
Outsourced Cloud Data Privacy-Preserving Framework:

An Efficient Broadcast Encrypted Search Realization

Yibo Caoa, Shiyuan Xub, Xiu-Bo Chena, Gang Xuc,a, Siu-Ming Yiub,
Zongpeng Lid

aInformation Security Center, State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications, Beijing, 100876, China

bDepartment of Computer Science, School of Computing and Data Science, The
University of Hong Kong, Pok Fu Lam, 999077, Hong Kong,

cSchool of Artificial Intelligence and Computer Science, North China University of
Technology, Beijing, 100144, China

dInstitute for Network Sciences and Cyberspace, Tsinghua
University, Beijing, 100084, China

Abstract

The development of cloud networks facilitates data outsourcing, sharing, and
storage, but it has also raised several security concerns. Public key authenti-
cated encryption with keyword search (PAEKS) enables the encrypted search
over cloud data while resisting the insider keyword guessing attacks (IKGAs).
However, existing PAEKS schemes are limited to a single receiver, restrict-
ing application prospects in cloud networks. In addition, quantum com-
puting attacks and key leakage issues further threaten data security, which
has attracted extensive attention from researchers. Therefore, designing an
encrypted search scheme to resist the above-mentioned attacks is still far-
reaching. In this paper, we first propose BroSearch, an outsourced data
privacy-preserving framework through efficient broadcast encrypted search
for cloud networks. It utilizes lattice sampling algorithms to authenticate the
keyword and offers searchability over broadcasting ciphertext while enjoying
IKGAs-resistance in a quantum setting. To get around key leakage issues, we
then incorporate the minimal cover set technique and lattice basis extension
algorithm to construct FS-BroSearch as an enhanced version. Furthermore,
we give a rigorous security analysis and a comprehensive performance evalu-
ation of BroSearch and FS-BroSearch. Specifically, BroSearch consumes only
61.11%, 81.82%, and 83.33% of the execution time compared to prior art in
terms of ciphertext calculation, trapdoor generation, and search procedures,

Preprint submitted to Elsevier June 25, 2025

which is practical and efficient in cloud networks.

Keywords: Cloud networks, privacy-preserving, encrypted search,
ciphertext broadcast, keyword authentication, forward security

1. Introduction

Cloud computing has revolutionized data outsourcing by enabling busi-
nesses to store and process large volumes of data remotely, offering significant
advantages in terms of cost-efficiency and accessibility [1], [2]. With cloud
networks, users can access their data from anywhere, eliminating the need for
physical infrastructure and reducing local storage overhead [3]. However, this
convenience raises serious privacy concerns [4], [5]. Many researchers have
turned to public key encryption with keyword search (PEKS) techniques, en-
abling secure encrypted search for cloud data sharing through cloud networks
[6], [7], [8]. Despite these advancements, the cloud server, as a semi-honest
entity, is vulnerable to a variety of malicious attacks, including internal key-
word guessing attacks (IKGAs) [9], [10]. To alleviate this issue, public key
authenticated encryption with keyword search (PAEKS) [11], [12], [13] has
been widely studied. It involves encrypting keywords while authenticating
them using a secret key of the data sender to resist IKGAs, thereby further
achieving the privacy-preserving of cloud data.

Most PAEKS primitives are primarily designed for a single-receiver model
[11], [14], [15], [16], [17], [18], which involves four key entities: the data sender,
the data receiver, the trusted authority, and the cloud server, as illustrated in
Fig. 1. However, the expanding scale of cloud networks exposes significant
limitations for this model. In most cases, the same data is distributed to
multiple receivers simultaneously [19]. For instance, in a healthcare cloud
service, the encrypted medical data owned by a specific patient is uploaded
to the cloud, and multiple healthcare professionals (e.g., doctors, nurses, and
pharmacists) need simultaneous access to collaborate effectively [20], [21].
A straightforward approach to mitigating this issue is to perform point-to-
point encryption repeatedly. Nonetheless, the computational overhead grows
significantly as the number of receivers increases. A more efficient alternative
is broadcast authenticated encryption with keyword search (BAEKS), which
has been formalized in previous studies [22], [23], [24]. BAEKS can broadcast
a keyword ciphertext on a public channel, allowing a set of receivers to search
it without incurring the additional computational overhead associated with

2

Cloud server

(CS)

Trusted Authority

 (TA)

Data receiverData sender

Figure 1: A single-receiver encrypted search model in cloud networks.

multiple point-to-point encryptions.
Unfortunately, existing BAEKS schemes still face two challenges. On

the one hand, these schemes rely on classical hardness assumptions (e.g.,
the discrete logarithm hardness), which are vulnerable to quantum comput-
ing attacks [25]. Lattice-based cryptography, a quantum-resistant primitive
widely adopted by researchers for data privacy-preserving in cloud networks
[14], [15], [26], [27], [28], [29], offers a promising solution to this issue. On
the other hand, in practical cloud applications, a malicious adversary could
calculate a trapdoor corresponding to a specific keyword if it gains access to
a data receiver’s secret key [30], [16]. Then, the adversary sends it to the
cloud server, allowing it to match the keyword ciphertext and thereby sig-
nificantly compromise keyword security. To address this concern, numerous
researchers have introduced the concept of forward security to several cryp-
tographic systems [31], [32], [33], but there does not exist a forward secure
BAEKS scheme as so far.

