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Abstract

LaMacchia, Lauter and Mityagin recently presented a strong security definition for au-
thenticated key agreement strengthening the well-known Canetti-Krawczyk definition. They
also described a protocol, called NAXOS, that enjoys a simple security proof in the new
model. Compared to MQV and HMQV, NAXOS is less efficient and cannot be readily
modified to obtain a one-pass protocol. On the other hand MQV does not have a security
proof, and the HMQV security proof is extremely complicated.

This paper proposes a new authenticated key agreement protocol, called CMQV (‘Com-
bined’ MQV), which incorporates design principles from MQV, HMQV and NAXOS. The
new protocol achieves the efficiency of HMQV and admits a natural one-pass variant.
Moreover, we present a relatively simple and intuitive proof that CMQV is secure in the
LaMacchia-Lauter-Mityagin model.

http://www.cryptolounge.net/ustaoglu
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1 Introduction

Researchers from IBM and Microsoft have recently proposed two-pass Diffie-Hellman authenti-
cated key agreement protocols called HMQV [9], KEA+ [13] and NAXOS [12]. In these protocols
the two communicating parties exchange static (long-term) and ephemeral (short-term) public
keys, and thereafter combine them to obtain a session key. The papers [9, 13, 12] highlight
certain security issues with previous related key agreement protocols and propose solutions to
address those issues. The goal of this paper is to devise a new protocol that has the best of all
worlds incorporated in its design.

Security models and definitions. Choo, Boyd and Hitchcock [7] compared the most com-
monly used security models for key agreement [4, 3, 6]. Their conclusion was that none of the
models as defined provides a significant advantage over the rest of the models. Furthermore,
these models fail to capture some desirable properties of key agreement. Most significantly, the
adversary is not allowed to obtain certain secret information about the session that is being
attacked. Krawczyk [9] addressed many of these concerns by providing a stronger version of
the Canetti-Krawczyk model [6] that captures additional security properties. These desirable
properties include resistance to key-compromise impersonation (KCI) attacks, weak perfect for-
ward secrecy (wPFS), and resilience to the leakage of ephemeral private keys (LEP). More
recently LaMacchia, Lauter and Mityagin [12] provided a single definition that simultaneously
captures all these security properties. Their security model will henceforth be called the ex-
tended Canetti-Krawczyk (eCK) model.

Protocols. NAXOS is proven secure in the eCK model, but is less efficient in that it requires
4 exponentiations per party compared to 2.5 exponentiations for MQV and HMQV. In addition
there is no natural modification of NAXOS to a one-pass protocol. Unlike MQV [14], the
HMQV [9] protocol has a formal security proof1. However the proof is extremely long and
complicated, and some significant (but fixable) flaws [16, 17] have been discovered. The security
proof for KEA+ [13] is in a model that is weaker than eCK; for example the adversary is not
allowed to obtain the static private keys of both communicating parties. Table 1 compares
MQV, HMQV, KEA+ and NAXOS in terms of efficiency (number of exponentiations per party),
security and underlying assumptions. (See Section 3.3 for a more detailed analysis of the
efficiency of CMQV.) As usual CK stands for Canetti-Krawczyk [6], GDH refers to the Gap
Diffie-Hellman assumption [19], RO is short for the random oracle model, and KEA1 is the
knowledge of exponent assumption [2].

Protocol Efficiency Security Assumptions
MQV 2.5 unproven ?

HMQV 2.5 CK, wPFS, KCI, LEP KEA1, GDH, RO
KEA+ 3 CK, KCI GDH, RO

NAXOS 4 eCK GDH, RO
CMQV 3 eCK GDH, RO

Table 1: Protocol comparison

1The security proof for MQV presented in [11] is in a very restricted security model.
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Goals. This paper presents the two-pass CMQV protocol that achieves the following objec-
tives: (i) intuitive design principles; (ii) efficiency of MQV and HMQV; (iii) relatively straight-
forward security proof with minimal assumptions in the eCK model; and (iv) a natural one-pass
variant. The security proof was inspired by the HMQV argument [9], however NAXOS’ idea of
hashing ephemeral private keys with static private keys is essential to show security in the eCK
model. Moreover, unlike the HMQV proof, the CMQV security proof does not need the KEA1
assumption in order to demonstrate resilience to the leakage of ephemeral private keys. On
the negative side, the security of CMQV is not tight. As in the case of HMQV, the reduction
uses the Forking Lemma of Pointcheval and Stern [20, 21], which results in a highly non-tight
reduction.

Organization. Section 2 outlines the extended Canetti-Krawczyk security model and formal-
izes the security definition. The two-pass CMQV protocol is described in Section 3, and the
complete security proof is provided in Section 4. Finally, the one-pass variant of CMQV with
its security argument is presented in Section 5.

Notation. Let q be a prime, and let Zq denote the integers modulo q. We denote by G = 〈G〉 a
multiplicatively-written cyclic group of order q generated by g, and by G∗ the set of non-identity
elements in G. For group elements A,B, . . . the corresponding lowercase letters will denote the
discrete logarithms in base g; for example a = logg A, where a ∈ Zq. Key agreement protocols
take place between two parties, from among a set of n parties, denoted by Â, B̂ and so on.
Party Â’s static public key is A ∈ G and its corresponding static private key is a = logq A. In
general, lower case letters represent secret information, whereas upper case letters are publicly
known values. Finally, the symbol “∈R” means “selected uniformly at random”.

Acknowledgments

This paper owes much to the suggestions, help and advice of Alfred Menezes. I also thank Hugo
Krawczyk and the two anonymous referees for their valuable comments.

2 Extended Canetti-Krawzcyk security model

In this section we outline the eCK model; for further details the reader is referred to [12, 6].
In the eCK model there are n parties each modeled by a probabilistic Turing machine. Each
party has a static public-private key pair together with a certificate that binds the public key
to that party. We do not assume that the certifying authority (CA) requires parties to prove
possession of their static private keys, but we insist that the CA verifies that the static public
key of a party belongs to G∗. For simplicity, we will only describe the model for two-pass
Diffie-Hellman protocols that exchange ephemeral and static public keys – this is without loss
of generality as all the protocols in Table 1 are of this kind. More precisely, two parties Â, B̂
exchange static public keys A,B ∈ G∗ and ephemeral public keys X,Y ∈ G∗; the session key is
obtained by combining A, B, X, Y and possibly the identities Â, B̂.

