
Scalable Multi-Server Private Information Retrieval*

Ashrujit Ghoshal
CMU

aghoshal@andrew.cmu.edu

Baitian Li
Tsinghua IIIS and Columbia

lbt21@mails.tsinghua.edu.cn

Yaohua Ma
Tsinghua IIIS and CMU

yaohuam@andrew.cmu.edu

Chenxin Dai
Tsinghua IIIS and CMU

chenxind@andrew.cmu.edu

Elaine Shi†

CMU
runting@gmail.com

Abstract

We revisit multi-server Private Information Retrieval (PIR), where the client interacts with S non-
colluding servers. Ideally, we want a scalable family of multi-server PIR schemes where all the perfor-
mance metrics of the scheme decrease as S increases. However, no prior work achieved scalability under
any setting, and any hardness assumption.

In this paper we construct new multi-server, information-theoretically secure scalable PIR schemes
for three natural settings. First, we give a construction where all the performance metrics scale at equal
rate. Second, we give a scalable construction that minimizes the per-query bandwidth. Third, we give
a scalable construction that minimizes the per-query online bottleneck cost (the maximum of the band-
width and computation). For the first two settings, our constructions are doubly efficient with only
a super-constant number of servers. In comparison, the best known prior works in the information-
theoretic setting required super-logarithmically many servers to achieve the doubly efficient notion.

Our techniques for achieving scalable PIR also enable us to advance the state of the art in the poly-
nomial space setting. In this setting, we show how to improve the space consumption of prior works by
a polynomial factor while preserving all other metrics. Further, we show a new balancing technique that
allows us to further minimize the bandwidth per query by trading off the computation and server space,
thus enabling a more smooth tradeoff between the metrics and generalizing the design space.

1 Introduction

Private Information Retrieval (PIR), originally proposed by Chor et al. [CGKS95], allows a client to retrieve
an entry from a public database stored on one or more server(s), without leaking its query to any individual
server. PIR promises numerous applications such as private DNS [Fea, obl, SCV+21], privately checking
whether one’s password is in some leaked password database [hav,DRRT18], private contact discovery [sig],
private web search [HDCG+23], and more.

In this paper, we revisit multi-server PIR, where a client interacts with S non-colluding servers. This set-
ting becomes particularly interesting if adding more servers can improve the performance of PIR schemes.

*An online version is available at https://eprint.iacr.org/2024/765.
†Author ordering is randomized.

1

https://eprint.iacr.org/2024/765

The holy grail is to get a scalable family of schemes, where the all performance metrics, including compu-
tation, bandwidth, and space decrease as we increase the number of servers.

Unfortunately, to the best of our knowledge, no prior multi-server PIR scheme can achieve scalability
under any setting and any hardness assumptions. Classical PIR schemes without preprocessing [CGKS95,
Cha04,GR05,CMS99,CG97,KO97,Lip09,OS07,Gas04,BFG03,SC07,OG11,MCG+08,MG07,HHCG+23,
MW22] inherently cannot scale beyond the linear computation barrier. Specifically, Beimel, Ishai, and
Malkin [BIM04] proved that any classical PIR scheme (without preprocessing) must incur a server-side
computation cost that is linear in the size of the database for every query. Intuitively, if the servers need
not look at some locations to answer a client’s query, then the client’s interest in those locations can be
ruled out, thus breaking privacy. Although recent works, pioneered by Beimel et al. [BIM04] and Corrigan-
Gibbs and Kogan [CK20], have shown how to overcome this linear computation barrier by introducing a
one-time preprocessing [BIM04, CK20, WY05, LP23, SACM21, CHK22, ZLTS23, LP22, GZS24, HPPY24,
MIR23, LMW23], existing preprocessing schemes fail to satisfy scalability. Most existing preprocessing
PIR schemes [CK20, LP23, SACM21, CHK22, ZLTS23, LP22, GZS24, HPPY24, MIR23, LMW23] are de-
signed for a fixed number of servers (e.g., one or two), making scalability beyond their scope. While a few
works [BIM04,WY05,SWZ24] have explored a parameterizable number of servers, none have achieved full
scalability. For example, Beimel et al. [BIM04] and Woodruff and Yekhanin [WY05] showed that band-
width and computation can scale as fast as nO(1/S) where S is the number of servers. However, their server
space grows as rapidly as nω(S2/ logS), which is the opposite of scaling. The concurrent and independent
work of Singh et al. [SWZ24] showed how to achieve nO(1/S) bandwidth scaling, but their computation and
client space cannot scale beyond n1/2.

In this paper, we ask the following natural question:

Can we have multi-server PIR schemes with scalable efficiency as we increase the number of servers?

1.1 Our Main Results

We answer the above question affirmatively. Since tradeoffs exist between the bandwidth, computation, and
space requirement of the PIR scheme, we present our results for three natural settings:

• Setting 1: equal scaling. What scalability can we achieve if we want all metrics to scale equally fast w.r.t.
the number of servers? The concept of equal scaling is similar to that of “bottleneck cost” proposed in the
MPC literature [BJPY18]. The idea is that as the problem size scales up, the most unscalable dimension
becomes the bottleneck. This setting is particularly of relevance when the storage, computation and
network transmission costs of a system are similar.

• Setting 2: minimize bandwidth. How do we minimize the bandwidth consumption per query while
achieving scalability in all dimensions? This setting is particularly of relevance when the network trans-
mission costs of a system overwhelmingly dominate compute and storage costs. This was the primary
setting considered in prior works such as Beimel et al. [BIM04] and Woodruff and Yekhanin [WY05];
thus results in this setting allows a direct comparison with these prior works.

• Setting 3: minimize bottleneck cost. How do we minimize the bottleneck cost per query (i.e., the max of
the bandwidth and computation) while achieving scalability in server space? This setting is particularly
of relevance when storage is relatively cheap and we want to optimize the query response times, subject
to being scalable.

Below, we state our main results for these three settings. Unless otherwise stated, the notation Õ(·)
hides polylogarithmic dependences on n and S. We also omit O(logS/ log n) terms in the exponent of n
since typically S = no(1).

2

Number of Servers (S)

nÕ (1
log S)

Õ (1) nÕ (1
S1−1/ω(1))

n
ω(1

log log n)

nÕ (1
S)

n
2
S

Ba
nd

w
id

th
 p

er
 q

ue
ry

ω(1) Õ (log n)ω (log n
log log n) (log n)ω(1)

Number of Servers (S)

M
ax

 (B
an

dw
id

th
, C

om
pu

ta
tio

n)
 p

er
 q

ue
ry

nÕ (1
log S)

nO(1
log log S)

nÕ (1
log log log n)

n1/2

nÕ (1
S1−1/ω(1))

n
ω(1

log log n)

= Theorem 1.2
= Theorem 1.3

= Theorem 1.1

= [LLFP24, Theorem 4.1]

= [SWZ24, Theorem 14]
= [LLFP24, Theorem 5.2]

ω(1) Õ (log n)ω (log n
log log n) (log n)ω(1)

Figure 1: Left: Graph comparing the bandwidth of our doubly efficient constructions with other multi-
server preprocessing PIR schemes. Right: Graph comparing the online bottleneck of our doubly efficient
constructions with other multi-server preprocessing PIR schemes.

Theorem 1.1 (Informal: equal scaling setting). There exists an information-theoretic preprocessing S-
server PIR scheme where each query incurs Õ(nO(1/ logS)) per-server bandwidth and computation, and
Õ(S · nO(1/ logS)) client computation, while requiring Õ(n1+O(1/ logS)) per-server space.

Theorem 1.2 (Informal: minimizing bandwidth subject to scalable). There is an information-theoretic pre-
processing S-server PIR scheme that achieves nÕ(1/S) bandwidth and nO(1/ log logS) computation per query,
while requiring n1+O(log log logS/ log logS) server space.

Theorem 1.3 (Informal: minimizing bottleneck cost subject to scalable). There is an information-theoretic
preprocessing S-server PIR scheme that achieves nÕ(1/S1−1/ω(1)) bandwidth and computation per query
while requiring n1+Õ(1/S1−1/ω(1))+O(log logn·ω(1)/ logS) server space. In the above, we abuse the notation
ω(1) to mean an arbitrarily small super-constant function in n.

Relation to doubly-efficient. In the literature [LMW23, LLFP24], it is customary to use the term doubly
efficient to describe a PIR scheme that achieves no(1) bandwidth and computation per query, and n1+o(1)

server space where o(1) denotes any function that goes to 0 as n goes to infinity. Therefore, in Theorem 1.1
and Theorem 1.2, we achieve the notion of doubly efficient as long as S is a super-constant function in n.
In Theorem 1.3, we would satisfy doubly efficient as long as S is super-polylogarithmic in n.

Graphical illustration. To aid understanding, we plot the the above results (Theorems 1.1 to 1.3), in
Figure 1. For each curve, the vertical dotted line shows when the corresponding scheme becomes doubly
efficient. In this figure, we also compare with two concurrent works:

• The first construction of Lazzaretti et al. [LLFP24, Theorem 4.1] scheme is shown in Figure 1 as the blue
♦, meaning that they are a special case of our Theorem 1.3. The second construction of Lazzaretti et
al. [LLFP24, Theorem 5.2] scheme is shown in Figure 1 as the purple ♦, meaning that our construction
in Theorem 1.1 can achieve lower bandwidth and online bottleneck cost using fewer servers.

• The scheme of Singh et al. [SWZ24] is shown as the dashed black curves in Figure 1. As mentioned
earlier, their scheme does not achieve scalability in terms of computation per query, and this is why
the dashed black curve in Figure 1 (right) is a horizontal line. While all other schemes in Figure 1
adopt server-side preprocessing, Singh et al. adopts client-side preprocessing where each client must

3

Number of Servers (S)

Ba
nd

w
id

th
 p

er
 q

ue
ry

Se
rv

er
 S

pa
ce

= [BIM04] server space
= Corollary 4.15 server space

= [BIM04] bandwidth
= Corollary 4.15 bandwidthn0.368ϵS((1+o(1))/ϵ

n0.368(S/log S)ϵS((1+o(1))/ϵ

n
1 + ϵ

S

n
1 + ϵ

S

Figure 2: Graph comparing the bandwidth and space of our polynomial space setting scheme with [BIM04].

separately participate in a preprocessing protocol with the servers during a subscription phase. As a
result, Singh et al. removes the need for additional server space, at the cost of requiring approximately
n1/2 space on each client.

1.2 Additional Results and Contributions

Improved results for the poly-space setting. While our paper focuses on scalable families of PIR schemes,
the previous literature on preprocessing PIR [BIM04, WY05] instead asked what is the minimal bandwidth
we can achieve subject to polynomial server space. We refer to this setting as the poly-space setting.

Our techniques for achieving scalable PIR also enable us to advance the state of the art in the poly-
space setting. Specifically, we can improve the server space of Beimel et al. by a polynomial factor while
approximately matching their bandwidth and computation, as stated in the following theorem.

Theorem 1.4 (Informal: the poly-space setting). For sufficiently large S, n, and sufficiently small ϵ >
0, there exists an S-server PIR scheme where each query incurs Õ(n(1+ϵ)/S) per-server bandwidth and
computation, and Õ(n(1+ϵ)/S · S) client computation, while requiring n0.368ϵS(1+o(1))/ϵ

per-server space.

In Figure 2, we compare our scheme in the poly-space setting with that of Beimel et al. [BIM04].
Specifically, their server space is an S/ logS-factor worse in the exponent. Further, with the same framework
and different choice of parameters, we can also match the scheme with polylogarithmically many servers of
Beimel et al. [BIM04] (see their Theorem 4.9 and our Appendix C). In Table 2, we compare the concrete
efficiency of our schemes in Theorem 1.1, Theorem 1.4 and the scheme of [BIM04, Theorem 4.3].

A generic balancing technique. In all schemes mentioned so far, the download bandwidth is significantly
larger than the upload bandwidth. We devise a generic technique for balancing these two costs, which
reduces the total bandwidth at the cost of increased server computation. Our new balancing theorem differs
in nature from the standard balancing theorem from prior literature [CGKS95] — the prior version focuses
on the opposite scenario, where the upload bandwidth exceeds the download bandwidth.

Our balancing theorem is remotely related to a balancing technique described in the elegant work of
Woodruff and Yekhanin [WY05] The main difference is that their balancing technique is tightly coupled
with their specific PIR construction, and does not easily generalize. By contrast, we devise novel techniques
and derive a balancing theorem that applies to any PIR scheme.

4

Table 1: Comparison of concrete efficiency of our schemes with [BIM04, Theorem 4.3]. The numbers
represent the exponent of n ignoring additive o(1) factors, e.g., 0.75 means n0.75+o(1).

S Theorem 1.1 Theorem 1.4 [BIM04, Theorem 4.3]
Comm./Work Storage Comm./Work Storage Comm./Work Storage

2 0.6824 1.6824 0.75 1.7735 0.75 1.7735
4 0.4541 1.4541 0.375 3.7832 0.375 5.4874
6 0.4063 1.4063 0.25 8.0230 0.25 14.0940
10 0.3258 1.3258 0.15 19.9255 0.15 51.5976
16 0.2725 1.2725 0.09 47.8135 0.09 179.0431

As an implication of this new balancing technique, we can obtain an improved 2-server PIR scheme as
stated in the following theorem:

Theorem 1.5 (Informal: improved 2-server PIR in the poly-space setting). Let ϵ ∈ (0, 1) be an arbitrarily
small constant. There exists an information-theoretic 2-server PIR scheme with n(1+ϵ)/3 bandwidth and
n(2+ϵ)/3 computation per query, while requiring a polynomial amount of server space.

Theorem 1.5 almost matches the O(n1/3) bandwidth achieved by Woodruff and Yekhanin [WY05], but
we significantly improve their computation cost, from n/poly log n to n(2+ϵ)/3. There is also evidence indi-
cating potential barriers to further bandwidth improvements. Specifically, Razborov and Yakhanin showed
that n1/3 bandwidth is optimal for a natural class of bilinear and group-based 2-server PIR schemes [RY06].
To date, with the exception of Dvir and Gopi [DG16], all known 2-server PIR schemes (in all settings)
satisfy this natural characterization, including this paper.

2 Technical Roadmap

2.1 Equal Scaling in All Dimensions from Multiplicity Codes

We first construct a family of multi-server PIR schemes from multiplicity codes and show how to parame-
terize the construction to get a PIR scheme where the bandwidth, server computation and space scale at the
same rate. This scheme is doubly efficient when the number of servers is superconstant.

Background: multiplicity codes. Multiplicity codes, introduced by Kopparty et al. [KSY14], are a family
of locally correctable codes (hence, also locally decodable codes) based on evaluations of polynomials and
their derivatives. Multiplicity codes use Hasse derivatives which do not vanish even within a small field.
A codeword for multiplicity code is obtained by evaluating an m-variate polynomial F ∈ Fq[X1, . . . , Xm]
(where q is a prime or a prime power) of total degree at most d, along with all its derivatives of order < t,
at all points in Fq

m. In the context of locally decodable codes, the desired properties are for it to be locally
decodable with a low number of queries, and for it to have high rate and high minimum distance. A code is
k-query locally decodable if there is an algorithm that given a codeword, can recover the i-th bit of an n-bit
message for any i ∈ [[n]]1 by querying the codeword at k locations (for multiplicity codes one location of
the codeword is the evaluation of F and all its derivatives at one point in Fm

q). The rate of a code is the ratio
between the length of a message and a codeword. High rate means that the length of a codeword is close to
the length of a message. Minimum distance is defined as the minimum number of locations two codewords
differ in. High minimum distance means that the code can correct a large fraction of errors. For multiplicity

1For any n ∈ N, [[n]] denotes the set {0, 1, . . . , n− 1}

5

codes, setting m = O(1) and t > m2 = O(1) makes them nϵ-query locally decodable, for some constant ϵ.
Moreover, these parameters achieve constant rate and constant minimum distance. This has been the regime
of interest in prior works [KSY14, Y+12, Kop13] on multiplicity codes.

From multiplicity codes to PIR. Our goal is to construct a scalable family of S-server PIR scheme with
global preprocessing using multiplicity codes of order-t evaluations of degree-d polynomials in m variables
over Fq. We encode the database DB into an m-variate polynomial F with degree d, i.e., we construct an
injective mapping E : [[n]]→ Fm

q and then using polynomial interpolation find F such that F (E(i)) = DB[i]
for all i ∈ [[n]]. Now suppose the client wants to query the database at index i such that E(i) = u⃗. The client
chooses a random v⃗ ∈ Fm

q and distinct and non-zero field elements λ0, . . . , λS−1 and sends u⃗+ λsv⃗ to each
server s where s ∈ [[S]]. Each server returns to the client the value of F and all the Hasse derivatives up to
order t− 1 evaluated at the point it received.

Define f(λ) = F (u⃗+λv⃗). Now, the client can compute the Hasse derivates of f up to order t−1 denoted
from the servers’ answers using a modified version of the chain rule. Then, using Hermite interpolation of
Hasse derivatives [Has36, BGKM22], the client can recover f(0) = F (u⃗) = F (E(i)) = DB[i].

In order for the above PIR construction to work, certain constraints involving the parameters m, q, d, t, S
need to be satified. We list them below.

• For the encoding E to exist, we need qm ≥ n.

• For the polynomial F to interpolate DB, F needs at least n monomials. This entails that
(
m+d
m

)
≥ n.

• To make sure S distinct non-zero points are in Fq, we need q ≥ S + 1.

• For the Hermite interpolation to work, we need that t · S > d.

If the multiplicity code is S-query local, and satisfies these constraints, the construction that we outline
above is an S-server PIR. The rate of the multiplicity code determines the server storage, i.e., the server
storage will be n times the inverse of the rate. The minimum distance of the multiplicity code does not
affect any parameter of the PIR because we do not need error correction.

If we directly use parameters for multiplicity codes similar to those used in the coding theory literature
(e.g., [KSY14, Kop13, Y+12]), i.e., set m = O(1) and t = O(1), we would get an Ω(nϵ)-server PIR for
any constant ϵ > 0. As a PIR scheme, the number of servers is too large and thus this parameter regime
is of little interest. Moreover, since we can accept polynomial server storage and do not care about error
correction, we can use multiplicity codes with low rate and minimum distance close to zero. Therefore, PIR
asks for a different parameter regime than the standard coding theory literature.

In order to set the parameters, q,m, d, t let us first describe how the performance of the PIR construction
is affected by these parameters (we show the detailed calculation of these parameters in Section 4.2).

• The upload bandwidth is O(m log q), while the download bandwidth is O
((

m+t−1
t−1

)
log q

)
. The latter

is larger since t ≥ 1 and therefore dominates.

• The server computation is O
((

m+t−1
t−1

)
log q

)
.

• The client computation is O
(
S ·
(
m+t−1
t−1

)
·m · poly log q

)
+O(poly(d, log q)). The first term comes

from the client’s chain rule computation and the latter from the Hermite interpolation.

• The server storage is O
((

m+t−1
t−1

)
· qm log q

)
.

