must be taken to ensure only
correctly encoded votes are accepted (see the remark on processing encrypted votes in
Section 3.1).

14

4.5. Commitment schemes

In proofs, it is often necessary that the prover first commits to a certain statement
m (e.g., the candidate order) and later reveals that commitment. Given a commitment
key c, which is normally a random string chosen by the prover, the main property of a
commitment scheme is:

decommitc(commitc(m)) = m.

Whenever the commitment key c is not relevant for understanding the protocols, we
will leave it out. Another property of commitment schemes is that the prover cannot
deny this commitment later, that is, the prover cannot find m′, c′ such that

decommitc′(commitc(m)) = m′.

This property can be achieved using regular encryption to commit, and afterwards reveal-
ing the decryption key. However, encryption schemes are by nature only computationally
hiding: given enough computational resources, the decryption key will be found. Com-
mitment schemes (e.g., [Ped91]) can be “perfectly” hiding: no amount of computation
can decide which value was committed to. This can be achieved, for example, because
the commitment can be opened in any way:

∀m′ ∃c′ decommitc′(commitc(m)) = m′,

but to find such a m′, c′ pair is computationally hard. Thus, while the prover cannot
find such an alternative pair in time to lie about his commitment, anyone trying to break
the commitment later will find that the commitment could have been to any message.
Several voting systems (e.g., [CFSY96, MN06, MN07]) let the voter cast commitments
instead of encryptions. For these systems, even if the commitments are made public and
linked to the casting voter, no one can ever find out how a voter voted.

Trapdoor commitments. An interesting variety of commitment schemes are trapdoor
commitment schemes. In these schemes, knowledge of a trapdoor does allow the com-
mitter to open the commit in any way. To assign her vote to a candidate, the voter sends
the decommit value c privately to the election authorities. Using this decommit value,
the commit will open to the chosen candidate. But for every other candidate m′, the
voter can compute an appropriate c′ such that the commit can be opened as if it is a
vote for m′. In this way, the commits to candidates can be made public, without the
voter being able to prove which candidate she committed to. This approach was used in
a.o. [Oka96, Oka97].

5. Survey of voting systems focusing on privacy

This section surveys the class of voting systems focusing on privacy, with a particular
focus on receipt-free and coercion-resistant systems. In line with the goal of this paper,
this section focuses on the properties of and relations between the most noteworthy,
interesting, and innovative systems. As is common, systems built upon the ideas and
concepts of their predecessors. In Figure 6, we sketch the stronger of such influences
– tracing those ancestor systems whose ideas contributed significantly to a particular
system. There is one exception: to maintain legibility, we did not trace the influences of
Chaum’s initial paper (“Cha81” in the figure).

15

JCJ05 Civitas08

SK95 HS00 BFP01

BT94 LK00 LK02 LBD03 ALBD04

Cha81 NR94 CGS97 MN06 MN07

MBC01

FOO92 Oka96 Oka97

Figure 6: Influences between notable voting systems focussed on privacy.

5.1. Overview

There is a vast body of voting literature concerned with ballot-privacy. Most works
published after the seminal work of Benaloh and Tuinstra (BT94) address their stronger
privacy requirements. The systems are discussed in order of publication year.

Naturally, design of receipt-free systems is influenced by their (non-receipt-free) prede-
cessors. Below we discuss two influential predecessor systems: the FOO92 system [FOO92]
and the CGS97 system [CGS97]. The FOO92 system was designed with the intent of
actual use. It has been used as the basis for implementation of two voting systems (Sen-
sus [CC97] and Evox [Her97]). CGS97 was designed with the intent of being as efficient
as possible. As such, CGS97 has been used as a basis by various theoretical systems
(including HS00, LK00, MBC01) that aim to incorporate receipt-freeness.

But the main focus is on receipt-free systems. We discuss the seminal work by Benaloh
and Tuinstra (BT94) [BT94]. This is followed by an alternative proposal by Niemi and
Renvall (NR94) [NR94], which appeared around the same time and addressed the same
concerns. From then on, research into voting became quite prolific, and we highlight the
influential receipt-free systems that followed their work: Oka96/Oka97, HS00, MBC01,
BFP01. In addition, to illustrate a typical development cycle, we highlight the sequence
of systems LK00, LK02, LBD03, ALBD04.

After discussing receipt-freeness, we outline JCJ05, the work of Juels, Catalano and
Jakobsson [JCJ05]. Their introduction of the notion of coercion-resistance has led to
a new direction in voting. Then we examine the MN06 and MN07 systems by Moran
and Naor [MN06, MN07] on achieving unconditional privacy – at the cost of having
computational (instead of unconditional) verifiability. Finally, we discuss Civitas, an
implementation of JCJ05 with some modifications. We end our survey of privacy-focused
systems here, as we find that the focus of the community began shifting. The community
is steadily moving towards combining existing understanding of privacy with practical
verifiability, and away from further refining privacy.

5.2. FOO92: anonymity using blind signatures

The FOO92 system [FOO92] by Fujioka, Okamoto and Ohta aims to combine privacy
with verifiability. To achieve this, it uses blind signatures as follows (see Figure 7). The
voter encrypts her vote (using a commitment scheme), blinds that encryption and sends
the blinded, encrypted vote to the registrar (the first message of Figure 7). The registrar
verifies that the voter is an eligible voter and that she hasn’t voted yet. If so, the
registrar signs the blinded, encrypted vote and sends the signed version to the voter (2nd

message). The voter then unblinds this message and obtains an encrypted vote, signed
by the registrar. She sends this via an anonymous channel to the counter (3rd message).

16

registrar r voter v counter

phase vote registration

signv(blind b(enckv(votev)))

eligible(v)?
not-voted(v)?
signature-ok?

signr(blind b(enckv(votev)))

signature-ok?
unblind

phase vote casting

publish eligible-voters

signr(enckv(votev))

signature-ok?
add-vote-to-list

phase announce encrypted votes

publish list-of-votes

phase send keys

kv

Figure 7: The FOO92 system.

Then, after the voting period has ended, the counter publishes the list of all signed,
encrypted votes that he received. After publication, the voter sends the decryption key
for her vote to the counter (the last message in Figure 7). This allows the counter to
open the vote and count the votes.

FOO92 serves as the basis for two implemented voting systems: Sensus [CC97] and
Evox [Her97]. Evox implements the anonymous channel as a trusted third party; Sensus
omits the anonymous channel completely. As such, both implementations deviate from
the FOO92 specification in a manner that negatively impacts voter-privacy.

The FOO92 system has some peculiarities avoided in later voting systems. For exam-
ple, all voters must take action twice, once to cast their votes and once to send the used
encryption key. Furthermore, the system predates the introduction of stronger privacy
requirements. Consequently, it is not receipt-free: the decryption key of a particular
vote constitutes sufficient receipt [JdV06]. As such, the FOO92 system is not considered
secure, even though it may satisfy all its original security goals.

17

Claims. FOO92 claims ballot-privacy (BP) and an early form of universal verifiability
(UV). Moreover, it makes the following additional security claims: completeness (all votes
counted correctly), soundness (malformed votes cannot change the result), no double
voting, eligibility, and fairness.

Studies. Privacy of the FOO92 system is studied in a.o. [KR05, MVdV07, JdV06, BRS07],
fairness in a.o. [KR05, BRS07, TMT+08], eligibility in a.o. [KR05, TMT+08], and veri-
fiability of FOO92 is studied in a.o. [BRS07, TMT+08, KRS10].

5.3. BT94: introducing receipt-free voting

In their landmark paper, Benaloh and Tuinstra [BT94] described an attack on vote-
privacy, apparently used in Italy. In certain election systems used for multiple parallel
elections in Italy, voters could list their votes in any order. Knowing this, and given
that the number of possible permutations is far greater than the number of voters, an
attacker can assign specific permutations of votes a priori. This permutation then acts
as a voter’s “signature”. If a voter’s signature is not in the set of cast votes, the voter
deviated from her assigned voting strategy. If the signature is present, then the voter
complied with her assigned voting strategy.

The above example illustrates two important things. First, it exemplifies that if the
voter can somehow undo the privacy of her vote, she is at risk of being coerced. Secondly,
it also shows that any input of the voter may allow her to lift her privacy.

Benaloh and Tuinstra devised a way around this problem. Their solution is con-
strained to voting for either 0 or 1. The solution relies on a “doubly” homomorphic
randomised cryptosystem, that is, an encryption system that supports two homomor-
phic operations: ciphertext operations ⊗ and ⊘ with plaintext equivalent operations +
and −, respectively. Moreover, this cryptosystem must be able to generate proofs of
decryption.

The central idea is to use an interactive challenge-response protocol, where only the
voter knows the commitment (in Figure 8, the claimed values of the decryptions of ai).
As such, only the voter is convinced. More specifically, the voting authority publishes a
series of pairs (ai, bi), 0 ≤ i ≤ N , containing an encrypted 0 and an encrypted 1 in random
order. The authority then privately commits to the decryption of the published pairs.
Next, an independent and trustworthy random source (“beacon” in the figure) generates
the challenge c. The authority responds to the challenge (see below), after which the
voter knows which encryption contains her preference. She publicly announces which
encryption (either a0 or b0) she prefers. Finally, to determine the result, the authority
sums up all encrypted votes using the ⊕ homomorphic encryption, and decrypts the
result.

The authority responds as follows: If the challenge bit ci = 0, the authority shows that
(ai, bi) is decrypted as either (0, 1) or as (1, 0). Conversely, if the challenge bit ci = 1, the
authority proves it knows which value is which in (a0, b0), by homomorphically combining
the components with those of (ai, bi) into one pair such that one pair is (enc(0), enc(0)).
Thus, the authority proves both that (in case ci = 1) the pair (a0, b0) contains the same
plaintext (though perhaps differently ordered) as the other pairs, and that (in case ci = 0)
the other pairs consist of an encrypted 0 and an encrypted 1. Therefore, (a0, b0) must
also consist of an encrypted 0 and an encrypted 1. Moreover, the voter knows which is
which and can thus select her preference and publicly announce it.

18

authority voter v beacon

(ai, bi) := shuffle(enc(0), enc(1))
publish (ai, bi)

for i := 0 to N

dec(ai), 0 ≤ i ≤ N

phase generate challenge

Generate bits ci (1 ≤ i ≤ N)
publish c1, . . . , cN

phase prove correctness

if ci = 0 then
publish (dec(ai), dec(bi))
publish correctness proof

else
if dec(ai) = dec(a0) then

publish (dec(ai⊘a0), dec(bi⊘b0))
else

publish (dec(bi⊘a0), dec(ai⊘b0))
fi
publish correctness proof

fi

for i := 1 to N

phase announce vote

publish select(a0, b0)

Figure 8: Vote casting in BT94

In addition to requiring a cryptographic system with very specific properties, the
BT94 system relies on the existence of a voting booth, and a private channel. While
cryptographic systems satisfying the particular requirements exist (e.g. [Ben94]), Benaloh
and Tuinstra left it unclear how to satisfy these latter two assumptions. In addition, their
system can only handle a maximum of two candidates. Schemes following BT94 sought
to address these shortcomings, as described below.

Claims. BT94 claims receipt-freeness (RF), and does not explicitly claim a verifiability
property. In addition, it claims “correctness of result”.

Studies. Hirt and Sako [HS00] identified how to generate a receipt in the multi-candidate
variant of BT94. Jonker et al. [JdV06] analysed privacy of the two-candidate variant.
Fousse et al. [FLA11] discovered that in Benaloh’s homomorphic encryption scheme [Ben94]

19

two different plaintexts are sometimes mapped to the same ciphertext. They proposed a
fix which extends to BT94.

5.4. NR94: unlinkable receipts

Around the same time, Niemi and Renvall [NR94] independently identified the threat
of vote buying as well. They also noted that all existing systems gave the voter a token,
which is made public upon counting. Their solution was to adapt this token, so that the
voter cannot prove that it is hers. The (multi-party) computations done for this occur
inside a voting booth, which keeps the voter completely private. The token allows a
voter to check if her vote is part of the public set of received votes (ensuring individual
verifiability). Furthermore, the correctness of the count can be publicly verified (ensuring
universal verifiability).