Sessions. A party Â can be activated to execute an instance of the protocol called a session.
Activation is made via an incoming message that has one of the following forms: (i) (Â, B̂) or (ii)
(Â, B̂, Y ). If Â was activated with (Â, B̂) then Â is the session initiator, otherwise the session
responder. If Â is the responder of a session then Â prepares an ephemeral public key X and
creates a separate session state where all session-specific ephemeral information is stored. The
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session is identified via a session identifier (R, Â, B̂, Y,X), where R denotes responder. If Â is
the initiator of a session, then Â prepares an ephemeral public key X and creates a session state
as in the responder case. At the onset of the protocol the initiator does not know the incoming
ephemeral public key. However the session can be uniquely2 identified with (I, Â, B̂,X,×),
where I denotes initiator, and hence this string can be used as the (temporary and incomplete)
session identifier. When Â receives the corresponding ephemeral public key Y , the session
identifier is updated to (I, Â, B̂,X, Y ). A session (R, B̂, Â,X, Y ) (if it exists) is said to be
matching to the session (I, Â, B̂,X,×); it remains matching even when the identifier is updated
to (I, Â, B̂,X, Y ). On the other hand, the session matching to (R, B̂, Â,X, Y ) can be any session
identified by (I, Â, B̂,X,×) or (I, Â, B̂,X, Y ). Since it is not possible (except with negligible
probability) to simultaneously have two different sessions with identifiers (I, Â, B̂,X,×) and
(I, Â, B̂,X, Y ), a session (R, B̂, Â,X, Y ) can have at most one matching session. For a session
(∗, Â, B̂, ∗, ∗), we call Â the owner of the session, and B̂ the peer of the session.

Adversary. The adversary M is modeled as a probabilistic Turing machine and controls
all communications. Parties submit outgoing messages to the adversary, who makes decisions
about their delivery. The adversary presents parties with incoming messages via Send(message),
thereby controlling the activation of sessions. The adversary does not have immediate access to
a party’s private information, however in order to capture possible leakage of private information
the adversary is allowed the following queries:

• EphemeralKeyReveal(s) – The adversary obtains the ephemeral private key held by the
session s.

• SessionKeyReveal(s) – The adversary obtains the session key for a session s, provided
that the session holds a session key.

• StaticKeyReveal(party) – The adversary learns the static private key of the party.

• Establish(party) – This query allows the adversary to register a static public key on behalf
of a party. In this way the adversary totally controls that party. Parties against whom
the adversary did not issue this query are called honest.

Adversary goal. The aim of the adversaryM is to distinguish a session key from a random
key. Formally, the adversary is allowed to make one special query Test(s). The adversary
is then given with equal probability either the session key held by s or a random key. The
adversary wins the game if he guesses correctly whether the key is random or not. To define
secure protocols we need the following.

Definition 2.1 (fresh session) Let s be the session identifier of a completed session, owned
by an honest party Â with peer B̂, who is also honest. Let s∗ be the session identifier of the
matching session of s, if it exists. Define s to be fresh if none of the following conditions hold:

(i) M issues a SessionKeyReveal(s) query or a SessionKeyReveal(s∗) query (if s∗ exists);

(ii) s∗ exists and M makes either of the following queries:

– both StaticKeyReveal(Â) and EphemeralKeyReveal(s), or
2Since ephemeral keys are selected at random on a per-session basis, the probability that an ephemeral public

key X is chosen twice by Â is negligible.
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Â, a, A = ga

s : x̃, X, Â, B̂
x = H1(x̃, a)

X = gx

σ = (Y Be)x+da

(B̂, Â,X) −→

←− (Â, B̂,X, Y )

B̂, b, B = gb

s∗ : ỹ, Y, Â, B̂
y = H1(ỹ, b)

Y = gy

σ = (XAd)y+eb

e = H2(Y, Â, B̂) d = H2(X, Â, B̂)

κ = H(σ,X, Y, Â, B̂)

Figure 1: Two-pass CMQV

– both StaticKeyReveal(B̂) and EphemeralKeyReveal(s∗);

(iii) s∗ does not exist and M makes either of the following queries:

– both StaticKeyReveal(Â) and EphemeralKeyReveal(s), or
– StaticKeyReveal(B̂).

We are now ready to present the eCK security notion.

Definition 2.2 (eCK security) A key agreement protocol is secure if the following conditions
hold:

1. If two honest parties complete matching sessions then, except with negligible probability,
they both compute the same session key (or both output indication of protocol failure).

2. No polynomially bounded adversary M can distinguish the session key of a fresh session
from a randomly chosen session key, with probability greater than 1/2 plus a negligible
fraction.

The adversaryM is allowed to continue interacting with the parties even after issuing the Test
query. However, the test session must remain fresh through the experiment.

As mentioned at the end of Section 1, this security definition is very strong in the sense
that it simultaneously captures most of the desirable security properties for authenticated key
agreement that have been identified in the literature including resistance to key-compromise
impersonation attacks, weak perfect forward secrecy, and resilience to the leakage of ephemeral
private keys. Unlike in the CK model [6], the adversary in the eCK model is not equipped
with a SessionStateReveal query which enables it to learn the entire session state of a particular
session. This does not represent a deficiency in the eCK model since protocols such as HMQV [9]
proven secure in the CK model typically specify that the ephemeral private key is the only
private information stored in the session state in which case the EphemeralKeyReveal query
is functionally equivalent to the SessionStateReveal query. In general, by specifying that the
session specific private information (the session state) is part of the ephemeral private key, the
SessionStateReveal and EphemeralKeyReveal queries can be made functionally equivalent.

3 Two-pass CMQV

Two-pass CMQV is a Diffie-Hellman authenticated key agreement protocol that aims to estab-
lish a secure session key between two parties; see Figure 1 for an informal description. In addition

6



to the notation adopted at the end of Section 1, let H1 : {0, 1}λ×Zq∗ → Zq∗, H2 : {0, 1}∗ → Zq∗,
and H : {0, 1}∗ → {0, 1}λ be hash functions modeled as random oracles.

3.1 Protocol description

We assume for the remainder of the paper that a party never executes the protocol with itself.
The two-pass CMQV protocol is formally given in the following.

Definition 3.1 (two-pass CMQV protocol) The protocol proceeds as follows:

1. Upon activation (Â, B̂), party Â (the initiator) performs the steps:

(a) Select an ephemeral private key x ∈R {0, 1}λ.

(b) Compute the ephemeral public key X = gH1(x,a).

(c) Initiate session s = (I, Â, B̂,X, ∗) and send (B̂, Â,X) to B̂.

2. Upon activation (B̂, Â,X), party B̂ (the responder) performs the steps:

(a) Verify that X ∈ G∗.
(b) Select an ephemeral private key y ∈R {0, 1}λ.

(c) Compute the ephemeral public key Y = gH1(y,b).

(d) Compute e = H2(Y, Â, B̂) and d = H2(X, Â, B̂).

(e) Compute σ = (XAd)H1(y,b)+eb and κ = H(σ,X, Y, Â, B̂).

(f) Destroy y and σ.

(g) Complete session s = (R, B̂, Â,X, Y ) with session key κ and send (Â, B̂,X, Y ) to Â.

