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Abstract—Provable security based on a robust mathemat-
ical framework is the gold standard for security evaluation
in cryptography. Several provable secure cryptosystems have
been studied for public key cryptography. However, provably
secure symmetric-key cryptography has received little attention.
Although there are known provably secure symmetric-key cryp-
tosystems based on the hardness of factorization and discrete
logarithm problems, they are not only slower than conventional
block ciphers but can also be broken by quantum computers.

Our study aims to tackle this latter problem by proposing
a new provably secure Feistel cipher using collision resistant
hash functions based on a Short Integer Solution problem (SIS).
Even if cipher primitives are resistant to quantum algorithms,
it is crucial to determine whether the cipher is resilient to
differential cryptanalysis, a fundamental and powerful attack
against symmetric-key cryptosystems.

In this paper, we demonstrate that the proposed cipher family
is secure against differential cryptanalysis by deriving an upper
bound on the maximum differential probability. In addition, we
demonstrate the potential success of differential cryptanalysis
for short block sizes and statistically evaluate the average
resistance of cipher instances based on differential characteristic
probabilities. This method approximates the S-box output using
a folded two-dimensional normal distribution and employs a
generalized extreme value distribution. This evaluation method
is first introduced in this paper and serves as the basis for
studying the differential characteristics of lattice matrices and
the number of secure rounds. This study is foundational research
on differential cryptanalysis against block ciphers using a lattice
matrix based on SIS.

Index Terms—Feistel cipher, Short integer solution problem,
Differential cryptanalysis.

I. INTRODUCTION

ADVANCES in quantum computing technology have
raised concerns about the security of conventional cryp-

tographic systems, and research on cryptography resistant
to attacks using quantum computing, that is, post-quantum
cryptography, is actively being conducted. The increasing
significance of cryptographic systems with mathematically
provable security is a response to progress made in quantum
computing. Such security, called provable security, is an es-
sential property in the design of modern cryptography, as it
ensures that security against specific attacks can be guaranteed
through mathematical proofs. Although public key cryptog-
raphy has been studied extensively as a provable secure ci-
pher, symmetric-key cryptography has received little attention.

Yu Morishima and Masahiro Kaminaga are with Tohoku Gakuin University,
Japan. e-mail: morishima@mail.tohoku-gakuin.ac.jp

Since there are provable secure constructions of symmetric-
key cryptography that rely on the computational hardness of
problems such as RSA and discrete logarithms, these systems
suffer from slower processing speeds than conventional block
ciphers. Furthermore, they are susceptible to being broken by
quantum computers. To address the latter issue, our aim is to
explore the construction of symmetric-key cryptography with
provable security in the post-quantum era.

Cryptographic systems with provable security are based
on the computational hardness of mathematical problems.
Lattice cryptography, which relies on hard lattice problems, is
considered to be a candidate for post-quantum cryptography.
Lattice cryptography began with Ajtai’s seminal paper [1],
and the use of hard problems on lattices makes it possible
to solve hard problems in the worst case. He showed that it
is possible to construct a one-way function with average com-
putational hardness from hard problems. Micciancio extended
these results to develop a hash function that exhibits collision
resistance [2].

Learning with Errors (LWE) and Short Integer Solution
problem (SIS) are known as the main lattice problems that
form the basis of lattice cryptography. LWE and SIS have a
duality [3]. If the solution vector in the SIS is identified with
the error vector in the LWE, the two are reduced to the Closest
Vector Problems (CVP) of the same class [4]. SIS is used
for hash function construction [5] and digital signatures [6],
and LWE is used for public key and homomorphic encryption
[7] [8]. A configuration using LWE has been cited as an
example for applying the lattice problem to symmetric-key
cryptography, and many configurations using LWE have been
considered in the existing research. On the other hand, studies
on SIS have received little attention. However, SIS does not
require precise design of the error distribution in LWE and
is simple to implement, making it suitable for theoretical
analysis.

Pseudorandom functions are regarded as effective tools for
the design of symmetric-key cryptosystems. The Goldreich-
Goldwasser-Micali (GGM) method [9] and the synthesizer
technique [10] are both established methods for constructing
provably secure ciphers through pseudorandom functions. Al-
though the GGM is a theoretically useful method, its higher
circuit complexity makes it less desirable. This is because
the number of computations required for GGM increases
proportionally with the input length. This is because the GGM
has a length-doubling property. By contrast, the synthesizer
enables more efficient parallel processing. A variant of the
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synthesizer that incorporates the LWE through Learning with
Rounding (LWR) as a primitive has been proposed [11],
which, despite its benefits, faces challenges related to the
synchronous execution of parallel processes and increased
communication overhead. As an extension of this research,
a further refined version of the synthesizer has been proposed
[12], which enhances efficiency but requires substantially
larger key sizes. While these are essential theoretical results,
constructing symmetric-key cryptosystems based on SIS with-
out these trivial constructions remains an open problem.

This paper proposes a new Feistel cipher using a hash
function family based on SIS as S-boxes (lattice-based Feistel
cipher, LBF for short), and evaluates its security against
differential cryptanalysis. By evaluating the maximum differ-
ential probability of the round function, we show that the
proposed cipher provides provable security against differential
cryptanalysis. Even in instances where provable security is
established, assessing the typical security of specific instances
of LBF for practical applications remains imperative. Typical
security, which refers to the security expected on average, of
LBF instances is demonstrated through comprehensive numer-
ical simulations replicating real-world scenarios. We use an
approximate model of the S-box in our analysis and simulation
to verify the security against differential cryptanalysis from
theoretical and practical perspectives.

The remainder of this paper is organized as follows. Section
2 describes the definition of hard lattice problems, collision
resistant hash function, differential cryptanalysis for Feistel
ciphers and block ciphers, and the trinity theorem in extreme
value statistics, which are necessary to describe the results.
Section 3 describes the configuration of the LBF. In Section
4, we present the main result (Theorem 4) of this study, and
the upper bound of the output differential of the LBF family
decays exponentially with the block size under appropriate
conditions. Section 5 provides an example of applying differ-
ential cryptanalysis to LBF instances with small block sizes.
Furthermore, we perform a Monte Carlo simulation to evaluate
the average property of the LBF family against differential
cryptanalysis. In this simulation, we approximate the S-box
output difference using a folded two-dimensional normal dis-
tribution, use a generalized extreme value distribution to verify
practical security, calculate the LBF block size, and clarify the
relationship between the number of rounds.

II. PRELIMINARIES

A. Lattice Problems

A lattice is a set of all integer linear combinations of
n linearly independent column vectors b1, b2, · · · , bn. The
lattice L(B) generated by these vectors can be represented
by matrix B =

(
b1 b2 · · · bn

)
as follows:

L(B) = {Bx | x ∈ Zn}, (1)

where x denotes a column vector. In the following, vectors
are assumed to be column vectors, and Zq = Z/qZ denotes
the integers modulo q. The successive minima of the lattice
are defined as follows.

Definition 1. (Successive Minima) The successive minima
λ1, . . . , λn of the rank n lattice L are defined as follows: The
i-th minimum λi(L) is

λi(L) = inf{r | dim(span(L ∩B(r))) ≥ i}. (2)

Here, we denote the closed ball of centered at the origin and
radius r as B(r).

Lattice problems can be used in cryptography to discuss
computational hardness and security. For example, the Closest
Vector Problem (CVP), which finds a vector in L(B) closest
to a given target vector t ̸∈ L(B), and the Shortest Vector
Problem (SVP), which finds the shortest nonzero vector in
L(B). The Shortest Independent Vectors Problem (SIVP) is
another example of a lattice problem, with its computational
hardness stemming from the difficulty of identifying a set of
linearly independent vectors.

The lattice problems serve as the foundation for constructing
strong ciphers. By using the technique of reducing worst
case to average case hardness, we can build a cipher that
exhibits strong resistance to attacks on average. SIS and
LWE are exemplary problems that demonstrate such average
resilience. The following provides a formal description of
lattice problems relevant to this paper.