As in the receipt mentioned for FOO92 [JdV06], a voter can predict a random value
that will appear on the bulletin board. However, this is not a receipt as the voter may
generate fake tokens and thus cast fake votes, which are indistinguishable from real votes.
(Note the similarity between this approach to receipt-freeness and the ideas to ensure
coercion-resistance in JCJ05.)

The computations needed do not scale well with respect to false votes, something
which Niemi and Renvall already noted. Furthermore, the system requires a strict
assumption (a voting booth). Although their proposal was influential for its ideas
(like [BT94]), the mechanics they proposed have been relegated to the fringes of vot-
ing research.

Claims. NR94 claims receipt-freeness (RF), and does not explicitly claim a verifiability
property.

5.5. Oka96, Oka97: receipt-free blind signatures

Okamoto proposed an adaption of FOO92 to achieve receipt-freeness [Oka96] (see
Figure 9). The main differences with FOO92 (as depicted in Figure 7) are: the direct
and anonymous publishing (by voters) on the bulletin board (“anon-publish” in Fig-
ure 9), the use of anonymous untappable channels to the authorities, and the use of a
trapdoor commitment scheme to encrypt the votes (denoted as commitkv,n in Figure 9).
Knowledge of the trapdoor (r in Figure 9) allows an encryption to be opened in any way
(i.e. for any candidate). Due to this, the encrypted vote does not constitute a receipt.

However, Okamoto noted a flaw in the system: the trapdoor is voter-generated (see
also [MBC01]). An intruder can force a voter to use an intruder-generated trapdoor.
Then, the voter can still encrypt her vote, but she can only open this encryption in
one way. In [Oka97], Okamoto proposed three variations to address this flaw. The first
uses secret sharing to break up trapdoor r into shares for every counter. The second
system generalises the secret sharing to a threshold secret sharing scheme. The third
uses a “voting booth” (here, a two-way untappable channel), which the voter can use
anonymously. The voter then proves via the voting booth she knows r, thus preventing
the attack on Oka96. We refer to the three systems collectively as Oka97.

Claims. Both of the Oka96 and Oka97 systems claim receipt-freeness. Oka96 does not
explicitly claim verifiability properties, but does additionally claim fairness and privacy.
Oka97 claims that blind signature schemes with a public bulletin board inherently satisfy
both individual and universal verifiability.

20

voter v counter

anon-publish signr(commitkv,n(votev))

(votev, kv, commitkv,n(votev))

signature-ok?
add-vote-to-list

phase announce encrypted votes

publish list-of-votes
publish proof

Figure 9: The Oka96 vote casting phase (improving FOO92).

Studies. Privacy of Oka97 was studied in a.o. [KT09]. Delaune et al. [DKR09] gave
a formal analysis of Oka96, finding receipt-freeness satisfied and coercion-resistance
violated, confirming Okamoto’s own findings [Oka97]. Dreier et al. have similar re-
sults [DLL11, DLL12]. Juels et al. [JCJ05] remarked that Oka97 achieves resistance to
forced abstention, by verifying eligibility only in private – which carries its own problems,
according to Juels et al.

5.6. CGS97: optimally efficient voting

The system proposed by Cramer, Gennaro and Schoenmakers [CGS97] aims to be op-
timally efficient for a multi-authority setting. This work builds on efforts by Cramer and
others [CFSY96] on improving efficiency in a multi-authority setting. A multi-authority
setting is desirable, as it reduces the trust assumption required for each individual au-
thority. In their system, a voter publishes a single encrypted vote plus a proof that the
published message contains a valid vote. The system is a homomorphic (ElGamal) voting
system, it sums all encrypted votes and then uses joint decryption to decrypt the sum.
Cramer et al. noted that proofs of validity of ciphertexts (as discussed in Section 3.1) can
be made non-interactive using the Fiat-Shamir technique [FS86]. They remark that in
this case, care should then be taken to ensure that the constructed challenges are voter-
specific (to avoid duplications of challenges). The system is sketched in Figure 10, where
pk (C) denotes the public key shared by the counters. Remark that all communication
happens via the bulletin board. In particular, the jointly-decrypt-sums action is run via
the bulletin board, and leaves any observer able to verify correctness of the announced
tally.

Cramer et al. are aware that their system is not receipt-free. They stated that this can
be achieved using special channels, which in their view could be replaced with tamper-
resistant hardware. They raised the idea of receipt-freeness without untappable channels,
similar to incoercible multi-party computation without untappable channels. However,

21

voter v counter-1 counter-2

phase vote casting

a := encpk(C)(votev)

publish a, validity-proof (a)

phase validation

has-valid-vote(a)?
not-voted(v)?
add-vote-to-sum-1

has-valid-vote(a)?
not-voted(v)?
add-vote-to-sum-2

phase announce

jointly-decrypt-sums

Figure 10: The CGS97 system with two counters.

Hirt and Sako [HS00] pointed out that in the specific multi-party example cited, partic-
ipants can prove specific behaviour.

The CGS97 system reduced the communication and computational load for voting
significantly, in comparison to previous efforts. In addition, the ideas set forth by this
system have been influential, leading to various adaptations to achieve receipt-freeness.

Claims. CGS97 claims universal verifiability (UV) and and ballot-privacy (BP). In ad-
dition, it claims the following other security claims: robustness and prevention of vote
duplication.

5.7. HS00: homomorphic tallying for randomised candidate lists

Hirt and Sako [HS00] set out to further reduce overhead and enable less strict physical
assumptions. They cast a critical eye on previous work, showing a receipt in the multi-
authority version of BT94, noting the processing load of SK95 and identifying the use of
anonymous, secret communication channels in Oka97 as prohibitive towards adaption.

Hirt and Sako proposed a generic construction for introducing receipt-freeness in
voting systems based on homomorphic cryptography. It reduces the strong assumptions
from earlier works, but still requires an untappable channel from voting authorities to
voters. Hirt and Sako proposed to randomise the candidate list, like BT94 and SK95.
The HS00 system uses a mixnet to construct a randomised list of candidates. A zero
knowledge proof of correctness of the mix is published, and a designated verifier proof
revealing how the candidate list was mixed is given to the voter. The voter derives
which entry in a shuffled, encrypted list represents her choice. This process greatly
resembles vote casting in SK95 (Figure 15). The only exception is the last message.
Instead of sending her vote over an anonymous channel, the voter announces it publicly.
The counters take all published votes, homomorphically sum them together and jointly

22

voter v mixer-1 mixer-2

publish votev

add-vote-to-sum-1 add-vote-to-sum-2

jointly-decrypt-sums

Figure 11: The HS00 vote casting phase (improving upon SK95).

decrypt the result, without reconstructing the decryption key. The vote casting phase is
depicted in Figure 11. Note that all communications occur via the bulletin board.

Like [SK95], the used designated verifier proofs require possession of a private key.
Hirt and Sako provided a protocol in which a verifier proves she possesses the private
key. This ensures non-transferability of the proof.

Hirt and Sako applied their construction to CGS97. The lack of receipt-freeness
in CGS97 originates from the fact that the voter creates and posts her vote on a public
channel. This derivative consists of the basic construction by Hirt and Sako, and borrows
the cryptographic scheme and the encoding of votes from CGS97. Consequently, the
resulting system more closely resembles SK95 (as depicted in Figure 15) than CGS97 (as
shown in Figure 10).

Claims. HS00 claims receipt-freeness (RF) and a threshold version of ballot privacy (any
group with less than t colluding authorities cannot break privacy), and individual and
universal verifiability (IV, UV). In addition, it claims correctness of tally. The authors
also claim that as long as the voter knows of a non-colluding authority, the voter is even
free from coercion.

5.8. LK00: third-party re-encryption of votes

Lee and Kim [LK00] also introduced receipt-freeness in CGS97. Unlike HS00, Lee
and Kim did not aim to provide a generic construction for receipt-freeness, but seek to
incorporate receipt-freeness into CGS97. Their approach is to ensure that the receipt
present in CGS97 (the voter’s vote) can no longer act as a receipt. They introduced a
trusted third party, an honest verifier, that cooperates with the voter to construct her
encrypted vote. Since neither party is fully aware of the randomness used to encrypt
the vote, neither can prove the link between ciphertext and plaintext. For homomorphic
tallying, it is necessary to prove that the resulting ciphertext is an encryption of a valid
candidate (cf. Section 3.1). To prove validity of the encryption, voter and honest verifier
must cooperate.

The vote encryption process, sketched in Figure 12, involves two partly overlapping
challenge-response protocols: the first for the voter’s encrypted vote encpk(C),nv

(votev),
the second for the verifier’s randomness nvf . Communication occurs via a public bulletin
board.

23

verifier vf voter v

nonce nv, chalvnonce nvf , chal vf

commit (encpk(C),nv
(votev))

chal vf , commit (encpk(C)(nvf))

response(votev, chal vf), chalv

verify response

response(nvf , chalv)

verify responsepublish validity proof for
rencnvf

(encpk(C),nv
(votev))

ballot := rencnvf
(encpk(C),nv

(votev))

Figure 12: Verifier and voter jointly computing an encrypted ballot in LK00.

First, the voter publicly commits to her encrypted vote. In Figure 12 this concerns
the message commit (encpk(C),nv

(votev)). The verifier responds with a challenge chalvf
to the encrypted vote, and a commitment to her encrypted randomness nvf . The voter
computes the appropriate response response(votev, chal vf) for the received challenge of
her encrypted vote. She then sends the computed response and a challenge of the verifier’s
randomness, chalv. If the response is correct, the verifier computes the correct response
response(nvf , chalv) to the voter’s challenge, and computes and publishes a proof of
validity for the re-encryption of the voter’s encrypted vote. The voter re-encrypts her
vote using the encrypted randomness encpk(C)(nvf) of the verifier, and posts this on the
bulletin board.

Claims. LK00 claims receipt-freeness (RF) and universal verifiability (UV). Additionally,
it claims accuracy, eligibility, fairness, and robustness.

Studies. Hirt [Hir01] pointed out that the verifier can help the voter in casting a vote
that falsifies the result. Furthermore, the voter can construct a receipt similarly to the
receipt in the multi-authority version of BT94.

5.9. BFP01: improving scalability by distributed tallying

Very few systems in literature mention scalability of their approach. Moreover, scal-
ability is usually a problem for actual elections. Operations such as mixing all votes
together become prohibitively time consuming for constitutions with tens of millions of
voters (such as the UK or France).

Baudron et al. [BFP+01] set out to address the scalability issue. The authors aim
to design a voting system sufficiently scaleable to be used in large-scale elections, while
still satisfying privacy and verifiability requirements. To this end, the proposed system

24

distributes the computation of the result over several aggregation levels. Their system
first computes results at the local level, and then aggregates these at the regional level.
Finally, the regional results are aggregated at the national level. The system achieves
this by having the voter cast three encrypted votes (one for each aggregation level) along
with a proof that the three encrypted votes encrypt the same candidate. To facilitate
this, the authors introduced an encoding scheme nowadays known as Baudron counters
(cf. Section 4.4).

As these votes are made public, the basic system is inherently not receipt-free. Bau-
dron et al. addressed this by suggesting to use a hardware device to re-encrypt the votes
(reminiscent of LK00). Correctness of the encryption can be proven using an interactive
zero knowledge proof or a non-interactive, designated verifier proof. They claimed that
the interactive zero knowledge proof would not harm receipt-freeness as the actual tran-
script of the interaction is indistinguishable from a simulated transcript (and thus the
voter can provide a fake transcript). However, as pointed out by Hirt [Hir01] and later
by Juels et al. [JCJ05], the interactivity in a zero knowledge protocol can be abused to
construct a receipt. Moreover, the remark in [HS00] concerning designated verifier proofs
is also not addressed. As Baudron et al. did not provide further details, we consider the
claim of receipt-freeness for their protocol dubious at best.

Claims. BFP01 claims receipt-freeness (RF) and universal verifiability (UV). In addition
it claims robustness against faulty authorities.