• The preprocessing time is O
((

m+t−1
t−1

)
· qm ·m · poly log q

)
.

6

Parameter setting for equal scaling. We now set our parameters for this construction making server
space, computation and bandwidth at equal rates as S grows.

• Since qm appears in both storage and preprocessing time, and we have the constraint qm ≥ n, we will
set m = ⌈log n/ log q⌉, the smallest possible value of m satisfying this inequality.

• For setting d, we will again choose smallest possible value that we can show satisfies
(
m+d
m

)
≥ n.

We want to minimize this because poly(d, q) appears in the client computation time, and we want to
reduce it.

Note that
(
m+d
m

)
≥ ((m + d)/m)m and we have set m such that qm ≥ n. So, it suffices to satisfy

(m+ d)/m ≥ q. We choose d = (q − 1) ·m.

• Now we set q, t. We want to minimize t because
(
m+t−1

m

)
grows as t grows (after we fix m). We need

to satisfy the constraint t ·S > d = (q−1) ·m, i.e., t > ((q−1) ·m)/S. Now, the minimum value of q
is S +1 because we need S non-zero distinct field elements λ0, . . . , λS−1 to exist. For simplicity, we
assume S +1 is a prime or prime power for now, and set q = S +1 because minimizing q minimizes
S. Then, we set t = m+1, which is the minimum value of t satisfying the aforementioned constraint.

Formally, with precise calculations where we do not assume S is a prime or a prime power, we get the
following theorem.

Theorem 2.1. For any S, there exists an S-server PIR scheme which achieves O(n2/(logS−1) logS) per-
server bandwidth, O(n2/(logS−1) logS) per-server computation and O(n2/(logS−1)S log n · poly logS)
client computation per query, with O(n1+2/(logS−1) · S · poly log n) preprocessing time and server stor-
age.

The details are in Section 4.3, and a simplified version of the theorem is stated in Theorem 1.1. Notice
that all the per server parameters decrease with the increase in the number of servers, i.e., the scheme is
scalable. Further, as long as S = ω(1), our construction is doubly efficient.

2.2 Minimizing Bandwidth Subject to Scalability

Many prior works on PIR [Cha04, CMS99, DG16, LP23, GZS24, LP22] viewed bandwidth as the primary
performance metric. In the equal-scaling scheme of Section 2.1, the bandwidth scales as nO(1/ logS). In
comparison, prior works [BIM04] showed that if we forgo scalability in the server space, the bandwidth can
scale as fast as nO(1/S). Therefore, a meaningful question is how to minimize the bandwidth while subject
to scalability.

Unfortunately, relying solely on multiplicity codes appears to limit us to a bandwidth of nO(1/ logS) if
we require scalability in all dimensions. Specifically, there is a direct tradeoff between the bandwidth and
server space, such that further reducing bandwidth would lead to a super-polynomial blowup in server space.
To achieve further bandwidth reduction, we need to make m larger, which in turn allows for smaller choices
of d and t. As a result, the dominant term in the bandwidth expression,

(
m+t−1
t−1

)
, decreases. Unfortunately,

increasing m beyond log n/ log q would cause the server space (related to qm) to become super-polynomial
To overcome this dilemma, we turn to polynomial preprocessing algorithms. Intuitively, these algo-

rithms make more efficient use of the server space while still preserving the ability to perform fast evaluation
by storing some specialized data structures whose size is much smaller than qm. This way we can set m to
be larger without making the server space superpolynomial in n.

Here, we specifically use the polynomial preprocessing algorithm from [BGG+24] which has the fol-
lowing guarantee: Consider a m-variate polynomial F ∈ Fq[X1, . . . , Xm] of individual degree d′ — this
means total degree d ≤ m · d′:

7

• There is an algorithm Preprocess that takes as input the polynomial F , runs in time O((16 ·d′ · (log d′+
log log q))m ·poly log(m, d′, q) and produces a data structure F̃ of size O((16 ·d′ ·(log d′+log log q))m ·
poly log(m, d′, q).

• Given any x⃗ ∈ Fm
q , F̃ (x⃗) = F (x⃗), evaluating F̃ takes time O(16m · poly log(m, d′, q)).

The servers use the above polynomial preprocessing algorithm to preprocess F and its Hasse derivatives
and store the data structures. When the query is made the servers use the stored data structures to compute
their answers.

We set the parameters as follows: m ≈ log n/ log log q, q = S + 1, d′ ≈ log q (this makes total degree
d ≈ m log q), t ≈ m log q/S, the storage is not superpolynomial in n for superconstant S. It is easy to
see that these parameters satisfy the constraints. Further m is much larger than t, so

(
m+t−1
t−1

)
≈ (m/t)t ≈

(S/ logS)logn·logS/(S log logS) ≈ nÕ(1/S). Therefore, the bandwidth scales as nÕ(1/S). Moreover, 16m is
nO(1/ log logS), (d′)m is roughly n, (log d′ + log log q)m is nO(log log logS/ log logS). Thus the total storage
is n1+O(log log logS/ log logS). Moreover, the server computation is dominated by the 16m ·

(
m+t−1
t−1

)
term

becomes nÕ(1/S)+O(1/ log logS). As already discussed earlier, the bandwidth scales as nÕ(1/S). Hence, the
construction is also doubly efficient for any S superconstant in n.

Above, we used rough approximations in several places as indicated by the ≈ signs. With precise
rounding and exact inequalities, we get the following theorem in Section 5.1.

Theorem 2.2. There is an S-server PIR scheme which achieves the following parameters.

• per-server bandwidth n
O

(
log2 S

S log log S

)
+O

(
log S
logn

)
· poly log(n, S),

• per-server computation n
O

(
log2 S

S log log S

)
+O

(
1

log log S

)
+O

(
log S
logn

)
· poly log(n, S),

• client computation n
O

(
log2 S

S log log S

)
+O

(
log S
logn

)
· poly log(n, S),

• per-server preprocessing time and storage

n
1+O

(
log2 S

S log log S

)
+O

(
log log log S
log log S

)
+O

(
log S
logn

)
· poly log(n, S) .

A simpler version of this theorem was stated in Theorem 1.2.

Details on the polynomial data structure. We briefly sketch the polynomial preprocessing algorithm
that we use here. This algorithm in [BGG+24] which is an improvement on the fast polynomial evaluation
algorithm from [KU08] that has been previously used in PIR constructions (e.g., [LMW23]).

Let F be a m-variate polynomial with individual degree d′ over Zq. Given x⃗ ∈ Zm
q , we want to evaluate

F (x⃗) fast. It is easy to see that since F has at most (d′ + 1)m monomials and the maximum value of a
monomial is (q − 1) · (q − 1)md′ , the maximum value of F over Z is M = (q − 1)md′+1 · (d′ + 1)m. In the
algorithm in [KU08] the idea is to compute primes p1, p2, . . . , pk :

∏
j∈[k] pj > M where p1 < p2 < . . . <

pk. We know that we can find primes such that pk = O(logM) = O(md′ log q). Then the algorithm stores
all evaluations of F (x⃗) mod pj for all x⃗ ∈ Zm

pj for all j ∈ [k]. In the online phase in order to compute F (x⃗),
the algorithm looks up F (x⃗) mod pj for all j ∈ [k] and uses the Chinese Remainder Theorem to compute
F (x⃗) from these values. Storing all the evaluations of F (x⃗) mod pj for all x⃗ ∈ Zm

pj for all j ∈ [k] requires
space O(pmj) = O((md′ log q)m). By using recursion to instead compute the values of F (x⃗) mod pj by

8

decomposing pj into smaller primes can make the (log q)m factor reduce to (log log q)m, but does not get
rid of the mm factor.

In [BGG+24], the idea is to instead find primes p1, p2, . . . , pk :
∏

j∈[k] p
m
j > M . Here, we can find these

primes such that pj = O((logM)/m) = O(d′ log q). Now, if we store all the evaluations F (x⃗) mod pmj
for all j ∈ [k], for all x⃗ ∈ Zm

pmj
, the total storage is O(pm

2

j), which is significantly worse than above! So,

the key observation in [BGG+24] is that over Zpmj
, the evaluation of an m-variate polynomial F at a point

x⃗ can be derived from the evaluations of the Hasse derivatives of F upto order m at another point y⃗ such
that the co-ordinates of x⃗− y⃗ are multiples of pj . So, it just suffices to compute the evaluations of F and its
Hasse derivatives upto order m at a certain subset of Zm

pmj
whose size is pmj . This helps us get rid of the mm

factor from the storage. It however turns out, just doing this is not yet enough for the result we want. We
need to again recursively compute F (y⃗) mod pmj by again decomposing pj into even smaller primes. That
suffices to get the parameters we want for our PIR construction.

2.3 Minimizing Bottleneck Cost Subject to Scalability

In Section 2.2, while the bandwidth scales as nÕ(1/S), the online server computation is the online bottleneck
and scales only as nÕ(1/S)+O(1/ log logS). The server computation is also a part of the online bottleneck
along with the bandwidth. So it is another natural question to minimize the online bottleneck cost subject to
the construction being scalable.

To minimize the online bottleneck cost, the bandwidth and the server computation need to scale at a
similar rate asymptotically. In the construction in Section 2.2 this was not possible because the server
computation time included the time needed for evaluation of the polynomial data structure which was sig-
nificantly larger than the bandwidth. To get around that, we instead need to use a polynomial preprocessing
algorithm that has much faster evaluation at the cost of using more space.

So, we turn to the polynomial preprocessing algorithm from [KU08] which trades time off for more
space compared to the algorithm in [BGG+24]. Concretely, for the algorithm in [KU08], the storage is
(md′(logm+ log d′ + log log q))m · poly log(m, d′, log q) and the evaluation time is poly log(m, d′, log q).
Since the online time is not exponential in m using this polynomial preprocessing algorithm would allow
us to set parameters such that server computation time scales at a similar rate than the bandwidth. This was
not possible when we used the scheme from [BGG+24] because the server computation had a 16m term and
m ≥ log n/ log q.

Here we choose q = S +1 and m ≈ log n ·ω(1)/ log q where ω(1) is some superconstant function in n

and it is in o(log n). We set d′ ≈ S1/ω(1) which ensures
(
m+m·d′

m

)
≥ n and t = θ(m · d′/S) which ensures

t · S > m · d′
This makes

(
m+t−1
t−1

)
≈ (m/t)t = O(S1−1/ω(1))logn·ω(1)/S

1−ω(1) ≈ nÕ(1/S1−ω(1)). This binomial coef-
ficient is the dominating term in bandwidth and computation, and therefore the online bottleneck scales as
nÕ(1/S1−ω(1)). Furthermore, mm ≈ nO(log logn·ω(1)/ logS), (d′)m ≈ n and (log d′ + logm + log log q) ≈
nO(log logn·ω(1)/ logS). The term nO(log logn·ω(1)/ logS) becomes no(1) when S is superpolylogarithmic in n,
making the storage n1+o(1).

Above, we used rough approximations in several places as indicated by the ≈ signs. With precise
rounding and exact inequalities, we get the following theorem in Section 5.2.

Theorem 2.3. Let ω(1) be any superconstant function such that it is in o(log n). There is an S-server PIR
scheme which achieves the following parameters.

• per-server bandwidth n
Õ
(

1

S1/ω(1)

)
+O

(
log S
logn

)
· poly log(n) · logS,

• per-server computation n
Õ
(

1

S1/ω(1)

)
+O

(
log S
logn

)
· poly log(n, S),

9

• client computation n
Õ
(

1

S1/ω(1)

)
+O

(
log S
logn

)
· poly log(n, S),

• per-server preprocessing time and storage

n
1+Õ

(
1

S1/ω(1)

)
+O

(
log S
logn

)
+O

(
log logn·ω(1)

log S

)
· poly log(n, S) .

A simpler version of this theorem was stated in Theorem 1.3.

2.4 Additional Results for the Poly-Space Setting

We next consider the setting considered in earlier works [BIM04, WY05] where we focus on optimizing
the bandwidth while allowing the server space to grow with respect to S as long as the server space is still
polynomially bounded.

We slightly optimize our construction from Section 2.1 to improve the parameters for the PIR scheme.
Compared to our scalable PIR family construction, here we choose a different kind of polynomial F than
standard multiplicity code. Specifically we want F to be homogenous and multi-linear, i.e., all monomials
in F have d variables and each variable has exponent one. Our encoding works as follows: we construct an
injective mapping E which maps each element in [[n]] to an element of {0, 1}m of hamming weight exactly
d. For such a mapping to exist, we need

(
m
d

)
≥ n. Then we define an m-variate multilinear homogeneous

polynomial F of degree d that satisfies F (E(i)) = DB[i]. This makes our definition of F the same as that of
Woodruff and Yekhanin [WY05]. We then encode the database with a multiplicity code for the polynomial
F evaluated to order < t.

We adopt a new query and reconstruction algorithm that differs from both standard multiplicity code as
well as Woodruff and Yekhanin [WY05]. Say the client wants to query the database at index i such that
E(i) = u⃗. The client chooses a random v⃗ ∈ Fm

q . In the scalable construction the client chose S distinct
non-zero field elements λs and sends u⃗ + λsv⃗ to server s for s ∈ [[S]]. In contrast, here we make the client
choose S distinct field elements λs for s ∈ [[S]], but do not require all of them to be non-zero. The client
sends λsu⃗ + v⃗ to server S in this case. We can let one of the λs’s be zero since it does not leak u⃗. This
allows us to set the field size q = S (assuming S is a prime, we describe the general case in Section 6). This
optimization helps us reduce the field size by 1 (i.e., in the scalable constructed we needed q ≥ S + 1), and
since the server storage has a qm multiplicative term, this helps us reduce the server storage by a polynomial
factor.

The servers return the evaluations and all derivatives up to order t− 1 of F at the point it received to the
client. We define f(λ) = F (λu⃗ + v⃗). Again, the client can compute the Hasse derivates of f up to order
t− 1. Then, using Hermite interpolation of Hasse derivatives [Has36, BGKM22], the client can recover f .
It turns out that the coefficient of λd in f is DB[i], which the client returns.

Here, in order to match the parameter setting in [BIM04, WY05], we need to set q = S, m = O(log n),
d = θm for 0 ≤ θ ≤ 1/2 (we show that it is possible to choose such m, d satisfying

(
m
d

)
≥ n) and

t = ⌈(d + 1)/S⌉. In Table 2, we show how this construction improves on the server space compared
to [BIM04]. Table 2 also shows how our optimization of choosing λsu⃗+ v⃗ leads to savings in server space
compared to the decoding strategy used for our scalable construction.

Remark 2.4 (Comparision with [WY05]). While our definition of F is same as that Woodruff and Yekhanin [WY05],
because of their use of normal derivatives, they need to set q > d. Therefore, they cannot use a parameter
regime like ours where m = O(log n), d = O(log n). Instead, they use q = S + 1, d = S,m = O(dn1/d).
This makes qm superpolynomial in n and hence their preprocessing cannot store all the evaluations and
partial derivatives of F at qm points. So, they devise a different preprocessing strategy tailored to their
construction.

10

Further, we introduce a new balancing trick and apply it to our construction in the polynomial server
space setting to generalize this construction. Using the balancing trick we can achieve a scheme where the
per-server bandwidth is n(1+ϵ)/(S+1), and the per-server computation is n(2+ϵ)/(S+1).

2.5 A New Balancing Technique

Finally, we give an overview of our new balancing technique. Recall that for the 2-server setting, Beimel et
al. [BIM04] can achieve n1/2+ε bandwidth and computation per query, whereas Woodruff and Yekhanin [WY05]
can compress the bandwidth to n1/3+ε but as a tradeoff, their server computation increases abruptly to
n/poly log n which is only slightly sublinear. An interesting question is whether we can further reduce
the bandwidth while trading off computation in a more graceful manner. For example, for the special case
of 2 servers, can we match the n1/3+ε bandwidth of Woodruff and Yekhanin but still achieve nδ server
computation for some constant δ ∈ (0, 1)?

To answer the above questions, we describe a new balancing trick that allows us to enable a smooth
tradeoff curve between bandwidth and computation. This allows us to generalize the design space for multi-
server PIR. Given a (preprocessing) PIR scheme whose upload and download bandwidths are asymmetric,
we want to use a balancing trick to balance the two to minimize the bandwidth.

Naı̈ve balancing. In Lemma 4.4 of Beimel et al. [BIM04], they cite a naı̈ve balancing trick originally
proposed by Chor et al. [CGKS95]. However, this naı̈ve trick is tailored for the case when the original
PIR scheme has more upload bandwidth than download bandwidth. The idea is as follows. Suppose we
have a database of n bits. We can divide it into B := n1−µ blocks each of length nµ for some appropriate
µ ∈ (0, 1). Now, to retrieve some index i ∈ [[n]] of the database that lies in block r := ⌊i/nµ⌋, we run
a separate PIR instance to retrieve the (i mod nµ)-th bit of each block, treating each block as a separate
database of nµ size. Further, all blocks may share the same query vector; however, the server needs to send
a separate response for each block. Therefore, if the original PIR scheme has α(n) upload bandwidth and
β(n) download bandwidth for a database of size n, then the balanced scheme would have α(nµ) upload
bandwidth, and n1−µ · β(nµ) download bandwidth. This naı̈ve balancing trick works the best if the original
PIR scheme has higher upload bandwidth than download bandwidth.

Unfortunately, Beimel et al. [BIM04]’s preprocessing PIR scheme as well as our improved version in
Section 6 have the opposite behavior: the upload bandwidth is asymptotically smaller than the download
bandwidth. In this case, this naı̈ve balancing trick cannot reduce the bandwidth. Take their 2-serer scheme as
an example: recall that it achieves n(1+ϵ)/2 computation and bandwidth per query. Suppose we now divide
the database into B := n1/3 blocks each of size n2/3. Applying this balancing trick, the new bandwidth and
computation per query becomes n(1+ϵ)/3 · n1/3 = n(2+ϵ)/3 which is worse than before.

New balancing technique: first attempt. We propose a new balancing trick for the case when the original
PIR has higher download bandwidth than upload bandwidth. The idea is still to divide the database into
blocks. However, we now want to aggregate the answers for all blocks rather than the queries for all blocks
to save the download bandwidth. To understand our idea, it helps to first think of the following flawed
attempt. Suppose that all S servers use the same deterministic algorithm to answer queries. We will have
the client send to each server an honestly constructed query for the relevant block r that contains the desired
index, and for all non-relevant blocks, the client sends the same random query to all S servers. Each server
computes the summation mod S of the answers of all blocks. Now, for each non-relevant block, all servers
have the same answer, so they cancel out under summation mod S. Unfortunately, with this scheme, the
client could only get the summation (mod S) of all answers for the relevant block r too, and it is not clear
how the client can reconstruct the correct answer — specifically, to correctly recover the answer using the
underlying PIR scheme, the client would need to know all S answers for the relevant block r. Likely for this

11

exact reason, Woodruff and Yekhanin [WY05] came up with their own non-blackbox balancing trick that is
tightly coupled with their scheme. However, their particular instantiation requires a large field size and this
is one reason why they cannot achieve tighter server space and preprocessing cost.