Given this, IKGAs, quantum computing attacks, and key leakage issues
are three serious threats that need to be addressed urgently in cloud networks.
This situation leads us to the main questions addressed in this work:

Can we design an outsourced cloud data privacy-preserving framework to
resist the above-mentioned threats?

In this paper, we address the aforementioned question in two milestones.

3

Firstly, we propose BroSearch, which can broadcast the keyword ciphertext
to a set of receivers while preserving the functionality of encrypted search.
Additionally, it offers enhanced data privacy-preserving in complex cloud
environments, as it is resistant to both IKGAs and quantum computing at-
tacks. To resist IKGAs, we embed a public matrix U into the ciphertext and
trapdoor, while invoking the SampleLeft algorithm to achieve keyword au-
thentication. However, existing lattice-based PAEKS schemes [15], [34], [35]
do not support ciphertext broadcast capability. Addressing these issues is
not trivial. Unlike the above-mentioned schemes, we embed the public keys
of all receivers in a broadcast list L into the ciphertext. Furthermore, during
the trapdoor generation process, we innovatively leverage the GenSamplePre
algorithm, allowing the calculation of a valid trapdoor by using the secret
key of any receiver in L. As a result, BroSearch successfully facilitates both
ciphertext broadcast and encrypted search for cloud data.

Secondly, we extend BroSearch to develop the FS-BroSearch in response
to the key leakage issue. Inspired by Yu et al.[31], we introduce the binary
tree structure, the minimal cover set technique, and a lattice basis extension
algorithm to update the secret key. Thus, even if the secret key of a specific
receiver is compromised during a given time period, an adversary is unable
to generate a valid search trapdoor for any previous time periods, thus FS-
BroSearch can mitigate the secret key leakage.

In a nutshell, our contributions are summarized as follows:

• We present BroSearch, an outsourced data privacy-preserving frame-
work through efficient broadcast encrypted search for cloud networks.
BroSearch enables the simultaneous broadcasting of keyword cipher-
text to a set of receivers while providing resilience against IKGAs and
quantum computing attacks. Additionally, we propose an enhanced
version of BroSearch, named FS-BroSearch, which mitigates the key
leakage issue.

• We construct BroSearch by leveraging lattice algebraic structures and
lattice sampling algorithms. Specifically, by invoking the GenSamplePre
algorithm initially, each receiver in the broadcast set can generate a
valid search trapdoor. Furthermore, in FS-BroSearch, we introduce a
binary tree structure, the minimal cover set technique, and a lattice
basis extension algorithm to enable time-period representation and fa-
cilitate the secret key update for data receivers.

4

• We provide the IND-CKA and IND-IKGA security models for BroSearch
and FS-BroSearch, and show a rigorous security analysis to demon-
strate that their security can be reduced to the Learning With Errors
(LWE) hardness, thereby ensuring their post-quantum security.

• We offer a detailed performance evaluation of BroSearch and FS-BroSearch
in terms of both computational and communication overhead. In par-
ticular, the Encrypt, trapdoor, and Search algorithms in BroSearch
consume 61.11%, 81.82%, and 83.33% of the time required by other
state-of-the-art schemes, which is efficient in cloud networks.

The remainder of this paper is structured as follows. Section 2 presents
numerous related works to showcase recent advancements. Following that,
Section 3 provides an introduction to the preliminary concepts. The sys-
tem model, formal definitions, and security models for BroSearch and FS-
BroSearch are then depicted in Section 4. A detailed explanation and its
security analysis of BroSearch are demonstrated in Section 5, while Section
6 focuses on the FS-BroSearch. In Section 7, we delve into the performance
evaluation and comparison. Finally, we summarize this paper in Section 8.