5.10. MBC01: smart cards re-encrypting votes

Magkos, Burmester and Chrissikopoulis again set out to transform CGS97 into a
receipt-free voting system. Independent of Lee and Kim [LK00], they followed the same
approach of trying to ensure that the obvious receipt of CGS97 is not a proof of how the
voter voted. As in [LK00], randomness from a third party is used to encrypt the voter’s
vote. However, instead of relying on an external party, they implemented their system
using a tamper-resistant smart card (see Figure 13). The voter sends a random order of
the two possible votes (+1 and -1) to the smart card. The smart card then re-encrypts
these values (denoted by renc in the figure) and sends them back. Finally, the smart
card proves the correctness of the re-encryption using an interactive zero knowledge proof
(denoted by the dotted arrow in Figure 13). After this, the voter knows which of a′, b′

is an encryption of her choice. After this, the system mimics the steps of the CGS97
system.

Magkos et al. identified a need for randomness in voting systems, to ensure vote-
privacy. They analysed where this randomness could originate from: voter, authorities or
an external source. According to their analysis, letting the voter introduce randomness
enables her to abuse the randomness as a receipt. Letting the authorities choose the
randomness implies a need for an untappable channel, according to this analysis. An
external source would also require such a channel. However, Magkos et al. proposed to
provide the voter with tamper-resistant smart cards for introducing randomness. This
would reduce the assumptions further: as long as the voter can interact with the smart
card in an unobserved, untappable way, receipt-freeness can be achieved.

The approach of Magkos et al. somewhat relaxes the constraints on communication
channels, but leaves open how to ensure that the voter is not observed while using these

25

smartcard voter v

(a, b) := shuffle(enc(0), enc(1))nonce n, n′

(a, b)

a′ = rencn(a)
b′ = rencn′(b)

(a′, b′)

correctness proof

Figure 13: MBC01 extensions to ensure receipt-freeness in CGS97.

channels. Furthermore, their relaxation is achieved by introduction of a smart card.
They did not answer the question whether this introduction brings new risks.

Claims. MBC01 claims receipt-freeness (RF) if using a tamper-free smart card, and
makes no explicit verifiability claims.

Studies. Independent of each other, [LK02] and [JCJ05] identified the same method
(using an intruder-supplied challenge) to arrive at a receipt in the MBC01 system, irre-
spective of tamper-freeness of the smart card.

5.11. Lee et al. series: Externally re-encrypted votes

In collaboration with others, Lee explored external re-encryption of votes to repair the
LK00 system in three closely related systems. The first system uses dedicated hardware
in a homomorphic tallying scheme (LK02), the second (LBD03) adopts this to a mixnet
setting instead. The third system (ALBD04) tweaks the mixnet setting for the use of an
optimistic mixnet system.

LK02: Smart cards re-encrypting votes. Lee and Kim heeded Hirt’s remarks [Hir01]
and noted that the approach to constructing a receipt for LK00 is also applicable to
MBC01, as both voting systems use interactive proofs, where the voter may abuse her
interactivity to construct a receipt. They also claimed that this holds true in general for
blind signatures: the used blinding factor can act as a receipt.

Lee and Kim based their system [LK02] on the system proposed in [Hir01], but they
replaced the assumption of a trusted third party randomiser therein with an assumption
of a tamper-resistant randomiser possessed by the voter. The resulting system greatly
resembles the MBC01 system (and is thus not depicted graphically), where the interactive
proof is replaced with a designated verifier proof.

Lee and Kim noted that the costs of external hardware for every voter may be pro-
hibitive to large-scale adoption. Although Lee and Kim did not state this explicitly,
their system also relies on the assumption of designated verifier proofs, as pointed out
in HS00 (i.e., designated verifier proofs are transferable to anyone who can be convinced

26

that the voter does not possess the decryption key). Furthermore, as Lee and Kim them-
selves pointed out, one of the proof-techniques they use may leak more information than
intended.

In addition to the above remarks, the conclusions for MBC01 carry over to LK00: the
constraints are relaxed by introducing a new object, but the security of this new object
is not extensively treated.

LBD03: Mixing instead of homomorphic tallying. Lee et al. took the LK02 system and
used mixnets instead of homomorphic tallying [LBD+04]. LBD03 does not propose any
particular mixnet. Since LBD03 decrypts the individual votes, a proof of validity of the
vote is no longer necessary, and thus dropped. Lee et al. noted that the malleability of the
cryptographic system used in LBD03 enables a voter to copy another voter’s encrypted
vote. They seemed to imply that this does not pose a security risk, even though the
signed and encrypted votes of each voter is cast by making it public.

ALBD04: Optimistic mixing. Aditya joined Lee et al. in [ALBD04], which proposes an
optimistic mixnet for LBD03. In addition, the tamper-resistant hardware is removed by
letting an authority fulfill the vote re-encryption tasks. The mixnet used is optimistic
in that it only proves that the product of the input is the product of the output, not
that there exists a strict correspondence between in- and output. Thus, a dishonest mix
could mix votes c1 , c2 as 1

2c1 and 2 c2 , since
1
2c1 · 2 c2 = c1 · c2 . To deal with such

situations, the system proposes a trace-back protocol which traces a vote back through
the mixnet (by having each mix in turn undo its mixing for that vote) to find the faulty
mix, in case the decrypted vote was invalid.

As Aditya et al. pointed out, the security of optimistic mixnets is not beyond doubt
yet (see e.g. [Wik03]). They introduced several changes to the used optimistic mixing
scheme to prevent identified flaws. Most notable of these changes are the use of only
one encryption layer, and omitting the hashing. This latter change reintroduces the
possibility to change votes as explained above.

Claims.

• LK02: receipt-freeness (RF) and universal verifiability (UV).
Further claims: soundness, completeness, unreusability, eligibility, and fairness.

• LBD03: receipt-freeness (RF) and universal verifiability (UV).
Further claims: prevention of double voting and fairness.

• ALBD04: receipt-freeness (RF), individual and universal verifiability (IV, UV).
Further claims: eligibility, prevention of double voting, fairness and robustness.

Studies. Privacy of LBD03 is studied in a.o. [KT09, DKR09, DLL11].

5.12. JCJ05: introducing coercion-resistance

Juels, Catalano and Jakobsson [JCJ05] noticed that there remain privacy attacks for
voters even if a system satisfies receipt-freeness. In particular, they identified forced
abstention (the voter is forced to abstain), simulation (the voter is forced to give her
credentials to the attacker who votes in her stead) and randomised voting (the voter

27

is forced to vote for a random candidate). They proposed a new notion of privacy,
coercion-resistance, to capture the requirement of being receipt-free and preventing the
three attacks, and propose a system to satisfy this requirement. This seminal system
has laid the basis for the development of other election systems including the recently
proposed Civitas [CCM08] (cf. Section 5.14).

1. L := “list of all published encrypted votes + credentials + proofs.”
B := “list of all valid, encrypted credentials published by the registrar.”

2. Remove all rows with invalid proofs from L.
3. Remove all rows with duplicate credentials from L.

E.g. by keeping the most recently cast row / vote.

4. Mix L.
5. Remove fake credentials from L.

Achieved by plaintext-equivalent-tests between B and L.
6. Decrypt remaining ballots on L.
7. Publish L.

Table 1: The counting process in JCJ05.

Juels, Catalano and Jakobsson’s protocol uses zero-knowledge proofs and an anony-
mous public channel. Moreover, it assumes the channel between registrar and voters to
be untappable. Voters receive a credential from the registrar in the registration phase.
This credential constitutes a proof of eligibility and is used in the voting phase. Addition-
ally, the registrar publishes the credential encrypted by the tallying authority’s public
key. In the voting phase, voters cast their vote on the anonymous channel by sending
on the channel their vote, their encrypted credential and a zero-knowledge proof of the
credential and of validity of the vote. In the end, the tallying authorities first check the
proofs, then eliminate duplicates, next mix the ballots, then check the credentials and
finally publish the set of valid votes. A plain-text equivalence test between the encrypted
credential received from the voter and the published encrypted credential allows the tal-
lying authorities to check the validity of the credentials without decrypting them, thus
preserving their secrecy. The main reason why their protocol is coercion-resistant lies
in the fact that a voter can derive fake credentials from the real one and use these fake
credentials as the attacker pleases. Votes cast using these fake credentials are removed
in the tallying phase. Since validity of credentials are only checked after the votes have
been mixed (cf. Table 1: mixing precedes removal of fake credentials), the link between
a removed vote and a published vote is not retrievable. The computational workload in
JCJ05 is heavy, and several works [Smi05a, WAB07, AFT08, SKHS11] have suggested
adaptations to address this issue.

Claims. JCJ05 claims receipt-freenesss (RF), coercion-resistance (CR), and universal
verifiability (UV). Note that their definition of coercion-resistance implies receipt-freeness.

Studies. Privacy and correctness of JCJ05 are studied a.o. in [BHM08, DLL12].

28

5.13. MN06, MN07: Achieving unconditional privacy

Moran and Naor [MN06] argued the need for information-theoretic (or unconditional)
privacy, as opposed to computational privacy achieved by encrypting votes. Moran and
Naor remarked that regular encryption is computationally hiding (a computationally un-
bounded adversary can decrypt), but unconditionally binding: there is only one correct
decryption. The Pedersen commitment scheme [Ped91] has the converse property: com-
mitments are computationally binding, but unconditionally hiding. With this in mind,
Moran and Naor proposed to use commitments instead of encryption. This recalls a prior
system by Cramer et al. [CFSY96], which also uses commitments. However, this earlier
system is not receipt-free.

To ensure privacy and verifiability of the commitments, Moran and Naor adopted the
MarkPledge method (cf. Section 6.5). To ensure verifiability of the tally, they employed a
cut-and-choose zero knowledge proof: the counter produces k new lists of commitments,
each list being a masked permutation of the list of all voters’ commitments (list 0). Then,
a public random source outputs bits 1, . . . , k. If bit i = 0, list i is opened (proving the
result of list i is the announced result). If bit i = 1, the permutation is revealed, proving
that list i is a reordering of list 0.

This system relies on a trusted authority, who learns how each voter votes. In [MN07],
Morat and Naor addressed this by introducing a way to secret-share commitments
(adapted from the layered ballots of Punchscan). This removes the need for the Mark-
Pledge method. Simply put, the commitment is shared between two authorities. They
privately communicate about the randomness each used for the ballot order, thus en-
abling them to reconstruct the voter’s choice.

Claims. Both MN06 and MN07 claim receipt-freeness (RF) and universal verifiability
(UV). In addition, both claim “everlasting privacy” – the privacy of the link between
voter and the choice they input does not depend on any computational assumption.

5.14. Civitas

Clarkson, Chong and Myers designed and implemented a remote voting system called
Civitas [CCM08], which is considered as the first implemented system that is coercion-
resistant and verifiable. The strong security provided by Civitas comes at the expense
of its time-consuming tabulation phase. Civitas is based on JCJ05, but differs in several
aspects. For instance, instead of assuming a single registration authority, Civitas has
a registrar and a set of mutually distrusting registration tellers and introduces a con-
struction of credential shares. The JCJ05 system does not describe how to distribute
credentials, while a concrete protocol for this purpose is introduced in Civitas and is
proven to be secure. In addition, Civitas provides concrete instantiations of crypto-
graphic components which are left unspecified in JCJ05.

The security proof of Civitas extends the proof of JCJ05 to account for the changes
discussed above. More importantly, an implementation of Civitas is made in a security-
typed language, which enforces (information-flow) security policies. Based on experi-
mental results, the authors claim that cost, tabulation time, and security of Civitas can
be practical for real elections. As such, they claim that Civitas provides evidence that
secure electronic voting can be made possible.

29

Claims. Civitas claims individual and universal verifiability (IV, UV) and coercion-
resistance (CR).

Studies. Privacy of Civitas has been studied in a.o. [KT09].

5.15. Summary

The claims made by the various systems with respect to privacy and verifiability are
listed in Table 2. Each row lists privacy claims made, verifiability claims made, known
attacks, the main cryptographic technique used, and finally, works that investigated the
system.

privacy verifiability attacks based on
FOO92 BP UV [KR05]⋆ Blind Sig
CGS97 BP UV Hom Enc
BT94 RF – [HS00] Hom Enc

NR94 RF – Multiparty Comp
SK95 RF UV [MH96] Mixnet
Oka96 RF – [Oka97] Blind Sig, Commit

Oka97 RF IV, UV Blind Sig, Commit
HS00 RF IV, UV Mixnet
LK00 RF UV [LBD+04] Hom Enc

BFP01 RF UV [Hir01, JCJ05] Hom Enc
MBC01 RF – [LK02, JCJ05] Hom Enc
LK02 RF UV Hom Enc

LBD03 RF UV Mixnet
ALBD04 RF IV, UV Mixnet
JCJ05 RF, CR UV Mixnet

MN06 everlasting BP, RF UV Commit
MN07 everlasting BP, RF UV Commit, Hom Enc

⋆ The problems found are due to unclarities, not to a fundamental problem with the system.