Definition 2. (SIS) Given a uniformly random matrix A ∈
Zn×m
q and a real number β ≥ 1, find a nonzero integer vector

x ∈ Zm such that Ax = 0 ∈ Zn
q and ∥x∥ ≤ β.

Definition 3. (SVP) Given a lattice L(A), find the shortest
nonzero vector v in L(A). The parameter γ in the “γ-
approximate SVP”(SVPγ for short) refers to the approxima-
tion factor, where the algorithm finds a vector v such that
∥v∥ ≤ γλ1, where λ1 is the norm of the shortest nonzero
vector in L(A).

γ in SVPγ is a function of rank n of the lattice matrix. γ =
√
n

is called the Minkowski’s bound, and SVP is known to have a
nonzero solution. The LLL lattice reduction algorithm [13] can
solve SVPγ where γ = 2(n−1)/4 in polynomial time. If there
is no algorithm to solve the SVP in probabilistic polynomial
time, the SIS cannot be solved in probabilistic polynomial time
either [1].

Definition 4. (GapSVPγ) Given an n-dimensional lattice basis
B and d is a rational number, determine whether λ1(L) ≤ d
or λ1(L) > γ(n)d. If neither condition is satisfied, then any
output is acceptable.

Definition 5. (SIVPγ) Given a lattice L of rank n, find n
linearly independent vectors v1, . . . ,vn such that maxi ∥vi∥ ≤
γλn(L).

B. Collision Resistant Hash Function Family

Ajtai proposed a hash function family based on a computa-
tionally hard problem on a random lattice.

Definition 6. (Ajitai’s hash function family [1]) For m >
n log2 q, Ajtai’s hash function family f is defined as

f(x) = Ax mod q, (3)
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where A ∈ Zn×m
q is uniformly selected at random and x ∈

{0, 1}m.

This function has the parameters n,m, q ∈ Z+, where
m and q are defined as functions of n. By considering the
appropriate parameters and lattice problems, we can evaluate
the computational hardness of this hash function. Ajtai demon-
strated that this function can be a one-way hash function.
These results indicate that the various computational hardness
aspects of this function can be reduced to the average compu-
tational hardness of SIS. The average case hardness in lattice
problems refers to the difficulty in solving these problems
when the input is randomly sampled. The worst case hard-
ness addresses the difficulty of solving the most challenging
instances of lattice problems. There are many results regarding
the selection of parameters and problems. The worst case
hardness can be reduced within factor O(β

√
n) to the average

hardness of the SIS with β for q ≤ βω(
√
n log n) [14], [15],

where h(n) = ω(g(n)) implies that for any constant c > 0,
h(n) will eventually exceed c · g(n) as n increases.

Micciancio demonstrated that taking advantage of the com-
putational hardness of SIS makes it possible to construct a
family of collision resistant hash functions.

Theorem 1. (Collision reistant hash function family [2])
For any sufficiently large polynomial q, if there exists no
polynomial time algorithm for solving SIVPγ with γ = O(n),
which is almost linear in the rank of the lattice, then the hash
function family defined in (3) is collision resistant.

Here, a large polynomial can be, for instance, chosen as n3

or 2n. For more detailed discussion, please refer to [16]. It is
well known that the collision resistance can also be derived
using GapSVPγ instead of SIVPγ .

The worst case computational hardness of SIVPγ with γ =
O(n) is reduced to SIS average computational hardness with
q = Ω(n2), β = O(

√
m), m ≈ n log q where h(n) = Ω(g(n))

if there are constants c > 0 and n0 such that 0 ≤ c · g(n) ≤
h(n) for all n ≥ n0. This indicates that g(n) is a lower bound
on h(n).

The fact that f(x) is a collision resistant hash function
implies that the probability p(m) for finding a pair x,x′(x ̸=
x′) such that Ax = Ax′ can be proven to be negligible
with respect to m using a probabilistic polynomial time
algorithm. In this context, negligible implies that p(m) is
satisfied p(m) ≤ 1/poly(m) for sufficiently large m and
any positive polynomial poly(·) To construct a concrete hash
function, it is necessary to specify q, m, and n, and following
reference [2], we choose q = 2n and m = 2n2 as reasonable
values.

C. Feistel Cipher

A Feistel cipher is a global structure for building block
ciphers, like DES [17]. First, the input data is divided into
halves L0 and R0, and L0 is scrambled by F which is
a nonlinear function of the input half data and round key
K1 and EXORed with R0. The ciphertext is generated by
executing the same round operation N times with round keys
K1,K2, · · · ,KN (see Fig.1).
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<latexit sha1_base64="OD7gzUejj+5Y1rs2kjFulOXW0xg=">AAACjHichVHLSsNQFJzGV62vqhvBjVgqrsqJFhRFEAVx4aI+agtaShJvNTQvkrRQiz/g0o0L3Si4ED/AD3DjD7jwE8RlBTcuPE0DokU9IffOnXvmJMOojqF7PtFzROro7OruifbG+voHBofiwyO7nl1xNZHVbMN286riCUO3RNbXfUPkHVcopmqInFpebd7nqsL1dNva8WuOKJjKoaWXdE3xmcrvq2Z946RIxXiCUhTURDuQQ5BAWBk7fo99HMCGhgpMCFjwGRtQ4PGzBxkEh7kC6sy5jPTgXuAEMdZWuEtwh8JsmddDPu2FrMXn5kwvUGv8FYNfl5UTSNIT3VKDHumOXujj11n1YEbzX2q8qy2tcIpDp2Pb7/+qTN59HH2p/lCo3P23Jx8lzAdedPbmBEzTpdaaXz0+b2wvbCXrU3RNr+zvip7pgR1a1TftZlNsXSDGAck/42gHuZmUnE7J8mY6sbwSZhXFOCYxzYHMYRnryCAbBHGGC1xKA9KstCgttVqlSKgZxbeS1j4B0CeS9A==</latexit>
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<latexit sha1_base64="fXTBgGRG6rscTK+/eA/vQpmc7/I=">AAACjHichVHLSsNQFBzjq9ZX1Y3gplgUV+VEC4oiiIK4tNXaQltKEq81mBdJWqilP+DSjQvdKLgQP8APcOMPuPATxKWCGxeepgHRop6Qe+fOPXOSYVTH0D2f6KlL6u7p7euPDEQHh4ZHRmNj43ueXXU1kdVsw3bzquIJQ7dE1td9Q+QdVyimaoicerTRus/VhOvptrXr1x1RMpWKpR/omuIzlS+qZiPTLFM5lqAkBRXvBHIIEghr247doYh92NBQhQkBCz5jAwo8fgqQQXCYK6HBnMtID+4FmoiytspdgjsUZo94rfCpELIWn1szvUCt8VcMfl1WxjFDj3RDr/RAt/RMH7/OagQzWv9S511ta4VTHj2Z3Hn/V2Xy7uPwS/WHQuXuvz35OMBS4EVnb07AtFxq7fm147PXneXMTGOWruiF/V3SE92zQ6v2pl2nReYcUQ5I/hlHJ8jNJ+VUUpbTqcTaephVBFOYxhwHsog1bGEb2SCIU5zjQhqWFqQVabXdKnWFmgl8K2nzE9z/kvo=</latexit>
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<latexit sha1_base64="bHSUEGYgLBJBnMhuKMNmstmzUM0="></latexit>

N
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<latexit sha1_base64="i5JxdAZntgi9I//XDF8dPYlNHHo="></latexit>
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<latexit sha1_base64="fpbE6YDw61lXcyMWFOmQJOvUXhs="></latexit>
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<latexit sha1_base64="ni+3lhiiwGRLD40kNk8RG2sinNg="></latexit>

KN<latexit sha1_base64="S0rdcM/4iFo1EeeZ14wgSVxqWC8="></latexit>

LN�1

<latexit sha1_base64="Z4sOv4+EZztGzwt84/brhavWS+U="></latexit>

RN�1

Fig. 1. Feistel cipher.