Our idea. Unlike Woodruff and Yekhanin [WY05], we salvage the above flawed attempt and devise a
general balancing trick for any “natural” (preprocessing) PIR scheme whose upload bandwidth is smaller
than download bandwidth. Specifically, we modify the this flawed approach such that all non-relevant cancel
out while still ensuring that the client can recover all S answers for the relevant block r.

The intuition is as follows. The n-bit database is divided into B = n1−µ blocks each of size nµ for
some appropriate µ ∈ (0, 1). Suppose the desired index i lies in the r-th block. Then, the client will send
real queries denoted Qr,0, . . . , Qr,S−1 for the relevant block r to the S servers, and for every non-relevant
block j ̸= r, it will send the same random query denoted Qj,0 to all S servers. Each server will compute the
answers to all blocks. For each block’s answer, the server will XOR it into one of two slots, called slot 0 and
slot 1 respectively. The client signals to each server which slot to encode each block’s answer by sending
the server a random bit per block. Our construction guarantees the following invariants:

1. For the relevant block r, at least one server XORs the answer into slot 0, and at least one server XORs
the answer into slot 1. In our actual construction, we simply make server 0 XOR it in a random slot br,
and make all other servers XOR it in slot 1− br.

2. For each non-relevant blocks j ̸= r, all servers XOR the answer of block j in the same random slot bj .

This construction allows the client to recover all S answers for the relevant block r. Specifically, let Jb
be the set of non-relevant blocks chosen for slot b ∈ {0, 1}. Suppose for some server s ∈ [[S]], the relevant
block r’s answer is XOR’ed into slot 0. Then, server s’s response is of this form:⊕

j∈J0

ansj

⊕ ansr,s,
⊕
j∈J1

ansj (1)

In the above, ansr,s denotes server s’s answer (of the underlying PIR scheme) for the relevant block r.
Further, for j ̸= r, ansj denotes the answer for block j of the underlying PIR scheme — since all S servers
have the same answer for each non-relevant block j ̸= r, we omit the server index in the notation ansj .
Now, suppose there exists another server s′ who XORs the relevant block r’s answer into slot 1, then its
response to the client is of the form

⊕
j∈J0

ansj ,

⊕
j∈J1

ansj

⊕ ansr,s′ , (2)

Clearly, we can recover both ansr,s and ansr,s′ from Equation (1) and Equation (2). Specifically, this can be
done by XORing the two servers’ answers for the each of the two slots. Generalizing this, as long as the
above two conditions are satisfied, the client can recover all S answers (of the underlying PIR) for the r-th
block, denoted {ansr,s}s∈[[S]]. It can now call the underlying PIR’s reconstruction algorithm to reconstruct
the answer for the relevant block r.

Applying the balancing trick. Suppose we start with a scheme with n(1+ϵ)/S bandwidth and computation
and poly(S) preprocessing cost and server space such as Beimel et al. [BIM04] or our new scheme with
improved server space. We can apply this balancing trick by choosing µ = S · α for any α ∈ [1/(S +
1), 1/S]. The resulting scheme will enjoy O(n(1+ϵ)α logS) per-server bandwidth, n1−(S−1−ϵ)α per-server

12

computation, and the server space and preprocessing cost are still polynomially bounded. Specifically, if
we take α = 1/(S + 1), the upload and download bandwith will be balanced (up to 1 + ϵ factors in
the exponent). In this case, the per-server bandwidth is minimized to n(1+ϵ)/(S+1), and the per-server
computation is n(2+ϵ)/(S+1).

3 Definitions: S-Server PIR with Global Preprocessing

We give a formal definition of an S-server information-theoretic PIR with global preprocessing. We index
the servers by 0, 1, . . . , S − 1.

Definition 3.1 (S-server PIR). An S-server PIR scheme consists of the following possibly randomized
algorithms:

• D̃Bs ← Preprocs(DB): given database DB ∈ {0, 1}n, server s ∈ [[S]] calls this algorithm to do a
one-time preprocessing and computes an encoding of the database denoted D̃Bs.

• st,Q0, . . . , QS−1 ← Query(n, i): given the database size n and a query index i ∈ [[n]], the algorithm
outputs some private state st as well as Q0, . . . , QS−1 representing the query messages to be sent to
each of the S servers.

• Answers(D̃Bs, Qs): given the encoded database D̃Bs and a query message Qs of server s ∈ [[S]], this
algorithm outputs the response message anss;

• Recons(st, ans0, . . . , ansS−1): given the private state st and the responses ans0, . . . , ansS−1 from all
the servers, this algorithm reconstructs the answer DB[i].

The scheme should satisfy the following properties:

Correctness. Correctness requires that the client should output the correct answer under an honest execu-
tion. Formally, we want that for any n, DB ∈ {0, 1}n and i ∈ [[n]],

Pr

 ∀s ∈ [[S]] : D̃Bs ← Preprocs(DB),
st, Q0, . . . , QS−1 ← Query(n, i),

∀s ∈ [[S]] : anss ← Answers(D̃Bs, Qs)

: Recons(st, ans0, . . . , ansS−1) = DB[i]

 = 1

Security. Security requires that any individual server’s view leaks nothing about the client’s desired index.
Formally, for any n, S, for any i1, i2 ∈ [[n]] and any s ∈ [[S]], the distributions {Qs : (Q0, . . . , QS−1) ←
Query(n, i1)} and {Qs : (Q0, . . . , QS−1)← Query(n, i2)}, are identical.

Further, we say that a multi-server PIR scheme is doubly efficient if all these conditions hold.

• Preprocs runs time n1+o(1) for all s ∈ [[S]] and its output is of size n1+o(1) i.e., the preprocessing
time and the server storage is n1+o(1).

• The combined runtime of Query,Recons is no(1) i.e., the client computation per query is no(1).

• The runtime of Answers is no(1) i.e., the server computation per query is no(1).

• The sum of the size of the output of Query and the maximum size of the output of Answerss for
s ∈ [[S]] is no(1), i.e., the per server bandwidth per query is at most no(1).

13

4 Preprocessing PIR from Multiplicity Codes

In this section, we introduce a framework to construct a family of server-side preprocessing PIR schemes
from multiplicity codes. In Section 4.1, we give some preliminaries about multiplicity codes. In Section 4.2,
we present our family of PIR schemes from multiplicity codes. The parameters of the PIR construction
depends on the parameters of the multiplicity code. In Section 4.3, we show how to set the parameters to get
a new scalable family of PIR schemes where the (per-server) bandwidth and computation per query as well
as the server space scale with respect to the number of servers. This new scalable family also allows us to
get a doubly efficient PIR scheme with only super-constant servers. In Section 6, we present some further
optimizations to our construction in order to optimize the bandwidth in the polynomial space setting.

4.1 Preliminaries on Multiplicity Codes

We define Ak,m to be the set of all vectors of non-negative integers of length m and 1-norm exactly k:

Ak,m = {a⃗ ∈ Nm : wt(⃗a) = k}

where wt(⃗a) = a⃗1+ . . .+ a⃗m denotes the 1-norm of the vector a⃗. Let A<k,m := A0,m∪A1,m . . .∪Ak−1,m.
Further, for d ∈ N, we define Ak,m,d to be the set of all vectors of length m whose entries are in

{0, 1, . . . , d} and have 1-norm exactly k:

Ak,m,d = {a⃗ ∈ {0, 1, . . . , d}m : wt(⃗a) = k}

We A<k,m,d := A0,m,d ∪A1,m,d . . . ∪Ak−1,m,d.
Given a⃗ := (⃗a1, . . . , a⃗m) ∈ Nm, and a polynomial F , we define the partial derivative operator ∂ a⃗ as:

∂ a⃗ ◦ F :=
∂wt(a⃗)F

∂X a⃗1
1 . . . ∂X a⃗m

m

Henceforth, given a vector X⃗ := (X⃗1, . . . , X⃗m) of variables and a vector a⃗ := (⃗a1, . . . , a⃗m) of expo-
nents, we use the following vector exponentiation notation:

X⃗ a⃗ :=

m∏
k=1

X⃗ a⃗k
k

Definition 4.1 (Hasse derivatives). For m-variate polynomial F ∈ F[X1, . . . , Xm] over the field F, the
Hasse derivative of f with respect to a⃗ = (⃗a1, . . . , a⃗m) ∈ Nm is defined as

∂
a⃗ ◦ F =

∑
e⃗=(e⃗1,...,e⃗m)∈Nm

m∏
i=1

(
a⃗i
e⃗i

)
· Coeff

X
e⃗1
1 ...X e⃗m

m
(F)X⃗ a⃗−e⃗

where Coeff
X

e⃗1
1 ...X e⃗m

m
(F) denotes the coefficient of X e⃗1

1 . . . X e⃗m
m in F .

Specifically, for a univariate degree-d polynomial f(λ) =
∑d

k=0 ck · λk ∈ F[λ], we omit the vector

notation and denote its r-th Hasse derivative as ∂
(r)

f(λ) = ∂
(⃗r) ◦ f(λ) =

∑d
k=r ck ·

(
k
r

)
λk−r. If the field F

has characteristic 0, then ∂
(r)

f(λ) = 1
r!f

(r)(λ).

14

Chain Rule. Given a univariate polynomial g ∈ F[λ], we use g(k) to denote the k-th derivative of g, and
we use ∂

(k)
g to denote the k-th Hasse derivative of g. We will need to use the chain rule for higher-order

derivatives. We first state the chain rule for normal derivatives which was used by Woodruff and Yekhanin’s
PIR scheme [WY05], and then state the version for Hasse derivates which is the version we will need.

Lemma 4.2 (Chain rule for normal derivatives). For m-variate polynomial f(X1, . . . , Xm) over field F,
u⃗, v⃗ ∈ Fm, and let g(λ) = f(u⃗+ λv⃗) be a univariate polynomial in λ, we have

g(k)(λ) =
∑

l1,...,lk∈[m]

∂kf

∂Xl1 . . . ∂Xlk

(u⃗+ λv⃗)
k∏

i=1

v⃗li .

In the above, the same partial derivative may appear multiple times in the summation depending on the
order of the variables; however, in the chain rule for Hasse derivatives, the same partial derivative appears
only once as stated below:

Lemma 4.3 (Chain rule for Hasse derivatives). For m-variate polynomial f(X1, . . . , Xm) over field F, let
g(λ) = f(u⃗+ λv⃗) be a univariate polynomial in λ, we have

∂
(k)

g(λ) =
∑

a⃗=(a⃗1,...,⃗am)∈Ak,m

∂
a⃗ ◦ f(u⃗+ λv⃗) · v⃗a⃗

Specifically, when f is a multilinear polynomial (a multivariate polynomial with individual degree 1 in each
variable), clearly ∂

a⃗ ◦ f = ∂ a⃗ ◦ f for any a⃗ ∈ Ak,m,1, therefore,

∂
(k)

g(λ) =
∑

a⃗=(a⃗1,...,⃗am)∈Ak,m,1

∂ a⃗ ◦ f(u⃗+ λv⃗) · v⃗a⃗

Hermite Interpolation. It is well-known that for a polynomial f over field with characteristic 0, given
sufficiently many evaluations of f and higher-order (normal) derivatives of f at some points, it suffices to
reconstruct f , known as Hermite interpolation. The same holds for Hasse derivatives, the difference is that
Hasse derivative version works not only on field with characteristic 0, but also arbitrary finite fields:

Lemma 4.4 (Hermite interpolation of Hasse derivatives [Has36, BGKM22]). Let f be an univariate poly-
nomial of degree d over finite field F, and m positive integers e1, . . . , em such that e1 + · · · + em > d.
Let α1, . . . , αm be distinct elements in F. For all i ∈ [m] and j ∈ [ei], let ∂

(j−1)
f(αi) = yi,j . Then, the

coefficients of f can be recovered from {(αi, j, yi,j)}i∈[m],j∈[ei] in time poly(d, log |F|).

Multiplicity codes. Finally, we come to the definition of multiplicity codes. We use the definition from [KSY14].

Definition 4.5 (Multiplicity Code [KSY14]). Let t, d,m be non-negative integers and let q be a prime power.

Let Σ = F(
m+t−1

m)
q = F{a⃗∈A<t,m}

q . For F (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] we define the order t evaluation

of F at x⃗ to be the vector (∂
a⃗ ◦ F (x⃗))a⃗∈A<t,m . The multiplicity code of order-t evaluations of degree-d

polynomials in m variables over Fq is defined as follows. The code is over alphabet Σ and has length qm,
where the coordinates are indexed by elements of Fm

q . For each polynomial F (X⃗) ∈ Fq[X1, . . . , Xm] with
deg(F) ≤ d, there is a codeword given by

Encodet,d,m,q(F) =
(
(∂

a⃗ ◦ F (x⃗))a⃗∈A<t,m

)
x⃗∈Fm

q

.

15

We will prove the following claim related to multiplicity codes of order-t evaluations of degree-d poly-
nomials in m variables over Fq that will be useful later.

Claim 4.6. Let t, d,m > 0 and S > 1 be integers. Let q be a prime or prime power and u⃗, v⃗ ∈ Fm
q . Let

λ0, λ1, . . . , λS−1 be distinct nonzero elements of Fq. Let z⃗s = u⃗ + λsv⃗ for s ∈ [[S]]. For a polynomial

F ∈ Fq[X1, . . . , Xm] such that deg(F) ≤ d, given the evaluation of ∂
a⃗ ◦ F (z⃗s) for all a⃗ ∈ A<t,m, s ∈ S,

we can recover F (u⃗) if S · t > d.

Proof. Let f(λ) = F (u⃗+ λv⃗). Using the chain rule for Hasse derivatives, we have that for all s ∈ [[S]] and
0 ≤ k < t

∂
(k)

f(λs) =
∑

a⃗∈Ak,m

∂
a⃗ ◦ F (z⃗s) · v⃗a⃗ . (3)

Note that given the evaluation of ∂
a⃗ ◦ F (z⃗s) for all a⃗ ∈ A<t,m, z⃗s for s ∈ [[S]], we can compute the right

hand side of the other expression when 0 ≤ k < t.
Now observe that deg(f) ≤ deg(F) ≤ d. So, it follows from Lemma 4.4 that we can reconstruct f by

Hasse derivatives computed above as long as S · t > d.

4.2 PIR Family from Multiplicity Codes

In this section, we present the construction of the family of PIR schemes from multiplicity codes. We start
off by giving some intuition about how we use multiplicity codes to construct PIR schemes.

Our goal is to construct a scalable family of S-server PIR scheme with global preprocessing using
multiplicity codes of order-t evaluations of degree-d polynomials in m variables over Fq. We encode the
database DB into an m-variate polynomial F with degree d, i.e., we construct an injective mapping E :
[[n]] → Fm

q and then find such F using interpolation satisfying F (E(i)) = DB[i] for all i ∈ [[n]]. Now
suppose the client wants to query the database at index i such that E(i) = u⃗. The client chooses a random
v⃗ ∈ Fm

q and distinct non-zero field elements λ0, . . . , λS−1 and sends u⃗ + λsv⃗ to server s for s ∈ [[S]]. The
server returns the evaluations and all derivatives up to order t of F at the point it received to the client. Using
Claim 4.6, the client can recover F (u⃗) = DB[i].

In order to make the server’s online computation efficient, we make the server store all possible evalua-
tions and Hasse derivates of the polynomial F . To make the preprocessing phase of the server efficient, we
do the following:

• In order to compute the polynomial F described above, we use the interpolation algorithm of Lin,
Mook, and Wichs [LMW23, Lemma 2.2] for encoding a database of size at most qm elements into a
m-variate polynomial F over Fq.

– Given an injective map E : [[n]] → Fm
q , there is an interpolation algorithm that takes n ≤ qm

values {yi}i∈[[n]], and recovers coefficients of a polynomial F (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm]
with individual degree at most d′ in each variable such that F (E(i)) = yi for all i ∈ [[n]]. Further,
the algorithm runs in time O((d′)m ·m ·poly log q). When we have an upper bound on total degree
instead of total degree, individual degree cannot be more than q − 1, so in that case the algorithm
runs in time O(qm ·m · poly log q).

• In order to pre-compute the evaluation of ∂
a⃗ ◦ F for all a⃗ ∈ A≤t,m, (⃗x) ∈ Fm

q we use the result
from [KU11, Theorem 4.1] (stated below as Lemma 4.7), which states that given an m-variate poly-
nomial F over prime field Fq, we can simultaneously evaluate it at every point of Fm

q in almost linear
time.

16

Lemma 4.7 ([KU11]). There is a deterministic algorithm that takes coefficients of an m-variate polynomial
F over finite field Fq (without loss of generality we may assume F has individual degree at most q − 1 in
each variable) as input then outputs F (X⃗) for all X⃗ ∈ Fm

q , and runs in time O(qm ·m · poly log q).
We give the formal description of our construction below.

S-server PIR. Our S-server PIR works as follows.

• Preprocs: Encode database DB to m-variate polynomial F with total degree d. Concretely, we
construct E : [[n]] → Fm

q be an injective index function, and recover F by interpolating on the set
{DB[i]}i∈[[n]] using the techniques described by Lin et al. [LMW23].

For each a⃗ ∈ A<t,m, we can use the preprocessing algorithm described in Lemma 4.7 to pre-compute

evaluation of ∂
a⃗ ◦ F at any point x ∈ Fm

q .

• Query: Given query index i, the client uniformly generates v⃗ ∈ Fm
q , and sets u⃗ = E(i). Then it picks

S distinct and nonzero elements in Fq called λ0, . . . , λS−1.

For s ∈ [[S]], the client sets
z⃗s = u⃗+ λsv⃗.

The client sends Qs = z⃗s to each server s ∈ [[S]].

• Answers: The s-th server (s ∈ {0, 1, . . . , S}) parses the message received from the client as a vector
z⃗s. For each a⃗ ∈ A<t,m, it sends

anss,⃗a = ∂
a⃗ ◦ F (z⃗s)︸ ︷︷ ︸

precomputed during preproc

back to the client.

• Recons:

1. Define univariate polynomial f(λ) = F (u⃗ + λv⃗), clearly z⃗s = u⃗ + λsv⃗ = f(λs). Given the
responses of all servers, the client computes ∂

(k)
f(λs) for all s ∈ [[S]] and 0 ≤ k < t by:

∂
(k)

f(λs) =
∑

a⃗∈Ak,m

∂
a⃗ ◦ F (z⃗s) · v⃗a⃗ =

∑
a⃗∈Ak,m

anss,⃗a · v⃗a⃗

2. Reconstruct f by its Hasse derivatives. Since F has degree d, f has degree at most d. For each
s ∈ [[S]], the client has already known its k-th order Hasse derivatives at point λs for any 0 ≤ k < t.
So, if S · t > d, the client can use Hermite interpolation (Lemma 4.4) to reconstruct the coefficients,
and output f(0) = F (u⃗) = DB[i] as the answer.

For the above to work, certain constraints need to be satisfied. We list them below.