2. Related Works

Huang et al. introduced a public-key authenticated encryption with key-
word search (PAEKS) scheme to implement keyword authentication through
a data owner’s secret key [11]. To achieve scalability for healthcare cloud stor-
age, Cheng et al. presented a server-aided PAEKS scheme, ensuring the size
of the ciphertext and trapdoor constant [18]. Chen et al. proposed a public-
key authentication encryption with similar data search for pay-per-query,
namely PAESS, which can prevent cloud servers and data users from collud-
ing to deny chargebacks [36]. Liu et al. put forward a generic construction for
PAEKS and an instantiation over lattice to achieve the anti-quantum prop-
erty [14], and enhanced its security [37]. Furthermore, Cheng et al. pointed
out some security issues [37], [24], and constructed two PAEKS schemes over
lattice [15]. Following that, Luo et al. integrated attribute-based encryption
[34] and proxy re-encryption [35] into lattice-based PAEKS to enhance the
practicality for cloud systems.

Since encrypted messages can be decrypted by a specified group of autho-
rized users, broadcast encryption (BE), first introduced by Fiat et al. [38],
is often considered more practical in cloud networks. To enhance anonymity,

5

Baee et al. combined a message authentication scheme with beacon encryp-
tion, and then put forward an inter-vehicle broadcast authentication with
encryption scheme for vehicle-to-vehicle (V2V) communication [39]. After
that, Zhang et al. provided an identity-based broadcast proxy re-encryption
scheme for fully anonymous data sharing [40]. Yin et al. constructed a new
dual-mode identity-based BE scheme, named DM-IBBE, to protect sensitive
data in smart contracts [41].

Ali et al. foresaw the combinability of BE and PEKS, and constructed a
broadcast SE scheme, which is a novel cryptographic primitive to search the
keyword ciphertext encrypted by the public key of a group of specified data
users [42]. Enlightened by the concept of PAEKS, Liu et al. constructed
the BAEKS cryptographic primitive to resist IKGAs, and the ciphertext and
trapdoor security were proved under the DBDH assumption [22]. Mukherjee
introduced a stronger security model and ensured the ciphertext and trapdoor
security in the standard model [23]. Emura et al. put forward a generic
construction of fully anonymous BAEKS, which provides the anonymity and
consistency of keyword ciphertext and supports a multi-receiver model [24].
However, none of the aforementioned schemes can resist quantum computing
attacks, and no post-quantum encrypted search scheme supporting ciphertext
broadcast so far.

In 2019, a lattice-based forward secure public key with keyword search
(FS-PEKS) scheme was proposed by Zhang et al., which utilized lattice basis
delegation to update the secret key [43]. After that, Yu et al. introduced the
binary tree structure, minimal cover set technique, and lattice basis extension
to construct an efficient FS-PEKS scheme over lattice [31]. For PAEKS
primitive, Xu et al. constructed a forward secure PAEKS over lattice, namely
FS-PAEKS, to achieve the IND-CKA and IND-IKGA secure [16].

To sum up, there exists a valuable requirement to construct an encrypted
search scheme with ciphertext broadcast and extend it under the forward
security property for resisting IKGAs, quantum computing attacks, and key
leakage issues.

3. Preliminaries

Definition 1. Suppose a matrix M = (m1,m2, · · · ,mm) is composed of
m linearly independent vectors, the lattice Λ is defined as: Λ = Λ(M) =
{x1m1 + x2m2 + · · · + xmmm|xi ∈ Z, i ∈ [m]}, where M is a lattice basis of
Λ.

6

Definition 2. Suppose three integers n, m, q, and a matrix M ∈ Zn×m
q , a

q-ary integer lattice is defined as:

Λq(M) := {v ∈ Zm|∃s ∈ Zn
q ,M

⊤s = v mod q}.

Λ⊥
q (M) := {v ∈ Zm|Mv = 0 mod q}.

Λu
q (M) := {v ∈ Zm|Mv = u mod q}.

Definition 3. Suppose a parameter σ ∈ R+, a center c ∈ Zm, and any
vector v ∈ Zm, the discrete Gaussian distribution over Λ is defined as:

DΛ,σ,c(v) =
ρσ,c(v)

ρσ,c(Λ)
, for ∀v ∈ Λ, where ρσ,c(v) = exp(−π ∥v−c∥2

σ2) and ρσ,c(Λ) =∑
v∈Λ ρσ,c(v).

Definition 4. Suppose m independent pairs (ai, bi) ∈ Zn
q×Zq, and each sam-

ple is governed by the following either one to define the decisional LWEn,m,q,χ

assumption:

1. Pseudo-random sample: (ai, bi) = (ai, a
⊤
i s + ei) ∈ Zn

q × Zq, where s is
a randomly vector, ei is an error, and ai is an uniform vector.

2. Random sample: Randomly samples from Zn
q × Zq.

Besides, the decisional LWEn,m,q,χ assumption is as hard as the worst-case
SIVP and GapSVP problem [44].