3. Upon activation (Â, B̂,X, Y ), party Â performs the steps:

(a) Verify that a session with identifier (I, Â, B̂,X,×) exists.

(b) Verify that Y ∈ G∗.
(c) Compute e = H2(Y, Â, B̂) and d = H2(X, Â, B̂).

(d) Compute σ = (Y Be)H1(x,a)+da and κ = H(σ,X, Y, Â, B̂).

(e) Destroy x and σ.

(f) Complete session s = (I, Â, B̂,X, Y ) with session key κ.

If any verification fails the party erases all session specific information, which includes the
ephemeral private key, from its memory and aborts the session.

It is straightforward to verify that both parties compute the same shared secret σ, and therefore
also the same session key.

3.2 Design rationale

Public-key validation. Public-key validation (i.e., checking that static and ephemeral public
keys belong to G∗) prevents potential invalid-curve [1] and small subgroup attacks [15] (see
also [17]). In other words, with validation a party obtains some assurance that computations
involving its static private key do not reveal any information about the key itself, as long as the
underlying group is cryptographically strong.
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Hashing ephemeral and static private keys. A careful reader observes that in Defini-
tion 3.1 the value x = H1(x̃, a) is never stored. Whenever H1(x̃, a) is needed, it is computed.
This implies that the session state does not store x. The idea is that without knowing both the
ephemeral private key x̃ and the static private key a, no entity is able to compute the discrete
logarithm x of an ephemeral public key X. This elegant idea, first described in [12], allows the
protocol to attain resistance to ephemeral private key leakage without resorting to non-trivial
assumptions like KEA1 [2] (as needed for HMQV [9]).

Rationale for exponents. Given a Computational Diffie-Hellman challenge with inputs
U, V ∈R G, knowledge of either of the discrete logarithms of U or V is enough to solve the
CDH instance. If an adversary M, given a static public key B, is able to find a group element
Y such that M knows the discrete logarithm of T = XBe, then it is easy to see that M can
impersonate B̂ to other parties (since M can compute the shared secret σ = (XAd)t where
t = logg T , thereby impersonating B̂ to Â). Defining e to depend on Y ensures that the adver-
sary is not able to compute the discrete logarithm of Y Be. Moreover, including the identity
of the intended peer in the derivation of e prevents the adversary from potentially benefiting
from the replay of Y to two distinct parties Â and Ĉ. One may argue that the inclusion of
B̂’s identity in the derivation of e is not needed since σ in any case depends on B̂’s static
public key B. However, since the CA does not require parties to prove possession of their static
private keys, M may establish a new party with static public key B. Hence B̂ is included in
the derivation of e.

We note that a very similar definition of e was used in HMQV [9]. For both HMQV and
CMQV, this definition of the exponents is crucial for the security proof, but in both cases the
reduction is non-tight. It is worth investigating if the requirements on e and d can be modified
to attain a tight security reduction.

Session key derivation. The session key is κ = H(σ,X, Y, Â, B̂). The secrecy of σ guarantees
that only the intended parties can possibly compute κ. Including identities in the key derivation
is a generic way to prevent unknown-key share attacks (see [5]). Furthermore, inclusion of X
and Y in the key derivation allows for a simple argument that non-matching sessions have
different session keys.

3.3 Efficiency of CMQV

The efficiency comparison in Table 1 is simplified; in particular, it does not take into account
validation and various speedups that may be applicable. Consider the following groups of
practical interest: (i) DSA-type groups (order-q subgroups of the multiplicative group of prime
fields Fp); and (ii) elliptic curves of prime order q or nearly prime order hq. Validation for
DSA-type groups requires a full exponentiation; in contrast validating points on elliptic curves
of prime order is essentially free. For nearly prime order curves, rather than verifying that
the order of a public key is q, parties could use the corresponding public keys multiplied by
the cofactor h. If the two public keys Y and B are validated, then computing (Y Be)x+da is
equivalent to computing Y s1Bs2 , where s1 = x+da mod q and s2 = e(x+da) mod q. Therefore,
computations can be speedup using Shamir’s trick ([18, Algorithm 14.88]), reducing the cost by
0.83 exponentiations on average.

Table 2 compares CMQV with HMQV as described in [10], accounting for the validation and
Shamir’s speedup. The numbers in parentheses for MQV and CMQV represent the naive count
of group exponentiations without accounting for possible improvements in the computations.
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DSA groups Elliptic curves Elliptic curves of
of prime order nearly prime order

CMQV 3.17 (4) 2.17 (3) 2.17 (3)
MQV 3.17 (3.5) 2.17 (2.5) 2.17 (2.5)

HMQV-P1363 2.5 / 3.5 2.17 2.17

Table 2: Efficiency comparison in terms of group exponentiations

The numbers for HMQV correspond to the two versions of HMQV as described in [10]. For
HMQV, the difference is significant only in DSA-type groups as the more efficient version avoids
full validation. However, the security proof in the case where validation is not required assumes
that no ephemeral private keys are leaked to the adversary.

4 Two-pass CMQV security

This section presents a formal security argument for two-pass CMQV. The GDH assumption
in G is that the CDH problem in G cannot be solved in polynomial time with non-negligible
success probability even when a DDH oracle for G is available.

Theorem 4.1 If H1,H2 and H are random oracles, and G is a group where the GDH assumption
holds, then CMQV is eCK secure.

Proof: Verifying condition 1 of Definition 2.2 is straightforward; it remains to verify condi-
tion 2.

Let λ denote the security parameter, whence q = |G| = Θ(2λ). LetM be a polynomially (in
λ) bounded CMQV adversary. The adversary M is said to be successful (event M) with non-
negligible probability ifM wins the distinguishing game described in Section 2 with probability
1
2 +p(λ), where p(λ) is non-negligible. Assume thatM operates in an environment that involves
at most n(λ) parties, M activates at most s(λ) sessions within a party, and makes at most
h1(λ), h2(λ) and h(λ) queries to oracles H1,H2 and H, respectively; and terminates after time at
most TM. Let the test session be st = (Â, B̂,X, Y ) and let H denote the event that M queries
H with (σ,X, Y, Â, B̂), where σ = CDH(XAd, Y Be). Let H be the complement of H and s∗ be
any other completed session owned by an honest party, such that st and s∗ are non-matching.
Since st and s∗ are non-matching, the input to the key derivation function H are different for st

and s∗. And since H is a random oracle it follows thatM cannot obtain any information about
the test session key from the session key of non-matching sessions. Hence Pr(M ∧H) ≤ 1

2 and

Pr(M) = Pr(M ∧H) + Pr(M ∧H) ≤ 1
2

+ Pr(M ∧H),

whence Pr(M ∧H) ≥ p; henceforth the event M ∧H is denoted by M∗.
Following the standard approach such an adversaryM is used to construct a GDH solver S

that succeeds with non-negligible probability. Let ξ : G × G → G be a random function known
only to S, such that ξ(X,Y ) = ξ(Y,X). The algorithm S will use ξ to simulate CDH(X,Y )
when S may not know logg(X) or logg(Y ). Let the input to the GDH challenge be (U, V ) and
consider the following complementary events:

DL. There exists an honest party B̂ such that M, during its execution, queries H1 with (∗, b),
before issuing a StaticKeyReveal(B̂) query. (Note that M does not necessarily make a
StaticKeyReveal(B̂) query.)
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DL. During its execution, for every honest party B̂ for which M queries H1 with (∗, b), M
issued StaticKeyReveal(B̂) before the first (∗, b) query to H1.