The F function determines the strength of the Feistel cipher.
Using the Luby-Rackoff construction with a pseudorandom
function family, a class of block ciphers that is secure against
chosen plaintext attacks and known plaintext attacks can
be constructed. It is known that a family of pseudorandom
functions can be constructed using a hash function with
one-way property [18]. One-wayness and collision resistance
are different concepts in computational complexity theory.
However, the requirements for relaxed collision resistance are
known to be harder than the one-wayness [19]. Therefore, a
secure Feistel cipher can be constructed by using a collision
resistant hash function.

D. Differential Cryptanalysis

Differential cryptanalysis is a chosen plaintext attack, a
practical attack method against block ciphers [20]. Differential
cryptanalysis uses the input plaintext pair X,X ′ and their
difference ∆X = X⊕X ′ ̸= 0. When the attacker can control
the pairs, the round key is extracted by observing the bias of
the difference ∆Y = Y ⊕ Y ′ of the output pair Y ,Y ′.

The number of plaintext and ciphertext pairs required for
a successful differential cryptanalysis attack is proportional
to the reciprocal probability of ∆Y for the input difference
∆X . Therefore, the higher the probability of ∆Y is, the
easier the attack will be successful, and the more uniformly
distributed the probability of ∆Y , the more difficult the attack
will be. In other words, the security of a block cipher against
differential cryptanalysis is evaluated by the maximum value
of the probability of ∆Y , and the plaintext input difference
∆X in N rounds. The maximum value PN of the probability
of the ciphertext output difference ∆Y is defined by

PN = max
∆X ̸=0,∆Y

P (∆Y |∆X), (4)

where P (∆Y |∆X) denotes the conditional probability of
event ∆Y occurring for a given ∆X . (4) is called the
maximum differential probability.
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E. Extreme value distributions

Extreme value distributions describe the limiting distribu-
tions for the minimum or maximum independent random
variables from the same distribution. X1, . . . , Xn, . . . be a
sequence of independent and identically distributed random
variables with a cumulative distribution function F (x) and
let Mn = max{X1, . . . , Xn} denote the maximum. The
distribution of the maximum is given by P (Mn ≤ x) =
P (X1 ≤ x) · · ·P (Xn ≤ x) = F (x)n. We do not see the
distribution of Mn for an unknown F , but as n → ∞, we
can find its limit distribution. The limit cumulative distribution
function G(x) of the extreme distribution is described by the
generalized extreme value (GEV) distribution [21]:

G(x) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]− 1
ξ

}
, (5)

defined on {x : 1+ξ(x−µ)/σ > 0}, where µ ∈ R, σ > 0 and
ξ ∈ R. This distribution has three parameters: µ represents
location, σ scale, and ξ shape. Among these, depending on
the value of shape parameter ξ, it can be divided into the
three distributions corresponding to Gumbel (Type I) at ξ = 0,
Fréchet (Type II) at ξ > 0, and Weibull (Type III) at ξ < 0. An
asymptotic result is obtained by following the extreme value
trinity theorem.

Theorem 2. (The extreme value trinity theorem) There exist
sequences of constants an > 0 and bn ∈ R such that for
M∗

n = (Mn − bn)/an, P (M∗
n ≤ x) → G(x) as n → ∞.

We will represent the distribution of the maximum differential
probability of the output of S-boxes in GEV.

III. LATTICE BASED FEISTEL CIPHER

A method using GGM [9] or a synthesizer [10] is known
to construct a function family with pseudorandomness from
a family of hash functions with one-wayness. However, these
methods require processing delays due to circuit depth and
repetitive processing in implementation; therefore, another
approach is desirable. In this study, we propose a strategy
based on Feistel construction. Since the Feistel cipher can
always decrypt any F function, it is possible to construct a
block cipher using a family of hash functions that is as good
as the F function. This study presents the construction of
a lattice-based Feistel cipher (LBF) using a family of hash
functions as the F function. Fig. 2 shows the structure of
the LBF round function. After m-bits input, the plaintext X
is divided into m/2-bits L0 and R0 and input to the first-
round function. This process repeats N rounds to generate the
ciphertext Y .

The F function in the round function consists of an ex-
pansion permutation E, EXOR with the round key Ki, and
the S-box. The extended permutation E concatenates the bit
strings represented by ||, which corresponds to the expansion
permutation in DES [20]. Here, E has a simple structure, and
while it may appear overly simplistic compared to DES, there
is no need to complicate E because A is random in LBF.

<latexit sha1_base64="L+plksWN7sY1TY8dupTPOoY1VNk="></latexit>
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<latexit sha1_base64="4+mPIQoDUGe0v5g5dJ+n8tct8IE="></latexit>
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<latexit sha1_base64="DF+wr7Ew8VN55RV3n1enUDm/tpU=">AAACjnichVG7SgNBFD2u7/hI1EawCYaIVZgVRRFE0Uaw0cSYYJSwu050yL7Y3QTikh+wFixEQcFC/AA/wMYfsMgniGUEGwtvNguiot5hZs6cuefOHK5q68L1GGt0SJ1d3T29ff2RgcGh4WhsZHTHtSqOxrOapVtOXlVcrguTZz3h6TxvO1wxVJ3n1PJa6z5X5Y4rLHPbq9l831AOTVESmuIRtbunGv5GveiLejGWYCkWRPwnkEOQQBibVuweeziABQ0VGOAw4RHWocClUYAMBpu4ffjEOYREcM9RR4S0FcrilKEQW6b1kE6FkDXp3KrpBmqNXtFpOqSMI8me2C1rskd2x57Z+6+1/KBG6y812tW2ltvF6Ml45u1flUG7h6NP1R8KlbL/9uShhIXAiyBvdsC0XGrt+tXjs2ZmMZ30p9g1eyF/V6zBHsihWX3VbrZ4+hwRapD8vR0/QW4mJc+mZHlrNrGyGvaqDxOYxDQ1ZB4rWMcmsvSwiVNc4FKKSnPSkrTcTpU6Qs0YvoS0/gGpmpQ4</latexit>
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Ri�1
<latexit sha1_base64="Jz2py0FHj5B3lFxCPxV8KqX4Lts="></latexit>
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<latexit sha1_base64="/DHYXs3+tyOFHvhUGVSyAhZ2jv0=">AAACmXichVG7SgNBFD1Z3/GRqI1oEwwRqzArAcUqahOsYmKMYELYXSe6ZF/uboJxyQ/4AxYWoiAofoAfYOMPWOQTxDKCjYU3mwVRUe8wM2fO3HNnDle2NNVxGWuHhL7+gcGh4ZHw6Nj4RCQ6ObXjmHVb4QXF1Ex7V5YcrqkGL7iqq/Fdy+aSLmu8KNc2uvfFBrcd1TS23abFy7p0YKhVVZFcoirRaa8kV2NrrZKse8etkm7ux44q0ThLMj9iP4EYgDiCyJrRe5SwDxMK6tDBYcAlrEGCQ2MPIhgs4srwiLMJqf49Rwth0tYpi1OGRGyN1gM67QWsQeduTcdXK/SKRtMmZQwJ9sRuWYc9sjv2zN5/reX5Nbp/adIu97TcqkROZ/Jv/6p02l0cfqr+UMiU/bcnF1Ws+F5U8mb5TNel0qvfODnr5FdzCW+BXbEX8nfJ2uyBHBqNV+V6i+fOEaYGid/b8RMUl5JiKimKW6l4ej3o1TDmMI9Fasgy0sggiwI93MQFbnArzAppISNs9lKFUKCZxpcQ8h9K1Jfa</latexit>
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Fig. 2. Round function of LBF.
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ỹ1
...
ỹn
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ỹ