Constraints For database size n,

• To ensure that the injective mapping E : [[n]]→ Fm
q exists, we need qm ≥ n.

• To ensure that a polynomial m-variate polynomial F with degree at most d interpolates n points, the
number of monomials in F has to be at least n. Therefore,

(
m+d
m

)
≥ n.

• Since the client sends u⃗ + λsv⃗ to server s ∈ [[S]], and since none of the λs can be zero (because
that would leak u⃗, thus compromising privacy), the field must constant at least S non-zero elements.
Therefore, q ≥ S + 1.

• For reconstruction to work, we need S · t > d.

17

4.2.1 Proof of Correctness

The correctness of PIR scheme immediately follows from Claim 4.6 above.

4.2.2 Proof of Security

Each server s ∈ [[S]] receives z⃗s = u⃗ + λsv⃗, the privacy follows the fact z⃗s is randomly distributed in Fm
q

when λs ̸= 0 and v⃗ is randomly sampled.

4.2.3 Efficiency

We now analyze the efficiency of our construction.

• Bandwidth: The upload bandwidth per server is m log q since the client sends an element in Fm
q to each

server. Each server should return |A<t,m| elements in Fq, and we have

|A<t,m| =
(
t+m− 1

m

)
.

Thus the total per-server download bandwidth is |A<t,m| log q =
(
m+t−1

m

)
log q.

• Server computation: Each server simply sends back |A<t,m| stored values, so the total computation is
O
((

m+t−1
m

)
log q

)
.

• Client computation: For applying the chain rule, for each server s and a⃗ ∈ A<t,m, the client should do
O(m) multiplications in Fq (where each takes O(poly log q) time). This takes time O

(
S ·
(
m+t−1

m

)
·m · poly log q

)
.

The hermite interpolation takes time poly(d, log q). Therefore, total client computation is O
(
S ·
(
m+t−1

m

)
·m · poly log q

)
+

O(poly(d, log q)).

• Server space: Each server runs preprocessing algorithm in Lemma 4.7 for |A<t,m| polynomials. For
each polynomial, it needs to store qm elements in Fq, thus in total it takes space

|A<t,m| ·O(qm log q) =

(
m+ t− 1

m

)
· qm · log q

• Preprocessing time: Each server needs to interpolate the polynomial F which takes time O(qm ·m ·
poly log q). For each a⃗ ∈ A<t,m ∂

a⃗ ◦ f can be computed in time O(qm · m · poly log q). Therefore,
the total time foe computing these polynomials is |A<t,m| · O(qm · m · poly log q). Further, each of
these polynomials are to be evaluated in qm points. Using Lemma 4.7, each evaluation takes time
O(qm ·m · poly log q).
Therefore, the total preprocessing time is

O((|A<t,m| ·O(qm ·m · poly log q)) = O

((
m+ t− 1

m

)
· qm ·m · poly log q

)
.

Theorem 4.8. Let n, S, d,m, q, t ∈ N satisfy the following constraints:

• q is a prime or a prime power with q ≥ S + 1,

• qm ≥ n,

•
(
m+d
m

)
≥ n,

18

• S · t > d.

Then, there exists an S-server PIR scheme which achieves the following parameters.

• per-server upload bandwidth m log q, per-server download bandwidth
(
m+t−1

m

)
log q.

• per-server computation O
((

m+t−1
m

)
log q

)
.

• client computation O
(
S ·
(
m+t−1

m

)
·m · poly log q

)
+O(poly(d, log q)).

• per-server storage
(
m+t−1

m

)
· qm · log q.

• per-server preprocessing time O
((

m+t−1
m

)
· qm ·m · poly log q

)
.

4.3 Scaling Bandwidth, Computation and Space Equally

In this section, we show how to set the parameters for the construction in Section 4.2 to get a scalable
family of PIR schemes where the (per-server) bandwidth and computation per query as well as the server
space scale with respect to the number of servers. The scheme is same as described in section 4.2, with the
following parameters.

• Let S(n) be the number of servers, we pick S∗(n) ≤ S(n) to be the maximum integer such that
S∗(n)+1 is a prime (by Bertrand’s postulate, S∗(n) ∈ [⌊S(n)/2⌋, S(n)]), then use only S∗(n) servers,
and ignore the other servers.

• We set q = S∗(n) + 1

• Set m = ⌈log n/ log q⌉ such that qm ≥ n.

• We set d = (q − 1) ·m.

• We will set t = m+ 1 which ensures t · S∗(n) > d.

The constraints q ≥ S + 1, qm ≥ n, t · S > d can be seen to be satisfied from the above. Note that(
m+ d

d

)
=

(
(q − 1) ·m

m

)
≥ (q − 1)m ≥ n .

Therefore, all the constraints are satisfied. Observe that since t = m, it follows that(
m+ t− 1

t− 1

)
≤
(
2m

m

)
≤ 22m ≤ O(n2/ log q) .

We now compute the performance parameters for the PIR scheme.

• Bandwidth: The bandwidth will be dominated by the download bandwidth. Thus, the total per-server
bandwidth is bounded by O(n2/ log q log q).

• Server computation: The total computation is that is, O(n2/ log q log q).

• Client computation: Note that the first term dominates the client computation. So it is O(S · n2/ log q ·
poly log q · poly log n).

• Server space: Since qm ≤ n · q, we have that the total server space is O(n1+2/ log q · q · log q).

• Preprocessing time: The preprocessing time is O(n1+2/ log q · q · poly log n)

19

Notice that our parameterization guarantees q > S(n)/2 and 2/ log q ≤ 2/(logS(n)− 1). So, we have
the following theorem.

Theorem 4.9. For any S, there exists an S-server PIR scheme which achieves O(n2/(logS−1) logS) per-
server bandwidth, O(n2/(logS−1) logS) per-server computation and O(n2/(logS−1)S log n · poly logS)
client computation per query, with O(n1+2/(logS−1) · S · poly log n) preprocessing time and server stor-
age.

For constant number servers setting, our construction shows nontrivial results about tradeoff between
preprocessing time and bandwidth.

If we choose S(n) = ω(1) to be any super-constant function (e.g. S(n) = log∗(n)), then we have
2/ log q = 2/ log Ω(S(n)) = o(1), thus

(
m+t−1
t−1

)
is bounded by no(1). Moreover, the polylogarithm factor

can be absorbed by no(1). Therefore, we get a doubly-efficient mutli-server PIR using a superconstant
number of servers. In conclusion, we have:

Corollary 4.10. For any S(n) = ω(1), there exists an S-server PIR scheme where each query incurs no(1)

per-server bandwidth and computation and S · no(1) client computation, while requiring n1+o(1) per-server
preprocessing time and storage. Specifically, when S(n) = no(1), the client computation is also bounded by
no(1).

5 Multi-Server PIR Using Multiplicity Codes and Fast Polynomial Evalua-
tion Data Structure

In this section, we present families of PIR schemes that use multiplicity codes in conjunction with fast
polynomial evaluation algorithms. In our scheme in Section 4, our preprocessing involved storing the evalu-
ation of the polynomials at all points. Now, we will use fast polynomial evaluation algorithms from [KU08,
BGG+24] where the server does not pre-compute the evaluation of the polynomials at all points, and instead
stores a data structure. In the online phase, the server uses this data structure to evaluate the polynomials at
the desired point.

We will construct two incomparable families of PIR schemes using two different polynomial prepro-
cessing algorithms. We will first use the following algorithm from [BGG+24].

Theorem 5.1 (Polynomial preprocessing theorem from [BGG+24]). For a m-variate polynomial f : Fm
q →

Fq with individual degree≤ d′, over some finite field Fq, then there exists algorithms PolyPreprocess,EvalPoly
such that

• The runtime of PolyPreprocess(f) is (16d′(log d′ + log log q)m · poly(m, d′, log q)

• Let f̃ ← PolyPreprocess(f), for any x⃗ ∈ Fm
q ,EvalPoly(f̃ , x⃗) = f(x⃗) and the runtime of EvalPoly(f̃ , x⃗)

is 16m · poly(m, d′, log q).

Since [BGG+24] give an algorithm that does not have a separate preprocessing and online phase, for the
sake of completeness we give a self-contained proof of this theorem in Appendix A.

Using this theorem will give us a family of PIR schemes where the bandwidth scales as nÕ(1/S). This
construction scales with respect to all parameters and minimizes bandwidth. Further, this construction is
doubly efficient with a superconstant number of servers, As we discuss in Remark 5.5, we could not have
achieved a construction that is doubly efficient with just super-constant number of servers and has similar
bandwidth scaling using the polynomial preprocessing algorithms from [BGG+24].

We will then use the following fast polynomial evaluation algorithm from [KU08] to get a different
scheme.

20

Theorem 5.2 (Polynomial preprocessing theorem from [KU08]). For a m-variate polynomial f : Fm
q → Fq

with individual degree≤ d′, over some finite field Fq, then there exists algorithms PolyPreprocess,EvalPoly
such that

• The runtime of PolyPreprocess(f) is (md′(log d′ + logm+ log log q)m · poly(m, d′, log q)

• Let f̃ ← PolyPreprocess(f), for any x⃗ ∈ Fm
q ,EvalPoly(f̃ , x⃗) = f(x⃗) and the runtime of EvalPoly(f̃ , x⃗)

is poly(m, d′, log q).

Using this theorem we will get a PIR scheme where the online bottleneck (the maximum of bandwidth

and computation time) scales as n
1

S1−1/ω(1) . Here the scaling of the online bottleneck is minimized.
The main difference of our PIR schemes here compared to that in Section 4.2 is that our schemes use the

PolyPreprocess from the above theorems in the preprocessing phase instead of the algorithm in Lemma 4.7.
Further, in the online phase, the server uses the data-structure obtained from the preprocessing instead of
simply looking up the value. The other difference here is the polynomial F has a restriction on individual
degree as opposed to total degree – we need this in order to use the fast polynomial evaluation algorithm.
We give the formal description of our construction below.

S-server PIR. Our S-server PIR works as follows.

• Preprocs: Encode database DB to m-variate polynomial F with individual degree at most d′. Note
that the total degree d is therefore at most md′. We construct E : [[n]] → Fm

q be an injective index
function, and recover F by interpolating on the set {DB[i]}i∈[[n]] using the techniques described by Lin
et al. [LMW23].

For each a⃗ ∈ A<t,m, use compute in Lemma 4.7 to compute ∂̃
a⃗ ◦ F = PolyPreprocess(∂

a⃗ ◦ F).

• Query: Given query index i, the client uniformly generates v⃗ ∈ Fm
q , and sets u⃗ = E(i). Then it picks

S distinct and nonzero elements in Fq called λ0, . . . , λS−1.

For s ∈ [[S]], the client sets
z⃗s = u⃗+ λsv⃗.

The client sends Qs = z⃗s to each server s ∈ [[S]].

• Answers: The s-th server (s ∈ {0, 1, . . . , S}) parses the message received from the client as a vector
z⃗s. For each a⃗ ∈ A<t,m, it sends

anss,⃗a = EvalPoly(∂̃
a⃗ ◦ F , z⃗s)

back to the client.

• Recons:

1. Define univariate polynomial f(λ) = F (u⃗ + λv⃗), clearly z⃗s = u⃗ + λsv⃗ = f(λs). Given the
responses of all servers, the client computes ∂

(k)
f(λs) for all s ∈ [[S]] and 0 ≤ k < t by:

∂
(k)

f(λs) =
∑

a⃗∈Ak,m

∂
a⃗ ◦ F (z⃗s) · v⃗a⃗

=
∑

a⃗∈Ak,m

anss,⃗a · v⃗a⃗

21

2. Reconstruct f by its Hasse derivatives. Since F has degree d, f has degree at most d. For each
s ∈ [[S]], the client has already known its k-th order Hasse derivatives at point λs for any 0 ≤ k < t.
So, if S · t > d, the client can use Hermite interpolation (Lemma 4.4) to reconstruct the coefficients,
and output f(0) = F (u⃗) = DB[i] as the answer.

The correctness follows from the scheme in Section 4.2 and the correctness of the fast polynomial
evaluation algorithm. Security follows from the scheme in Section 4.2.

In terms of efficiency, the bandwidth and client computation remain the same as in Section 4.2. The
online server computation, server storage and the preprocessing computation depend on the particular poly-
nomial preprocessing scheme used.

5.1 Minimizing Bandwidth Subject to Scalability

Instantiating our scheme with the fast polynomial evaluation algorithm from [BGG+24], we get the follow-
ing theorem that would help us obtain a scalable scheme where the bandwidth is minimized.

Theorem 5.3. Let n, S, d′,m, q, t ∈ N satisfy the following constraints.

• q is a prime or a prime power with q ≥ S + 1,

• qm ≥ n,

•
(
m+d′·m

m

)
≥ n,

• S · t > d′ ·m.

Then, there exists an S-server PIR scheme which achieves the following parameters.

• per-server upload bandwidth m log q, per-server download bandwidth
(
m+t−1

m

)
log q.

• per-server computation O
((

m+t−1
m

)
· 16m · poly(m, d′, log q)

)
.

• client computation O
(
S ·
(
m+t−1

m

)
·m · poly log q

)
+O(poly(d′,m, log q)).

• per-server storage O
((

m+t−1
m

)
· (16d′(log d′ + log log q))m ·m · poly(m, d′, log q)

)
.

• per-server preprocessing time O
((

m+t−1
m

)
· (16d′(log d′ + log log q))m ·m · poly(m, d′, log q)

)
.

From this theorem, we get a preprocessing PIR scheme where with ω(1) servers, the server storage is
n1+o(1) and the bandwidth scales as nÕ(1/S). Concretely, we set m = ⌈log n/ log logS⌉, d′ = ⌈n1/m⌉, t =
⌈(m · d′ + 1)/S⌉ and q to be the smallest integer greater or equal to S + 1 that is a prime. From Bertrand’s
postulate, q ≤ 2S. It is easy to verify that all the constraints are satisfied with this parameter choice.
Further, notice that d′ ≤ (n1/m + 1) ≤ 1 + logS since 1/m ≤ log logS/ log n. We also have that
m/t ≤ S/d′ < S/ logS. Also, observe that

t ≤ (m · d′ + 1)/S + 1 ≤ ((log n/ log logS + 1) · (logS + 1) + 1)/S + 1

= log n
logS + 1

S log logS
+

logS

S
+

1

S
+ 1 ≤ log n

logS + 1

S log logS
+ 2 .

22

The last inequality follows since (1 + logS)/S ≤ 1 for any integer S ≥ 2. We can now calculate an upper
bound on

(
m+t−1
t−1

)
using the above observations.(

m+ t− 1

t− 1

)
≤
(
m+ t

t

)
≤ (e(m+ t)/t)t ≤ (2em/t)t

≤ (2eS/ logS)
logn log S+1

S log log S
+2

= (2eS/ logS)2 · n
(1+log e+log S−log log S)(log S+1)

S log log S

≤ nO(log2 S/S log logS)+O(logS/ logn) .

The last inequality above uses log e ≤ 2. Moreover, 16m ≤ 16logn/ log logS+1 = n4/ log logS · 16. Further,

(d′)m ≤ (1 + logS)logn/ log logS+1 = (1 + logS) · nlog(1+logS)/ log logS

≤ (1 + logS) · n(1+log logS)/ log logS

≤ n1+1/ log logS+O(logS/ logn) .

The third step uses the fact log(1 + logS) ≤ log(2 logS) = 1 + log logS since S ≥ 2. We also have that

(log d′ + log log q)m ≤ (log(1 + logS) + log log 2S)logn/ log logS+1

≤ (2 log log 2S) · n(1+log log log 2S)/ log logS

≤ nO(log log log 2S/ log logS)+O(log log logS/ logn)

We then get the following corollary.

Corollary 5.4. There is an S-server PIR scheme which achieves the following parameters.

• per-server bandwidth n
O

(
log2 S

S log log S

)
+O

(
log S
logn

)
· poly log(n, S),

• per-server computation n
O

(
log2 S

S log log S

)
+O

(
1

log log S

)
+O

(
log S
logn

)
· poly log(n, S),

• client computation n
O

(
log2 S

S log log S

)
+O

(
log S
logn

)
· poly log(n, S),

• per-server preprocessing time and storage

n
1+O

(
log2 S

S log log S

)
+O

(
log log log S
log log S

)
+O

(
log S
logn

)
· poly log(n, S) .

For S = ω(1), this scheme has storage and preprocessing time n1+o(1) and online computation and
bandwidth no(1). Moreover, the bandwidth scales roughly nÕ(1/S). Here the server computation and storage
are also scalable, but their scaling is worse than the bandwidth.

Remark 5.5. We note that we if we used the fast polynomial evaluation algorithm from [BGKM22] directly
(which is used by [LLFP24]), we would have not achieved a scheme that has similar scalability and leads to
a doubly efficient construction with a super-constant number of servers. The preprocessing time and space
for that algorithm is O(4d′ · α · p)m · poly log(m, d′, p) where q = pα. It is easy to see that either p or α is
greater than log q/ log log q.

Further, we note the following points for a doubly efficient construction.

23

• Since (d′)m has to be O(n) as required by the constraints, the polynomial preprocessing will only
lead to an advantage as opposed to simply storing all evaluations (as we do in our construction in
Section 4.2) when qm ≫ n, i.e., m ≫ log n/ log q. So, to get any significant advantage from using
the polynomial preprocessing, we would need m to be at least log n · g(n)/ log q where g(n) = ω(1).

• Moreover since d′ = pα, and we set (d′)m = O(n), it follows that (pα)m = O(n1/α · αm). Since
α = ω(1) (as they need the condition that p = do(1)), n1/α = no(1). We also need αm to be no(1) for
the construction to be doubly efficient. We have that (αm) = nα·g(n)/ log q. Since we set q = S + 1,
this means that for αm = no(1) we need that log q = ω(α · g(n)), i.e., S = 2ω(1). So, we would need
many more servers to get a doubly efficient construction.

This shows that we necessarily need the new polynomial preprocessing algorithm from [BGG+24] to
achieve our result.

Remark 5.6 (Comparison with [LLFP24]). Setting S = O(log n log log n/ log log log n) in Corollary 5.4,
recovers the first construction in [LLFP24] with the only difference being the difference in the preprocessing
algorithm used. The asymptotic parameters are same.

Setting m = O(log n/(log log n−log log log n)), d′ = O(log n/ log logn), S = O(log n/ log logn), q =
S + 1, t = m + 1 in Theorem 5.3, we get a scheme that is strictly better than construction 2 in [LLFP24]
in terms of number of servers, preprocessing time and space, server computation, client computation and
bandwidth.

5.2 Minimizing Online Bottleneck Cost Subject to Scalability

Instantiating this scheme with the fast polynomial evaluation scheme of [KU08], gives us this theorem.

Theorem 5.7. Let n, S, d′,m, q, t ∈ N satisfy the following constraints.

• q is a prime or a prime power with q ≥ S + 1,

• qm ≥ n,

•
(
m+d′·m

m

)
≥ n,

• S · t > d′ ·m.