Lemma 1. [45] Suppose two positive integers n,m, a prime q, where m =
Θ(n log q), the TrapGen algorithm returns a full-rank matrix A ∈ Zn×m

q and
its basis TA ∈ Zm×m over Λ⊥

q (A), such that A is negl(n)-close to uniform

and ∥T̃A∥ = O(
√
n log q) with all but negligible probability in n.

Lemma 2. [46] Suppose four integers n,m,m1, q, and two matrices A ∈
Zn×m

q ,M1 ∈ Zn×m1
q , TA ∈ Zm×m

q is a basis of Λ⊥
q (A), u ∈ Zn

q is a vector,

and σ > ∥T̃A∥·ω(
√

log(m+m1)), the SampleLeft algorithm returns a vector
e ∈ Zm+m1

q , such that (A|M1)e = u mod q.

Lemma 3. [46] Suppose four integers n, k,m, q, and three matrices A ∈
Zn×k

q ,B ∈ Zn×m
q ,R ∈ Zk×m, TB ∈ Zm×m

q is a basis of Λ⊥(B), u ∈ Zn
q is a

vector, and σ > ∥T̃B∥ · ∥R∥ω(
√

log(m)), the SampleRight algorithm returns
a vector e ∈ Zm+k

q , such that (A|AR+B)e = u mod q.

7

Suppose four positive integers n, m, q, k, a matrix A = (A1 | · · · | Ak) ∈
Zn×km

q , and a setM = {i1, i2, · · · , ij} ⊂ [k], we set AM := (Ai1 | Ai2 | · · · |
Aij) ∈ Zn×jm

q . Then, we introduce the Lemma 4 as follows:

Lemma 4. [47] Suppose four positive integers n, m, q, k, where q ≥ 2, and
m ≥ 2n log q. After input a matrix A ∈ Zn×km

q , a lattice basis TAM for
Λ⊥

q (AM), a set M ⊂ [k], a vector u ∈ Zn
q , and a Gaussian parameter σ ≥

∥T̃AM∥ · ω(
√
log km), the PPT algorithm GenSamplePre(A,TAM ,M,u, σ)

will output a vector e ∈ Zkm statistically close in DΛu
q (A),σ, such that Ae =

u mod q.

Lemma 5. [47] Suppose four positive integers n, m, m′, q, two matrices

A ∈ Zn×m, A′ ∈ Zn×m′
. After input A′′ = (A | A′) ∈ Zn×(m+m′)

q , and a basis
TA ∈ Zm×m

q for Λ⊥
q (A), the deterministic polynomial time (DPT) algorithm

ExtBasis(A′′,S) will calculate a lattice basis TA′′ for Λ⊥
q (A

′′) ⊆ Zm×m′′
q , where

∥T̃A∥ = ∥T̃A′′∥, m′′ = m+m′.

Lemma 6. [46] Suppose a lattice Λ(A) and its lattice basis TA, we obtain:

Pr[∥v∥ > σ
√
m : v ← DΛu

q (A),σ] ≤ negl(m), where σ ≥ ∥T̃A∥ · ω(
√
logm),

and negl(·) is a negligible function.

Lemma 7. [48] Suppose four positive integers n,m,m, k, q, σ, two matrices
A ∈ Zn×m

q ,U ∈ Zn×k
q , and a matrix R ∈ Zm×k sampled from the distribution

Dσ(Λ
u
q (A) and a matrix S uniformly selected from {−1, 1}m×m, then the

followings hold: ∥R⊤∥2 ≤ σ
√
mk, ∥R∥2 ≤ σ

√
mk, and ∥S∥2 ≤ 20

√
m.

4. Framework Description

We provide our outsourced cloud data privacy-preserving framework and
describe the formal definitions and security models of BroSearch and FS-
BroSearch. Table 1 clarifies the acronyms and descriptions.

4.1. System Models

The system model in our paper is illustrated in Fig. 2, which contains
four participating entities: trusted authority, data sender, data receivers, and
cloud server.

8

Table 1: Glossary

Acronym Definition

l the number of data receivers
τ the level number of the binary tree
T the number of time period, where T = 2τ

L the broadcast list
ck the keyword owned by data sender
tk the keyword to be searched by data receiver
(pkS, skS) the public and secret keys of data sender
(pkR,i, skR,i) the public and secret keys of data receiver i, where i ∈ L
CT(resp. CTt) the ciphertext (resp. with time period t)
TD(resp. TDt) the trapdoor (resp. with time period t)

1. Trusted authority (TA): TA is charged with initializing the system
to obtain the public parameters and calculate the public and secret keys
for the data sender and receivers. To facilitate trapdoor generation, the
public keys of all receivers in the broadcast list are packaged and sent
to each receiver. TA is a fully trusted entity in this system.