Table 2: Claims, subclassification, analyses of voting systems.

Privacy claims are listed as ballot-priv (ballot privacy), RF (receipt-freeness), CR
(coercion-resistance), and everlasting BP (everlasting ballot privacy). Verifiability claims
are listed as IV and UV, denoting individual and universal verifiability. Since voting sys-
tems are commonly categorised according to the main technique used to achieve privacy –
traditionally: homomorphic encryption, blind signature, or mixnet – the table mentions
this for each system. Note that NR94 is based on multiparty computations, and that
MN06 and MN07 are based on commitments.

30

6. Systems focusing on verifiability

This section discusses notable practical systems proposed in literature. The main
focus of this section is on end-to-end verifiable systems. As is common in research,
ideas from one system influenced another. In Figure 14, we trace the stronger of such
influences – in particular, we highlight where the core ideas that influenced a particular
system originated. The upper part of the figure displays the systems that were directly
or indirectly influenced by Chaum’s Visual crypto, while at the bottom the more or less
independently developed systems have been listed.

PunchScan’06 Aperio’08 Eperio’10

Cha04 Prêt à Voter’05 Scantegrity’08

Scratch&Vote’06

SK95 CodeVoting’01 MarkPledge’04 Bingo’07 Threeballot’07 Helios’08

Figure 14: Influences between voting systems focusing on verifiability.

6.1. Overview

In this section, we turn our attention to systems that focus on improving practical
verifiability. We begin with the work due to Sako and Killian, which defined the concept
of universal verifiability, harmonizing previously existing verifiability concepts and ter-
minology. Next, we describe the initial systems that further refined verifiability: Code
Voting (introducing recorded-as-cast and tallied-as-recorded), Chaum’s visual crypto vot-
ing system and Neff’s MarkPledge(both of which introduced cast-as-intended). We then
continue with systems inspired by these new verifiability concepts: Ryan’s Prêt à Voter,
which inspired Punchscan. We next discuss the systems Scratch & Vote, Threeballot,
Bingo Voting and the Punchscan-inspired Scantegrity. Finally, we discuss Aperio/Eperio,
and Helios. Whereas the previous section surveyed systems innovating on privacy aspects,
this section surveys systems primarily focused on innovating verifiability aspects. Con-
sequently, we see the claims of verifiability becoming more refined, going from individ-
ual/universal verifiability (IV, UV) to cast-as-intended (CAI), recorded-as-cast (RAC),
and tallied-as-recorded (TAR).

6.2. SK95: introducing universal verifiability

Sako and Kilian [SK95] noticed the reliance on strong physical assumptions (voting
booths) in both [BT94] and [NR94]. They proposed to use mixnets to relax the strong
assumptions. Moreover, their mixnet-based approach is one of the first to use proofs of
correctness for mixnets to achieve universal verifiability. Similar to [BT94], their system
lets the voting authorities mix an encrypted 0 and an encrypted 1 vote, while proving to
the voter how they mixed. This process is detailed in Figure 15 for an election with two
mixers.

The last mixer generates a list of pairs (in Figure 15, the list contains one pair) of an
encrypted zero and an encrypted one. The plaintexts are encrypted using a probabilistic
encryption scheme, which ensures that no two ciphertexts are equal. The mixer publishes
the list of pairs, and a proof that each pair contains an encrypted zero and an encrypted

31

mixer-1 mixer-2 voter v

(x1, y1) := shuffle(enc(0), enc(1))
publish (x1, y1)

prove-ordering(x1 , y1)

(x2, y2) := shuffle(enc(x1), enc(y1))
publish (x2, y2)

prove-ordering(x2 , y2)

votev := select(x2, y2)

votev
dec(votev)

add-vote-to-sum

Figure 15: The SK95 system with two mixers.

one. Furthermore, the mixer sends a designated-verified proof to the voter of the order
of each pair. This proof, sent over an untappable channel, is such that the voter can lie
about the order. After this, the next mixer shuffles the list, after which he publishes the
shuffled list and a proof that he shuffled correctly. Moreover, he sends a proof of how
he reordered over an untappable channel to the voter. Again, this proof can be used by
the voter to lie. This process is repeated by all mixers in the mixnet. After the last mix,
the voter sends one element of one pair of the final list (an element corresponding to her
choice) over an anonymous channel to the counter.

Sako and Kilian managed to relax the strict assumptions of previous systems (which
require a voting booth). Instead, the system requires an anonymous channel and a private
channel. However, their approach does not scale well to multi-candidate elections and
their cryptographic approach does not offer full security. The system has been used as
basis for an implementation, DigiShuff [FMM+02]. DigiShuff mitigates the critique to a
certain extent, which is discussed later.

Attack on the mixnet. Michels and Horster [MH96] described a known attack whereby
a malicious voter can relate her vote to an honest voter’s vote, by merely using the
encrypted version of the honest vote. This relation survives decryption. Thus, the
dishonest voter can later test all published votes to see which two satisfy the relation,
thereby revealing (to the malicious voter) how the honest voter voted. In addition to this
attack, Michels and Horster also described a new attack against the mixing process. The
shuffle of a mix j can be undone if all subsequent mixes j + 1, . . . , n collaborate. Note
that this means that if there is only one honest mix (which should be enough to provide
an honest mixnet), its shuffling can be completely negated by the rest of the mixnet –

32

without knowing how it shuffled.

Claims. SK95 claims receipt-freeness (RF) and universal verifiability (UV).

Studies. Michels and Horster [MH96] identified a flaw in the mixing scheme. The
DigiShuff [FMM+02] system is an implementation based on SK95.

Candidate Vote code Acknowledgment code
North 5432 314159
East 1234 271828
South 7890 141421
West 7654 161803

Figure 16: A code sheet for Code Voting.

6.3. Code Voting & Pretty Good Democracy

Code voting is originally due to Chaum [Cha01]. The central idea is to protect a
voter against a malicious computer. To achieve this, the voter receives a code sheet
(cf. Figure 16) via non-digital means. The codes on the sheet are random. To vote
for a candidate, the voter enters the Vote code. Since the codes are random, even a
malicious computer cannot change this in a meaningful way. The voter knows her vote
was received, when her computer shows the correct acknowledgment code. This enables
a form of cast-as-intended.

Since Code Voting’s inception, this central idea has been investigated by others,
e.g. [JRF10, HS07, HRT10]. The central idea has also been further explored for online
voting systems, such as Pretty Good Democracy (PGD [HRT10]). PGD extends the
code voting guarantees to also give some assurance to the voter that her vote was prop-
erly recorded. This is done by storing all codes (including the acknowledgment code)
encrypted at the server side. Therefore, receiving a correct ack code ensures that at least
a threshold set of authorities agreed on the received vote code.

Claims. Code Voting claims cast-as-intended (CAI), recorded-as-cast (RAC), and ballot-
privacy (BP). PGD claims CAI, RAC (if a threshold set of authorities is honest), tallied-
as-cast(TAR), and receipt-freeness (RF). The authors point out that PGD fails to satisfy
coercion-resistance (no CR).

6.4. Chaum04: Visual crypto ensuring correctness of encryption

In [Cha04], Chaum identified that verifiability as offered by voting systems was re-
lying far too much on cryptography to be of practical use to voters. He applied visual
cryptography to voting. Visual crypto is the trick of separating an image into multiple
shares. By themselves, each share contains random information. Only when all shares are
overlayed, does the original image reappear. The construction of the shares is explained
in Figure 17.

Every pixel of the original image is translated into a square with four sub-pixels. The
shares are stacked. Therefore, a white pixel results in two identical squares for the two
shares (either + , or +), while a black pixel results in two complementary squares

33

pixel share 1 share 2

= + or

+

= + or

+

Figure 17: Visual crypto: the construction of shares.

(either + , or +). Randomness of the shares is achieved by randomly selecting
for each pixel either the first configuration or the second configuration. The selection
can, e.g., be based on a cryptographic key. Chaum leveraged this to combine easy voter
verification with vote-privacy. A voter’s vote is recorded on two layers of paper. Each
layer contains a pattern of apparently random dots, based on the mixnet’s public key.
When viewing one layer over the other, the voter’s vote is revealed (see Figure 18). The
voter can take either one of the two layers as a receipt, as neither layer by itself reveals
her vote – they only show random dots (except by someone who possesses the decryption
“key” (layer)). She selects one layer to take home, and the other layer is destroyed. The
kept layer is scanned and acts as the voter’s ballot.

(a) original image

(b) share 1

(c) share 2

(d) overlaying of shares

Figure 18: Visual crypto: splitting an image into two shares and recombining the shares.

All scanned ballots are published, enabling1 the voter to verify that her ballot is
received correctly. To determine the election result from the ballots, the ballots are
mixed. Each mix visually decrypts the ballots, analogous to a decryption mix (in effect,
adding a layer containing their share of the key to the ballot). This results in a set
of readable ballots, from which the tally is straightforwardly established. To ensure
verifiability, Chaum suggested to use randomised partial checking [JJR02] (detailed in
the description of Scantegrity below).

Chaum’s approach to combining privacy and verifiability does not require heavy cryp-
tographic operations on the part of the voter. However, the mixing process, which uses

1Chaum does not detail how the voter can pick out her ballot from amongst all ballots.

34

a shared visual cryptographic key, is still a complex process. It is not clear whether this
process is understandable for an average voter. As verifiability of the mixing process is
necessary to achieve verifiability, it is not clear whether the goal of practical and simple
verification has been achieved.

Claims. This system claims cast-as-intended (CAI, noting CAI fails if the system can
predict which of the two layers the voter will retain), recorded-as-cast(RAC, noting RAC
fails if the system predicts two voters that choose to retain the same layer), tallied-as-
recorded(CAR), and receipt-freeness (RF).

Studies. This system has been studied in a.o. [PV08].

6.5. MarkPledge: verifying ballot encryption

Independently, Neff also proposed a way to achieve practical verifiability. The Mark-
Pledge system [Nef04] aims to ensure to the voter that the encryption made by a voting
device is indeed a correct encryption of her choice. This is achieved by means of a
challenge-response protocol as follows.

The vote (yes/no) for each candidate is encoded as a list of pairs of encrypted bits
(encr(b), encr′(b

′)). When b = b′ (for every pair in the list), the vote encodes a “yes”,
and when b 6= b′ for every pair in the list, it encodes a “no”. A commitment consists
of a bitstring, e.g. 0, 1, 1, 1, 0, A challenge simply states whether to open (prove
the decryption of) the left or the right encrypted bit for every pair. All commitments,
challenges and responses are printed on one line with the candidate name, and the security
of the verification method is determined by the length of the list. More precisely, for a list
of length n, the chance of the opening being correct while the list differs is 2−n [JR12].

(encℓ(0), encr(0))

voter v device

(encℓ(1), encr(0))

voter v device

commit: 0 challenge: L

challenge: R commit: 1

open: dec(encr(0)) = 0 open: dec(encℓ(1)) = 1

(a) verifying correct encryption (b) preserving privacy

Figure 19: Verification and privacy of one bit-encryption in MarkPledge.

Verification that the vote is for the chosen candidate is achieved by challenging after
committing. In Figure 19(a), this is shown for a yes-vote (i.e., a pair of ciphertexts
encrypting the same value): the device first commits to the value encrypted – in this
case, 0. Now the voter can challenge the device to decrypt either the left or the right
ciphertext. After making her choice for right, the device proceeds to decrypt the right
ciphertext, which matches the value the device committed to. As the device cannot
predict what the voter will choose, the device has a 50% chance per encrypted pair of
being detected if cheating. To ensure privacy, the voter supplies the device her challenges

35

before the device commits. This is shown in Figure 19(b). Given these challenges, the
device can create fake proofs of “yes” votes for the other candidates

Therefore, the voter’s printed receipt shows she voted “yes” for every candidate. Only
if a challenge occurred before the commit is this a real proof. The voter knows this, but
cannot prove it to anyone else (preserving privacy).