IfM succeeds with non-negligible probability, and hence Pr(M∗) ≥ p, it must be the case that
either event DL ∧M∗ or event DL ∧M∗ occurs with non-negligible probability. These events
are considered separately.

4.1 Event DL

Simulation. Suppose that event DL∧M∗ occurs with non-negligible probability. In this case
S prepares n parties. One party, called V̂ , is selected at random and assigned static public key
V ; S represents V̂ ’s static private key by ν ∈R Zq. The remaining n − 1 parties are assigned
random static key pairs. The adversaryM is initiated on this set of parties and the simulation
of M’s environment proceeds as follows:

1. Send(Â, B̂): S executes Step 1 of the protocol.

2. Send(B̂, Â,X): S executes Step 2 of the protocol. Except if B̂ = V̂ , in which case S
deviates by setting σ = ξ(XAd, Y Be).

3. Send(Â, B̂,X, Y ): S executes Step 3 of the protocol. Except if Â = V̂ , in which case S
deviates by setting σ = ξ(XAd, Y Be).

4. EphemeralKeyReveal(s): S responds to the query faithfully.

5. SessionKeyReveal(s): S responds to the query faithfully.

6. StaticKeyReveal(Â): S responds to the query faithfully, unless Â = V̂ in which case S
aborts with failure.

7. Establish(M̂): S responds to the query faithfully.

8. H1(s, c): S checks if the equation gc = V holds, in which case S stopsM and is successful
by outputting CDH(U, V ) = U c; otherwise S simulates a random oracle in the usual way.

9. H2(∗): S simulates a random oracle in the usual way.

10. H(σ,X, Y, Â, B̂):

(a) If V̂ ∈ {Â, B̂} and σ 6= ξ(XAd, Y Be), then S obtains τ = DDH(XAd, Y Be, σ).

i. If τ = 1, then S returns H
(
ξ(XAd, Y Be), X, Y, Â, B̂

)
.

ii. If τ = 0, then S simulates a random oracle in the usual way.

(b) S simulates a random oracle in the usual way.

11. Test(s): S responds to the query faithfully.

12. M outputs a guess: S aborts with failure.
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Analysis of event DL ∧ M∗. S’s simulation of M’s environment is perfect except with
negligible probability. With probability at least 1

n , S assigns the public key V to an honest
party B̂ for whom M will query H1(∗, b) without first issuing a StaticKeyReveal(B̂) query. In
this case S is successful as described in Step 8 and the abortions in Steps 6 and 12 do not occur.
Hence if event DL∧M∗ occurs with probability pDL, then S is successful with probability Pr(S)
that is bounded by

Pr(S) ≥ 1
n
pDL. (1)

4.2 Event DL

Let TM be the event “the test session has a matching session owned by an honest party”. Event
DL ∧M∗ is further subdivided into the following complementary events:

(i) Tm = (DL ∧M∗ ∧ TM), and

(ii) Tm = (DL ∧M∗ ∧ TM).

Let pD̃L = Pr(DL∧M∗), pm = Pr(Tm), and pm̃ = Pr(Tm). Since Tm and Tm are complementary
pD̃L = pm + pm̃. Therefore, if event DL ∧ M∗ occurs with non-negligible probability, then
either Tm or Tm occurs with non-negligible probability. Events Tm and Tm are next considered
separately.

4.2.1 Event Tm

Simulation. Suppose that event Tm occurs with non-negligible probability. In this case S
establishes n honest parties that are assigned random static key pairs, and randomly selects
two integers i, j ∈R [1, . . . , ns]. The i’th and the j’th sessions created will be called sU and sV ,
respectively. The ephemeral private key of sU is denoted by ũ and the ephemeral private keys
of sV is denoted by ṽ. The simulation of M’s environment proceeds as follows:

1. Send(Â, B̂): S executes Step 1 of the protocol. However, if the session being created is sU

or sV , then S deviates by setting the ephemeral public key X to be U or V , respectively,
thereby defining H1(ũ, a) = logg U or H1(ṽ, a) = logg V . Note that in this case S cannot
respond to either H1(ũ, a) = logg U or H1(ṽ, a) = logg V .

2. Send(B̂, Â,X): S executes Step 2 of the protocol. However, if the session being created is
sU or sV , then S deviates by setting the ephemeral public key Y to be U or V , respectively,
and setting σ = ξ(XAd, Y Be).

3. Send(Â, B̂,X, Y ): S executes Step 3 of the protocol. However, if X ∈ {U, V } then S
deviates by setting σ = ξ(XAd, Y Be).

4. EphemeralKeyReveal(s): S responds to the query faithfully.

5. SessionKeyReveal(s): S responds to the query faithfully.

6. StaticKeyReveal(Â): S responds to the query faithfully.

7. Establish(M̂): S responds to the query faithfully.

8. H1(x, a): S simulates a random oracle in the usual way except if Â owns sU and x = ũ or
if Â owns sV and x = ṽ, in which case S aborts with failure.
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9. H2(∗): S simulates a random oracle in the usual way.

10. H(σ,X, Y, Â, B̂):

(a) If {X,Y } = {U, V } and DDH(XAd, Y Be, σ) = 1, then S abortsM and is successful
by outputting CDH(U, V ) = σg−abedX−beY −ad.

(b) If X ∈ {U, V } and σ 6= ξ(XAd, Y Be), then S obtains τ = DDH(XAd, Y Be, σ).

i. If τ = 1, then S returns H
(
ξ(XAd, Y Be), X, Y, Â, B̂

)
.

ii. If τ = 0, then S simulates a random oracle in the usual way.

(c) If Y ∈ {U, V } and σ 6= ξ(XAd, Y Be), then S obtains τ = DDH(XAd, Y Be, σ).

i. If τ = 1, then S returns H
(
ξ(XAd, Y Be), X, Y, Â, B̂

)
.

ii. If τ = 0, then S simulates a random oracle in the usual way.

(d) S simulates a random oracle in the usual way.

11. Test(st): If sU and sV are non-matching or if st is neither sU nor sV , then S aborts;
otherwise responds to the query faithfully.