Then, there exists an S-server PIR scheme which achieves the following parameters.

• per-server upload bandwidth m log q and download bandwidth
(
m+t−1

m

)
log q.

• per-server computation O
((

m+t−1
m

)
· poly(m, d′, log q)

)
.

• client computation O
(
S ·
(
m+t−1

m

)
·m · poly log q

)
+O(poly(d′,m, log q)).

• per-server storage O
((

m+t−1
m

)
· (md′(log d′ + logm+ log log q))m ·m · poly(m, d′, log q)

)
.

• per-server preprocessing time O
((

m+t−1
m

)
· (md′(log d′ + logm+ log log q))m ·m · poly(m, d′, log q)

)
.

We next set parameters for this scheme. We need to have m ≥ log n/ log q and q ≥ S + 1 because
of the constraints. We abuse notation and let ω(1) be any arbitrary superconstant function such that it is
o(log n) (we assume this because it leads to simplified expressions.). So, we set m = ⌈log n · ω(1)/ logS⌉.
To satisfy the constraints, while minimizing the PIR parameters we set d′ = ⌈S1/ω(1)⌉, q to be the smallest

24

prime greater or equal to S + 1 (From Bertrand’s postulate, q ≤ 2S), t = ⌈(md′ + 1)/S⌉. We observe the
following.

(d′)m ≤ (S1/ω(1) + 1)logn·ω(1)/ logS+1

= (S1/ω(1) + 1) · nlog(S1/ω(1)+1)/ log(S1/ω(1))

= (S1/ω(1) + 1) · n1+log(1+1/S1/ω(1))/ log(S1/ω(1))

≤ (S1/ω(1) + 1) · n1+log e/(S1/ω(1) log(S1/ω(1)))

≤ (S1/ω(1) + 1) · n1+1.4427/(S1/ω(1) log(S1/ω(1)))

= n1+Õ(1/S1/ω(1))+O(logS/ logn)

We have used the fact that for a ≥ 1, log(1 + 1/a) ≤ (log e)/a. We also have that

mm ≤ (log n · ω(1)/ logS + 1)(logn·ω(1)/ logS+1)

≤ (log n · ω(1)/ logS + 1) · nlog(logn·ω(1)/ logS+1)·ω(1)/ logS

≤ (log n · ω(1)/ logS + 1) · n((1+log(logn·ω(1)/ logS))·ω(1)/ logS

= (log n · ω(1)/ logS + 1) · n
(1+(log logn+logω(1)−log log S)·ω(1)

log S

≤ n
O(

log logn·ω(1)
log S

)

Furthermore,

(log d′ + logm+ log log q)m

≤ log

(
(S1/ω(1) + 1) ·

(
log n · ω(1)

logS
+ 1

)
· log(2S)

)
· n

log(log(S1/ω(1)+1)·(logn·ω(1)/ log S+1)·log(2S))·ω(1)
log S

≤ O(logS/ω(1) + log log n) · nO(logS/ω(1)+log logn)·ω(1)/ logS

≤ nO(log logn·ω(1)/ logS)

It is easy to see that m/t ≤ S/d′ ≤ S1−1/ω(1). This gives us

t ≤ md′/S + 1 ≤ (log n · ω(1)/ logS + 1) · (S1/ω(1) + 1)/S + 1

≤ log n
ω(1) · S1/ω(1) + ω(1)

S logS
+

1

S
+

1

S1−ω(1)
+ 1

≤ log n
ω(1) · S1/ω(1) + ω(1)

S logS
+ 3

Therefore, we have that(
m+ t− 1

t− 1

)
≤
(
m+ t

t

)
≤ (e(m+ t)/t)t ≤ (2em/t)t

≤ (2eS1−1/ω(1))
logn

ω(1)·S1/ω(1)+ω(1)
S log S

+3

= (2eS1−1/ω(1))3 · n
(1+log e+(1−1/ω(1)) log S)·ω(1)

S1−1/ω(1) log S

≤ (2eS1−1/ω(1))3 · n
2.4427ω(1)+(ω(1)−1) log S

S1−1/ω(1) log S

= nÕ(1/S1/ω(1))+O(logS/ logn)

We get the following corollary.

25

Corollary 5.8. Let ω(1) be any superconstant function such that it is in o(log n). There is an S-server PIR
scheme which achieves the following parameters.

• per-server bandwidth n
Õ
(

1

S1/ω(1)

)
+O

(
log S
logn

)
· poly log(n) · logS,

• per-server computation n
Õ
(

1

S1/ω(1)

)
+O

(
log S
logn

)
· poly log(n, S),

• client computation n
Õ
(

1

S1/ω(1)

)
+O

(
log S
logn

)
· poly log(n, S),

• per-server preprocessing time and storage

n
1+Õ

(
1

S1/ω(1)

)
+O

(
log S
logn

)
+O

(
log logn·ω(1)

log S

)
· poly log(n, S) .

Remark 5.9. Observe that when S is superpolylogarithmic in n and S ∈ no(1), the storage becomes n1+o(1).
The bandwidth, computation parameters also become no(1). Therefore, the construction is doubly efficient
when S is superpolylogarithmic in n. Note that this S ∈ no(1) is not an additional restriction because for
S ≫ no(1), the total client computation and bandwidth is naturally≫ no(1) and the construction cannot be
doubly efficient.

6 Multi-Server PIR for the Polynomial Space Setting

In this section, we want to minimize the bandwidth but still keep server storage polynomial in the size of the
database. To do so, we add some optimizations to our construction in Section 4.2. We obtain an S-server PIR
that is a strict improvement Beimel et al. [BIM04]. Specifically, while both our new scheme and Beimel et
al. [BIM04] achieve n(1+ϵ)/S bandwidth and computation, our scheme achieves a polynomial improvement
in the server space and preprocessing cost for every S ≥ 3. Then, we apply the generic balancing trick of
Section 7 to further reduce the bandwidth to n(1+ϵ)/(S+1).

PIR scheme with additional optimizations. We first describe a base S-server PIR scheme that achieves
O(n(1+ϵ)/S) bandwidth. This scheme has exactly same bandwidth and computation as [BIM04, Theorem
4.5], but the preprocessing time and server storage have been further improved by a factor of S/ logS over
the exponent. This improvement stems from our additional optimizations. Like the construction in Sec-
tion 4.2, this scheme uses multiplicity codes as well. However, we encode the database differently, and use
a different reconstruction technique.

Concretely, we let E : [[n]] → {0, 1}m be an injective function that maps the indices of a n-bit DB to
bit-strings of length m and hamming weight exactly d. We will choose m = O(log n) and d = θm for some
0 < θ ≤ 1/2 – the following lemma shows that the choice of such d is possible.

Lemma 6.1. For any constant 0 < θ ≤ 1/2, if we want
(
m
θm

)
≥ n to hold, for sufficiently large n, it suffices

to set m = logn
H(θ)(1 + o(1)), where H(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function,

and o(1) hides a function that goes to 0 as n goes to infinity.

We defer the proof of this lemma to Appendix D.
We let Fq be a finite field such that S ≤ q ≤ 2S − 1 (Bertrand’s postulate guarantees existence of such

q). Note that here we can potentially choose q = S – this reduction in field size by 1 results in saving
polynomial factors in server storage. We define a polynomial F ∈ Fq[X1, . . . , Xm] as

F (X⃗) =
∑
i∈[[n]]

DB[i] · X⃗E(i) . (4)

26

Note that because the range of E(j) is {0, 1}m and each E(j) has hamming weight d, F is a multilinear
polynomial of degree d. Further, even in this case F (E(i)) = DB[i] for i ∈ [[n]]. However, we will use a
different reconstruction procedure here.

Suppose the client wants to query the database at index i such that E(i) = u⃗. The client chooses a
random v⃗ ∈ Fm

q and distinct field elements λ0, . . . , λS−1 and sends z⃗s = λsu⃗ + v⃗ to server s for s ∈ [[S]].
Note that this is different from what we did in the construction in Section 4.2. For s ∈ [[S]], server s sends
back ∂ a⃗ ◦ F (z⃗s) for a ∈ A<⌈(d+1)/S⌉,m,1 to the client. We define f(λ) = F (λu⃗+ v⃗). Given the values the
client receives from the server, it can reconstruct the polynomial f using Hermite interpolation. It turns out
that DB[i] is the co-efficient of λd in this polynomial. We prove this in Claim 6.3.

Remark 6.2. Essentially, we encode a database with a multiplicity code of order-⌈(d + 1)/S⌉ evaluations
of degree-d multilinear polynomials in m variables, and use the multilinear property to give an alternate
reconstruction technique in contrast to the technique in Section 4.2, which is the usual idea used to decode
multiplicity codes.

In order to make the server’s online computation efficient, we make the server store ∂a⃗ ◦ F (x⃗) for all
a⃗ ∈ A<⌈(d+1)/S⌉,m,1, x⃗ ∈ Fm

q . We do this efficient by applying the lemma 4.7 to the polynomial ∂a⃗ ◦ F .
We now describe our construction formally.

6.0.1 Construction

Parameters and notations. We will choose the following parameters.

• Let Fq be a finite field with order q ≥ S, by Bertrand’s postulate, q is bounded by 2S − 1.

• We will encode each block as an m-variate polynomial of homogeneous degree d. We will choose
m = O(log n) and d = θm for some constant 0 < θ ≤ 1/2, such that

(
m
d

)
≥ n — this is possible due

to Lemma 6.1. We will choose t = ⌈(d+ 1)/S⌉, so we have that t · S > d.

• We use the following polynomial F over Fq to encode database.

F (X⃗) =
∑
i∈[[n]]

DB[i] · X⃗E(i)

where E : [[n]] → {0, 1}m is an injective index function which takes an index i ∈ [[n]] and outputs a
vector in {0, 1}m of Hamming weight exactly d. E can be chosen such that E(i) can be evaluated in
time poly log n.

S-Server PIR. Our S-server PIR works as follows.

• Preprocs: The same holds for each server s ∈ [[S]]: for each a⃗ ∈ A<t,m,1, each x⃗ ∈ Fm
q , calculate

∂ a⃗ ◦ F (x⃗), and store all results, this step can be efficiently implemented by applying Lemma 4.7 to
polynomial ∂ a⃗ ◦ F .

• Query: Let i ∈ [[n]] be the queried index. Let vector u⃗ = E(i) ∈ Fm
q . The client first picks S distinct

elements in Fq called λ0, . . . , λS−1, then randomly picks v⃗ ∈ Fm
q .

For each server s, the client sets
z⃗s = v⃗ + λsu⃗

The client then sends Qs = z⃗s to each server s ∈ [[S]].

27

• Answers: The s-th server parses the message received from the client as vector z⃗s. For each a⃗ ∈
A<t,m,1, it sends back

anss,⃗a = ∂a⃗ ◦ F (z⃗s)︸ ︷︷ ︸
precomputed during preproc

• Recons:

1. Define univariate polynomial f(λ) = F (λu⃗+ v⃗), clearly z⃗s = v⃗+λu⃗ = f(λs). The client computes
the Hasse derivatives ∂

(k)
f(λs) for all s ∈ [[S]] and 0 ≤ k < t by the chain rule (Lemma 4.3):

∂
(k)

f(λs) =
∑

a⃗∈Ak,m,1

∂ a⃗ ◦ F (z⃗s) · u⃗a⃗ =
∑

a⃗∈Ak,m,1

anss,⃗a · u⃗a⃗ (5)

2. Reconstruct f by its Hasse derivatives. It is easy to see that f has degree at most d. For each s ∈ [[S]],
the client has already known its k-th order Hasse derivatives at point λs for any 0 ≤ k < t. Since
S · t > d, the coefficients of f can be recovered by Hermite interpolation (Lemma 4.4).
Finally, the client outputs the highest term of f , i.e., Coeffλd(f(λ)) as the answer.

6.0.2 Proof of Correctness

Correctness follows from the following claim.

Claim 6.3. Let t, d,m > 0 and S > 1 be integers. Let q be a prime or prime power. Let F ∈ Fq[X1, . . . , Xm]
be the polynomial defined in Equation (4). Let i ∈ [[n]] and u⃗ = E(i) where E is the encoding defined above.
Let v⃗ ∈ Fm

q . Let z⃗s = λsu⃗ + v⃗ for s ∈ [[S]] for distinct λ0, λ1, . . . , λS−1 ∈ Fq. Then, given the evaluation
of ∂ a⃗ ◦ F (z⃗s) for all a⃗ ∈ A<t,m,1, s ∈ S, we can recover DB[i] if S · t > d.

Proof. Let f(λ) = F (λu⃗+ v⃗). We have that for k ∈ [[t]]

∂
(k)

f(λs) =
∑

a⃗∈Ak,m,1

∂
a⃗ ◦ F (z⃗s) · u⃗a⃗ =

∑
a⃗∈Ak,m,1

∂ a⃗ ◦ F (z⃗s) · u⃗a⃗ .

The second equality follows from Lemma 4.3 because F is multilinear. Now if t ·S > d, we can reconstruct
f using Lemma 4.4.

If we can reconstruct f , we claim that DB[i] is the coefficient of λd in f . To see this, first observe that u⃗
has hamming weight exactly d from the definition of E. So, for any w⃗ ∈ {0, 1}d such that w⃗ has hamming
weight d, we have

Coeffλd

(
(λu⃗+ v⃗)w⃗

)
= Coeffλd

(
m∏
ℓ=1

(λ · uℓ + vℓ)
wℓ

)
=

{
1 if w⃗ = u⃗

0 otherwise
.

The second equality above follows because the coefficient of λd is non-zero if and only if there are d or
more ℓ’s such that uℓ = 1 and wℓ = 1. Now if u⃗ ̸= w⃗, there are less than d such ℓ’s because the hamming
weights of u⃗, w⃗ are d. When u⃗ = w⃗, the coefficient of λd is 1 because uℓ = 1 for all ℓ ∈ [m].

Therefore, it follows that

Coeffλd(f(λ)) = Coeffλd

∑
j∈[[n]]

DB[j] · (λu⃗+ v⃗)E(j)

=
∑
j∈[[n]]

DB[j] · Coeffλd

(
(λu⃗+ v⃗)E(j)

)
= DB[i] .

The second equality above follows because E is an injective mapping and therefore E(j) = u⃗ =⇒ j = i.
This concludes the proof.

28

6.0.3 Proof of Security

The privacy proof is easy to see: for each server s, since v⃗
$←− Fm

q is randomly sampled, z⃗s = v⃗ + λsu⃗
is also randomly distributed in Fm

q , so the message received by s-th server doesn’t reveal any nontrivial
information.

6.0.4 Efficiency

Let Λ(m,w) :=
∑w

h=0

(
m
h

)
. We denote log the logarithmic function with base 2. For θ ∈ [0, 1], we

denote the binary entropy of θ by H(θ), where H(θ) = −θ log θ − (1 − θ) log(1 − θ) for θ ∈ (0, 1), and
H(0) = H(1) = 0.

• Bandwidth: For each server s, the client will send a vector z⃗s ∈ Fm
q to the server. Recall that m =

logn
H(θ)(1+o(1)) (Lemma 6.1) and each element in Fq takes O(logS) space since q < 2S, so the per-server
upload bandwidth is

O(m logS) = no(1) logS.

For each server s and each a⃗ ∈ A<t,m,1, the server returns answer anss,⃗a ∈ Fq. By the fact that
|A<⌈(d+1)/S⌉,m,1| = Λ(m, ⌈(θm− S + 1)/S⌉) ≤ 2H(θ/S)m for 0 < θ ≤ 1/2, the per-server download
bandwidth is

O(|A<⌈(d+1)/S⌉,m,1| logS) = n((1+o(1))H(θ/S)/H(θ) logS.

• Server computation: For each server s and each a⃗ ∈ A<⌈(d+1)/S⌉,m,1, the server only needs send back
one element anss,⃗a and takes time O(logS), so the computation of each server is bounded by

O(|A<⌈(d+1)/S⌉,m,1| logS) = n(1+o(1))H(θ/S)/H(θ) logS.

• Client computation: First the client computation is not less than the bandwidth i.e. O(mS logS +
|A<⌈(d+1)/S⌉,m,1|S logS). Then we consider the time complexity of Recons.

Since the Hermite interpolation takes only poly(d, log q) = poly(log n, logS) time (Lemma 4.4), the
time complexity of Recons is bounded by the arithmetic operations in Fq to reconstruct the Hasse
derivatives of g (see Equation (5)).

For each server s and a⃗ ∈ A<⌈(d+1)/S⌉,m,1, the client should do O(m) = no(1) multiplications in Fq

(where each takes O(log2 S) time), since there are S servers, the total client computation is bounded by

O(mS logS + |A<⌈(d+1)/S⌉,m,1| · Sm log2 S)

=n(1+o(1))H(θ/S)/H(θ)S log2 S.

• Server space: Recall that we use a precompute-all approach: for each a⃗ ∈ A<⌈(d+1)/S⌉,m,1 and each
x⃗ ∈ Fm

q , each server stores an element in Fq. The server space is

O(|A<⌈(d+1)/S⌉,m,1|qm logS) = qmn(1+o(1))H(θ/S)/H(θ) logS

= n(1+o(1))(log q+H(θ/S))/H(θ)

≤ n(1+o(1))(logS+1+H(θ/S))/H(θ)

• Preprocessing time: Each element stored by each server can be computed in an amortized poly(m, log q) =
poly(log n, logS) time (Lemma 4.7), so the preprocessing time is bounded by n(1+o(1))(log q+H(θ/S))/H(θ) ≤
n(1+o(1))(logS+1+H(θ/S))/H(θ).

29

This gives us the following theorem.

Theorem 6.4 (Base scheme in the polynomial storage setting). For any ϵ ∈ (0, 1) and 0 < θ ≤ 1/2, there
exists an S-server PIR scheme which achieves n(1+o(1))·H(θ/S)/H(θ) logS per-server bandwidth, n(1+o(1))·H(θ/S)/H(θ) logS
per-server computation and n(1+o(1))·H(θ/S)/H(θ)S log2 S client computation per query, with n(1+o(1))(log q+H(θ/S))/H(θ)

preprocessing time and server storage where Fq is the minimum field such that q ≥ S. Specifically, when S
is a constant, the preprocessing time and server storage are bounded by poly(n).

Analyzing the concrete poly(n) for large S. By the fact that H(θ/S)
H(θ) → 1/S (and H(θ/S)

H(θ) > 1/S)

when θ → 0, if we choose the constant θ to be sufficiently small, we can achieve n(1+ϵ)/S bandwidth and
computation per query for any constant ϵ > 0. Further, since S and θ are both constants, the server space
and preprocessing time is bounded by some polynomial in n.