The voter only needs to verify that challenge and commit are printed on the same
line as the candidate to which they belong. Any helper organisation can then verify
correctness of the whole receipt, thus completing verification. Note that correctness is
only checked for “yes” encryptions – complete ballot correctness can be checked by other
means [AN06].

The challenge-response protocol occurs in a voting booth, ensuring privacy (avoiding
Hirt’s attack on BT94).

The verification technique of MarkPledge has been adopted by a number of systems,
such as [JRF09] (combining MarkPledge with code voting), [MN06] (combining Mark-
Pledge with a commitment scheme), and [JR12] (using a new encoding of the mechanism
in terms of points on a line).

Claims. MarkPledge claims cast-as-intended (CAI), universal verifiability (UV), receipt-
freeness (RF), and coercion-resistance (CR).

6.6. Prêt à Voter: randomised candidate orders

Prêt à Voter implements the concept of combining privacy and verifiability in a tangi-
ble way. An initial version was developed by Ryan [Rya05], which served as the basis for
the system carrying the name Prêt à Voter due to Chaum, Ryan and Schneider [CRS05].
This system avoids the use of a two-layered receipt by having two columns (see Fig-
ure 20). The left-hand column of the ballot presents the candidates in a random order,
while the right-hand column has space for the voter to mark her preference. At the
bottom of the right-hand column is a cryptographic string (an onion) which encodes the
candidate ordering on the ballot. This onion is the encryption of a random offset D0

with each counter’s public keys.

3. South

1. North
√ √

2. East
discard left column−−−−−−−−−−−−−→

4. West

3ei82Lk 3ei82Lk

Figure 20: A Prêt à Voter ballot voting for North, where dec(3ei82Lk) = (3, 1, 2, 4).

A voter marks her preference, separates the two columns and destroys the left-hand
column. The right-hand column is scanned by the system and taken home by the voter
as a receipt. Since the candidate ordering is not retrievable from the right-hand column
except by all counters decrypting in order, the receipt cannot be used to prove the voter’s
preference.

Creating a candidate order is handled in a similar manner to HS00. The main dif-
ference is that Prêt à Voter does not prove the candidate order, but encrypts it on the

36

Figure 21: A Punchscan ballot (voting “north”) consists of two layers.

ballot’s right hand column. Correctness is ensured by a ballot auditing procedure, which
decrypts the onion on a given ballot (thus showing whether or not the onion matches
that ballot’s candidate order). This voids the ballot in the process, hence Prêt à Voter
requires generation of surplus ballots.

To provide further verifiability without sacrificing privacy, the conversion of receipts
to countable votes is subject to randomised partial checking, cf. Section 3.7.

Various works have followed up on Prêt à Voter to address issues such as chain voting
and kleptography, and to extend the capabilities of the system to support more diverse
voting methods (such as single transferable vote), and to unify the new results into one
coherent voting system. Due to these efforts, the Prêt à Voter system has matured and
become more versatile. Development of Prêt à Voter has actively continued, resulting in
user trials [SLC+11], and plans for use in actual elections (in Victoria, Australia).

Claims. Prêt à Voter claims cast-as-intended (CAI), recorded-as-cast (RAC), tallied-as-
recorded (TAR), and receipt-freeness (RF).

Studies. Prêt à Voter has been studied in a.o. [PV08, JMP09b, KRMC10].

6.7. Punchscan: layered paper ballots

Punchscan [FCS06] merges Chaum’s idea of layers with Prêt à Voter’s concept of
randomised ordering. In Punchscan, a ballot consists of two layers (see Figure 21). The
top layer has a numbered list of the candidates in a random order (as in Prêt à Voter).
Below that list, there is a series of holes. The bottom layer provides the used numbers
in a random order (again following Prêt à Voter) at the location of the holes in the top
layer. A choice is made by using a big marker to colour both the bottom layer number
and the top layer hole at the same time. The top layer does not identify which choice
has been made, only which hole has been selected. The bottom layer does not reveal
which candidate has been selected, only which sequence number that candidate had on
this particular ballot. Hence, neither ballot can identify the voter’s choice. One layer is
destroyed, and the other one is copied for tallying. The voter retains the copied layer for
verification.

The ordering of sequence numbers in both top and bottom layer is stored by the
authorities, and linked to the ballot id number (in Figure 21: 002). Using the stored
information, the authorities can reconstruct the voter’s choice from either layer in a
manner similar to Prêt à Voter.

One notable drawback of Punchscan, identified in [BMR07, MN07], is that even
though a layer does not give sufficient information to determine how a voter voted, the

37

distribution of layers over possible votes can be skewed. For example, consider an election
between two choices (Figure 22).

A: yes A: yes B: yes B: yes
B: no B: no A: no A: no

A© B© B© A© A© B© B© A©

Figure 22: Ballot orderings for a two-choice election in Punchscan (adapted from [BMR07]).

An attacker may now offer a reward for:

• any top layer where Yes is labelled A, and where the left hole is marked,

• any bottom layer where A appears left and is marked.

All possible ballots are shown in Figure 22. Note that only for the first ballot, voting
Yes will leave the result with a rewarding layer. To receive a reward if given the second
or third ballot, a voter must vote No. And, if given the fourth ballot, the voter cannot
produce a layer that will receive the reward. Thus, an obedient or greedy voter is likely
to vote No.

This particular drawback was addressed in Punchscan by forcing a voter to choose
which layer is her receipt before she has seen the ballot.

Claims. Punchscan claims recorded-as-cast (RAC), tallied-as-recorded (TAR), and receipt-
freeness (RF).

Studies. Punchscan is studied in a.o. [BMR07, PV08, KRMC10]. The similarities and
differences with Prêt à Voter are studied in [vdG09]. The partial attack on Punchscan’s
receipt-freeness mentioned above is described in [BMR07, MN07]. In 2007, Punchscan
was used for student elections [ECCP07] in Ottawa, Canada.

south
west
north
east

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣

encpk ,r1 (south)
encpk ,r2 (west)
encpk ,r3 (north)
encpk ,r4 (east)

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ (r1 , r2 , r3 , r4)
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

Figure 23: Example of a Scratch & Vote ballot.

6.8. Scratch & Vote: verification using scratch strips

Adida and Rivest used scratch strips to simplify the ballot auditing from Prêt à Voter.
Their Scratch & Vote system [AR06] uses similar ballots as Prêt à Voter, but replaces the
onion with a barcode and a scratchable surface (see Figure 23). The barcode contains an
encryption of the candidate order, and below the scratch surface the randomness used in

38

the encryption is printed. The voter receives two ballots: one to audit and one to cast.
Auditing consists of scratching away the scratch layer (which invalidates the ballot), and
confirming correctness of the barcode (using a trusted helper). Casting works like in Prêt
à Voter: the left-hand side is removed and discarded, and the right-hand side is handed
to the election authority. He confirms that the scratch surface is untouched, detaches
and destroys the scratch surface. This ensures that the right-hand side by itself cannot
reveal the decrypted candidate order, thus preserving privacy.

Counting is performed by homomorphically adding all encrypted ballots, which uses
Baudron-style counters (cf. Section 4.4). The encrypted result is then decrypted without
revealing the decryption key (cf. Section 3.6).

Adida and Rivest extended the concept of scratch-surface verifiability to both Prêt à
Voter and Punchscan. However, they noted that privacy of the system is based on the
assumption that the scratch surface is perfect: either it hides the used random values, or
it is detected as having been scratched. Furthermore, malicious authorities could record
the candidate orderings in advance, and use this to reveal how voters voted. Adida and
Rivest remarked that this problem is inherent in preprinted paper-based cryptographic
voting. For example, Prêt à Voter and Punchscan have the same weakness.

Claims. Scratch & Vote claimes cast-as-intended (CAI), recorded-as-cast (RAC), tallied-
as-recorded (TAR) and receipt-freeness (RF). The authors explicitly note that Scratch
& Vote is susceptible to forced randomisation – as such, it does not satisfy coercion-
resistance (no CR).

6.9. Threeballot: splitting a vote in three

A radically different approach to end-to-end verifiability was proposed by Rivest.
His system, the Threeballot Scheme [RS07], aims to use no cryptography for the voter,
while offering verifiability and privacy. To achieve this, he uses a specific form of ballot.
This ballot consists of three separate ballots, which together form the whole ballot (a
Threeballot, see Figure 24). Each separate ballot contains an election-wide unique code.

To vote, a voter marks each candidate once, and the candidate of her choice twice.
She may place the marks on any of the ballots, as long as each row contains one mark,
while her preferred candidate’s row has two marks. When the voter casts the vote,
she secretly chooses one ballot of which she receives a certified copy. She separates her
Threeballot into 3 ballots, and casts all three.

After voting, the set of all received ballots is published. This allows all voters to
verify that a ballot matching their certified copy is in the set. In addition, it also enables
anyone to verify correctness of the announced result. The certified copy does not prove
how the voter voted, as it could have been a part of other valid Threeballots.

However, as already noted in [RS07], not all ballots can be validly combined with a
given receipt. For example, a receipt marking each candidate (the ballot on the right
in Figure 24) can only be linked to one empty ballot and one ballot where precisely
one candidate is marked. This lack of ubiquitous recombining of ballots enables an
adversary to significantly reduce the privacy of a voter. The authors propose several
solutions to address this. Each solution has its own problems with respect to feasibility
and practicality.

Together with Smith, Rivest introduced two additional voting systems in [RS07]:
VAV (vote/antivote/vote) and Twin. VAV greatly resembles Threeballot, but interprets

39

ballot 1a ballot 1b ballot 1c
North ◦ North • North ◦ North •
South • South ◦ South ◦ South •
East • East ◦ East • East •
West ◦ West ◦ West • East •
$xY63#bZ[’@a0^U 3G<]Lw%4!r;} eliminator

Figure 24: A Threeballot voting for “East” (left), and a hard-to-combine ballot (right).

the ballots differently. Two ballot are marked ‘V’ for vote, the third is marked ‘A’ for
anti-vote. A mark on the anti-vote ballot cancels a mark on a vote ballot. The VAV
system requires that the anti-vote ballot is marked precisely the same as one of the two
vote ballots. Other than this, the system works as Threeballot (e.g. the voter can choose
which ballot to copy as a receipt). In the third proposed system, Twin, each voter casts
one ballot (not three), and takes home a receipt of another vote. Such receipts are called
floating receipts. They trade direct verifiability off for increased privacy.

Rivest and Smith already pointed out several possible avenues of attack on Threebal-
lot in their original paper. The level of privacy Threeballot offers has been the subject
of criticism (see e.g., [App06]). Nevertheless, Threeballot’s core ideas offer an appealing
approach to combining verifiability and privacy without using cryptography.

Claims. Threeballot, VAV, and Twin all claim recorded-as-cast (RAC), tallied-as-recorded
(TAR), and receipt-freeness (RF). In addition, Threeballot and VAV claim cast-as-
intended (CAI).

Studies. Privacy in Threeballot has been extensively studied, see e.g. [KTV10, App06,
ACvdG10].

6.10. Bingo Voting

Bohli, Müller-Quade and Röhrich proposed to use a bingo machine as a source of
randomness in their voting system [BMR07], hence the name Bingo Voting. Prior to
the elections, the authorities generate for each voter, one random number per candi-
date. Then they publicly commit to the set of generated numbers. Thus, for n voters
and m candidates, the authorities generate n ·m random candidate-number pairs. The
authorities keep these pairs secret, but publish commitments to these pairs.

To vote, a voter enters the voting booth and selects her candidate on a voting device.
Once selected, a new random number is generated by a disconnected random number
generator. Bohli et al. suggest to use (for example) a mechanical device such as used in
bingo. The generated number is then transferred to the voting device and assigned to the
chosen candidate. The system then generates a receipt, on which the candidate of her
choice is assigned the freshly generated random number, and the other candidates are
assigned numbers from the set of a priori generated numbers. In this way, the receipt lists
one random number per candidate. The only difference between the chosen candidate’s
number and the other numbers is the freshness of the number.

In order to produce the election result, the list of all handed-out receipts is published.
Furthermore, a list of all unused pairs from the prior set is published and opened, and

40

the authorities prove that all unopened commitments are indeed used on one receipt.
The final result is then given by the unused, opened candidate-number pairs. Note that
an abstaining voter leaves one unused candidate-number pair per candidate. Hence, the
abstaining voters can be deducted from the tally, if necessary.