12. M outputs a guess: S aborts with failure.

Analysis of event Tm ∧DL∧M∗. S’s simulation ofM’s environment is perfect except with
negligible probability. The probability that M selects sU and sV as the test session and its
matching is at least 2

(ns)2
. Suppose that this is the case, so S does not abort as in Step 11, and

suppose that event Tm occurs. Without loss of generality, let st = sU = (Â, B̂, U, V ). Since
ũ is used only in the test session, M must obtain it via an EphemeralKeyReveal query before
making an H1 query that includes ũ. Similarly,M must obtain ṽ from the matching session via
an EphemeralKeyReveal query before making an H1 query that includes ṽ. Under event DL,
the adversary first issues a StaticKeyReveal query to a party before making an H1 query that
includes that party’s static private key. Since the test session is fresh,M can query for at most
one value in each of the pairs (ũ, a) and (ṽ, b); hence S does not abort as described in Step 8.
Under event M∗, except with negligible probability of guessing ξ(UAd, V Be), S is successful as
described in Step 10a and does not abort as in Step 12. Therefore if event Tm occurs, then the
success probability of S is bounded by

Pr(S) ≥ 2
(ns)2

pm. (2)

4.2.2 Event Tm

Simulation. Suppose that event Tm occurs with non-negligible probability. Recall that event
Tm implies that no honest party owns a session matching to the test session. In this case S
prepares n parties. One party, called V̂ , is selected at random and assigned static public key V
and S represents V̂ ’s static private key by ν ∈R Zq. The remaining n − 1 parties are assigned
random static key pairs. Furthermore, S randomly selects an integer i ∈R [1, . . . , ns]. The i’th
session created will be called sU and sU ’s ephemeral private key will be denoted by ũ. The
simulation of M’s environment proceeds as follows:

1. Send(Â, B̂): S executes Step 1 of the protocol. However, if the session being created is
sU , then S deviates by setting the ephemeral public key X to be U .
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2. Send(B̂, Â,X): S executes Step 2 of the protocol. However, if the session being created
is sU , S deviates by setting the ephemeral public key Y to be U . In addition if B̂ = V̂ or
Y = U , then S sets σ = ξ(XAd, Y Be).

3. Send(Â, B̂,X, Y ): S executes Step 3 of the protocol. However, if Â = V̂ or X = U , then
S deviates by setting σ = ξ(XAd, Y Be).

4. EphemeralKeyReveal(s): S responds to the query faithfully.

5. SessionKeyReveal(s): S responds to the query faithfully.

6. StaticKeyReveal(Â): S responds to the query faithfully, unless Â = V̂ in which case S
aborts with failure.

7. Establish(M̂): S responds to the query faithfully.

8. H1(x, a): S simulates a random oracle in the usual way except if Â owns sU and x = ũ, in
which case S aborts with failure.

9. H2(∗): S simulates a random oracle in the usual way.

10. H(σ,X, Y, Â, B̂):

(a) If X = U and B̂ = V̂ , then S obtains τ = DDH(XAd, Y Be, σ).

i. If τ = 1, then S computes Π = σY −adV −ade = guve+uy.
ii. If τ = 0, then S simulates a random oracle in the usual way.

(b) If Y = U and Â = V̂ , then S obtains τ = DDH(XAd, Y Be, σ)

i. If τ = 1, then S computes Π = σX−beV −bde = guvd+uy.
ii. If τ = 0, then S simulates a random oracle in the usual way.

(c) If σ 6= ξ(XAd, Y Be) and either U ∈ {X,Y } or V̂ ∈ {Â, B̂}, then S obtains τ =
DDH(XAd, Y Be, σ).

i. If τ = 1, then S returns H
(
ξ(XAd, Y Be), X, Y, Â, B̂

)
.

ii. If τ = 0, then S simulates a random oracle in the usual way.

(d) S simulates a random oracle in the usual way.

11. Test(st): If st 6= sU or the peer of st is not V̂ , then S aborts with failure; otherwise
responds to the query faithfully.

12. M outputs a guess: S aborts with failure.

Analysis of event Tm∧DL∧M∗. The simulation ofM’s environment is perfect except with
negligible probability. The probability that the test session has peer V̂ and outgoing ephemeral
public key U is at least 1

n2s
. Suppose that this is indeed the case, so S does not abort as in

Step 11, and suppose that event Tm occurs. Since ũ is used only in the test session, M must
obtain it via an EphemeralKeyReveal query before making an H1 query that includes ũ. Under
event DL, the adversary first issues a StaticKeyReveal query to a party before making an H1

query that includes that party’s static private key. Since the test session is fresh, and st has no
matching session a successful M does not query for x; hence S does not abort as described in
Steps 6 and 8.
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Without loss of generality let Y denote the incoming ephemeral public key selected by M
for the test session st = (Â, V̂ , U, Y ). Under event M∗, M queries H with (σ, U, Y, Â, V̂ ) where
DDH(UAd, Y V e, σ) = 1, in which case as described in Step 10(a)i S computes

Π = σY −adV −ade = guve+uy.

Without the knowledge of y = logg Y , S is unable to compute CDH(U, V ). Following the
Forking Lemma [20, Lemma 2] approach, S runs M on the same input and the same coin flips
but with carefully modified answers to the H2 queries. Note that M must have queried H2

with (Y, Â, B̂) in its first run, because otherwiseM would be unable to compute σ except with
negligible probability. For the second run of M, S responds to H2(Y, Â, B̂) with a value e′ 6= e

selected uniformly at random. Another way of describing the second run is: M is rewound to
the point whereM queries H2 with (Y, Â, B̂) and the query is answered with a random value e′

different from e. If M succeeds in the second run, in Step 10(a)i S computes

Π′ = σ′Y −ad
′
V −ad

′e′ = guve
′+uy

and thereafter obtains

CDH(U, V ) =
(

Π
Π′

)(e−e′)−1

.