<latexit sha1_base64="sjVqjRpq9iG43n9wXWj1pR9rxKk="></latexit>

Zn⇥m
q ⇥ {0, 1}m ! Zn

q

S-box

<latexit sha1_base64="gExMbdlyWSyfpQ3J90xF3yrTaEo=">AAACinichVG7SgNBFD2ur5j4iNoINmJQrMKsBHw1ohaWaswDkhB210lcsy92N8G4+ANWdqJWChbiB/gBNv6ART5BLCPYWHizWRANxjvMzJkz99yZw5UtTXVcxho9Qm9f/8BgaCgcGR4ZHYuOT6Qds2orPKWYmmlnZcnhmmrwlKu6Gs9aNpd0WeMZubLZus/UuO2oprHv1i1e0KWyoZZURXKJSudl3Ts+LUZjLM78mOkEYgBiCGLHjD4ijwOYUFCFDg4DLmENEhwaOYhgsIgrwCPOJqT69xynCJO2SlmcMiRiK7SW6ZQLWIPOrZqOr1boFY2mTcoZzLEXds+a7Jk9sFf2+Wctz6/R+kuddrmt5VZx7Gwq+fGvSqfdxeG3qotCpuzunlyUsOx7Ucmb5TMtl0q7fu3koplc3Zvz5tkteyN/N6zBnsihUXtX7nb53jXC1CDxdzs6QWYxLibioribiK1vBL0KYRqzWKCGLGEd29hBih4+wjkucSVEBFFYEdbaqUJPoJnEjxC2vgCtLJJ9</latexit>x

<latexit sha1_base64="h0TnUfC6tA4RkVN/LjW0Spqc/hk="></latexit>

Zn
q ! {0, 1}m

2

<latexit sha1_base64="fK7MozcG9mW6Em88RN1F0NfCns0="></latexit>0

BBBBBBBB@

y1
...

y m
2n

...

ym
2

1

CCCCCCCCA

Binary
Encoding

<latexit sha1_base64="KyFsBObFCwSkypL/ZyGmev59LgA="></latexit>0

B@
x1
...

xm

1

CA

<latexit sha1_base64="M2JYsTnvPNdaBhlg0kShX46LbB0="></latexit>0

B@
a11 · · · a1m

. . .
an1 · · · anm

1

CA

0

B@
x1
...

xm

1

CA

<latexit sha1_base64="BlDpiVhRQ8rFpVJp7ZaV6lXEzUM="></latexit>

modq

Fig. 3. S-box and binary encoding of LBF.

The hash function family f(x) composed of (3), is used
for the S-box (Fig. 3). For the input x ∈ {0, 1}m to the S-
box, the output ỹ ∈ Zn

q of f(x), and by encoding ỹi ∈ Zq

of ỹ into a binary expression for each of i = 1, 2, . . . , n and
concatenating it, the S-box output y ∈ {0, 1}m

2 is obtained.
The selection of round keys is arbitrary, as long as the period
is long enough to assume that they are uniformly distributed.

While pseudorandom functions can be constructed from
one-way functions, collision resistant functions are employed
in the LBF. This is due to the fact that even one-way functions
might lead to the leakage of round key information if a
collision occurs. Consider when a pair of inputs to an S-box,
x and x′ (where x ̸= x′), results in Ax = Ax′. Let the input
to the round function be L = Lj ||Lj and let the input pair of
L be L′. In this case, for the i-th bit of the vectors z and w,
the EXOR operation satisfies zi ⊕wi = zi +wi − ziwi. Here,
we obtain the followings for the input pair x and x′,

x = K ⊕L (6)
x′ = K ⊕L′ (7)

A(x− x′) = 0. (8)

Thus, for the i-th bit of x− x′, we derive

xi − x′
i = ki ⊕ Li − ki ⊕ L′

i (9)
= (Li − L′

i)(1− ki) = 0. (10)

If Li −L′
i ̸= 0, we can determine ki = 1. Therefore, a secure

Feistel cipher can be constructed by using a collision resistant
hash function.

When the hash function family used in the S-box is collision
resistant, the probability of finding a pair of inputs such
that Ax = Ax′ is negligible. With the LBF constructed
in this manner, the hash function that is difficult to inverse
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is used as a large S-box, which makes it difficult to apply
differential cryptanalysis. Moreover, this design allows flexible
construction of ciphers with different block sizes in a single
structure.

IV. DIFFERENTIAL CRYPTANALYSIS OF LBF

In this section, we evaluate the security of LBF against
differential cryptanalysis. In block ciphers with a Feistel
structure, the maximum differential probability indicates the
security of the entire system, even if the number of rounds is
two or more. We can find the maximum differential probability
by brute-force search if the number of rounds or block size
is small. However, an brute-force search is unrealistic due
to the large block size and many rounds used in practical
systems, thus we require an theoretical study of the maximum
differential probability; the following Theorem 3 shown in
[22] is the basis for the theoretical estimation of differential
probabilities.

Theorem 3. In Feistel cipher, when the round keys are
uniformly and independently selected, an upper bound of the
maximum differential probability PN when N ≥ 4 is given
by the following using the maximum differential probability
Pmax of one round:

PN ≤ 2P 2
max. (11)

(11) means that the security against differential cryptanalysis
can be evaluated using the maximum differential probability
of the round function.

Below, we evaluate the maximum differential probability
Pmax of the round function of the LBF. Regarding the input
X ∈ {0, 1}m and output Y ∈ {0, 1}m of a round function,
if X = XL||XR and Y = YL||YR are blocks divided into
m/2-bits, the following holds between the input difference
∆X and the output difference ∆Y of the round function:

∆Y = ∆YL||∆YR

= ∆y ⊕∆XR||∆XL, (12)

where ∆y ∈ {0, 1}m
2 is the output difference of the S-

box (see Fig.3). Since ∆YR = ∆XL and the attacker can
control the input difference, maximizing the probability of
∆YL maximizes the probability of ∆Y . Note that since the
maximum probability of ∆YL is independent of ∆XR, the
maximum probability of ∆YL is determined by ∆y. If the
round key Ki ∈ {0, 1}m can be regarded as a uniform random,
the S-box input x can also be regarded as a uniform one.
Therefore, the maximum probability of ∆YL is determined by
the input difference ∆x of the S-box and output difference ∆y
of the S-box. Furthermore, if the binary encoding of the S-box
output ỹ is a bijection, that is, the parameter is chosen such
that m = 2n log2 q holds, then y and ỹ correspond one-to-
one. In this case, Pmax can be represented using the maximum
differential probability of the S-box as follows:

Pmax = max
∆x̸=0,∆y

P (∆y|∆x,A), (13)

where P (∆y|∆x,A) denotes the conditional probability of
event ∆y occurring for given ∆x and A.

In the following, the maximum differential probability of
the S-box output of the LBF is theoretically derived. It is
well known that the sum of uniformly distributed variables
tends to a normal distribution. However, an exact distribution
of the sum of discrete uniform distributions, when folded
by modulo-q, cannot be directly derived. First, we present
the following lemma for the uniform random variable used
to construct the hash function to derive the S-box output
difference distribution.

Lemma 1. Let ai for i = 1, 2, . . . , n be independent and
identically distributed random variables that obey a discrete
uniform distribution over Zq . Then, the value of sq , as defined
by the following, obeys a discrete uniform distribution over
Zn
q .

sq =

n∑
i=1

ai mod q. (14)

Proof. Consider n-tuple a = (a1, a2, · · · , an) of independent
uniform random variables al ∈ Zq(l = 1, 2, · · · , n). Since a
is uniformly distributed over Zq , to find P (sq = k), it is
sufficient to find the number of a such that

s :=

n∑
l=1

al = k + iq, (15)

where i = 0, 1, · · · , ⌊n(q−1)−k
i ⌋. Therefore we have

n−1∑
l=1

al = k + iq − an. (16)

The left-hand side of (16) takes the value of {0, 1, · · · , (n −
1)(q − 1)}, and the value of an is uniquely determined for
(n− 1)-tuple (a1, a2, · · · , an−1), which (16) holds.

Subsequently, a for which (16) holds exists as qn−1 for
given k, q, so that P (sq = k) = qn−1

qn = 1
q .