Bohli et al. claimed that Bingo Voting satisfies (amongst others) cast-as-intended,
because a voter can verify that the freshly generated number is assigned to the candidate
of her choice. However, during casting the voter has no opportunity to verify that
the other numbers assigned are numbers that were committed to previously, nor that
exactly one number was used from each set of candidate-number pairs of the non-preferred
candidates.

Claims. Bingo claims cast-as-intended (CAI), recorded-as-cast (RAC), tallied-as-recorded
(TAR), and receipt-freeness (RF).

Studies. Coercion-resistance of Bingo voting is analysed in [KTV10, DLL11, DLL12].

6.11. Scantegrity: a voter-verifiable voting front-end

The researchers behind Punchscan recognised that the process of randomised partial
checking and reconstructing the choice (originating from Prêt à Voter) can be taken
independent from the ballot-casting process. They devised a new verification system
called Scantegrity [CEC+08], relying on permutations of candidate IDs as in Punchscan,
but using only one piece of paper. This verification can be added to an existing voting
system to provide verifiability, and works as follows.

A ballot lists the candidates (e.g., Alice) and, for each candidate, an code (e.g., A).
The assignment of codes to candidates is permuted for every ballot – on the next ballot A
can be assigned to Bob. Voters mark a bubble next to the candidate of their choice, and
can verify that their choice is correctly recorded by checking whether the pair (candidate
code, ballot ID) appears correctly on the bulletin board. Moreover, to preserve privacy in
computing the result, Scantegrity employs a “Switchboard” – a mix that mixes candidates
(and their marks), instead of whole ballots (see Figure 25). Correctness of this process
is proven using randomised partial checking, cf. Section 3.7.

Randomised partial checking uses two mixes to mix the votes, making the results
of each mix public. Verifiability of the entire mixing process, depicted in Figure 25,
is achieved by revealing for each vote in the intermediate mixed set either where it
originated from (revealing the link to the input), or where it ended up (revealing the link
to the output).

Both Scantegrity and Punchscan suffer from drawbacks. Neither prevents against the
pattern voting attack (which motivated BT94). In this attack, a coerced voter marks
her ballot with a unique pattern provided by the coercer, which allows the coercer to
distinguish this ballot from all others. Moreover, neither prevents [CCC+08] against
randomisation attacks (which motivated JCJ05). Furthermore, dispute resolution (when
a voter claims her vote is inaccurately recorded) is complex in Scantegrity: a voter may
claim her ballot is incorrectly recorded, but she could be lying. To preserve privacy
while investigating this requires a two-stage process where first the ballot ID of the
disputed ballot is matched (the rest of the ballot being obscured), and next the codes of
a set containing dummy votes and the disputed ballot are revealed (with the ballot ID
obscured).

41

Figure 25: Randomised partial checking of Scantegrity ’s candidate mixing.

In response to such issues and usability problems, Scantegrity II [CCC+08] has been
developed. The main improvement is using random candidate codes, which are hidden
by invisible ink. Using a special marker, the voter marks her choice, which reveals the
candidate code printed invisibly in the bubble invisible ink. Thanks to this innovation,
dispute resolution was greatly simplified. Since all genuine candidate codes are hidden
by the invisible ink, a voter cannot guess a genuine code. Therefore, if she claims that
her ballot is missing, and she has a valid candidate code not present, then her complaint
is in good faith – the system is in the wrong. The paper addresses the risks introduced
by using invisible ink, and the team provides a separate technical report on this via their
website2. They conclude that it is feasible to use invisible ink. They do not discuss the
increase in costs.

Claims. Both Scantegrity I and II claim recorded-as-cast (RAC), tallied-as-recorded
(TAR), and receipt-freeness (RF). Scantegrity II uses Prêt à Voter-style ballot audit-
ing to achieve cast-as-intended (CAI).

Studies. Scantegrity is studied in [PV08]. The Scantegrity team is working to have
Scantegrity adopted for elections, which has already resulted in Scantegrity II’s use in a
(local) election [CCC+10].

6.12. Aperio/Eperio

The Aperio system [ECA08] is a variation on Punchscan that was developed to serve
as an end-to-end verifiable system for environments where computerised support is low
(e.g., developing countries). Aperio extends the layered approach of Punchscan further,
basically providing a layer-based approach to randomised partial auditing. Each ballot
has one receipt layer and two or more (differently coloured) audit layers. Each layer
has its own unique reference number for auditing (see Figure 26). As in Punchscan, the
candidate order is randomised.

Prior to elections, two lists are generated for each audit layer: one linking the audit
reference numbers to the receipt identifiers, and one linking the reference numbers to
the candidate order. Figure 27 shows an example of these lists for the last audit layer.

2http://scantegrity.org/~carback1/ink/ink.pdf

42

top layer receipt layer audit layer #1 audit layer #2

ballot receipt (red) (blue)

Figure 26: A 4-layered Aperio ballot voting for “east” (adapted from a presentation by Essex).

These lists are sealed into an appropriately-colored envelope, and the nature of the list
(whether it links to receipts or the order) is noted on the envelope.

link blue layer ↔ receipt layer link blue layer ↔ candidate order

Figure 27: Audit lists for blue layer (adapted from a presentation by Essex).

To vote, a voter marks her choice on the top layer, which also marks the location of
her choice on all underlying layers. The voter can take her receipt layer home. All other
layers are cast into their appropriately-colored boxes – the ballot into the ballot box, and
each audit layer into its own “audit box”. Tallying is now straightforward by counting
the votes from the ballot box.

Verifying correctness of the tally is achieved as follows: both envelopes of one color
are taken, and the “receipt” envelope is destroyed without opening (to preserve privacy).
The “order” envelope is opened, and used to recover the order for each audit layer of this
color. By comparing the audit box result with the result of the ballot box, any ballot
stuffing / deleting can be detected.

Similarly, tampering with ballots can be detected by using the “receipt” list to deter-
mine the correspondence between receipts and audit layers. This will detect any changes
made to cast ballots.

Randomised partial auditing is achieved by choosing which colour of layer will reveal
which of the two links. By using multiple audit layers, both the link to the voter ballot
and the link to the result can be revealed without violating privacy. In this fashion, the
system provides a level of verifiability.

The main concepts of Aperio were used in the fully digital Eperio [ECHA10] voting
system. Fundamentally, Eperio works as Aperio does, but Eperio relies on cryptography
(such as shared secrets, commitment schemes) to preserve privacy.

Claims. Both Aperio and Eperio claim cast-as-intended (CAI), recorded-as-cast (RAC),
tallied-as-recorded (TAR), and receipt-freeness (RF).

43

6.13. Helios

Adida designed an open-source, web-based voting system, Helios [Adi08], aimed at
elections with low risk of coercion. As Adida put it, Helios claims “no novelty”, but
succeeds in taking existing ideas and implementing them in a working system. Voting in
Helios uses a simplified version of Benaloh challenge [Ben07] (deemed acceptable for the
low-coercion-risk environment) and the mixnet of [SK95].

To cast a vote, the voter enters her choice. The system then prepares an encrypted
ballot that the voter can either audit or cast. Only when the voter chooses to cast her
vote, she has to authenticate herself. Individual verifiability is achieved by posting the
encrypted ballot to a public bulletin board. To tally, the votes are mixed and then
decrypted and published on the bulletin board, as are all proofs of correctness.

Helios was updated and used for presidential elections of the Belgian UCL univer-
sity [AdMPQ09]. The main improvements of this update were to replace mixing with
homomorphic tallying from CGS97, and to add distributed decryption. Since then, He-
lios has been used in various other elections, including student elections at Princeton,
an IACR test election and student elections at UCL. For that last election, the system
moved to a new back end based on mixnets. Where previously, each candidate was en-
crypted, in this new version, only a ballot is encrypted, resulting in an impressive speed
up.

Claims. Helios claims cast-as-intended (CAI), recorded-as-cast (RAC), tallied-as-recorded
(TAR), and receipt-freeness (RF). The author explicitly notes that Helios only works in
low-coercion environments – as such, it does not offer coercion-resistance (no CR).

Studies. Security of the Helios interface is analysed in [ED10]. Several related attacks
on privacy, all leveraging the malleability of the used cryptographic scheme, are de-
scribed [CS11]. These issues can be addressed by using a non-malleable cryptographic
scheme [BCP+11].

6.14. Summary

Various efforts have emerged that sought to transform theoretical voting systems into
actual systems. The designed systems aim to combine strong privacy measures with a
high level of verifiability. However, these new approaches must be handled carefully –
as evidenced by the privacy-reducing threats to Punchscan and Threeballot. Finally,
we observe that researchers are reaching out to election officials and several systems
(Punchscan, Scantegrity, Prêt à Voter, Helios) have been used in a variety of local elec-
tions, ranging from student elections, via university presidential elections, to municipal
elections.

In Table 3, the findings of the end-to-end survey are summarised. In this table, BP
refers to ballot privacy, and cai, rac, and tar refer to cast-as-intended, recorded-as-cast,
and tallied-as-recorded, respectively. For each system, we list if it is intended for a remote
(R) or supervised (S) environment, as well as the main techniques on which it is based.

7. Conclusion: trends and developments observed

In the above, we detailed the two major developments in the field of voting: first,
a focus on privacy, which was later followed by a focus on practical verifiability. There

44

priv verifiability studies based on ⋆

Code voting BP RAC codes R

PGD RF CAI, RAC, TAR Code Voting R
Chaum04 RF CAI [PV08] visual crypto S
MarkPledge CR CAI, UV challenge-response R

Prêt à Voter RF CAI, RAC, TAR [PV08, JMP09b, KRMC10] randomised order S
(PaV)
Punchscan RF RAC, TAR [BMR07, PV08, KRMC10] PaV, layered ballot S
Scantegrity RF RAC, TAR [PV08] Punchscan S

Scantegrity II RF RAC, TAR Scantegrity S
Scratch & Vote RF CAI, RAC, TAR PaV, scratch strips S
ThreeBallot RF CAI, RAC, TAR [KTV10, App06, ACvdG10] 3 ballots / voter S

VAV RF CAI, RAC, TAR ThreeBallot S
Twin RF CAR, RAC floating receipts S
Bingo RF CAI, RAC, TAR [KTV10, DLL11, DLL12] PaV, MarkPledge S

Aperio RF RAC, TAR Punchscan S
Aperio RF RAC, TAR Aperio S
Helios RF CAI, RAC, TAR [ED10, CS11, BCP+11] CGS97 R
Civitas CR RAC, TAR JCJ05 R

⋆ (R)emote or (S)upervised voting environment

Table 3: Properties of voting systems.

are various similarities between these developments: in the privacy line, refinements to
the notion of privacy (receipt-freeness, coercion-resistance) were followed by individual
attempts to satisfy the refined notion. More and more works claim to satisfy a no-
tion, some of them pointing out problems in earlier work. The continued finding of
problems in some earlier works underlines the need for a uniform approach to testing
the validity of these claims. This leads to the appearance of studies of these claims.
While these studies themselves were not the main subject of this paper, we do see a
similar development there: At first, studies analysing a particular claim of an individual
work appear [KR05, MVdV07, TMT+08]. This is followed by the appearance of generic
(formal) frameworks to study a claim of any work. Initially, these frameworks are the-
oretical [JdV06, BRS07, DKR09, JMP09b, JMP09a] and enable a uniform approach to
validating claims. Later frameworks [BHM08, KT09], become more detailed, refine the
notions under consideration and begin to consider tool support.

When the focus shifted towards incorporating verifiability, we see a similar trend: at
first, a few works identify specific verifiability notions not yet suitably covered before,
and propose individual solutions for these. Other works appear, some of which identify
problems in earlier works. Recently, the first studying framework [KRS10] appeared,
which enables manual proofs of individual, universal and eligibility verifiability.

If developments in verifiability continue similarly as developments in privacy did, then
more verifiability frameworks will emerge, which will cover more refined notions such as

45

cast-as-intended, recorded-as-cast, and tallied-as-recorded. In addition, steps will be
made towards automated verification.

Another trigger for new developments may arise from the design of new crypto-
graphic building blocks. An example is the newly proposed fully homomorphic cryptosys-
tem [Gen09], which supports two operations (and thereby preserves the ring structure of
the plaintexts). The introduction of such new building blocks may spur the development
of a new class of voting systems.