The forking is at the expense of introducing a wider gap in the reduction. The success probability
of S, excluding negligible terms, is

Pr(S) ≥ 1
s

1
n2

C

h2
pm̃ (3)

where C is a constant arising from the use of the Forking Lemma3

4.3 Analysis

Suppose that event M occurs. Combining Equations (1), (2) and (3), the success probability
of S is

Pr(S) ≥ max
{

1
n(λ)

pDL(λ),
2

(n(λ)s(λ))2
pm(λ),

C

s(λ)n(λ)2h2(λ)
pm̃(λ)

}
, (4)

which is non-negligible in λ.
The simulation requires S to perform group exponentiations, access the DDH oracle, and

simulate random oracles. Since q = Θ(2λ), a group exponentiation takes time TG = O(λ) group
multiplications. Assume that a DDH oracle call takes time TDDH = O(λ). Responding to an H
query takes time TH = O(λ); similarly, responding to H1 and H2 queries takes time TH1(λ) and
TH2(λ). Taking the largest times from among all simulations for answering M’s queries, the
running time of S is bounded by

TS ≤ (T3G + (TDDH + 2TG + TH) + (TG + TH1) + TH2) TM. (5)

Thus, if M is polynomially bounded, then there is an algorithm S that succeeds in solving the
GDH problem in G with non-negligible probability. Furthermore S runs in polynomial time,
contradicting the GDH assumption in G. This concludes the proof of Theorem 4.1. �

3The constant C in Pointcheval and Stern’s version of the lemma is 84480−1. Its value has not been worked
out in Theorem 4.1’s (and Krawzcyk’s) use of the Forking Lemma.
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5 One-pass CMQV

One-pass protocols are useful in environments, where the responder is not available for imme-
diate reply; hence there are fundamental differences with interactive environments. There are
important scenarios, such as email, where one-pass protocols are useful and therefore they are
worth studying.

5.1 Description

In a nutshell, one-pass CMQV is two-pass CMQV, where the ephemeral public key Y of the
responder is the identity element in the group. To that end there is no need to include Y in the
key derivation.

Definition 5.1 (one-pass CMQV) The protocol proceeds as follows:

1. Upon activation (Â, B̂), party Â (the initiator) performs the steps:

(a) Select an ephemeral private key x̃ ∈R {0, 1}λ.

(b) Compute the ephemeral public key X = gH1(x̃,a).

(c) Compute d = H2(X, Â, B̂) and σ = BH1(x,a)+da.

(d) Compute κ = H(σ,X, Â, B̂) and destroy x and σ.

(e) Send (B̂, Â,X) to B̂ and complete session s = (Â, B̂,X) with session key κ.

2. Upon activation (B̂, Â,X), party B̂ (the responder) performs the steps:

(a) Verify that X ∈ G∗.

(b) Compute d = H2(X, Â, B̂) and σ = (XAd)b.

(c) Compute κ = H(σ,X, Â, B̂) and destroy σ.

(d) Complete session s = (B̂, Â,X) with session key κ.

If any verification fails, then the party erases all session specific information from its memory
and aborts the session.

5.2 One-pass model modifications

Even though the definition of secure protocol (Definition 2.2) does not depend on the number
of protocol flows, the definition of fresh session has to be modified to fit the needs of a one-pass
protocol. In particular, one-pass protocols cannot achieve forward secrecy since an adversary
can compute a session key by learning the static private key of the responder.

Definition 5.2 (one-pass fresh session) Let s be the session identifier of a completed ses-
sion, owned by an honest party Â with intended peer B̂, who is also honest. Let s∗ be the session
identifier of the matching session of s, if it exists. Define s to be fresh if none of the following
conditions hold:

(i) M issues a SessionKeyReveal(s) query or a SessionKeyReveal(s∗) query (if s∗ exists);

(ii) if Â is the initiator then M makes either of the following queries:

– both StaticKeyReveal(Â) and EphemeralKeyReveal(s), or
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– StaticKeyReveal(B̂);

(iii) if Â is the responder then M makes either of the following queries

– StaticKeyReveal(Â) or

– StaticKeyReveal(B̂).

We point out that by replaying messages from Â to B̂ an adversaryM could force multiple
sessions owned by B̂ sharing the same session key κ. Let Sκ be the set of sessions owned by
B̂ with the same session key κ. Since all sessions in Sκ have the same session identifiers, M
cannot compromise a single session in Sκ without compromising all sessions in Sκ. Therefore,
the definition of session identifier accounts for replay attacks.

6 One-pass CMQV security

The security argument for one-pass CMQV is very similar to the security argument for two-pass
CMQV Section 4.

Theorem 6.1 If H1,H2 and H are random oracles, and G is a group where the GDH assumption
holds, then one-pass CMQV is eCK secure.

Proof: Verifying condition 1 of Definition 2.2 is straightforward; it remains to verify condi-
tion 2.

Let λ denote the security parameter, whence q = |G| = Θ(2λ). LetM be a polynomially (in
λ) bounded one-pass CMQV adversary. The adversary M is said to be successful (event M)
with non-negligible probability if M wins the distinguishing game described in Section 2 with
probability 1

2 + p(λ), where p(λ) is non-negligible. Assume thatM operates in an environment
that involves at most n(λ) parties, and within a partyM activates at most s(λ) sessions as the
initiator within a party, and makes at most h1(λ), h2(λ) and h(λ) queries to oracles H1,H2 and H,
respectively; and terminates after time at most TM. Let the test session be st = (Â, B̂,X) and
let H denote the event that M queries H with (σ,X, Â, B̂), where σ = CDH(XAd, B). Let H
be the complement of H and s∗ be any completed session owned by an honest party, such that
st and s∗ are non-matching. Since st and s∗ are non-matching, the input to the key derivation
function H are different for st and s∗. And since H is a random oracle it follows that M cannot
obtain any information about the test session key from the session key of non-matching sessions.
Hence Pr(M ∧H) ≤ 1

2 and

Pr(M) = Pr(M ∧H) + Pr(M ∧H) ≤ 1
2

+ Pr(M ∧H),

whence Pr(M ∧H) ≥ p; henceforth the event M ∧H is denoted by M∗.
Following the standard approach, such an adversary M is used to construct a GDH solver

S that succeeds with non-negligible probability. Let ξ : G×G → G be a random function known
only to S, such that ξ(X,Y ) = ξ(Y,X). The algorithm S will use ξ to simulate CDH(X,Y )
when S may not know logg(X) or logg(Y ). Let the input to the GDH challenge be (U, V ) and
consider the following complementary events:

DL. There exists an honest party B̂ such that M, during its execution, queries H1 with (∗, b),
before issuing a StaticKeyReveal(B̂) query. (Note that M does not necessarily make a
StaticKeyReveal(B̂) query.)
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DL. During its execution, for every honest party B̂ for which M queries H1 with (∗, b), M
issued StaticKeyReveal(B̂) before the first (∗, b) query to H1.

IfM succeeds with non-negligible probability, and hence Pr(M∗) ≥ p, it must be the case that
either event DL ∧M∗ or event DL ∧M∗ occurs with non-negligible probability. These events
are considered separately.