Lemma 1 leads to the following theorem regarding the
distribution of the S-box output pairs.

Theorem 4. For a given ∆x ∈ {0, 1}m, let the input pairs
be x, x′ ∈ {0, 1}m, and let the output pairs of the S-box be,
y, y′ ∈ {0, 1}m

2 . If A obeys a discrete uniform distribution
over Zn×m

q and m is equal to n log2 q, then the probability
that the output pair y, y′ is obtained from a given ∆x obeys
a uniform distribution over {0, 1}m

2 × {0, 1}m
2 .

Proof. For a given input pair (x,x′) ∈ {0, 1}m × {0, 1}m,
let ∆x = x ⊕ x′ ∈ {0, 1}m. Letting the i-th row of the row
vector a1,a2, · · · ,an of A be ai =

(
ai1 ai2 · · · aim

)
,

the output pair (ỹi, ỹ
′
i) ∈ Zq × Zq of f(x) corresponding to

ai can be represented as follows:

ỹi = aix mod q (17)
ỹ′i = ai(x⊕∆x) mod q. (18)

Here, the k-th bit of ∆x is represented as ∆xk and the set of
indices where the bit is 0 or 1 is defined as follows:

∆I0 = {k | ∆xk = 0 (k = 1, 2, · · · ,m)} (19)
∆I1 = {k | ∆xk = 1 (k = 1, 2, · · · ,m)}. (20)
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Using the set of indices ∆I0, ∆I1 and the k-th bit xk of x,
ỹi and ỹ′i can be represented as follows:

ỹi =
∑

k∈∆I0

aikxk +
∑

k∈∆I1

aikxk mod q (21)

ỹ′i =
∑

k∈∆I0

aikxk +
∑

k∈∆I1

aik(xk ⊕ 1) mod q. (22)

Since the elements of ai are random variables that obey the
uniform distribution over Zq , the first terms of (21) and (22)
can be represented as random variables u that obey a discrete
uniform distribution over Zq from Lemma 1. Also, the second
term in (21) is the sum of aik for k such that xk = 1, and the
second term of (22) is the sum of aik for k such that xk = 0,
and since aik in (1) and (2) do not overlap, their sums are
mutually independent.

From Lemma 1, each sum is an independent random vari-
able v, w that obey uniform distribution over Zq . ỹi, ỹ′i can be
represented in the following form using independent random
variables u, v, and w that obey discrete uniform distribution
over Zq as follows:

ỹi = u+ v mod q (23)
ỹ′i = u+ w mod q. (24)

Since v, w, and u are independent, ỹi, ỹ′i are independent and
uniformly distributed random variables over Zq .

As each row of the matrix A is independent, each row of the
outputs ỹ and ỹ′ of the S-box are also independent. Therefore,
the random variables (ỹ, ỹ′) obey uniform distribution over
Zn
q × Zn

q . Considering that the binary encoding Zn
q × Zn

q →
{0, 1}m

2 × {0, 1}m
2 is a bijection for m = n log2 q, the S-

box output pair (ỹ, ỹ′) is also a random variable that obeys a
uniform distribution over {0, 1}m

2 × {0, 1}m
2 .

Therefore, if the binary encoding of the LBF is a bijection,
the difference of output ∆y = y ⊕ y′ obeys the uniform
distribution over {0, 1}m

2 , then Pmax = 1/2
m
2 .

This result and Theorem 5 lead to the estimate of N round
maximum differential probability PN given by

PN ≤ 2P 2
max =

1

2m−1
. (25)

This result shows that since the lower bound of the maximum
differential probability is 1/2m, PN is at most twice the lower
bound.

V. STATISTICAL ANALYSIS OF DIFFERENTIAL
CRYPTANALYSIS ON LBF INSTANCES

In the evaluation of cryptography, it is important to analyze
a family of functions, but it is also necessary to examine
specific instances for practical applications. In this study, we
evaluate the typical security of LBF instances against differen-
tial cryptanalysis, where typical security refers to the security
expected on average when focusing on individual instances in
the family. We examine the specific instances and analyze the
average properties within the LBF family. In addition, we use
extreme value theory by GEV for the approximate model of
the S-box to theoretically estimate the maximum differential
characteristic probability and the practically secure number of
rounds.

A. Differential cryptanalysis works well against LBF with
small block sizes

The LBF family uses secure primitives with a collision
resistance. However, even secure primitives in block ciphers
can be vulnerable to differential cryptanalysis. Therefore, it is
essential to evaluate their security. We conducted simulations
to examine whether LBF is vulnerable to attacks by differential
cryptanalysis, focusing on cases with short block sizes. First,
to eliminate the uncertainty caused by the random selection
and examine the characteristics, we perform a computer sim-
ulation of differential cryptanalysis for the block size for
which the candidate keys can be brute-force searched. When
differential cryptanalysis is attempted on a Feistel cipher, the
input difference ∆X of the plaintexts is controlled, and the
round key is estimated based on the output difference ∆Y
of the ciphertexts. For example, if the number of rounds is
N = 1, the key can be obtained by the following procedure
[23].

1) For the selected ∆X , select a pair of plaintext input
pairs X,X ′ = X ⊕∆X and find ∆Y .

2) Select a pair of input pairs x,x′ to the S-box such
that input difference of the the plaintext is ∆X , and
determine ∆Y .

3) For the pairs X,X ′,∆Y obtained in 1) and the pairs
x,x′,∆Y obtained in 2), where ∆Y is identical, the
candidate key K̂1 is derived from the relations x =
L0 ∥ L0⊕K1 and X = L0 ∥ R0, and add it to the list
of candidate keys.

The above procedure is repeated for multiple ∆X to narrow
down the keys. If the candidate keys can be searched for
every Xand x, the candidate keys can be narrowed down by
taking the intersection of the candidate keys for each ∆X . If
the number of rounds is N = 3, the candidate keys can be
estimated using the same procedure by modifying the relation
between the input and output differences to be used. If the
input block size m is large, searching for all the candidates
becomes difficult. Therefore, modifying the candidate keys to
estimate them from several randomly selected input pairs is
necessary.

In the simulation, one instance on Zn×m
q that is a full rank

matrix is chosen at random as A of the S-box, and a round key
is searched for an instance of LBF for the selected A according
to the differential cryptanalysis procedure described above. For
the LBF with parameters (n,m, q) = (2, 8, 4) and (4, 32, 16),
we searched for candidate keys by differential cryptanalysis
and found that the correct round key can be identified in a
few hours in both cases where the number of rounds N = 1
and 3.

Table I shows the results of how the number of key
candidates decreases for each instance of randomly generated
A with m = 32 and N = 3 as the number of input differences
increases from 1 to 3. The table shows the minimum, max-
imum, mean, and median number of key candidates for 100
instances. With only one difference, approximately one million
possible keys can be found. However, with two differences,
the number of possible keys decreases significantly to around
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TABLE I
STATISTICAL RESULTS OF THE NUMBER OF KEY CANDIDATES PER

NUMBER OF DIFFERENCE USED.

# of difference Minimum Maximum Mean Median
1 587880 8388608 1203716.30 1051008
2 126 4132 397.61 274
3 1 5 1.33 1

TABLE II
LINEAR REGRESSION PARAMETERS FOR y = c+ dx REGARDING THE

REDUCTION IN KEY CANDIDATES FOR THE NUMBER OF INPUT
DIFFERENCES.

Coefficient Estimate Std. Error t-value Pr(> |t|)
c 29.35747 0.16927 173.4 < 2e-16
d -9.89946 0.07836 -126.3 < 2e-16

a few hundred. With three differences, most instances are able
to identify the correct key.

The results are shown in Table II, where we performed
a linear regression y = c + dx on the base-2 logarithm
of the number of key candidates in the simulation. In the
estimation, the R2 value is 0.9817, indicating a good fit of the
regression equation to the results. With each additional dif-
ference, the number of candidates decreases to approximately
1/2d ≈ 1/1000, corresponding to 9.9-bits.