In general, we see that developments in voting have followed the following path: 1.
identification of notion, 2. refinements, 3. theoretical studies, 4. restart with new notion.
Assuming developments continue in this fashion, the question is: where will the focus
shift to? What notion will be investigated next?

In the current line of verifiability developments, we observe a move to practical ma-
turity: various of these newly proposed systems have been used in a handful of elections.
Such practical exposure raises interesting new questions, concerning user interface de-
sign, accessibility, and social aspects (e.g., poll work training, voter education, etc.). Note
that these questions are of an ever-increasing interdisciplinary nature, and thus cannot
be properly addressed only by computer scientists. In that regard, the community’s at-
tention may also turn towards theoretical notions beyond privacy and verifiability, such
as fairness (ensuring all voters have equal influence on the result), eligibility (ensuring
only those allowed can cast a vote), or accountability (ensuring that errors can be traced
back to an offending party).

Finally, the above-noted outreach from the academic community to offer their systems
for use in actual elections provides election officials with systems which offer strong
guarantees on both privacy and verifiability. It is our hope that this will converge with
governmental desire for automation in the election process.

Acknowledgments. This paper would not be in the shape and form it currently is, if not
for the extensive comments made by Pascal Lafourcade, for which we are indebted to
him. In addition, we are grateful for comments on early drafts of this work by Peter Y.
A. Ryan, Marc Pouly, Gabriele Lenzini, and Thea Peacock, as well as for the support of
the EPRIV and SerTVS projects and of the Fonds National de la Recherche Luxembourg
(FNR).

References

[ACvdG10] R. Araújo, R. F. Custódio, and J. van de Graaf. A verifiable voting protocol based on Farnel.
In Towards Trustworthy Elections, volume 6000 of LNCS, pages 274–288. Springer, 2010.

[Adi08] B. Adida. Helios: Web-based open-audit voting. In Proc. 17th USENIX Security Sympo-
sium, pages 335–348. USENIX Association, 2008.

[AdMPQ09] B. Adida, O. de Marneffe, O. Pereira, and Jean-Jacques Quisqater. Electing a univer-
sity president using open-audit voting: Analysis of real-world use of Helios. In Proc.
EVT/WOTE 2009. USENIX Association, 2009.

[AFT08] R. Araújo, S. Foulle, and J. Traoré. A practical and secure coercion-resistant scheme for
remote elections. In Frontiers of Electronic Voting, volume 07311 of Dagstuhl Seminar
Proceedings. IBFI, Schloss Dagstuhl, Germany, 2008.

[ALBD04] R. Aditya, B. Lee, C. Boyd, and E. Dawson. An efficient mixnet-based voting scheme pro-
viding receipt-freeness. In Proc. 1st Conference on Trust and Privacy in Digital Business,
volume 3184 of LNCS, pages 152–161. Springer, 2004.

[AN06] B. Adida and A. Neff. Ballot casting assurance. In Proc. EVT/WOTE 2006. USENIX
Association, 2006.

46

[App06] A. W. Appel. How to defeat Rivest’s Threeballot voting system. Technical report, Princeton
University, 2006.

[AR06] B. Adida and R. L. Rivest. Scratch & vote: self-contained paper-based cryptographic
voting. In Proc. ACM Workshop on Privacy in the Electronic Society (WPES), pages
29–40. ACM, 2006.

[BCP+11] D. Bernhard, V. Cortier, O. Pereira, B. Smyth, and B. Warinschi. Adapting Helios for
provable ballot privacy. In Proc. 16th European Symposium on Research in Computer
Security (ESORICS), volume 6879 of LNCS, pages 335–354. Springer, 2011.

[Ben94] J. Benaloh. Dense probabilistic encryption. In Proc. Workshop on Selected Areas of
Cryptography, pages 120–128, 1994.

[Ben06] J. Benaloh. Simple verifiable elections. In Proc. Electronic Voting Technology Workshop
(EVT) 2006. USENIX Association, 2006.

[Ben07] J. Benaloh. Ballot casting assurance via voter-initiated poll station auditing. In Proc.
Electronic Voting Technology Workshop (EVT) 2007. USENIX Association, 2007.

[BFP+01] O. Baudron, P. Fouque, D. Pointcheval, J. Stern, and G. Poupard. Practical multi-
candidate election system. In Proc. 20th ACM Symposium on Principles of Distributed
Computing (PODC), pages 274–283. ACM, 2001.

[BG11] K. Bräunlich and R. Grimm. Formalization of receipt-freeness in the context of electronic
voting. In Proc. 6th Conference on Availability, Reliability and Security (ARES’11), pages
119–126. IEEE, 2011.

[BHM08] M. Backes, C. Hriţcu, and M. Maffei. Automated verification of remote electronic vot-
ing protocols in the applied pi-calculus. In Proc. 21st Computer Security Foundations
Symposium (CSF), pages 195–209. IEEE Computer Society, 2008.

[Bla79] G. R. Blakley. Safeguarding cryptographic keys. In Proc. 1979 National Computer Confer-
ence, volume 48, pages 313–317. American Federation of Information Processing Societies,
1979.

[BMR07] J. Bohli, J. Müller-Quade, and S. Röhrich. Bingo voting: Secure and coercion-free voting
using a trusted random number generator. In Proc. 1st Conference on Voting and Identity
(Vote-ID), volume 4896 of LNCS, pages 111–124. Springer, 2007.

[BRS07] A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledge-based modelling of voting pro-
tocols. In Proc. 11th Conference on Theoretical Aspects of Rationality and Knowledge
(TARK), pages 62–71. ACM, 2007.

[BT94] J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections (extended abstract). In
Proc. 26th ACM Symposium on Theory of Computing (STOC), pages 544–553. ACM,
1994.

[CA12] S.-H. Cha and Y. J. An. Taxonomy and nomenclature of preferential voting methods. In
Proc. World Congress on Engineering and Computer Science (WCECS 2012), volume 1
of Lecture Notes in Engineering and Computer Science, pages 173–178. International As-
sociation of Engineers / Newswood Limited, 2012.

[CC97] L. F. Cranor and R. Cytron. Sensus: A security-conscious electronic polling system for the
Internet. In Proc. 30th Annual Hawaii Conference on System Sciences (HICSS), pages
561–570. IEEE Computer Society, 1997.

[CCC+08] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L. Rivest, P. Y. A. Ryan,
E. Shen, and A. T. Sherman. Scantegrity II: End-to-end verifiability for optical scan election
systems using invisible ink confirmation codes. In Proc. Electronic Voting Technology
Workshop (EVT) 2008. USENIX Association, 2008.

[CCC+10] R. Carback, D. Chaum, J. Clark, J. Conway, A. Essex, P. S. Herrnson, T. Mayberry,
S. Popoveniuc, R. L. Rivest, E. Shen, A. T. Sherman, and P. L. Vora. Scantegrity II mu-
nicipal election at Takoma Park: The first E2E binding governmental election with ballot
privacy. In Proc. 19th USENIX Security Symposium, pages 291–306. USENIX Association,
2010.

[CCM08] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure voting system.
In Proc. 29th IEEE Symposium on Security and Privacy (S&P), pages 354–368. IEEE
Computer Society, 2008.

[CEC+08] D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A. Sherman, and P. Vora.
Scantegrity: End-to-end voter-verifiable optical-scan voting. Proc. 29th IEEE Symposium
on Security and Privacy (S&P), 6(3):40–46, 2008.

[CFS+06] B. Chevallier-Mames, P. Fouque, J. Stern, D. Pointcheval, and J. Traoré. On some incom-
patible properties of voting schemes. In Proc. IAVoSS Workshop On Trustworthy Elections,

47

2006.
[CFSY96] R. Cramer, M. K. Franklin, B. Schoenmakers, and M. Yung. Multi-authority secret-ballot

elections with linear work. In Proc. 15th Annual Conference on the Theory and Applica-
tions of Cryptographic Techniques: Advances in Cryptology (EUROCRYPT), volume 1070
of LNCS, pages 72–83. Springer, 1996.

[CGS97] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-
authority election scheme. In Proc. 16th Annual Conference on the Theory and Applica-
tions of Cryptographic Techniques: Advances in Cryptology (EUROCRYPT), volume 1233
of LNCS, pages 103–118. Springer, 1997.

[Cha81] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
munications of the ACM, 24(2):84–88, 1981.

[Cha82] D. Chaum. Blind signatures for untraceable payments. In Proc. 2nd Annual International
Cryptology Conference (CRYPTO), pages 199–203. Plenum Press, New York, 1982.

[Cha01] D. Chaum. Surevote: Technical overview. In Proc. Workshop On Trustworthy Elections
(WOTE), 2001.

[Cha04] D. Chaum. Secret-ballot receipts: True voter-verifiable elections. Proc. 25th IEEE Sym-
posium on Security and Privacy (S&P), 2(1):38–47, 2004.

[CRS05] D. Chaum, P. Y. A. Ryan, and S. A. Schneider. A practical voter-verifiable election scheme.
In Proc. 10th European Symposium on Research in Computer Security (ESORICS), volume
3679 of LNCS, pages 118–139. Springer, 2005.

[CS11] V. Cortier and B. Smyth. Attacking and fixing helios: An analysis of ballot secrecy. In
Proc. 24th IEEE Computer Security Foundations Symposium (CSF), pages 297–311. IEEE
Computer Society, 2011.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Com-
puting, 30(2):391–437, 2000.

[DKR06] S. Delaune, S. Kremer, and M. Ryan. Coercion-resistance and receipt-freeness in electronic
voting. In Proc. 19th Computer Security Foundation Workshop (CSFW), pages 28–42.
IEEE Computer Society, 2006.

[DKR09] S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security, 17(4):435–487, 2009.

[DLL11] J. Dreier, P. Lafourcade, and Y. Lakhnech. Vote-independence: A powerful privacy notion
for voting protocols. In 4th Canada-France MITACS Workshop on Foundations & Practice
of Security (FPS’11), volume 6888 of LNCS, pages 164–180. Springer, 2011.

[DLL12] J. Dreier, P. Lafourcade, and Y. Lakhnech. A formal taxonomy of privacy in voting proto-
cols. In First IEEE International Workshop on Security and Forensics in Communication
Systems (ICC’12 WS - SFCS), pages 6710–6715, 2012.

[DY83] D. Dolev and A. C.-C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–207, 1983.

[ECA08] A. Essex, J. Clark, and C. Adams. Aperio: High integrity elections for developing countries.
In Proc. IAVoSS Workshop On Trustworthy Elections (WOTE), 2008.

[ECCP07] A. Essex, J. Clark, R. Carback, and S. Popoveniuc. Punchscan in practice: An E2E election
case study. In Proc. IAVoSS Workshop On Trustworthy Elections (WOTE), 2007.

[ECHA10] A. Essex, J. Clark, U. Hengartner, and C. Adams. Eperio: mitigating technical complexity
in cryptographic election verification. In Proc. EVT/WOTE 2010. USENIX Association,
2010.

[ED10] S. Estehghari and Y. Desmedt. Exploiting the client vulnerabilities in internet e-voting sys-
tems: Hacking Helios 2.0 as an example. In Proc. EVT/WOTE 2010. USENIX Association,
2010.

[ElG85] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In Proc. 5th Annual International Cryptology Conference (CRYPTO), volume 218
of LNCS, pages 10–18. Springer, 1985.

[FCS06] K. Fisher, R. Carback, and A. T. Sherman. Punchscan: Introduction and system definition
of a high-integrity election system. In Proc. IAVoSS Workshop On Trustworthy Elections
(WOTE), 2006.

[FG07] C. Fontaine and F. Galand. A survey of homomorphic encryption for nonspecialists.
EURASIP Journal on Information Security, 2007:1–10, 2007.

[FLA11] L. Fousse, P. Lafourcade, and M. Alnuaimi. Benaloh’s dense probabilistic encryption
revisited. In Proc. 4th International Conference on Progress in Cryptology in Africa
(AFRICACRYPT’11), volume 6737 of LNCS, pages 348–362. Springer, 2011.