2. Data sender: As a fully trusted entity, the data sender can extract
the keywords from data and calculate a valid ciphertext to the cloud
server with its secret key and several public keys of the receivers in a
broadcast list.

3. Data receivers: Since the data receiver’s secret key may be stolen
by a malicious adversary, it is considered semi-honest. When a data
receiver in the broadcast list has a search requirement, it generates a
trapdoor to the cloud server by its secret key, and then receives a search
result.

4. Cloud server (CS): CS is semi-honest, upon receiving a keyword
ciphertext from the data sender and a search trapdoor from the data
receiver, CS executes the search procedure to return a search result to
the receiver.

4.2. Formal Definitions

Our BroSearch is defined as ΠBroSearch = (Setup,KeyGenS,KeyGenR,
Encrypt,Trapdoor,Search).

9

Cloud server

(CS)

Trusted authority (TA) Data receivers

Keyword

ciphertext
Data sender

 Extract and

encrypt keywords
 Upload keyword

ciphertext

 - Generate a search trapdoor

 Search

 - Return the search result

 System initialization

 Generate public and secret key Generate public and secret key

 Update the secret key when it is leaked

Figure 2: An outsourced data privacy-preserving framework through efficient broadcast
encrypted search for cloud networks.

• pp ← Setup(1λ): After inputting a security parameter λ, this algo-
rithm publishes a public parameter pp.

• (pkS, skS)← KeyGenS(pp): After inputting the public parameter pp,
this algorithm publishes the public and secret keys (pkS, skS) of the
data sender.

• (pkR,i, skR,i) ← KeyGenR(pp): For i ∈ L, after inputting the pub-
lic parameter pp, this algorithm publishes the public and secret keys
(pkR,i, skR,i) of the data receiver i.

• CT← Encrypt(pp, ck,pkS, skS, {pkR,i}i∈L): After inputting the pub-
lic parameter pp, a keyword ck ∈ Zn

q , the public and secret keys of data
sender (pkS, skS), the public keys of data receiver in broadcast list
{pkR,i}i∈L, the data sender invokes this algorithm to get a ciphertext
CT.

• TD ← Trapdoor(pp, tk, {pkR,i}i∈L, skR,γ,pkS): After inputting the
public parameter pp, a keyword tk ∈ Zn

q , the public keys of data re-
ceiver in broadcast list {pkR,i}i∈L, a secret key skR,γ of data receiver
γ, and the public key of data sender pkS, the data receiver γ invokes
this algorithm to get the trapdoor TD.

10

• 1 or 0← Search(CT,TD): The server processes this algorithm to test
whether CT and TD correspond to the same keyword. If yes, it outputs
1. Otherwise, outputs 0.

Further, our FS-BroSearch is regarded as an enhanced version of BroSearch,
it contains seven following algorithms ΠFS-BroSearch = (Setup,
KeyGenS,KeyGenR,KeyUpdateR,Encrypt,Trapdoor,Search), which
is similar as ΠBroSearch, except for the following algorithms.

• (pkR,i, skR,i,0)← KeyGenR(pp): For i ∈ L, after inputting the public
parameter pp, this algorithm publishes the public and initial secret keys
(pkR,i, skR,i,0) of the data receiver i.

• skR,i,t+1 ← KeyUpdateR(pp,pkR,i, skR,i,t): For i ∈ L, after inputting
a public parameter pp, the public and secret keys (pkR,i, skR,i,t) of
data receiver with time period t, this algorithm publishes its secret key
skR,i,t+1 with time period t+ 1.

• CTt ← Encrypt(pp, ck,pkS, skS, {pkR,i}i∈L, t): This definition is the
same as the Encrypt algorithm in BroSearch, except for the introduc-
tion of time period t.

• TDt ← Trapdoor(pp, tk, {pkR,i}i∈L, skR,γ,t,pkS, t): This definition is
the same as the Trapdoor algorithm in BroSearch, except for the
introduction of time period t.

4.3. Security Models

We define two security models of our BroSearch: ciphertext indistin-
guishability against chosen keyword attacks (IND-CKA) and ciphertext in-
distinguishability against insider keyword guessing attacks (IND-IKGA).

4.3.1. IND-CKA security

For the first part, we define the IND-CKA model ExpIND-CKA
BroSearch,A(λ) as

follows:

1. Setup: Given a challenge public key pk∗
S = AS of data sender and

several challenge secret key in broadcast list {pk∗
R,i = AR,i}i∈L∗ , the

challenger C calls the Setup(1λ) algorithm to calculate a public pa-
rameter pp, and sends it to the adversary A.

2. Phase 1: A can adaptively perform four oracles in PPT.

11

(a) OH1 : A inputs a keyword ckj to issue H1 queries at most qH1 for
j ∈ [qH1], C calculates H1(ckj) and sends it to A.