These results show that when the block size m and the
number of rounds N are small, the round key of the LBF can
be identified using only a few input and output difference pairs
by using differential analysis. As observed here, differential
cryptanalysis is practical when the block size and number of
rounds are small. Therefore, it is necessary to determine block
sizes and the number of rounds that differential cryptanalysis
cannot solve.

B. Number of secure rounds

It is crucial to select a sufficiently large block size and
number of rounds when designing block ciphers to ensure
the required level of security. In this study, we analyze
differential characteristics for randomly selected instances of
A and statistically evaluate the number of secure rounds.

In general, Feistel ciphers attack by differential cryptanaly-
sis becomes more difficult as the number of rounds increases.
However, the processing time increases proportionately to the
number of rounds, so studying the trade-off between security
and the number of rounds is necessary. It is known that
efficient differential cryptanalysis against Feistel ciphers with
several small S-boxes and many rounds by tracking active
S-boxes. However, this attack cannot apply directly to LBF
because it has a single S-box.

Another approach to the security evaluation of block ciphers
with many rounds is differential characteristic probability,
which estimates the differential probability of N rounds using
the product of the differential probabilities for each round [20].

Definition 7. Suppose the input difference to the round
function in the j-th round is ∆Xj−1, the output difference is
∆Xj , and the conditional probability of the output difference
for a given the input difference is P (∆Xj |∆Xj−1). Then,
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Fig. 4. Number of rounds to achieve Pc,N ≤ 2−m.

the differential characteristic probability Pc,N for N rounds is
defined by

Pc,N =

N∏
j=1

P (∆Xj |∆Xj−1), (26)

where ∆X0 = ∆X ̸= 0.

For each round, the combination of realized values of the
input difference ∆Xj−1 is called a path, and the differential
characteristic probability is obtained by searching for the path
that maximizes Pc,N .

When the differential characteristic probability satisfies
Pc,N ≤ 2−m, the cipher is considered to be “practically
secure” against differential cryptanalysis [24]. The small-
est such N is the number of rounds the cipher is secure
against differential cryptanalysis. For block ciphers satisfying
Pc,N ≤ 2−m, an attacker needs plaintext greater than or equal
to all possible plaintext patterns to decrypt the cipher with
differential cryptanalysis. The practically secure lower bound
of N(A) = min{N | Pc,N ≤ 2−m} is determined only by A.
We find the distribution of N(A) by computing the differential
characteristic probability for uniformly random A. For an LBF
with the parameter (n,m, q) = (2, 8, 4) and fixed round keys,
we generate 1000 instances of A of full rank and determine
N(A).

Fig. 4 depicts the distribution of N(A) obtained by the
Monte Carlo simulation. The minimum value of N(A) is 8,
the maximum value is 46, and the average is 17.08. The results
confirm that the number of secure rounds varies, corresponding
to each instance.

In this simulation, it was confirmed that there exists a bad
instance where the output difference is the same for any round
key Kj and input difference ∆Xj−1. In fact, for example,(

2 1 2 0 1 3 0 2
0 2 1 1 2 3 3 3

)
is a bad instance in which the output difference is fixed. In
this case, with ∆Xj−1 represented as the binary sequence
11000100 and Kj as 11110000, ∆Xj is always 10111100.
In the simulation, such bad instances are excluded from
generating instances for LBF.

In the following, we determine the probability that such a
bad instance occurs. Since the rows of A are independent,
the characteristics of a bad instance can be considered sepa-
rately for each row of A. Let ∆ỹi be the output difference
after binary encoding for the pair ỹi, ỹ

′
i of the S-box output

corresponding to i-th row ai of A. A is a bad instance if
∆ỹ1,∆ỹ2, · · ·∆ỹn are all fixed together.
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The probability PA that A becomes a bad instance can
be expressed as PA = Pn

ai
using the probability Pai that ai

becomes a bad instance. The necessary and sufficient condition
for ai to be a bad instance is to satisfy all of the following
(P1), (P2), and (P3).

• (P1) Given a input difference ∆Xj−1 and the round key
Kj , the output difference ∆ỹi is uniquely determined for
all combinations of round input pairs X and X ′

• (P2) (P1) holds for any input differences ∆Xj−1

• (P3) (P1) holds for any round keys Kj .
Let AP1∩P2∩P3 be the set of ai satisfying all these condi-

tions and A be the set of all instances A. Then Pai is given
by the proportion of bad instances in the whole instance, i.e.,

Pai
=

|AP1∩P2∩P3|
|A|

, (27)

where |S| is the cardinality of set S.
Counting the elements of AP1∩P2∩P3 directly is difficult

because the number of elements increases exponentially for
n. Then, we determine the upper bound of Pai

. To obtain
this estimate, consider the set AP1′∩P2′∩P3′ , which satisfies
all the conditions (P1’), (P2’), and (P3’) obtained by relaxing
the conditions of (P1), (P2), and (P3).

• (P1’) Given a input difference ∆Xj−1 and the round key
Kj , the output difference ∆ỹi is uniquely determined
for all Nx ∈ {1, 2, · · · , 2m} combinations of round input
pairs X and X ′.

• (P2’) (P1’) holds for all Nd ∈ {1, 2, · · · , 2m} input
differences ∆Xj−1.

• (P3’) (P1’) holds for all Nk ∈ {1, 2, · · · , 2m} round keys
Kj .

Namely, (P1), (P2), and (P3) are conditions that the out-
put differences are uniquely determined for every input pair
X,X ′, every input differences ∆Xj−1, and all round keys
Kj . On the other hand, (P1’), (P2’), and (P3’) are relaxed con-
ditions such that the output difference is uniquely determined
for Nx input pairs X,X ′, Nd input differences ∆Xj−1, and
Nk round keys Kj . Then, since AP1∩P2∩P3 ⊆ AP1′∩P2′∩P3′

we have

Pai =
|AP1∩P2∩P3|

|A|
≤ |AP1′∩P2′∩P3′ |

|A|
. (28)

The right-hand side of (28) approaches Pai as Nx, Nd, and
Nk are larger. However, it becomes difficult to search for
candidates of bad instances when the block size m is too large.

Here, we evaluate the upper bound for the simplest case of
Nd = 1. The input difference ∆Xj−1 can be chosen arbitrarily
on conditions (P1’), (P2’), (P3’). We select an input difference
where only the first l-bits are set to 1. In this way, it is possible
to reduce the number of candidates of input pairs X , X ′,
round keys Kj , and ai to be verified.

Under these conditions, it is sufficient to explore inputs
X where the first l-bits are bk ∈ {0, 1}(k = 1, 2, · · · , l)
and the remaining bits are 0. For (P1’), there are Nx = 2l

possible input pairs to verify whether they produce a unique
output difference. Since the input difference is fixed to a single
setting, Nd is 1 in (P2’). Likewise, for (P3’), it is sufficient to

TABLE III
EVALUATION OF PA .

n Block size m Pn
ai

( l = 2 )
2 8 5.62500×10−01

3 18 7.50847×10−02

4 32 2.50116×10−03

5 50 2.09182×10−05

6 72 4.56045×10−08

7 98 2.66528×10−11

consider Nk = 22l key candidates corresponding to the first
l-bits expanded through the permutation E.

The bad instance is not determined by the elements
aim

2 −laim
2 −l+1 · · · aim

2
, aim−laim−l+1 · · · aimof ai, which

are multiplied with input bits that are fixed to 0. As a
result, if the candidates of ai are determined to be bad using
this method, subsequent 2m−2l instances following the first
l elements are treated as bad instances. Note that the larger
the value of l, the greater the number of combinations that
need to be explored, which also makes the calculation more
difficult. For the case where l = 1, the output pair is fixed to be
either {(0, ai1 + aim

2 +1),(ai1 + aim
2 +1, 0)} or {(ai1, aim

2 +1),
(aim

2 +1, ai1)} depending on the key. This configuration yields
a Pai

= 1. Therefore, we evaluate Pai
for l = 2, which

is computationally feasible, and evaluate PA using the upper
bound PA ≤ Pn

ai
.