48

[FMM+02] J. Furukawa, H. Miyauchi, K. Mori, S. Obana, and K. Sako. An implementation of a
universally verifiable electronic voting scheme based on shuffling. In Proc. 12th Conference
on Financial Cryptography and Data Security (FC), volume 2357 of LNCS, pages 16–30.
Springer, 2002.

[FOO92] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large scale
elections. In Proc. Workshop on the Theory and Application of Cryptographic Techniques,
volume 718 of LNCS, pages 244–251. Springer, 1992.

[FS86] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Proc. 6th Annual International Cryptology Conference (CRYPTO),
volume 263 of LNCS, pages 186–194. Springer, 1986.

[Gen09] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984.

[Her97] M. A. Herschberg. Secure electronic voting over the World Wide Web. Master’s thesis,
Massachusetts Institute of Technology, 1997.

[Hir01] M. Hirt. Multi-Party Computation: Efficient Protocols, General Adversaries, and Voting.
PhD thesis, ETH Zurich, 2001.

[HRT10] J. Heather, P. Y. A. Ryan, and V. Teague. Pretty good democracy for more expressive
voting schemes. In Proc. 15th European Symposium on Research in Computer Security
(ESORICS), volume 6345 of LNCS, pages 405–423. Springer, 2010.

[HS00] M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic encryption. In
Proc. 19th Annual Conference on the Theory and Applications of Cryptographic Tech-
niques: Advances in Cryptology (EUROCRYPT), volume 1807 of LNCS, pages 539–556.
Springer, 2000.

[HS07] J. Helbach and J. Schwenk. Secure internet voting with code sheets. In Proc. 1st Conference
on E-Voting and Identity (Vote-ID), volume 4896 of LNCS, pages 166–177. Springer, 2007.

[JCJ05] A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic elections. In Proc.
ACM Workshop on Privacy in the Electronic Society (WPES), pages 61–70. ACM, 2005.

[JdV06] H. L. Jonker and E. P. de Vink. Formalising receipt-freeness. In Proc. 9th Conference on
Information Security (ISC), volume 4176 of LNCS, pages 476–488. Springer, 2006.

[JJR02] M. Jakobsson, A. Juels, and R. L. Rivest. Making mix nets robust for electronic voting by
randomized partial checking. In Proc. 11th USENIX Security Symposium, pages 339–353.
USENIX Association, 2002.

[JMP09a] H. L. Jonker, S. Mauw, and J. Pang. A formal framework for quantifying voter-controlled
privacy. Journal of Algorithms in Cognition, Informatics and Logic, 64(2-3):89–105, 2009.

[JMP09b] H. L. Jonker, S. Mauw, and J. Pang. Measuring voter-controlled privacy. In Proc. 4th Con-
ference on Availability, Reliability and Security (ARES), pages 289–298. IEEE Computer
Society, 2009.

[JP06] H. L. Jonker and W. Pieters. Receipt-freeness as a special case of anonymity in epistemic
logic. In Proc. IAVoSS Workshop On Trustworthy Elections (WOTE), 2006.

[JP11] H. L. Jonker and J. Pang. Bulletin boards in voting systems: Modelling and measuring
privacy. In Proc. 6th Conference on Availability, Reliability and Security (ARES), pages
294–300. IEEE Computer Society, 2011.

[JR12] R. Joaquim and C. Ribeiro. An efficient and highly sound voter verification technique and
its implementation. In Proc. 3rd conference on E-Voting and Identity (VoteID’11), volume
7187 of LNCS, pages 104–121. Springer, 2012.

[JRF09] R. Joaquim, C. Ribeiro, and P. Ferreira. VeryVote: A voter verifiable code voting system.
In Proc. 2nd Conference on Voting and Identity (Vote-ID), volume 5767 of LNCS, pages
106–121. Springer, 2009.

[JRF10] R. Joaquim, C. Ribeiro, and P. Ferreira. Improving remote voting security with codevoting.
In Towards Trustworthy Elections, volume 6000 of LNCS, pages 310–329. Springer, 2010.

[JSI96] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their applica-
tions. In Proc. 15th Annual Conference on the Theory and Applications of Cryptographic
Techniques: Advances in Cryptology (EUROCRYPT), pages 143–154, 1996.

[KR05] S. Kremer and M. Ryan. Analysis of an electronic voting protocol in the applied pi calculus.
In Proc. 14th European Symposium on Programming (ESOP), volume 3444 of LNCS, pages
186–200. Springer, 2005.

[KRMC10] J. Kelsey, A. Regenscheid, T. Moran, and D. Chaum. Attacking paper-based e2e voting

49

systems. In Towards Trustworthy Elections, volume 6000 of LNCS, pages 370–387. Springer,
2010.

[KRS10] S. Kremer, M. Ryan, and B. Smyth. Election verifiability in electronic voting protocols. In
Proc. 15th European Symposium on Research in Computer Security (ESORICS), volume
6345 of LNCS, pages 389–404. Springer, 2010.

[KT09] R. Küsters and T. Truderung. An epistemic approach to coercion-resistance for electronic
voting protocols. In Proc. 30th IEEE Symposium on Security and Privacy (S&P), pages
251–266. IEEE Computer Society, 2009.

[KTV10] R. Küsters, T. Truderung, and A. Vogt. A game-based definition of coercion-resistance and
its applications. In Proc. 23rd IEEE Computer Security Foundations Symposium (CSF),
pages 122–136. IEEE Computer Society, 2010.

[LBD+04] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang, and S. Yoo. Providing receipt-freeness in
mixnet-based voting protocols. In Proc. 5th Conference on Information and Communica-
tions Security (ICICS), volume 2971 of LNCS, pages 245–258. Springer, 2004.

[LK00] B. Lee and K. Kim. Receipt-free electronic voting through collaboration of voter and honest
verifier. In Proc. Joint workshop on Information Security and Cryptology, pages 101–108.
Institute of Electronics, Information and Communication Engineers in Japan, 2000.

[LK02] B. Lee and K. Kim. Receipt-free electronic voting scheme with a tamper-resistant random-
izer. In Proc. 5th Conference Information Security and Cryptology (ICISC), volume 2587
of LNCS, pages 389–406. Springer, 2002.

[MB01] S. Mauw and V. Bos. Drawing Message Sequence Charts with LATEX. TUGBoat, 22(1-
2):87–92, March/June 2001.

[MBC01] E. Magkos, M. Burmester, and V. Chrissikopoulos. Receipt-freeness in large-scale elections
without untappable channels. In Proc. IFIP Conference on Towards The E-Society: E-
Commerce, E-Business, E-Government, volume 202 of IFIP Conference Proceedings, pages
683–694. Kluwer, 2001.

[MH96] M. Michels and P. Horster. Some remarks on a receipt-free and universally verifiable mix-
type voting scheme. In Proc. 4th Conference on the Theory and Applications of Cryptology
(ASIACRYPT), volume 1163 of LNCS, pages 125–132. Springer, 1996.

[MN06] T. Moran and M. Naor. Receipt-free universally-verifiable voting with everlasting privacy.
In Proc. 26th Annual International Cryptology Conference (CRYPTO), volume 4117 of
LNCS, pages 373–392. Springer, 2006.

[MN07] T. Moran and M. Naor. Split-ballot voting: everlasting privacy with distributed trust. In
Proc. 14th ACM Conference on Computer and Communications Security (CCS), pages
246–255. ACM, 2007.

[MVdV07] S. Mauw, J.H.S. Verschuren, and E.P. de Vink. Data anonymity in the FOO voting
scheme. In Proc. 2nd International Workshop on Views On Designing Complex Archi-
tectures (VODCA), volume 168 of ENTCS, pages 5–28, 2007.

[Nef01] C. A. Neff. A verifiable secret shuffle and its application to e-voting. In Proc. 8th ACM
Conference on Computer and Communications Security (CCS), pages 116–125. ACM,
2001.

[Nef04] C. Andrew Neff. Practical high certainty intent verification for encrypted votes. Vote-
here, Inc. whitepaper, 2004. http://citeseer.ist.psu.edu/viewdoc/download?doi=10.

1.1.134.1006&rep=rep1&type=pdf (last accessed 2 April 2012).
[NR94] V. Niemi and A. Renvall. How to prevent buying of votes in computer elections. In Proc.

2nd Conference on the Theory and Applications of Cryptology (ASIACRYPT), volume 917
of LNCS, pages 164–170. Springer, 1994.

[Oka96] T. Okamoto. An electronic voting scheme. In Proc. IFIP World Conference on IT Tools,
pages 21–30. Chapman & Hall, 1996.

[Oka97] T. Okamoto. Receipt-free electronic voting schemes for large scale elections. In Proc. 5th
Workshop on Security Protocols, volume 1361 of LNCS, pages 25–35. Springer, 1997.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proc.
18th Annual Conference on the Theory and Applications of Cryptographic Techniques:
Cryptology (EUROCRYPT), volume 1592 of LNCS, pages 223–238. Springer, 1999.

[Ped91] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Proc. 11th Annual International Cryptology Conference (CRYPTO), volume 576 of
LNCS, pages 129–140. Springer, 1991.

[PV08] S. Popoveniuc and P. Vora. A framework for secure electronic voting. In Proc. IAVoSS
Workshop On Trustworthy Elections (WOTE), 2008.

50

[RS07] R. L. Rivest and W. D. Smith. Three voting protocols: ThreeBallot, VAV, and Twin. In
Proc. USENIX Electronic Voting Technology Workshop. USENIX Association, 2007.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[Rya05] P. Y. A. Ryan. A variant of the Chaum voter-verifiable scheme. In Proc. Workshop on
Issues in the Theory of Security (WITS), pages 81–88. ACM, 2005.

[SGR97] P. F. Syverson, D. M. Goldschlag, and M. G. Reed. Anonymous connections and onion
routing. In Proc. 18th IEEE Symposium on Security and Privacy (S&P), pages 44–54.
IEEE Computer Society, 1997.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
[SK95] K. Sako and J. Kilian. Receipt-free mix-type voting scheme - A practical solution to

the implementation of a voting booth. In Proc. 14th Annual Conference on the Theory
and Applications of Cryptographic Techniques: Advances in Cryptology (EUROCRYPT),
volume 921 of LNCS, pages 393–403. Springer, 1995.

[SKHS11] O. Spycher, R. Koenig, R. Haenni, and M. Schläpfer. A new approach towards coercion-
resistant remote e-voting in linear time. In Proc. 15th Conference on Financial Cryptog-
raphy and Data Security (FC), volume 7035 of LNCS, pages 182–189. Springer, 2011.

[SLC+11] S. Schneider, M. Llewellyn, C. Culnane, J. Heather, S. Srinivasan, and Z. Xia. Focus group
views on Prêt à voter 1.0. In Proc. Workshop on Requirements Engineering for Electronic
Voting Systems (REVOTE), pages 56–65. IEEE Computer Society, 2011.

[Smi05a] W. D. Smith. New cryptographic voting scheme with best-known theoretical properties.
In Proc. Workshop on Frontiers in Electronic Elections (FEE), 2005.

[Smi05b] Warren D Smith. Cryptography meets voting, September 2005.
[SP05] K. Sampigethaya and R. Poovendran. A framework and taxonomy for comparison of elec-

tronic voting schemes. Computers & Security, 25(2):137–153, 2005.
[TMT+08] M. Talbi, B. Morin, V. Viet Triem Tong, A. Bouhoula, and M. Mejri. Specification of

electronic voting protocol properties using ADM logic: FOO case study. In Proc. 10th
Conference on Information and Communications Security (ICICS), volume 5308 of LNCS,
pages 403–418. Springer, 2008.

[Uni05] United States Election Assistance Commission. Voluntary Voting Systems Guidelines, 2005.
[vdG09] J. van de Graaf. Voting with unconditional privacy by merging Prêt à Voter and PunchScan.

IEEE Transactions on Information Forensics and Security, 4(4):674–684, 2009.
[WAB07] S. G. Weber, R. Araújo, and J. Buchmann. On coercion-resistant electronic elections with

linear work. In Proc. 2nd Conference on Availability, Reliability and Security (ARES),
pages 908–916. IEEE Computer Society, 2007.

[Wik03] D. Wikström. Five practical attacks for “optimistic mixing for exit-polls”. In Proc. 10th
Workshop on Selected Areas in Cryptography (SAC), volume 3006 of LNCS, pages 160–175.
Springer, 2003.

51