(b) OH2 : A inputs a keyword ckj to issue H2 queries at most qH2 for
j ∈ [qH2], C calculates H2(ckj) and sends it to A.

(c) OCT: Given a keyword ck and the receivers’ public keys in broad-
cast list {pkR,i}i∈L fromA fromA, C callsEncrypt(pp, ck,pk∗

S, sk
∗
S,

{pkR,i}i∈L) algorithm to generate a ciphertext CT, and sends it
to A.

(d) OTD: After obtained a keyword tk, the sender’s public key pkS

and a receiver γ ∈ L fromA, C callsTrapdoor(pp, tk, {pk∗
R,i}i∈L∗ ,

sk∗
R,γ,pkS) algorithm to generate a trapdoor TD for A.

3. Challenge: A chooses two challenge keywords ck∗
0, ck

∗
1 which have not

been queried in Phase 1, and sends them to C. After that, C selects a
random bit ξ ∈ {0, 1} and callsEncrypt(pp, ck∗

ξ ,pk
∗
S, sk

∗
S, {pk∗

R,i}i∈L∗)
algorithm to obtain a challenge ciphertext CT∗

ξ . Finally, C returns CT∗
ξ

to A.
4. Phase 2: A executes these queries as above, neither ck∗

0 nor ck∗
1 can

be queried.

5. Guess: A outputs a bit ξ′ ∈ {0, 1}. If ξ′ = ξ, we say that A wins this
game.

We define the advantage of A to win the above game ExpIND-CKA
BroSearch,A(λ)

as: AdvIND-CKA
BroSearch,A(λ) = |Pr[ξ′ = ξ]− 1

2
|.

Definition 5. Our BroSearch primitive satisfies IND-CKA security, if any
PPT malicious adversary wins the above game ExpIND-CKA

BroSearch,A(λ) with a neg-
ligible advantage.

4.3.2. IND-IKGA security

For the second part, we define the IND-IKGA security modelExpIND-IKGA
BroSearch,A(λ)

as follows:

1. Setup: This procedure is the same as the corresponding part in
ExpIND-CKA

BroSearch,A(λ).

2. Phase 1: This procedure is the same as the corresponding part in
ExpIND-CKA

BroSearch,A(λ).

3. Challenge: A chooses two challenge keywords tk∗
0, tk

∗
1 which have not

been queried in Phase 1, and sends them to C. After that, C selects a
random bit ξ ∈ {0, 1} and callsTrapdoor(pp, tk∗

ξ , {pk∗
R,i}i∈L, sk∗

R,γ,pk
∗
S)

12

algorithm to obtain a challenge trapdoor TD∗
ξ . Finally, C returns TD∗

ξ

to A.
4. Phase 2: A executes these queries as above, neither tk∗

0 nor tk∗
1 can

be queried.

5. Guess: A outputs a bit ξ′ ∈ {0, 1}. If ξ′ = ξ, we say that A wins this
game.

We define the advantage of A to win the above game ExpIND-IKGA
BroSearch,A(λ)

as: AdvIND-IKGA
BroSearch,A(λ) = |Pr[ξ′ = ξ]− 1

2
|.

Definition 6. Our BroSearch primitive satisfies IND-IKGA security, if any
PPT adversary wins the above game ExpIND-IKGA

BroSearch,A(λ) with a negligible ad-
vantage.

Correspondingly, our FS-BroSearch also has two security models,
ExpIND-CKA

FS-BroSearch,A(λ) and ExpIND-IKGA
FS-BroSearch,A(λ), which are highly symmetric

with respect to ExpIND-CKA
BroSearch,A(λ) and ExpIND-IKGA

BroSearch,A(λ), except for the addi-
tion of the OKU oracle and the introduction of time periods. OKU is defined
as follows:

• OKU: After obtaining a time period t for i ∈ L from A, C calls
KeyUpdateR(pp,pkR,i, skR,i,t−1) algorithm to calculate the secret key
skR,i,t with time period t, and sends it to A.

Based on this, we define the IND-CKA and IND-IKGA security of our
FS-BroSearch as follows:

Definition 7. Our FS-BroSearch primitive satisfies IND-CKA security, if
any PPT malicious adversary wins the above game ExpIND-CKA

FS-BroSearch,A(λ) with
a negligible advantage.

Definition 8. Our FS-BroSearch primitive satisfies IND-IKGA security, if
any PPT adversary wins the above game ExpIND-IKGA

FS-BroSearch,A(λ) with a negligible
advantage.

5. The Design of BroSearch

5.1. Concrete Construction

The construction of our BroSearch includes five procedures: System Ini-
tialization, Key Generation, Ciphertext Calculation, Trapdoor Generation,
and Search.