Table III shows the results obtained by the upper bound
of PA from (28) through a brute-force search, which shows
that when A is chosen uniformly at random, the probability
that it becomes a bad instance decays exponentially with
increasing block size. For further verification, we performed
Monte Carlo simulations to determine whether a uniformly
randomly selected A is a bad instance. However, we could
not find a bad instance among 100 million instances of A for
n = 3. For n ≥ 4, the total set of A is too large, which makes
Monte Carlo simulations difficult. Since the upper bound in
(28) is a loose estimate, the probability that a bad instance
occurs is expected to be much smaller than this upper bound
for an increase in n.

C. Average properties on S-box Output Differential

Based on the previous discussion, this section studies the
average characteristics of LBF instances. In an ideal S-box,
the distribution of the output pairs obeys a uniform distri-
bution. An ideal maximum difference characteristic is that the
maximum output difference is small, and the probability of the
output difference asymptotically obeys a uniform distribution.

It is difficult to demonstrate directly that the distribution of
the maximum differential probability of the LBF approaches
a uniform distribution. By using a method based on the
generalized extreme value distribution, we propose that the
distribution of maximum differential probability of the LBF
asymptotically approaches that of an ideal distribution.

We approximate the distribution of the output pairs of the
LBF S-box by a folded two-dimensional normal distribution
and show that the average output characteristics of the LBF
approach the ideal uniform distribution using a generalized
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Fig. 5. Emprical distribution of (ŷi, ŷ′i).

extreme value distribution. When selecting an instance of A,
each row ai ∈ Zm

q (i = 1, 2, · · · , n) is independent, so the
distribution of S-box output differences is a joint distribution
of the distributions for each row.

First, for the S-box input pair x, x′ and Jm,q =
{0, 1, · · · ,m(q − 1)}, define the S-box output pair (ŷi, ŷi′) ∈
Jm,q × Jm,q as follows:

ŷi = aix, (29)
ŷ′i = aix

′. (30)

Fig. 5 shows the empirical distribution of output pairs
(ŷi, ŷ

′
i) for randomly generated instances of ai by the Monte

Carlo simulation. Note that the empirical distribution depends
on the input difference, but since the components of ai are
selected independently, we only need to consider the Hamming
weight hw of the input difference to obtain the empirical
distribution. In the Fig. 5, the top, middle, and bottom rows
correspond to n = 2, 4, and 8, respectively. From left to right
across the columns, the figures correspond to the Hamming
weights hw = 1, m/2, and m (where m is the block size).

For the cases where n = 2, 4, and 8, the empirical
distribution was obtained for 100000 instances under each
condition, and the frequency was averaged for each instance.
In this simulation, the empirical distribution of input x was
created using all inputs for n = 2. In the case n = 4 and 8,
the empirical distribution was obtained using 1000000 inputs
selected uniformly at random with a fixed input difference ∆x
and a pair of inputs x′ = x⊕∆x.

Since components of ai are independent and obey a discrete
uniform distribution, the output, which is the sum of them, is
close to a normal distribution. It can be seen that as n increases
from 2 to 8, the distribution is close to the two-dimensional
normal distribution, especially when hw = m/2. Moreover, as

the parameter n increases, the number of random variables that
obey the uniform distribution increases, so we expect that the
distribution is approximately close to the normal distribution.

As n increases, the range of values for (ŷi, ŷi′) grows expo-
nentially, but the concentration ellipse becomes smaller, and
regions far from the ellipse become rare events. Consequently,
the data becomes zero-inflated categorical data. Such data
can destabilize the χ2 value in chi-square tests, making the
uniformity test difficult [25]. Therefore, in the following, the
joint distribution of the output pairs (ŷi, ŷ

′
i) is approximated

by a two-dimensional normal distribution. This method is
a standard approach for representing bivariate distributions
with correlations. By using a folded two-dimensional normal
distribution by modulo-q and the GEV, we demonstrate that the
maximum differential probability asymptotically approaches
that of an ideal S-box.

First, the distribution of the vector ŷ = (ŷi, ŷ
′
i) representing

the output pair is modeled as a two-dimensional normal
distribution as follows:

p(ŷ) =
1

√
2π

2√|Σ|
exp

(
−1

2
(ŷ − µ)⊤Σ−1(ŷ − µ)

)
(31)

µ =
(
µ, µ

)
(32)

Σ =

(
σ2 σ2 −∆

σ2 −∆ σ2

)
(33)

µ =
m

4
(q − 1) (34)

σ2 =
m(q − 1)

4

(
2q − 1

3
+

m2(q − 1)(m− 1)

16

)
(35)

∆ =
1

12
(2q − 1)(q − 1)hw(∆x), (36)
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where µ is the mean vector, Σ is the covariance matrix, and
hw(∆x) is the Hamming weight of the input difference (see
Appendix).

Next, we obtain the distribution folded by modulo-q, which
models the distribution of S-box output pairs. By evaluating
the maximum probability of this distribution, that is, the fre-
quency of the mode, we can estimate the bias in the differential
probability. When a one-dimensional normal distribution is
folded by modulo-q, it asymptotically becomes a uniform
distribution with a sufficiently small partition width [26]. On
the other hand, this result can be applied to a multidimen-
sional normal distribution if each dimension is independent.
However, it is not easy to extend this result directly because
the variables in our approximate model are correlated.

In the following, we use Monte Carlo simulation to obtain
the empirical distribution of the random variables (ỹi, ỹ

′
i),

which are the output pairs (ŷi, ŷ
′
i) folded by modulo-q. Ob-

serving the frequency of the mode of this empirical distri-
bution, we determine the empirical frequency distribution of
mode. By fitting the GEV to the empirical frequency distri-
bution of the mode, we can estimate the maximum density of
the S-box output pair.

Ns random output pairs that obey (31) are generated in
the simulation. These random variable values are folded by
modulo-q to obtain the empirical distribution of (ỹi, ỹ

′
i), and

its frequency of the mode. This process is repeated Nm times
to obtain the empirical frequency distribution. The parameters
of the GEV were obtained by maximum likelihood estima-
tion. We employed the ismev package of R to estimate the
parameters [27]. Additionally, since the ideal S-box output
pairs (ỹi, ỹ

′
i) obey a uniform distribution over Zq × Zq , we

compare its distribution with that of the output given by (31)
using Monte Carlo simulation.

In the Fig. 6, the top, middle, and bottom rows correspond
to n = 2, 4, and 8, respectively. The sample size of the output
pair is Ns = 1000000, the sample size of the frequency is
Nm = 100000, and the Hamming weights of input differences
are hw = 1,m/2, and m. Fig. 6 shows the probability density
function of the GEV with the estimated parameters, and Table
IV–VI shows the estimated parameters. From results, for
n = 2, only the distribution for hw = 1 (dash-dotted line)
deviates from the others (hw = 4, 8) and from the uniform
case. For n = 4, the distribution for hw = 1 is slightly
offset from the others. For n = 8, all the distributions are
almost identical, confirming that the deviation decreases as n
increases. We also confirmed that the distribution of n = 2
and hw = 1 differs from other distributions. However, this
discrepancy becomes smaller for larger n = 4, 8, and the
larger n, the closer the distribution estimated by the normal
distribution approximation becomes to that estimated by the
uniform distribution.

Tables IV–VI show the estimated GEV parameters, location
µ, scale σ, shape ξ, and their standard errors (SEµ, SEσ ,
SEξ) obtained by the maximum likelihood estimation. These
estimated parameters show that the larger n is, the more
asymptotic the normal distribution approximation result is to
the uniform distribution characteristic, which is an ideal S-
box. Considering the obtained standard error, if one examines
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Fig. 6. Estimated frequency distribution of mode.

the one-sided 95% confidence interval, the shape parameter is
sufficiently less than zero, suggesting that the distribution of
the output pair (ỹi, ỹ

′
i) of the S-box modeled by the normal

distribution approximation obeys the Weibull distribution.