6.1 Event DL

Simulation. Suppose that event DL∧M∗ occurs with non-negligible probability. In this case
S prepares n parties. One party, called V̂ , is selected at random and assigned static public key
V ; S represents V̂ ’s static private key by ν ∈R Zq. The remaining n − 1 parties are assigned
random static key pairs. The adversaryM is initiated on this set of parties and the simulation
of M’s environment proceeds as follows:

1. Send(Â, B̂): S executes Step 1 of the protocol. However, if Â = V̂ , then S deviates by
setting σ = ξ(XAd, B).

2. Send(B̂, Â,X): S executes Step 2 of the protocol. However, if B̂ = V̂ , then S sets
σ = ξ(XAd, B).

3. EphemeralKeyReveal(s): S responds to the query faithfully.

4. SessionKeyReveal(s): S responds to the query faithfully.

5. StaticKeyReveal(Â): S responds to the query faithfully, unless Â = V̂ in which case S
aborts with failure.

6. Establish(M̂): S responds to the query faithfully.

7. H1(s, c): S checks if the equation gc = V holds, in which case S stopsM and is successful
by outputting CDH(U, V ) = U c; otherwise S simulates a random oracle in the usual way.

8. H2(∗): S simulates a random oracle in the usual way.

9. H(σ,X, Â, B̂):

(a) If V̂ ∈ {Â, B̂} and σ 6= ξ(XAd, B), then S obtains τ = DDH(XAd, B, σ).

i. If τ = 1, then S returns H
(
ξ(XAd, B), X, Â, B̂

)
.

ii. If τ = 0, then S simulates a random oracle in the usual way.
(b) S simulates a random oracle in the usual way.

10. Test(s): S responds to the query faithfully.

11. M outputs a guess: S aborts with failure.

Analysis of event DL ∧ M∗. S’s simulation of M’s environment is perfect except with
negligible probability. With probability at least 1

n , S assigns the public key V to an honest
party B̂ for whom M will query H1(∗, b) without first issuing a StaticKeyReveal(B̂) query. In
this case S is successful as described in Step 7 and the abortions as in Steps 5 and 11 do not
occur. Hence if event DL∧M∗ occurs with probability pDL, then S is successful with probability
Pr(S) that is bounded by

Pr(S) ≥ 1
n
pDL. (6)
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6.2 Event DL

Let Tm be the event “the test session has a matching session owned by an honest party or the
test session owner is also the session initiator”. Event DL ∧M∗ is further subdivided into the
following complementary events:

(i) Tm = (DL ∧M∗ ∧ Tm), and

(ii) Tm = (DL ∧M∗ ∧ TM).

Let pD̃L = Pr(DL∧M∗), pm = Pr(Tm), and pm̃ = Pr(Tm). Since Tm and Tm are complementary,
pD̃L = pm + pm̃. Therefore, if event DL ∧ M∗ occurs with non-negligible probability, then
either Tm or Tm occurs with non-negligible probability. Events Tm and Tm are next considered
separately.

6.2.1 Event Tm

Simulation in event Tm. Suppose that event Tm occurs with non-negligible probability. In
this case S establishes n parties. One party, called V̂ , is selected at random and assigned static
public key V ; S represents V̂ ’s static private key by ν ∈R Zq. The remaining n− 1 parties are
assigned random static key pairs. Furthermore, S randomly selects an integer i ∈R [1, . . . , ns].
The i’th session created will be called sU and sU ’s ephemeral private key will be denoted by ũ.
The simulation of M’s environment proceeds as follows:

1. Send(Â, B̂): S executes Step 1 of the protocol. However, if the session being created is
sU , S deviates by setting the ephemeral public key X to be U . In addition, if X = U or
Â = V̂ , then S sets σ = ξ(XAd, B).

2. Send(B̂, Â,X): S executes Step 2 of the protocol. However, if B̂ = V̂ , then S deviates by
setting σ = ξ(XAd, B).

3. EphemeralKeyReveal(s): S responds to the query faithfully.

4. SessionKeyReveal(s): S responds to the query faithfully.

5. StaticKeyReveal(Â): S responds to the query faithfully, unless Â = V̂ , in which case S
aborts with failure.

6. Establish(M̂): S responds to the query faithfully.

7. H1(x, a): S simulates a random oracle in the usual way except if Â owns sU and x = ũ or
if Â owns sV and x = ṽ, in which case S aborts with failure.

8. H2(∗): S simulates a random oracle in the usual way.

9. H(σ,X, Â, B̂):

(a) If X = U , B̂ = V̂ and DDH(XAd, B, σ) = 1, then S aborts M and is successful by
outputting CDH(U, V ) = σV −ad.

(b) If σ 6= ξ(XAd, Y ) and either V̂ ∈ {Â, B̂} or X = U , then

i. if DDH(XAd, B, σ) = 1, then S returns H
(
ξ(XAd, Y ), X, Â, B̂

)
;

ii. if DDH(XAd, B, σ) = 1, then S simulates a random oracle in the usual way.

18



(c) S simulates a random oracle in the usual way.

10. Test(st): If the peer of sU is not V̂ or if st is neither sU nor the session matching to sU ,
then S aborts; otherwise responds to the query faithfully.

11. M outputs a guess: S aborts with failure.

Analysis of event Tm ∧DL∧M∗. S’s simulation ofM’s environment is perfect except with
negligible probability. The probability that M selects V̂ as sU ’s peer and st is either sU or its
matching session is at least 2

ns2
. Suppose that this is the case, so S does not abort as in Step 10,

and suppose that event Tm occurs. Without loss of generality, let sU = (Â, V̂ , U). Since ũ is
used only in sU , M must obtain ũ via an EphemeralKeyReveal query before making an H1

query that includes ũ. Under event DL, the adversary first issues a StaticKeyReveal(Â) query
before making an H1 query that includes x. Since the test session is fresh, S does not abort
as described in Step 5 and 7. Under event M∗, except with negligible probability of guessing
ξ(UAd, V ), S is successful as described in Step 9a and does not abort as in Step 11. Therefore
if event Tm occurs, then the success probability of S is

Pr(S) ≥ 2
ns2

pm. (7)

6.2.2 Event Tm

Simulation. Suppose that event Tm occurs with non-negligible probability, in which case no
honest party owns a session matching to the test session and the test session owner is also
the responder. In this case S prepares n parties. Two of these parties, denoted by Û and V̂ ,
are selected uniformly at random and assigned static public keys U and V , respectively. The
remaining n−2 parties are assigned random static key pairs. The algorithm S will use υ ∈R Zq
and ν ∈R Zq, to represent the static private keys of Û and V̂ , respectively. The simulation of
M’s environment proceeds as follows:

1. Send(Â, B̂): S executes Step 1 of the protocol. However, if Â ∈ {Û , V̂ }, then S sets
σ = ξ(XAd, B).

2. Send(B̂, Â,X): S executes Step 2 of the protocol. However, if B̂ ∈ {Û , V̂ }, then S sets
σ = ξ(XAd, B).

3. EphemeralKeyReveal(s): S responds to the query faithfully.

4. SessionKeyReveal(s): S responds to the query faithfully.

5. StaticKeyReveal(Â): S responds to the query faithfully, unless Â ∈ {Û , V̂ } in which case
S aborts with failure.

6. Establish(M̂): S responds to the query faithfully.

7. H1(∗): S simulates a random oracle in the usual way.

8. H2(∗): S simulates a random oracle in the usual way.

9. H(σ,X, Â, B̂):

(a) If {Â, B̂} = {Û , V̂ } and DDH(XAd, B, σ) = 1, then S records σ.
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(b) If σ 6= ξ(XAd, B) and either Û ∈ {Â, B̂} or V̂ ∈ {Â, B̂}, then

i. if DDH(XAd, B) = 1, then S returns H
(
ξ(XAd, B), X, Â, B̂

)
;

ii. if DDH(XAd, B) = 0, then S simulates a random oracle in the usual way.