13

5.1.1. System Initialization

TA initializes the entire system by calling the Setup(1λ) algorithm through
inputting a security parameter 1λ. Firstly, it sets several system parameters
n, m, q, σ, l, a gadget matrix G ∈ Zn×m

q , and a broadcast list L = {1, · · · , l}.
Then, TA chooses two matrices A ∈ Zn×m

q and U ∈ Zn×n
q uniformly. To

ensure the security of our realization in the ROM, two hash functions are
defined as H1 : Zn

q → Zn×m
q , H2 : Zn

q → Zn×n
q . Finally, TA obtains the public

parameter and sends it to other entities. The public parameter is defined as:

pp := (n,m, q, σ, l,G,L,A,U, H1, H2).

5.1.2. Key Generation

This procedure generates public and secret keys for the data sender and
receiver through KeyGenS(pp) and KeyGenR(pp) algorithms, respectively.

For the data sender, TA invokes (AS,TAS
) ← TrapGen(n,m, q) to gen-

erate an uniformly matrix AS ∈ Zn×m
q and a basis TAS

∈ Zm×m of Λ⊥
q (AS).

After that, TA obtains the public and secret keys of the data sender:

pkS := AS, skS := TAS
.

Similarly, for the data receiver i ∈ L, TA calls (AR,i,TAR,i
)← TrapGen(n,m, q)

to generate an uniformly matrix AR,i ∈ Zn×m
q and a basis TAR,i

∈ Zm×m of
Λ⊥

q (AR,i), and defines the public and secret keys of the data receiver i:

pkR,i := AR,i, skR,i := TAR,i
.

At last, TA returns (pkS, skS) and {(pkR,i, skR,i)}i∈L to a data sender
and several data receivers in broadcast list L over a secure channel.

5.1.3. Ciphertext Calculation

To calculate the keyword ciphertext, the data sender calls theEncrypt(pp,
ck,pkS, skS, {pkR,i}i∈L) algorithm. In this procedure, the data sender in-
puts its secret key to authenticate the keyword ck, which can resist IKGAs.
On the other hand, the public keys of all the data receivers in the broadcast
list L are embedded to enable the ciphertext broadcast.

Specifically, the data sender chooses a vector s ∈ Zn
q and several error

vectors {eR,i}i∈L ∈ χm, eK ∈ χm, eU ∈ χn. For i ∈ L, it calculates a vector
cR,i = A⊤

R,is+eR,i ∈ Zm
q to embed public keys of receivers in L. Subsequently,

the data sender calculate two vectors cK = H1(ck)
⊤s + eK ∈ Zm

q and cU =

14

U⊤s + eU ∈ Zn
q . To authenticate the keyword ck, it invokes the following

algorithm to sample a vector εC ∈ Z2m
q , where εC is statistically distributed

in D2m
Λ
cU
q (AS |(A+H2(ck)G))

.

εC ← SampleLeft(AS,A+H2(ck)G,TAS
, cU , σ),

such that (AS | (A+H2(ck)G))εC = cU mod q.
To sum up, the data sender outputs the following ciphertext with the

keyword ck, and uploads it to CS.

CT := ({cR,i}i∈L, cK , εC).

5.1.4. Trapdoor Generation

A data receiver γ ∈ L performs the Trapdoor(pp, tk, {pkR,i}i∈L, skR,γ,
pkS) algorithm to generate a trapdoor with an interested keyword tk. This
procedure is divided into two phases: the keyword embedding and the re-
ceiver’s secret key processing.

For the keyword tk, the data receiver chooses a vector s′ ∈ Zn
q , several

error vectors eS ∈ χm, e′U ∈ χn, and a matrix R′
K ∈ {−1, 1}m×m. Next, it

calculates three vectors tS = A⊤
S s

′ + eS ∈ Zm
q , tK = (A + H2(tk)G)⊤s′ +

(R′
K)

⊤eS ∈ Zm
q and tU = Us′ + e′U ∈ Zn

q to embed this keyword.
Moreover, the data receiver generates a vector εT with its secret keyTAR,γ

through the following algorithm:

εT ← GenSamplePre(AR,1 | · · · | AR,l | H1(tk),TAR,γ
, {γ}, tu, σ),

such that (AR,1 | · · · | AR,l | H1(tk))εT = tU mod q, where εT is statistically

distributed in D(l+1)m

Λ
tU
q (AR,1|···|AR,l|H1(tk))

.

Eventually, the data receiver sends the following trapdoor to CS.

TD := (tS, tK , εT).

If the data receiver is in the broadcast list, it can generate the trapdoor
used for the encrypted search by inputting its secret key. Otherwise, the
data receiver cannot search on it, since the basis TAR,γ

does not match the
matrix (AR,1 | · · · | AR,l | H1(tk)) in GenSamplePre algorithm.