TABLE IV
ESTIMATED PARAMETER (n = 2).

Uniform Normal
(hw = m)

Normal
(hw = m/2)

Normal
(hw = 1)

µ 62889.9804 62891.2570 62891.1632 64044.1023
SEµ 0.366293 0.368066 0.371648 0.518169
σ 104.3645 105.4014 106.7196 155.1743
SEσ 0.258920 0.263640 0.270961 0.353453
ξ -0.086671 -0.092448 -0.094775 -0.167586
SEξ 0.002037 0.002018 0.002064 0.000806

TABLE V
ESTIMATED PARAMETER (n = 4).

Uniform Normal
(hw = 1)

Normal
(hw = m/2)

Normal
(hw = m)

µ 4073.5561 4073.4771 4073.4372 4077.5444
SEµ 0.073623 0.073703 0.073359 0.075155
σ 21.039072 21.061516 20.952711 21.469652
SEσ 0.052006 0.051980 0.051752 0.053072
ξ -0.077223 -0.078088 -0.078389 -0.078177
SEξ 0.001978 0.001971 0.001984 0.001981

TABLE VI
ESTIMATED PARAMETER (n = 8).

Uniform Normal
(hw = 1)

Normal
(hw = m/2)

Normal
(hw = m)

µ 34.0361 34.0343 34.0496 34.0439
SEµ 0.004282 0.004259 0.004283 0.004301
σ 1.222491 1.214973 1.220174 1.226664
SEσ 0.003036 0.003020 0.003043 0.003054
ξ -0.049566 -0.051149 -0.047329 -0.046985
SEξ 0.001993 0.002010 0.002040 0.002016

From the mode of the probability distribution of the S-box
output pairs (ỹi, ỹ

′
i) obtained in this way, we can estimate the

maximum differential probability of the LBF in the N round.
Let c(ỹ, ỹ′) be the number of occurrences of the output pair
(ỹ, ỹ′) ∈ Zn

q × Zn
q of the S-box. The maximum differential
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probability Pmax of the S-box is as follows:

Pmax = max
∆ỹ

P (∆ỹ) = max
∆ỹ

∑
(ỹ,ỹ′)s.t.ỹ⊕ỹ′=∆ỹ

c(ỹ, ỹ′)

2m
,

(37)
where ∆ỹ is a formal notation representing the EXOR of ỹ
and ỹ′ after binary encoding, which represented as ∆ỹ =
ỹ⊕ ỹ′. From the independence of each row in A, this can be
rewritten in the following form:

Pmax =

max
∆ỹi

∑
(ỹi,ỹ′

i)s.t.ỹi⊕ỹ′
i=∆ỹi

c(ỹi, ỹ
′
i)

q2

n

, (38)

where c(ỹi, ỹ
′
i) is the number of occurrences of the output pair

(ỹi, ỹ
′
i), and ỹi ⊕ ỹ′i = ∆ỹi represents the EXOR after binary

encoding. Then, there are q output pairs (ỹi, ỹ
′
i) whose output

differences are ∆ỹi, and it is found that the upper bound of
(38) can be evaluated using the frequency of the mode Ng for
the number of occurrences c(ỹi, ỹ

′
i) and Ns:

Pmax =

max
∆ỹi

∑
(ỹi,ỹ′

i)s.t.ỹi⊕ỹ′
i=∆ỹi

c(ỹi, ỹ
′
i)

q2

n

≤
(
q
Ng

Ns

)n

.

(39)
The upper bound of the maximum differential characteristic
probability of N rounds can be obtained as the power of
N , and the number of rounds N satisfying the practically
secure criterion can be estimated by determining the smallest
N satisfying the following:(

qNg

Ns

)nN

≤ 2−m. (40)

For Ns > qNg , the following can be derived

N ≥ m

log2
Ns

qNg

. (41)

According to the estimation of the number of rounds by
(41), N required is maximized by the largest Ng . Since
(−∞, µ − σ

ξ ] is supported on the negative axis for the GEV
shape parameter ξ < 0, we consider Ng = µ− σ

ξ , which has
the largest mode, to estimate the upper bound on the number
of rounds required. For n = 2, a large value of Ng results
in Ns < qNg , making it impossible to evalue the number of
rounds. However, for n = 4, N = 16, and for n = 8, N = 6,
the upper bound of the required number of rounds can be
estimated. To the best of the authors’ knowledge, there have
been no examples of theoretical evaluation of secure rounds
focusing on its probability distribution. As a result, the fact
that this approach yields specific number of secure rounds is
particularly noteworthy.

VI. CONCLUSION

In this paper, we constructed a Feistel cipher using a hash
function based on the computational hardness of the SIS
as a lattice problem and evaluated its security. To evaluate
the robustness of the constructed cipher against differential
cryptanalysis, we derived a theoretical upper bound on the
maximum differential probability and determined the number
of secure rounds corresponding to each block size m.

We also examined the typical security of the LBF instances.
Through statistical analysis of the bias in the S-box output and
using the GEV to determine the number of secure rounds, we
were able to provide concrete insights. The results show that
for block sizes of 32 and 128, the required number of secure
rounds are 16 and 6, respectively. These findings demonstrate
that LBF can be constructed to be secure against differential
cryptanalysis.

Since our method involves simulations to obtain empirical
distributions, applying it to scenarios where n exceeds 8 is
difficult. This is mainly due to the need for increased samples,
which require significant computational resources. Additional
research is needed to develop alternative approaches that
do not rely on simulations. In addition to considering the
resistance of differential cryptanalysis, the application of linear
cryptanalysis to LBF requires further study.
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APPENDIX A
FOLDED TWO-DIMENSIONAL NORMAL DISTRIBUTION

APPROXIMATION OF S-BOX OUTPUT

Approximating the distribution of (ŷi, ŷ
′
i) in (29), (30) by

folded two-dimensional normal distribution. The mean µ of
(ŷi, ŷ

′
i) is obtained as follows:

Ex[Eai
[ŷi]] = Ex[Eai

[aix]]

= Ex

[
q − 1

2

m∑
k=1

xk

]
=

m

4
(q − 1)

Ex[Eaj
[ŷi]] = Ex[Eai

[ai(x⊕∆x)]]

= Ex

[
q − 1

2

m∑
k=1

(xk +∆xk − 2xk∆xk)

]
=

m

4
(q − 1).

Letting µ = m
4 (q − 1), the mean µ is given by

µ = (µ, µ).

The diagonal elements of the covariance matrix Σ are
obtained as follows:

Ex[Eai [(ŷi − µ)2]]

= Ex[Eai
[(aix)

2]]− µ2

= Ex

[
(2q − 1)(q − 1)

6
(

m∑
k=1

x2
k) +µ2

m∑
k ̸=l

xkxl

− µ2

=
m(q − 1)

4

(
2q − 1

3
+

m2(q − 1)(m− 1)

16

)
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Ex[Eai
[(ŷ′i − µ)2]]

= Ex[Eai
[(ai(x⊕∆x))2]]− µ2

= Ex

[
(2q − 1)(q − 1)

6
(

m∑
k=1

(xk ⊕∆xk)
2)

+µ2
m∑
k ̸=l

(xk ⊕∆xk)(xl ⊕∆xl)

− µ2

=
m(q − 1)

4

(
2q − 1

3
+

m2(q − 1)(m− 1)

16

)
.

Thus, we let σ2 = m(q−1)
4

(
2q−1

3 + m2(q−1)(m−1)
16

)
and we

have the covariance

Ex[Eai [(ŷi − µ)(ŷ′i − µ)]]

= Ex[Eai [(aix)(ai(x⊕∆x))]]− µ2

= σ2 − (2q − 1)(q − 1)hw(∆x)

12
.

For convenience, we let ∆ = (2q−1)(q−1)hw(∆x)
12 and the

covariance matrix Σ is given by

Σ =

(
σ2 σ2 −∆

σ2 −∆ σ2

)
. (42)
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