We can further characterize the server space and preprocessing cost. For sufficiently small θ,

H(θ/S)

H(θ)
− 1/S ≤ ln(S)

S(1 + ln(1θ))
· (1 +O(θ)) (6)

If we want to achieve n(1+o(1))(1+ϵ)/S logS bandwidth and server computation and n(1+o(1))(1+ϵ)/SS log2 S
client computation, we can choose Equation (6) to be ϵ/S, i.e.,

lnS

S(1 + ln(1θ))
· (1 +O(θ)) = ϵ/S

Thus it suffices to set 1 + ln(1/θ) = (1 + o1(1))
lnS
ϵ for some function o1(1) that goes to 0 as ϵ goes to

0. Therefore, θ = 1/ exp((1 + o1(1)) lnS/ϵ − 1). In this case, the server space and preprocessing cost is
upper bounded by

n(1+o(1))((logS+1)/H(θ)+(1+ϵ)/S)

In particular,

(logS + 1)/H(θ) ≤ ln 2(logS + 1)

θ(1 + ln 1
θ)

(1 + o2(1))

where o2(1) is a function on θ that goes to 0 as θ goes to 0. Therefore, we have

(logS + 1)/H(θ) ≤
ln 2(logS + 1) · exp

(
(1+o1(1)) lnS

ϵ − 1
)

(1 + o1(1))
lnS
ϵ

· (1 + o2(1))

≤ ln 2(logS + 1) · ϵ · S(1+o1(1))/ϵ

lnS · e
· (1 + o2(1))

≤ 1

e
· logS + 1

logS
· S(1+o1(1))/ϵ · (1 + o2(1))

≤ 0.3678(1 + o(1)) · ϵS
1+o(1)

ϵ

where o(1) hides terms that go to 0 as S goes to infinity or as ϵ goes to 0. Therefore, for sufficiently small ϵ,
sufficiently large S and n, the server space and preprocessing cost is upper bounded by n0.3679ϵS(1+o(1))/ϵ

.
In summary, for sufficiently small ϵ, sufficiently large S and n, we can achieve n(1+ϵ)/S logS band-

width and server computation, n(1+ϵ)/SS log2 S client computation, and n0.368ϵS(1+o(1))/ϵ
server space and

preprocessing cost where the o(1) term is a function that goes to 0 as ϵ goes to 0, S and n go to infinity. To
get the above, observe that for sufficiently large S and n and sufficiently small ϵ, we can use 1+ ϵ to absorb

30

(1 + o(1))(1 + ϵ′) for some ϵ > ϵ′, and we can use 0.368 to absorb 0.3679 · (1 + o(1)). Further, the o(1)
term in the exponent of S(1+o(1))/ϵ becomes a little larger than before when we substitute the ϵ′ with ϵ. With
more careful analysis and using the proof in Appendix D, the o(1) in the exponent of S(1+o(1))/ϵ actually
hides o(ϵ) +O(log log n/ log n) terms when we use 1 + ϵ to absorb (1 + o(1))(1 + ϵ′).

Corollary 6.5 (Our base scheme: for large S). For sufficiently large S, n, and sufficiently small ϵ > 0,
there exists an S-server PIR scheme where each query incurs O(n(1+ϵ)/S logS) per-server bandwidth and
computation, and O(n(1+ϵ)/SS log2 S) client computation, while requiring n0.368ϵS(1+o(1))/ϵ

per-server pre-
processing time and space.

Remark 6.6. It is not hard to see that the above Corollary 6.5 also holds any prime or prime power S, as long
as n is sufficiently large and ϵ is sufficiently small. This is because for a prime or prime power S, we choose
q = S, so the logS + 1 term can be replaced with logS, and we need not rely on the “sufficiently large S”
condition to absorb the +1 term into the o(1) part. In fact, the expression log(q)/ log(S) is maximized when
S = 6 and q = 7. In this case, the server space and preprocessing cost is upper bounded by n0.4ϵS(1+o(1))/ϵ

for sufficiently large n and sufficiently small ϵ. Therefore, the same bound n0.4ϵS(1+o(1))/ϵ
also holds for any

S as long as n is sufficiently large and ϵ is sufficiently small.

Comparison with Beimel et al. We now compare with the scheme of Beimel et al. [BIM04]. For band-
width and server computation, both schemes achieve n(1+o(1))H(θ/S)/H(θ) logS cost. The server space and
preprocessing cost of Beimel et al. [BIM04] is n(1+o(1))(S−1+H(θ/S))/H(θ), and ours is n(1+o(1))(log q+H(θ/S))/H(θ)

where Fq is the smallest filed that size is at least S (in other words, q is the minimal prime power that is
at least S). For S = 2, our scheme chooses q = 2 and log q = S − 1. Therefore, for S = 2 servers,
both schemes achieve the same server space and preprocessing cost. Our server space and preprocessing
cost starts to outperform Beimel et al. when S = 3 and larger. For S = 3, our field size q = 3, and
log q < S − 1. Specifically, for S = 3, Beimel et al.’s constant in the exponent is (3 − 1)/ log(3) ≈ 1.26
times larger than ours. For sufficiently large S, n, and sufficiently small ϵ, our server space and prepro-
cessing cost is n0.368ϵS(1+o(1))/ϵ

and Beimel et al. [BIM04] has n0.368(S/ logS)·ϵS(1+o(1))/ϵ
server space and

preprocessing cost — assuming we fix the bandwidth and computation to n(1+ϵ)/S . In other words, their
constant in the exponent is a factor of S/ logS larger than our scheme. Table 2 compares the exact exponents
of server storage for some concrete server numbers when ϵ = 0.5.

Table 2: Numerical Experiments for ϵ = 0.5. The last four columns represent the exponents of commu-
nication/work, server storage of our base scheme, server storage of our base scheme without the λu⃗ + v⃗
optimization, and server storage of [BIM04, Theorem 4.3], respectively (e.g. 0.75 means n0.75+o(1)).

S q θ Comm./Work Our Storage [BIM04]’s Storage
Optimized Unoptimized

2 2 0.4110 0.75 1.7735 2.3723 1.7735
3 3 0.2259 0.5 2.5563 3.0947 3.0947
4 4 0.1410 0.375 3.7832 4.3318 5.4874
5 5 0.0956 0.3 5.4051 6.4724 9.0947
6 7 0.0687 0.25 8.0230 8.0230 14.0940
7 7 0.0516 0.2143 9.7838 10.4405 20.0667
8 8 0.0402 0.1875 12.5322 13.2314 28.9918
9 9 0.0321 0.1667 15.6510 17.0652 39.2448

10 11 0.0262 0.15 19.9255 19.9255 51.5976

31

6.1 Applying the Balancing Technique to Reduce Bandwidth

Combining our base S-server PIR scheme with balancing technique (Lemma 7.2), we immediately obtain
the desired result:

Corollary 6.7. For any ϵ ∈ (0, 1), 0 < µ ≤ 1 and 0 < θ ≤ 1/2, there exists an S-server PIR scheme which
achieves (n1−µ+o(1) + nµ(H(θ/S)/H(θ)+o(1))) logS per-server bandwidth, n1−µ+µ(H(θ/S)/H(θ)+o(1)) logS
per-server computation and (n1−µ+o(1)+nµ(H(θ/S)/H(θ)+o(1)))S log2 S client computation per query, with
n1−µ+µ((log q+H(θ/S))/H(θ)+o(1)) preprocessing time and server storage where Fq is the minimum field such
that q ≥ S. Specifically, when S is a constant, the preprocessing time and server storage are bounded by
poly(n).

For any 1/(S + 1) ≤ α ≤ 1/S, we may choose µ = S · α, by the fact that 1 − µ ≤ µ/S when
1/(S + 1) ≤ α, the scheme has

• O(nSα(H(θ/S)/H(θ)+o(1)) logS) per-server bandwidth

• O(n1−Sα+Sα(H(θ/S)/H(θ)+o(1)) logS) per-server computation,

• O(nSα(H(θ/S)/H(θ)+o(1))S log2 S) client computation.

Moreover, similar as the previous analysis, for sufficiently large S, n and sufficiently small ϵ > 0, it
suffices to choose θ = 1/ exp((1 + o(1)) lnS/ϵ− 1) for H(θ/S)/H(θ) < (1 + ϵ)/S to hold, therefore we
have the following corollary:

Corollary 6.8. For sufficiently large S, n, and sufficiently small ϵ > 0, for any α ∈ [1/(S + 1), 1/S],
there exists an S-server PIR scheme such that, which achieves O(nα(1+ϵ) logS) per-server bandwidth,
O(n1−(S−1−ϵ)α logS) per-server computation and O(nα(1+ϵ)S log2 S) client computation per query, with
n1−Sα+α0.368ϵS1+(1+o(1))/ϵ

preprocessing time and server storage.

In above theorem, if we take constant S and parameter α = 1/(S + 1) to minimize total bandwidth, in
which the upload and download bandwidth are balanced up to some 1 + ϵ factor of exponents, then the PIR
scheme achieves O(n(1+ϵ)/(S+1) logS) per-server bandwidth, O(n(2+ϵ)/(S+1) logS) per-server computa-
tion and O(n(1+ϵ)/(S+1)S log2 S) client computation per query with poly(n) preprocessing time and server
storage.

7 A Generic Balancing Method

In this section, we describe our generic balancing technique. We explained the intuition in Section 2, so in
this section, we jump directly into the formal description.

We first state some natural assumptions on the underlying PIR scheme. Later in Appendix B, we show
that these natural assumptions can actually be removed, i.e., we can generalize this balancing technique for
any PIR scheme whose upload bandwidth is smaller than the download bandwidth.

Natural assumptions on the underlying PIR scheme. We assume that for a “natural” S-server (prepro-
cessing) PIR scheme, the preprocessing algorithm and response algorithm are deterministic and identical for
all servers, and the distribution of the messages sent to all servers are identical. More formally, we assume
the following:

Assumption 7.1. 1. Each server s ∈ [[S]] uses same deterministic preprocessing algorithm D̃B← Preproc(DB)

and response algorithm Answer(D̃B, Qs).

32

2. For any s1, s2 ∈ [[S]], the distributions {Qs1 : (Q0, . . . , QS−1)← Query(n, 0)} and {Qs2 : (Q0, . . . , QS−1)←
Query(n, 0)} are identical.

The above guarantees that if the desired index is 0, then the query message is identically distributed
for all servers. Together with the PIR’s security property, it also implies that the distribution of the query
message is identical for all servers no matter what index is queried.

Indeed, to the best of our knowledge, all known S-server PIR schemes, including the new schemes
proposed in our paper, satisfy Assumption 7.1. We also observe that these assumptions can be removed —
see Appendix B for detailed proof.

7.1 Construction

Parameters and notations. We will choose the following parameters.

• Let PIR = (PIR.Preproc,PIR.Query,PIR.Answer,PIR.Recons) be a PIR scheme with global
preprocessing that satisfies the aforementioned natural assumptions.

• Suppose that the n-bit database is partitioned into B := n1−µ blocks each with nµ bits, we use the
notation DBj to represent the j-th block of database. Without loss of generality, we assume that B :=
n1−µ is an integer.

Balancing technique. We construct a new PIR scheme that makes blackbox calls to the underlying PIR.

• Preproc: For each block j, each server performs D̃Bj ← PIR.Preproc(DBj) to obtain an encoded
database of the block and stores it.

• Query: Let i ∈ [[n]] be the queried index, and r = ⌊i/nµ⌋ be the block where i resides.

For block j = r, client performs actual query algorithm of index i to obtain

stj , Qj,0, . . . , Qj,S−1 ← PIR.Query(nµ, i mod nµ)

For other blocks j ̸= r, client simply performs a dummy query:

stj , Qj,0, . . . , Qj,S−1 ← PIR.Query(nµ, 0)

Then, the client randomly picks b0, b1, . . . , bB−1 ∈ {0, 1} and prepares the query messages:

For s = 0, the client sets
m⃗j,s = (Qj,0, bj)

And for other servers s ∈ [[S]], the client sets

m⃗j,s =

{
(Qj,0, bj) if j ̸= r

(Qj,s, 1− bj) if j = r

The client then sends (m⃗0,s, . . . , m⃗B−1,s) to each server s ∈ [[S]] and stores private state st = (str, br).

• Answer: The s-th server parses the message received from the client as (Q′
0,s, b

′
0,s, . . . , Q

′
B−1,s, b

′
B−1,s).

For each block j, it computes ansj,s = PIR.Answer(D̃Bj , Q
′
j,s).

Then, for every block j, depending on the control bit b′j,s, the server accumulates the response messages
for block j into one of two slots, denoted sums,0 and sums,1, respectively:

sums,0 =
B−1⊕
j=0

ansj,s(1− b′j,s)

33

and

sums,1 =
B−1⊕
j=0

ansj,sb
′
j,s

Finally, it sends back sums,0 and sums,1 to client.

• Recons: Parse st as (str, br). The client first extracts all S answers (of the underlying PIR) for the
relevant block r:

ansr,s =

{
sums,1−br

⊕
sum0,1−br if s ̸= 0

sums,br

⊕
sum1,br if s = 0

Then, it reconstructs DB[i] by applying the reconstruction algorithm of the underlying PIR:

DB[i] = PIR.Recons(str, ansr,0, . . . , ansr,S−1)

7.2 Proof of Correctness

It suffices to show that client successfully extracts ansr,s = PIR.Answer(D̃Br, Q
′
r,s) = PIR.Answer(D̃Br, Qr,s)

for each server s ∈ [[S]] since rest of proof immediately follows from correctness of the underlying PIR.
Since the S-server PIR scheme PIR is natural (Assumption 7.1) and each server receives same query mes-
sages for all blocks j ̸= r, hence they must compute same response messages ansj,· for such blocks.

Formally, we have

sums,b′r,s = PIR.ansr,s
⊕

noiseb′r,s

sums,1−b′r,s = noise1−b′r,s

where

noiseb :=
B−1⊕

j=0,j ̸=r

PIR.Answer(D̃Bj , Qj,0)1bj=b

Observe that when s ̸= 0, b′r,s = 1− br and sums,br = noisebr ; when s = 0, b′r,s = br and sums,1−br =
noise1−br . Thus for s ̸= 0,

ansr,s = sums,b′r,s

⊕
noiseb′r,s

= sums,1−br

⊕
noise1−br

= sums,1−br

⊕
sum0,1−br

for s = 0,

ansr,s = sums,b′r,s

⊕
noiseb′r,s

= sums,br

⊕
noisebr

= sums,br

⊕
sum1,br

34

7.3 Proof of Security

Observe that bj
$←− {0, 1} is randomly generated for each block j, thus b′j,s is also randomly distributed in

{0, 1} for each server s. We claim that Q′
j,s is also randomly distributed: for j ̸= r we have

{Q′
j,s} ≡ {Qj,0 : (Qj,0, . . . , Qj,S−1)← PIR.Query(nµ, 0)}
≡ {Qj,s : (Qj,0, . . . , Qj,S−1)← PIR.Query(nµ, 0)}

where the second equation follows from Assumption 7.1; and for j = r

{Q′
j,s} ≡ {Qj,s : (Qj,0, . . . , Qj,S−1)← PIR.Query(nµ, i mod nµ)}
≡ {Qj,s : (Qj,0, . . . , Qj,S−1)← PIR.Query(nµ, 0)}

7.4 Efficiency

• Bandwidth: Assume the per-server upload and download bandwidth of PIR is bounded by Cup(n) and
Cdown(n), respectively.

For each server s, it receives a query message Q′
j,s and a bit b′j,s for each block j, thus in total takes

upload bandwidth O(n1−µCup(n
µ)), and it sends back two response messages which takes download

bandwidth O(Cdown(n
µ)). Hence the total bandwidth is O(n1−µCup(n

µ) + Cdown(n
µ)).

• Server computation: Assume the per-server computation of PIR is bounded by Tanswer(n), then each
server needs to perform PIR.Answer operation for each block j and compute the XOR sum of each
response messages, in total takes server computation O(n1−µTanswer(n

µ)).

• Client computation: Assume PIR.Query operation takes time Tquery(n) and PIR.Recons operation
takes time Trecons(n). The client needs to compute PIR.Query for every blocks but only perform
PIR.Recons once, in total takes client computation O(n1−µTquery(n

µ) + Trecons(n
µ)).

• Server space and preprocessing time: Assume the server space and preprocessing time of PIR is
bounded by M(n) and Tpreproc(n), then clearly the new scheme takes server space O(n1−µM(nµ)) and
preprocessing time O(n1−µTpreproc(n

µ)).

In conclusion, we have

Lemma 7.2. Suppose there exists an S-server PIR scheme satisfying Assumption 7.1 in which achieves
Cup(n) per-server upload bandwidth, Cdown(n) download bandwidth, Tanswer(n) per-server computation,
Tquery(n)Query operation complexity per query and Trecons(n)Recons operation complexity per query,
with M(n) server storage and Tpreproc(n) preprocessing time. Then for any 0 < µ ≤ 1, there exists
an S-server PIR scheme satisfying Assumption 7.1, it can achieve O(n1−µCup(n

µ) + Cdown(n
µ)) per-

server bandwidth, O(n1−µTanswer(n
µ)) per-server computation, O(n1−µTquery(n

µ) + Trecons(n
µ)) client

computation per query, with O(n1−µM(nµ)) server storage and O(n1−µTpreproc(n
µ)) preprocessing time.

References

[ACLS18] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed queries
and amortized query processing. In S&P, 2018.

35

[BFG03] Richard Beigel, Lance Fortnow, and William I. Gasarch. A nearly tight bound for private in-
formation retrieval protocols. Electronic Colloquium on Computational Complexity (ECCC),
2003.

[BGG+24] Vishwas Bhargava, Sumanta Ghosh, Zeyu Guo, Mrinal Kumar, and Chris Umans. Fast multi-
variate multipoint evaluation over all finite fields. Journal of the ACM, 71(3):1–32, 2024.

[BGKM22] Vishwas Bhargava, Sumanta Ghosh, Mrinal Kumar, and Chandra Kanta Mohapatra. Fast,
algebraic multivariate multipoint evaluation in small characteristic and applications. In Pro-
ceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022,
page 403–415, New York, NY, USA, 2022. Association for Computing Machinery.

[BIM04] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the Servers’ Computation in PrivateIn-
formation Retrieval: PIR with Preprocessing. Journal of Cryptology, 17(2):125–151, March
2004.

[BJPY18] Elette Boyle, Abhishek Jain, Manoj Prabhakaran, and Ching-Hua Yu. The bottleneck
complexity of secure multiparty computation. In 45th International Colloquium on Au-
tomata, Languages, and Programming (ICALP 2018), pages 24–1. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2018.

[CG97] Benny Chor and Niv Gilboa. Computationally private information retrieval. In STOC, 1997.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information re-
trieval. In FOCS, 1995.

[Cha04] Yan-Cheng Chang. Single database private information retrieval with logarithmic communi-
cation. In ACISP, 2004.

[CHK22] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. Single-server private infor-
mation retrieval with sublinear amortized time. In Eurocrypt, 2022.

[CK20] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval with sublinear online
time. In EUROCRYPT, 2020.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information
retrieval with polylogarithmic communication. In EUROCRYPT, pages 402–414, 1999.

[DG16] Zeev Dvir and Sivakanth Gopi. 2-server pir with subpolynomial communication. J. ACM,
63(4), 2016.