(c) S simulates a random oracle in the usual way.

10. Test(st): If the communicating partners of st are not Û and V̂ , then S aborts with failure;
otherwise responds to the query faithfully.

11. M outputs a guess: S aborts with failure.

Analysis of event Tm ∧ DL ∧M∗. The simulation of M’s environment is perfect except
with negligible probability. The probability that Û and V̂ are the test session’s communicating
partners is at least 2

n2 . Suppose that this is indeed the case, so S does not abort as in Step 10,
and suppose that event Tm occurs. Since the test session is fresh, and st has no matching
session, then S does not abort as described in Step 5.

Without loss of generality, let st = (Û , V̂ , B), where B denotes st’s incoming ephemeral
public key selected by M. Under event M∗, except with negligible probability of guessing
ξ(Y Ud, V ), M queries H with (σ, Y, Û , V̂ ), where DDH(Y Ud, V, σ) = 1, in which case as de-
scribed in Step 9a, S obtains

σ = guvd+vy.

Without knowledge of y = logg Y , S is unable to compute CDH(U, V ). Following the Forking
Lemma [20] approach, S runs M on the same input and the same coin flips but with carefully
modified answers to the H2 queries. Note thatM must have queried H2 with (Y, Â, B̂) in its first
run, because otherwise M would be unable to compute σ except with negligible probability.
For the second run of M, S responds to H2(Y, Â, B̂) with a value d′ 6= d selected uniformly at
random. Another way of describing the second run is: M is rewound to the point where M
queries H2 with (Y, Â, B̂) and the query is answered with a random value d′ different from d. If
M succeeds in the second run, in Step 9a S obtains

σ′ = guvd
′+vy

and thereafter obtains

CDH(U, V ) =
(
σ

σ’

)(d−d′)−1

.

The forking is at the expense of introducing a wider gap in the reduction. The success probability
of S, excluding negligible terms, is

Pr(S) ≥ 1
n2

C

h2
pm̃, (8)

where C is a constant arising from the Forking Lemma.

6.3 Analysis

Suppose that event M occurs. Combining Equations (6), (7) and (8), the success probability
of S is

Pr(S) ≥ max
{

1
n(λ)

pDL(λ),
2

n(λ)s(λ)2
pm(λ),

C

n(λ)2h2(λ)
pm̃(λ)

}
, (9)
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which is non-negligible in λ.
The simulation requires S to perform group exponentiations, access the DDH oracle, and

simulate random oracles. Since q = Θ(2λ), a group exponentiation takes time TG = O(λ) group
multiplications. Assume that a DDH oracle call takes time TDDH = O(λ). Responding to an H
query takes time TH = O(λ); similarly responding to H1 and H2 queries takes time TH1(λ) and
TH2(λ), respectively. Taking the largest times from among all simulations for answering M’s
query, the running time of S is bounded by

TS ≤ (T2G + (TDDH + TG + TH) + (TG + TH1) + TH2)TM. (10)

Thus, if M is polynomially bounded, then there is an algorithm S that succeeds in solving the
GDH problem in G with non-negligible probability. Furthermore S runs in polynomial time,
contradicting the GDH assumption in G. This concludes the proof of Theorem 6.1. �

7 Comments

7.1 Model description

As described in [12] the adversary is not given an Establish query. Instead the adversary selects
the identifiers for the parties and is allowed to register adversary controlled parties at the onset
of the protocol, more precisely during the registration phase. The Establish query used here
achieves the same if the first queries performed by the adversary are all Establish queries.
Furthermore, it allows the adversary to adaptively select public keys and identities based on
the ephemeral public keys selected by the honest parties. As such the query allows modeling of
Kaliski [8] type unknown key share attacks.

7.2 Simulation

We stress that the eCK model allows for sessions where the initiator and the responder are the
same party. As pointed out in Section 3.1 the security arguments have been carried out under
the assumption that a party does not execute the protocol with itself. That assumption is
needed in simulation Step 10(a)i of Section 4.2.2 and simulation Step 9a of Section 6.2.1, where
it is assumed that S possesses the value a. If the owner and the peer of the test session is the
same party V̂ , then algorithm S does not posses the value a and cannot perform the required
computations. Furthermore, simulation Step 10 of Section 6.2.2 requires distinct test session
partners. These shortcoming can be addressed by introducing additional events and utilizing
the “gap square Diffie-Hellman assumption”. For sake of simplicity this has not been done.

8 Concluding remarks

The paper presented CMQV, a modification of the MQV key agreement protocol. On the
positive side the new protocol is secure in the extended Canetti-Krawzcyk model. Moreover it
achieves the performance of the original MQV protocol, and has intuitive design principles and
a relatively simple security proof. On the negative side the reduction argument is not tight, in
particular the Forking Lemma appears to be essential for the security argument. It remains to
be seen if there exists a protocol that achieves the performance of MQV and at the same time
enjoys a security reduction that is as tight as the security reduction for NAXOS.
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Errata

Known deficiencies found in the short version [22].

Model description: In the short version of this paper a session identifier s is given by
(Â, B̂,X, Y ) with matching session s∗ given by (B̂, Â, Y,X). These identifiers differ from
the original eCK definition: they do not carry information about the role of session owners
and hence both parties Â and B̂ may view themselves as initiators. If both parties perform
the protocol as initiators, then sessions s and s∗ even though matching do not compute the
same session key, since the order of identities and public keys used in the key derivation
function is reversed. The updated session identifier definition, which is the original eCK
definition, rules this possibility out.
Credit: discussions with Cas Cremers and Alfred Menezes.

Efficiency: Table 2, in the short version of this paper, had an incorrect estimate of Shamir’s
trick [18, Algorithm 14.88]; it has been addressed in the current version.
Credit: discussions with Jiang Wu.
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Revisions

June 22, 2009

- Updated the eCK model description.

- Added details to the security argument for two-pass CMQV (Theorem 4.1).

- Added security argument for one-pass CMQV (Theorem 6.1).

- Updated Table 2, modified Figure 1 and reworded Definitions 3.1 and 5.1.

- Added Section 7.

- Corrected references and updated contact information.
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