[DMO00] Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky. Single database private information
retrieval implies oblivious transfer. In EUROCRYPT, 2000.

[DRRT18] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI: scaling private contact
discovery. Proc. Priv. Enhancing Technol., 2018(4):159–178, 2018.

[Fea] Nick Feamster. Oblivious DNS deployed by Cloud-
flare and Apple. https://medium.com/noise-lab/
oblivious-dns-deployed-by-cloudflare-and-apple-1522ccf53cab.

[Gas04] William I. Gasarch. A survey on private information retrieval. Bulletin of the EATCS, 82:72–
107, 2004.

36

https://medium.com/noise-lab/oblivious-dns-deployed-by-cloudflare-and-apple-1522ccf53cab
https://medium.com/noise-lab/oblivious-dns-deployed-by-cloudflare-and-apple-1522ccf53cab

[GR05] Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval with con-
stant communication rate. In ICALP, 2005.

[GZS24] Ashrujit Ghoshal, Mingxun Zhou, and Elaine Shi. Efficient pre-processing pir without public-
key cryptography. In Eurocrypt, 2024.

[Has36] Helmut Hasse. Theorie der höheren differentiale in einem algebraischen funktionenkörper
mit vollkommenem konstantenkörper bei beliebiger charakteristik. Journal für die reine und
angewandte Mathematik, 175:50–54, 1936.

[hav] https://haveibeenpwned.com/.

[HDCG+23] Alexandra Henzinger, Emma Dauterman, Henry Corrigan-Gibbs, , and Nickolai Zeldovich.
Private web search with Tiptoe. In 29th ACM Symposium on Operating Systems Principles
(SOSP), Koblenz, Germany, October 2023.

[HHCG+23] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meiklejohn, and
Vinod Vaikuntanathan. One server for the price of two: Simple and fast single-server pri-
vate information retrieval. In Usenix Security, 2023.

[HPPY24] Alexander Hoover, Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Plinko: Single-server
PIR with efficient updates via invertible prfs. IACR Cryptol. ePrint Arch., page 318, 2024.

[KCG21] Dmitry Kogan and Henry Corrigan-Gibbs. Private blocklist lookups with checklist. In Usenix
Security, 2021.

[KO97] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database, computationally-
private information retrieval. In FOCS, 1997.

[Kop13] Swastik Kopparty. Some remarks on multiplicity codes. Discrete Geometry and Algebraic
Combinatorics, 625(155-176):1–1, 2013.

[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-
time decoding. Journal of the ACM (JACM), 61(5):1–20, 2014.

[KU08] Kiran S. Kedlaya and Christopher Umans. Fast modular composition in any characteristic. In
49th Annual IEEE Symposium on Foundations of Computer Science, pages 146–155, 2008.

[KU11] Kiran S. Kedlaya and Christopher Umans. Fast polynomial factorization and modular com-
position. SIAM Journal on Computing, 2011.

[Lip09] Helger Lipmaa. First CPIR protocol with data-dependent computation. In ICISC, 2009.

[LLFP24] Arthur Lazzaretti, Zeyu Liu, Ben Fisch, and Charalampos Papamanthou. Multi-server dou-
bly efficient PIR. Cryptology ePrint Archive, Paper 2024/829, 2024. https://eprint.
iacr.org/2024/829.

[LMW23] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private information retrieval
and fully homomorphic RAM computation from ring LWE. In Barna Saha and Rocco A.
Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 595–608. ACM, 2023.

37

https://haveibeenpwned.com/
https://eprint.iacr.org/2024/829
https://eprint.iacr.org/2024/829

[LP22] Arthur Lazzaretti and Charalampos Papamanthou. Single server pir with sublinear amor-
tized time and polylogarithmic bandwidth. Cryptology ePrint Archive, Paper 2022/830, 2022.
https://eprint.iacr.org/2022/830.

[LP23] Arthur Lazzaretti and Charalampos Papamanthou. Treepir: Sublinear-time and polylog-
bandwidth private information retrieval from ddh. In CRYPTO, 2023.

[MCG+08] Carlos Aguilar Melchor, Benoit Crespin, Philippe Gaborit, Vincent Jolivet, and Pierre
Rousseau. High-speed private information retrieval computation on GPU. In Proceedings
of the 2008 Second International Conference on Emerging Security Information, Systems and
Technologies, SECURWARE ’08, pages 263–272, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[MCR21] Muhammad Haris Mughees, Hao Chen, and Ling Ren. Onionpir: Response efficient single-
server pir. In CCS. Association for Computing Machinery, 2021.

[MG07] Carlos Aguilar Melchor and Philippe Gaborit. A lattice-based computationally-efficient pri-
vate information retrieval protocol. IACR Cryptology ePrint Archive, 2007:446, 2007.

[MIR23] Muhammad Haris Mughees, Sun I, and Ling Ren. Simple and practical amortized sublinear
private information retrieval. Cryptology ePrint Archive, Paper 2023/1072, 2023.

[MW22] Samir Jordan Menon and David J. Wu. SPIRAL: Fast, high-rate single-server PIR via FHE
composition. In IEEE S&P, 2022.

[obl] Oblivious dns over https. https://tools.ietf.org/html/
draft-pauly-dprive-oblivious-doh-04.

[OG11] Femi G. Olumofin and Ian Goldberg. Revisiting the computational practicality of private
information retrieval. In Financial Cryptography, pages 158–172, 2011.

[OS07] Rafail Ostrovsky and William E. Skeith, III. A survey of single-database private information
retrieval: techniques and applications. In PKC, pages 393–411, 2007.

[RY06] Alexander A. Razborov and Sergey Yekhanin. An ω(n1/3) lower bound for bilinear group
based private information retrieval. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06), pages 739–748, 2006.

[SACM21] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran, and Bruce Maggs. Puncturable pseu-
dorandom sets and private information retrieval with near-optimal online bandwidth and time.
In CRYPTO, 2021.

[SC07] Radu Sion and Bogdan Carbunar. On the computational practicality of private information
retrieval. In Network and Distributed Systems Security Symposium (NDSS), 2007.

[SCV+21] Sudheesh Singanamalla, Suphanat Chunhapanya, Marek Vavruša, Tanya Verma, Peter Wu,
Marwan Fayed, Kurtis Heimerl, Nick Sullivan, and Christopher Wood. Oblivious dns over
https (odoh): A practical privacy enhancement to dns. In PET Symposium, 2021.

[sig] Technology deep dive: Building a faster oram layer for enclaves. https://signal.org/
blog/building-faster-oram/.

[SWZ24] Jaspal Singh, Yu Wei, and Vassilis Zikas. Information-theoretic multi-server private informa-
tion retrieval with client preprocessing. In TCC, 2024.

38

https://eprint.iacr.org/2022/830
https://tools.ietf.org/html/draft-pauly-dprive-oblivious-doh-04
https://tools.ietf.org/html/draft-pauly-dprive-oblivious-doh-04
https://signal.org/blog/building-faster-oram/
https://signal.org/blog/building-faster-oram/

[WY05] David P. Woodruff and Sergey Yekhanin. A geometric approach to information-theoretic
private information retrieval. In 20th Annual IEEE Conference on Computational Complexity
(CCC 2005), 11-15 June 2005, San Jose, CA, USA, pages 275–284. IEEE Computer Society,
2005.

[Y+12] Sergey Yekhanin et al. Locally decodable codes. Foundations and Trends® in Theoretical
Computer Science, 6(3):139–255, 2012.

[ZLTS23] Mingxun Zhou, Wei-Kai Lin, Yiannis Tselekounis, and Elaine Shi. Optimal single-server
private information retrieval. In EUROCRYPT, 2023.

[ZPSZ24] Mingxun Zhou, Andrew Park, Elaine Shi, and Wenting Zheng. Piano: Extremely simple,
single-server pir with sublinear server computation. In IEEE S& P, 2024.

A Fast polynomial evaluation algorithm from [BGG+24]

We present the fast polynomial evaluation algorithm from [BGG+24], where the depth of the recursion
is just 2. We re-write the algorithm from [BGG+24] as one with a preprocessing phase followed by an
online phase. The polynomial f(X⃗) ∈ Fq[X⃗] is a m-variate polynomial where the individual degree of the
variables is at most d′. It is to be evaluated at a point a⃗ ∈ Fm

q .

Preprocessing algorithm. In order to define PolyPreprocess(f), we define a helper algorithm PolyPreprocessHelper
which is recursive. It takes as input parameters f, r, s, t: its goal is to preprocess the polynomial f for fast
evaluation in Zrs . t is a parameter that denotes the depth of recursion. The algorithm PolyPreprocess(f)
runs PolyPreprocessHelper(f, q, 1, 2) and outputs everything that PolyPreprocessHelper stores as f̃ .

PolyPreprocessHelper(f, r, s, t) is defined as follows.

1. If t = 0:

(a) For e⃗ ∈ Nm with |e⃗|1 < s:

i. compute and store fe⃗(X⃗) = ∂
e⃗ ◦ f(X⃗) ∈ Zrs [X⃗]

ii. compute and store fe⃗(⃗b) for b⃗ ∈ [[r]]m where [[r]] is identified with a subset of Zrs via
i 7→ i+ rsZ

iii. Return

2. For all e⃗ ∈ Nm, with |e⃗|1 < s, compute and store fe⃗(X⃗) := ∂
e⃗ ◦ f(X⃗), and then compute a lift

f̃e⃗ ∈ Z[X⃗] of fe⃗ with coefficient in [[rs]].

3. Let M := (d′+1)(r−1)d
′+1. Find primes p1 < p2 < . . . < pk ≤ 16 logM such that

∏k
j=1 pj > M .

4. For j ∈ [k]:

(a) For e⃗ ∈ Nm with |e⃗|1 < s:

i. compute and store fe⃗,j(X⃗) := f̃e⃗(X⃗) mod pmj ∈ Zpmj
[X⃗].

ii. Invoke PolyPreprocessHelper(fe⃗,j , pj ,m, t− 1)

39

Online algorithm. In order to define EvalPoly we define the following recursive helper algorithm OnlineHelper.
It takes as input parameters f, a⃗, r, s, t where f ∈ Zrs [X1, . . . , Xm], a⃗ ∈ [[rs]]m. It has access to the data
structure f̃ which is global. Its goal is to evaluate the polynomial f at a⃗ in Zrs . t is a parameter that denotes
the depth of recursion. The algorithm EvalPoly(f̃ , a⃗) runs OnlineHelper(f, a⃗, q, 1, 2) and returns whatever
OnlineHelper returns.

OnlineHelper(f, a⃗, r, s, t) is defined as follows.

1. If t = 0:

(a) Compute b⃗ ∈ [[r]]m such that the coordinates of b⃗ are the remainders of the corresponding coor-
dinates of a⃗ modulo r

(b) Compute and return f (⃗a) =
∑

e⃗∈Nm:|e⃗|1<s fe⃗(⃗b)︸ ︷︷ ︸
computed from preprocessing

·(⃗a− b⃗)e⃗

2. Compute ˜⃗a ∈ [[r]]m such that the coordinates of ˜⃗a are the remainders of the corresponding coordinates
of a⃗ modulo r. Compute b⃗ := ˜⃗a mod rs.

3. Let primes p1, p2, . . . , pk be those computed in the preprocessing phase such that
∏k

j=1 pj > M .

4. For j ∈ [k]:

(a) Compute a⃗j := ˜⃗a mod pmj

(b) For e⃗ ∈ Nm, with |e⃗|1 < s, compute fe⃗,j (⃗aj) = OnlineHelper(fe⃗,j , a⃗j , pj ,m, t− 1)

5. For e⃗ ∈ Nm : |e⃗|1 < s, let fe⃗ be as defined during preprocessing. Compute f̃e⃗(˜⃗a) as the unique
Q ∈ [[

∏
j∈[k] p

m
j]] such that Q mod pmj = fe⃗,j(a⃗j) for j ∈ [k].

6. Compute fe⃗(⃗b) = f̃e⃗(˜⃗a) mod rs

7. Compute f (⃗a) =
∑

e⃗∈Nm,|e⃗|1<s fe⃗(⃗b) · (⃗a− b⃗)e⃗ and return it.

Correctness.
We first argue that if all the coordinates of a⃗− b⃗ are mulitple of r, then in Zrs , we have that

f (⃗a) =
∑

e⃗∈Nm:|e⃗|<s

∂
e⃗ ◦ f (⃗b) · (⃗a− b⃗)e⃗ .

From the definition of Hasse derivatives, we have that for any a⃗, b⃗ ∈ Nm

f (⃗a) = f (⃗b+ (⃗a− b⃗)) =
∑
e⃗∈Nm

∂
e⃗ ◦ f (⃗b) · (⃗a− b⃗)e⃗ .

If all the coordinates of a⃗ − b⃗ are multiples of r, we have that (⃗a − b⃗)e⃗ = 0 in Zrs for all e⃗ : |e⃗| ≥ s.
Therefore, it follows that

f (⃗a) =
∑

e⃗∈Nm:|e⃗|<s

∂
e⃗ ◦ f (⃗b) · (⃗a− b⃗)e⃗ .

This fact implies that OnlineHelper(f, a⃗, r, s, 0) computes f (⃗a) in Zrs correctly.
We will now argue that EvalPoly(f̃ , a⃗) returns f (⃗a) when f̃ was returned by PolyPreprocess(f). When

OnlineHelper is invoked with (f, a⃗, q, 1, 2), since s = 1, the only vector e⃗ ∈ Nm : |e⃗|1 < 1 is the zero

40

vector. So OnlineHelper(f0⃗,j , a⃗, pj ,m, 1) gets invoked for j ∈ [k]. Assuming these return f0⃗,j (⃗a) mod

pmj = f (⃗a) mod pmj , coupled with the fact that f̃0⃗(⃗a) ≤ Mm (we argue this shortly), it follows from the
correctness of Chinese remainder theorem that f (⃗a) is returned. We are that f̃0⃗(⃗a) ≤ Mm. Since f is a m-
variate polynomial with individual degree at most d′, there are at most (d′+1)m monomials. Since a⃗ ∈ Fm

q ,
the maximum value of a monomial in f (⃗a) is at most (q − 1) · (q − 1)md′ . Therefore, the maximum value
of f̃0⃗(⃗a) is (d′ + 1)m · (q − 1)md′+1. Since, we have that

∏
j∈[k] p

m
j > M = (d′ + 1)m · (q − 1)md′+m ≥

(d′ + 1)m · (q − 1)md′+1, it follows that f̃0⃗(⃗a) ∈ [[
∏

j∈[k] p
m
j]].

We can similarly show that OnlineHelper(f0⃗,j , a⃗, pj ,m, 1) returns f (⃗a) mod pmj using the correctness of
the Chinese remainder theorem and the fact that OnlineHelper(f, a⃗, r, s, 0) computes f (⃗a) in Zrs correctly
(which we proved).
Efficiency. We analyze the running time and the storage of the preprocessing algorithm first. We write out
the running times of the steps of PolyPreprocessHelper and then put it all together.

• For t = 0, the loop runs for
(
m+s−1
s−1

)
times. The first step in the loop takes time poly(m, d′, log r),

while the second step takes time rm.

• For all e⃗ ∈ Nm, with |e⃗1| < s, computing f̃e⃗ takes time
(
m+s−1

s

)
· poly(m, d′, log r) time

• Computing M takes time poly(d′, log r) and the primes can be computed using sieve of Eratos-
thenes [], which takes time Õ(logM) ≤ O(poly(d′, log r)).

• The loop in step 4a has
(
m+s−1
s−1

)
iterations and its first step takes time poly(m, d′, log r).

Since the preprocessing phase runs PolyPreprocessHelper(f, q, 1, 2), putting it together, the total runtime
and storage required by the preprocessing algorithm is at most

O
(
(16d′(log d′ + log log q))m · poly(m, d′, log q)

)
.

We obtain the above by simply plugging in the running time of the steps in the execution of PolyPreprocessHelper(f, q, 1, 2)
and additionally using the fact that

(
m+m−1

m

)
≤ 4m.

We now analyze the running time of the online algorithm. We write out the running times of the steps
of OnlineHelper and then put it all together.

• For t = 0, the running time is dominated by computing the summation in step (b)- it takes time(
m+s−1
s−1

)
poly(m, d′, log r).

• Step 2 takes time poly(m, d′, log r)

• Step 3 just takes constant time, since the algorithm just looks it up from the preprocessing

• The loop in step 4 runs O(logM) iteration. Step a) takes time poly(m, log r), while step b has(
m+s−1
s−1

)
iterations each of which make a recurive call

• Step 5 takes times poly(m, d′, log r)

• Step 6 takes time poly(m, d′, log r)

• Step 7 takes time
(
m+s−1
s−1

)
poly(m, d′, log r)

Since the online phase runs OnlineHelper(f, a⃗, q, 1, 2), putting it together, the total runtime of the online
algorithm is at most

O
(
16m · poly(m, d′, log q)

)
.

41

We obtain the above by simply plugging in the running time of the steps in the execution of OnlineHelper(f, a⃗, q, 1, 2)
and additionally using the fact that

(
m+m−1

m

)
≤ 4m.

So, we get the following theorem.

Theorem A.1 (Polynomial preprocessing theorem from [BGG+24]). For a m-variate polynomial f : Fm
q →

Fq with individual degree≤ d′, over some finite field Fq, then there exists algorithms PolyPreprocess,EvalPoly
such that

• The runtime of PolyPreprocess(f) is (16d′(log d′ + log log q)m · poly(m, d′, log q)

• Let f̃ ← PolyPreprocess(f), for any x⃗ ∈ Fm
q ,EvalPoly(f̃ , x⃗) = f(x⃗) and the runtime of EvalPoly(f̃ , x⃗)

is 16m · poly(m, d′, log q).

B Removing the Natural Assumptions for Our Balancing Technique

The generic balancing technique earlier requires some natural assumptions on the underlying PIR scheme.
In this section, we show that these natural assumptions can be removed. First, in Appendix B.1, we show
how to transform any PIR scheme to one that satisfies the natural assumptions with an S factor blowup.
Next, in Appendix B.2, we show that we can save the S-factor blowup by not going through the “arbitrary
to natural” transformation of Appendix B.1. In fact, we can improve our balancing technique of Section 7
to directly work on top of an arbitrary PIR scheme.

Throughout the section, we assume that the underlying PIR scheme has a deterministic server-side algo-
rithm. This assumption is for free as long as the PIR scheme is perfectly correct, since the server can always
just fix the random coins.

B.1 Compiling Any PIR to a Natural One with S Factor Blowup

Here we present a construction in which given any S-server PIR scheme (where the server-side algorithm is
deterministic), we can transform it into one that additionally satisfies Assumption 7.1, with S factor blowup.

B.1.1 Construction

Parameters and notations. For server number S, We will choose the following parameters.

• Let PIR = (PIR.Preprocs,PIR.Query,PIR.Answers,PIR.Recons) be a S-server PIR scheme
with global preprocessing.

Compiler. We will use a simple circular parallel repetition strategy, that is, let each server simulates the
behaviors of all servers in PIR with different queries for each.

• Preproc: The same holds for each server s ∈ [[S]]: for each s′ ∈ [[S]], invoke D̃Bs′ = PIR.Preprocs′(DB)

and stores the preproccesing result {D̃Bs′}s′∈[[S]].

• Query: Given query index i, the client independently generates S queries Que0,Que1, . . . ,QueS−1about
i. The j-th query Quej is of the form

stj , Qj,0, . . . , Qj,S−1 ← PIR.Query(n, i)

The client then sends (Q(s′−s) mod S,s′)s′∈[[S]] to server s and stores private state st0,

42

• Answer: The s-th server parses the message received from the client as (Q′
0,s, . . . , Q

′
S−1,s). The for

each s′ ∈ [[S]], it simulates the behavior of s′-th server of the underlying PIR scheme PIR taking message
Q′

s′,s as input.

Formally, for all s′ ∈ [[S]] it computes and sends back

anss′,s = PIR.Answers′(D̃Bs′ , Q
′
s′,s)

• Recons: The client retrieves all servers’ responses, then it only uses a diagonal part to reconstruct
DB[i]:

DB[i] = PIR.Recons(st0, ans0,0, ans1,1, . . . , ansS−1,S−1)

B.1.2 Proof of Correctness

Notice that Q′
s,s = Q0,s and indeed anss,s = PIR.Answers(D̃Bs, Q0,s), therefore the correctness simply

follows from correctness of underlying PIR scheme PIR.

B.1.3 Proof of Security

We first prove the sematical security of our PIR scheme: each server s ∈ [[S]] receives a series of messages
Q′

0,s, . . . , Q
′
S−1,s, and we claim these messages don’t reveal nontrivial information of query index i:

{Q′
0,s, . . . , Q

′
S−1,s}

≡{Qu,s : stu, Qu,0, . . . , Qu,S−1 ← PIR.Query(n, i)}s′∈[[S]],u=(s′−s) mod S

≡{Qs′ : st,Q0, . . . , QS−1 ← PIR.Query(n, i)}s′∈[[S]]
≡{Qs′ : st,Q0, . . . , QS−1 ← PIR.Query(n, 0)}s′∈[[S]]

where the last equation is due to the security of underlying PIR scheme PIR.
Observe that above argument also shows that the query message distributions of any two servers are

identical, moreover clearly each pair of servers share same preprocessing and response algorithms, so the
new scheme satisfies Assumption 7.1.

B.1.4 Efficiency

The new scheme can be viewed as parallel runs S independent instances of PIR, hence we have:

Lemma B.1. Suppose there exists an S-server PIR scheme (with deterministic server-side algorithm), then
there also exists an S-server PIR scheme satisfying Assumption 7.1 with S factor blowup of bandwidth,
efficiency and server storage.

Combining it with Lemma 7.2, we obtain:

Corollary B.2. Suppose there exists an S-server PIR scheme with deterministic server-side algorithm
in which achieves Cup(n) per-server upload bandwidth, Cdown(n) download bandwidth, Tanswer(n) per-
server computation, Tquery(n) Query operation complexity per query and Trecons(n) Recons operation
complexity per query, with M(n) server storage and Tpreproc(n) preprocessing time. Then for any 0 <
µ ≤ 1, there exists an S-server PIR scheme satisfying Assumption 7.1, it can achieve O((n1−µCup(n

µ) +
Cdown(n

µ))S) per-server bandwidth, O(n1−µTanswer(n
µ)S) per-server computation, O((n1−µTquery(n

µ)+
Trecons(n

µ))S) client computation per query, with O(n1−µM(nµ)S) server storage and O(n1−µTpreproc(n
µ)S)

preprocessing time.

43

B.2 Balancing Technique for an Arbitrary PIR Scheme

In last section, we describe a method that transforms arbitrary PIR scheme to a “natural” version with S
factor blowup, in the sense of making only blackbox calls it is optimal. However, we may find there still has
some asymmetry in the construction: client only uses a diagonal part of response messages to reconstruct
DB[i], since the choice of client is public and deterministic, it means that bulk of the responses are wasted.

Recall our goal is to apply balancing technique from arbitrary PIR scheme (with deterministic server-
side algorithm), we may expect a careful construction will give better asymptotic complexity. In this section,
we will describe a construction achieving constant overhead (that is, asymptotically best):

B.2.1 Construction

Parameters and notations. We will choose the following parameters.

• Let PIR = (PIR.Preprocs,PIR.Query,PIR.Answer,PIR.Recons) be a PIR scheme with deter-
ministic server-side algorithm.

• Suppose that the n-bit database is partitioned into B := n1−µ blocks each with nµ bits, we use the
notation DBj to represent the j-th block of database. Without loss of generality, we assume that B :=
n1−µ is an integer.

• We partition the S servers into ⌊S/2⌋ groups consisting of consecutive servers: all groups contains 2
consecutive servers except that the last group is constituted by the last 2 or 3 servers depending on parity
of S.

Balancing technique. We construct a new PIR scheme that makes blackbox calls to the underlying PIR.
Intuitively, this new scheme unifies ideas from Section 7 and Appendix B.1: for each small group with 2 or
3 members, client generates parallel repetition messages for each server inside this group, then it suffices to
reconstruct the desired messages (on diagonal) by applying balancing techniques to this group. Since each
group has only constant number of servers, the parallel repetition strategy will only incur a constant blowup.

• Preprocs: For each server s, it itemize each block j and each server s′ where s′ shares same group
with it, and performs D̃Bj,s′ ← PIR.Preprocs′(DBj) to obtain an encoded database of the block j and
stores it.

• Query: Let i ∈ [[n]] be the queried index, and r = ⌊i/nµ⌋ be the block where i resides.

For block j = r, client independently generates 3 queries of actual query index i. Formally, for each
k ∈ {0, 1, 2}, client generates

stkj , Q
k
j,0, Q

k
j,1, . . . , Q

k
j,S−1 ← PIR.Query(nµ, i mod nµ)

For other blocks j ̸= r and each k ∈ {0, 1, 2}, client generates a dummy query of index 0:

stkj , Q
k
j,0, Q

k
j,1, . . . , Q

k
j,S−1 ← PIR.Query(nµ, 0)

Then, the client randomly picks b0, b1, . . . , bB−1 ∈ {0, 1} and prepares the query messages:

For each server s resides in some group {2k, 2k + 1}, if s = 2k the client sets

m⃗j,s = (Q0
j,2k, Q

1
j,2k+1, bj)

44

And for the other server s = 2k + 1, the client sets

m⃗j,s =

{
(Q0

j,2k, Q
1
j,2k+1, bj) if j ̸= r

(Q1
j,2k, Q

0
j,2k+1, 1− bj) if j = r

Suppose the last group contains 3 members {n − 3, n − 2, n − 1}, the client will slightly change the
query messages: for server s = n− 3, it sets

m⃗j,s = (Q0
j,n−3, Q

1
j,n−2, Qj,n−1, bj)

And for server s = n− 2 (the case of server n− 1 is symmetric, we omit it), client will set

m⃗j,s =

{
(Q0

j,n−3, Q
1
j,n−2, Q

2
j,n−1, bj) if j ̸= r

(Q2
j,n−3, Q

0
j,n−2, Q

1
j,n−1, 1− bj) if j = r

The client then sends (m⃗0,s, . . . , m⃗B−1,s) to each server s ∈ [[S]] and stores private state st = (st0r , br).

• Answers: For simplicity, we only discuss the case s belongs to some group {2k, 2k+1} of size 2. The
s-th server parses the message received from the client as

(Q′
0,2k,s, Q

′
0,2k+1,s, b

′
0,s, . . . , Q

′
B−1,2k,s, Q

′
B−1,2k+1,s, b

′
B−1,s)

For each block j, it computes

ansj,s = (PIR.Answer2k(D̃Bj,2k, Q
′
j,2k,s),PIR.Answer2k+1(D̃Bj,2k+1, Q

′
j,2k+1,s))

Then, for every block j, depending on the control bit b′j,s, the server accumulates the response messages
for block j into one of two slots, denoted sums,0 and sums,1, respectively:

sums,0 =
B−1⊕
j=0

ansj,s(1− b′j,s)

and

sums,1 =

B−1⊕
j=0

ansj,sb
′
j,s

Finally, it sends back sums,0 and sums,1 to client.

• Recons: Parse st as (st0r , br). The client first extracts all S answers (of the underlying PIR) of query
Que0r similar to Section 7:

For group {2k, 2k + 1} of size 2, the client retrieves

ans′r,2k = (sum2k,br

⊕
sum2k+1,br)0

ans′r,2k+1 = (sum2k+1,1−br

⊕
sum2k,1−br)1

Assuming the last group has size 3, the client retrieves

ans′r,n−3 = (sumn−3,br

⊕
sumn−2,br)0

ans′r,n−2 = (sumn−2,1−br

⊕
sumn−3,1−br)1

ans′r,n−1 = (sumn−1,1−br

⊕
sumn−3,1−br)1

45

Then, it reconstructs DB[i] by applying the reconstruction algorithm of the underlying PIR:

DB[i] = PIR.Recons(st0r , ans
′
r,0, . . . , ans

′
r,S−1)

B.2.2 Proof of Correctness

The correctness proof is essentially same as Section 7.2, we omit here.

B.2.3 Proof of Security

Clearly b′j,s are always randomly distributed in {0, 1} for any choice of block r and server s. Notice that
the query messages of each block j are independently generated, and for any block j each server s never
receives query messages of same query twice, so the privacy of Q′ can be deduced from analogous analysis
as Section 7.3.

B.2.4 Efficiency

Comparing to scheme in Section 7, now each server needs to simulate all members of its group. Fortunately,
each group has only constant size, thus the total blowup is also constant.

In conclusion, we have:

Lemma B.3. Suppose there exists an S-server PIR scheme with deterministic server-side algorithm, in
which achieves Cup(n) per-server upload bandwidth, Cdown(n) download bandwidth, Tanswer(n) per-
server computation, Tquery(n) Query operation complexity per query and Trecons(n) Recons opera-
tion complexity per query, with M(n) server storage and Tpreproc(n) preprocessing time. Then for any
0 < µ ≤ 1, there exists an S-server PIR scheme achieving O(n1−µCup(n

µ)+Cdown(n
µ)) per-server band-

width, O(n1−µTanswer(n
µ)) per-server computation, O(n1−µTquery(n

µ) + Trecons(n
µ)) client computation

per query, with O(n1−µM(nµ)) server storage and O(n1−µTpreproc(n
µ)) preprocessing time.

This lemma slightly improves Corollary B.2 by an S factor in complexity. Also remind that assuming the
determinacy of server-side algorithm is withou loss of generality, therefore we fully remove Assumption 7.1
from Lemma 7.2 while remains the asymptotic result.

C The Case of Polylogarithmically Many Servers

Beimel et al. [BIM04] achieve doubly-efficient PIR for the special case of polylogarimically many servers.
In this section, we show that we can use our unified framework to match the result of Beimel et al. [BIM04]’s
Theorem 4.9 through a different way of parametrization.

C.1 Construction

Parameters and notation. For database size n, we choose the following parameters:

• Let ϵ > 0 be a constant, set m = ⌈ϵ log n/(log log n)⌉, d = ⌈n1/m⌉ ≤ ⌈log1/ϵ n⌉ such that dm ≥ n.

• Let number of servers S = S(n) be md+ 1 = O(log1+1/ϵ n/ log logn).

• We set q to be the smallest prime such that q > S, and will work on finite field Fq. By Bertrand’s
postulate, q ≤ 2S.

46

S-server PIR. Our S-server PIR works as follows. Different from all previous schemes, this scheme
doesn’t use derivatives. It can also be viewed as a special case of our generic scheme with t = 1, i.e., the
server sends derivatives up to order zero.

• Preprocs: Encode database DB to m-variate polynomial F with individual degree d = q − 1. Con-
cretely, we construct E : [[n]] → Fm

q be an injective index function, and recover F by interpolating
on the set {DB[i]}i∈[[n]] using the techniques described by Lin et al. [LMW23]. Then each server s
precomputes and stores F (x⃗) for all x⃗ ∈ Fm

q with algorithm described in Lemma 4.7.

Moreover, each server s individually picks a unique and nonzero element in Fq called λs and publishes
it (λ1, . . . , λS−1 are public for all servers and client), and computes ws = ls(0), where

ls(λ) =

S−1∏
j=0,j ̸=s

(λ− λs)(λj − λs)
−1

is the s-th Lagrange basis polynomial.

• Query: Given query index i, the client uniformly generates v⃗ ∈ Fm
q , and sets u⃗ = E(i).

For s ∈ [[S]], the client sets
z⃗s = u⃗+ λsv⃗.

The client sends Qs = z⃗s to each server s ∈ [[S]].

• Answers: The s-th server parses the message received from the client as a vector z⃗s. It then sends back

anss = F (z⃗s) · ws

to the client.

• Recons: Define univariate polynomial f(λ) = F (u⃗ + λv⃗), clearly z⃗s = u⃗ + λsv⃗ = f(λs) and
f(0) = F (u⃗) = DB[i]. Given the responses of all servers, the client computes:

f(0) =

S−1∑
s=0

f(λs)ls(0)

=

S−1∑
s=0

F (z⃗s)ws

=

S−1∑
s=0

anss

C.2 Proof of Correctness

The correctness of PIR scheme just follows from the correctness of Lagrange interpolation.

C.3 Proof of Security

The security proof is same as Section 4.2.2.

47

C.4 Efficiency

We now analyze the efficiency of our construction.

• Bandwidth: Each server receives a vector z⃗s ∈ Fm
q and sends back anss ∈ Fq, thus the total bandwidth

is O(m log q) = O(ϵ log n).

• Server computation: Since both F (z⃗s) and ws are precomputed, the server computation is bounded by
total bandwidth, that is, O(ϵ log n).

• Client computation: Bandwidth is part of computation, which is O(Sm log q), and client needs to add
up S elements in Fq (each takes time O(log q)). Therefore, the total client computation is O(Sm log q+

S log q) = O(ϵ2 log2+1/ϵ n/ log log n).

• Server space: Each server should store F (x⃗) for all x⃗ ∈ Fm
q and ws (which takes only log q bits). There

are qm elements in Fq, thus total storage is

O(qm log q)

=O(dm)m · log q
=dm ·O(m)m · log q
=n1+ϵ+O(ϵ/ log logn)

where the first equation follows from the fact q ≤ 2S = O(md).

• Preprocessing time: Since computing Lagrange polynomial only takes time O(poly(S, log q)) = O(poly log n),
the bottleneck is precomputing F (x⃗) for all x⃗ ∈ Fm

q . By Lemma 4.7, it takes time

O(qm ·m · poly log q)
=O(dm)m · poly log n
=dm ·O(m)m · poly log n
=n1+1/ϵ+O(ϵ/ log logn)

Since ϵ/ log logn goes to 0 as n goes to infinity, we have

Theorem C.1. For any ϵ > 0, there exists an O(ϵ log1+1/ϵ n/ log logn)-server PIR scheme such that, it can
achieve O(ϵ log n) per-server communication, O(ϵ log n) per-server computation and O(ϵ2 log2+1/ϵ n/ log logn)
client computation per query, with n1+ϵ+o(1) preprocessing time and server storage.

D Proof of Lemma 6.1

We now prove Lemma 6.1. By Stirling’s approximation, we have(
m

θm

)
≥ 2H(θ)m√

2πmθ(1− θ)
(1− o(1)) ≥ 2H(θ)m−0.5 log(mθ(1−θ))−O(1)(1− o(1))

Since H(θ) ≥ θ(1 − θ) for θ ∈ [0, 1], the above is lower bounded by 2H(θ)m−0.5 log(H(θm))−O(1) ≥
2H(θ)m(1−o(1)). To satisfy

(
m
θm

)
> 0, it suffices to set m = logn

H(θ)(1+o(1)) where o(1) hides O(log log n/ log n)
terms.

48

D.1 Additional Related Work

So far, we reviewed related work on information theoretic PIR in the global preprocessing model. We now
review additional related work including computationally secure schemes and PIR schemes in the client-
specific preprocessing model.

Computationally secure PIR schemes. In this paper, we focus on information-theoretic PIR. In either
the classical setting or the global preprocessing setting, to achieve information theoretic security, we need
at least two servers due to well-known lower bounds [DMO00]. It is known, however, that with suitable
computational assumptions, we can get a single-server PIR scheme with polylogarithmic bandwidth and
computation per query, assuming polynomial amount of server space [LMW23]. Further, in the classical
setting, various works showed how to construct a computationally secure single-server PIR scheme with
sublinear bandwidth [CG97, CMS99, KO97, HHCG+23, MW22]. There have also been various attempts at
implementing these schemes and making them practical [HHCG+23,MW22,ACLS18,HDCG+23,MCR21].

The client-specific preprocessing model. Although our work focuses on the global preprocessing model,
it is worth noting that a flurry of recent results have showed more efficient constructions in the client-specific
model [CK20,CHK22,ZLTS23,LP23,LP22,ZPSZ24,GZS24,KCG21,HPPY24,MIR23], including efficient
implementations [ZPSZ24, GZS24, LP23, KCG21, MIR23]. In comparison, the global preprocessing model
enjoys some advantages such as the ability to amortize the preprocessing overhead among many clients, and
better practicality for fast evolving databases.

49

	Introduction
	Our Main Results
	Additional Results and Contributions

	Technical Roadmap
	Equal Scaling in All Dimensions from Multiplicity Codes
	Minimizing Bandwidth Subject to Scalability
	Minimizing Bottleneck Cost Subject to Scalability
	Additional Results for the Poly-Space Setting
	A New Balancing Technique

	Definitions: S-Server PIR with Global Preprocessing
	Preprocessing PIR from Multiplicity Codes
	Preliminaries on Multiplicity Codes
	PIR Family from Multiplicity Codes
	Proof of Correctness
	Proof of Security
	Efficiency

	Scaling Bandwidth, Computation and Space Equally

	Multi-Server PIR Using Multiplicity Codes and Fast Polynomial Evaluation Data Structure
	Minimizing Bandwidth Subject to Scalability
	Minimizing Online Bottleneck Cost Subject to Scalability

	Multi-Server PIR for the Polynomial Space Setting
	Construction
	Proof of Correctness
	Proof of Security
	Efficiency

	Applying the Balancing Technique to Reduce Bandwidth

	A Generic Balancing Method
	Construction
	Proof of Correctness
	Proof of Security
	Efficiency

	Fast polynomial evaluation algorithm from newpp
	Removing the Natural Assumptions for Our Balancing Technique
	Compiling Any PIR to a Natural One with S Factor Blowup
	Construction
	Proof of Correctness
	Proof of Security
	Efficiency

	Balancing Technique for an Arbitrary PIR Scheme
	Construction
	Proof of Correctness
	Proof of Security
	Efficiency

	The Case of Polylogarithmically Many Servers
	Construction
	Proof of Correctness
	Proof of Security
	Efficiency

	Proof of lemm
	Additional Related Work