15

5.1.5. Search

After receiving the trapdoor TD, CS iterates over the keywords CT up-
loaded on it, and calls the Search(CT,TD) algorithm to obtain a search
result.

In this procedure, CS parses CT = ({cR,i}i∈L, cK , εC) and TD = (tS, tK , εT),
and calculates a number d = ε⊤C(t

⊤
S | t⊤K)⊤ − (c⊤R,1 | · · · | c⊤R,l | c⊤K)εT ∈ Zq.

If |d| < ⌊ q
4
⌋, this procedure outputs 1, meaning that CT and TD corre-

spond to the same keyword, and returns the search result to the data receiver.
Otherwise, outputs 0.

5.2. Correctness Analysis

We analyze the correctness of our BroSearch. Given the data sender’s
public and secret keys pkS = AS, skS = TAS

, a keyword ck ∈ Zn
q , and its

ciphertext CT = ({cR,i}i∈L, cK , εC). Moreover, the data receiver γ owns its
public keys and secret keys pkR,γ := AR,γ, skR,γ := TAR,γ

, and the searched
keyword tk ∈ Zn

q , and corresponding search trapdoor TD = (tS, tK , εT). If
ck = tk, we have:

d = ε⊤C(t
⊤
S | t⊤K)⊤ − (c⊤R,1 | · · · | c⊤R,l | c⊤K)εT

= ε⊤C((A
⊤
S s

′ + eS)
⊤ | ((A+H2(tk)G)⊤s′ +R′

KeS)
⊤)⊤

− ((A⊤
R,1s+ eR,1)

⊤ | · · · | (A⊤
R,ls+ eR,l)

⊤ | (H1(ck)
⊤s+ eK)

⊤)εT

= ε⊤C(AS | (A+H2(tk)G))⊤s′ + ε⊤C(e
⊤
S | e⊤SR′

K)

− s⊤(AR,1 | · · · | AR,l | H1(ck))εT − (e⊤R,1 | · · · | e⊤R,l | e⊤K)εT
= c⊤Us

′ − s⊤tU + ε⊤C(e
⊤
S | e⊤SR′

K)− (e⊤R,1 | · · · | e⊤R,l | e⊤K)εT
= s⊤Us′ + e⊤Us

′ − s⊤Us′ − s⊤e′U + ε⊤C(e
⊤
S | e⊤SR′

K)− (e⊤R,1 | · · · | e⊤R,l | e⊤K)εT
= e⊤Us

′ − s⊤e′U + ε⊤C(e
⊤
S | e⊤SR′

K)− (e⊤R,1 | · · · | e⊤R,l | e⊤K)εT
= error,

where |error| ≤ |e⊤Us′| + |s⊤e′U | + |ε⊤C(e⊤S | e⊤SR′
K)| + |(e⊤R,1 | · · · | e⊤R,l |

e⊤K)εT | ≤ 2nχ2
m + 40σm

3
2χm + (l + 1)σmχm < q

5
.

5.3. Parameters Setting

In this section, we provide the parameter settings as:

• m ≥ ⌈2n log q⌉ for the TrapGen lemma.

16

• σ ≥ O(
√
n log q) · ω(

√
log(l + 1)m) for SampleLeft and GenSamplePre

lemmas.

• χm ≥
√
n · ω(log n) for LWE hardness.

• 2nχ2
m + 40σm

3
2χm + (l + 1)σmχm < q

5
.

5.4. Security Analysis

We demonstrate that our BroSearch is secure in the aforementioned se-
curity model, i.e., IND-CKA and IND-IKGA.

Theorem 1. Assuming that the LWEn,m,q,χ hardness holds, our proposed
BroSearch satisfies IND-CKA security in the random oracle model. For any
PPT adversary A, if A can compromise our scheme with a non-negligible ad-
vantage ϵ1, then we can construct a PPT challenger C to solve the LWEn,m,q,χ

hardness with a non-negligible probability.

Proof 1. If a PPT adversary A can compromise the IND-CKA security with
a non-negligible advantage, we can construct a challenger C who can solve the
LWEn,m,q,χ hardness. The following procedures show the interaction between
A and C.

LWE Instances: C obtains several LWE instances {AR,i, aR,i}i∈L, (AK , aK),
which are sampled from either OS or O$. If we sample them from OS, they
satisfy {aR,i = A⊤

R,is + eR,i}i∈L ∈ Zm
q and aK = A⊤

Ks + eK ∈ Zm
q for a

secret vector s ∈ Zn
q and several error vectors {eR,i}i∈L ∈ Zm

q and eK ∈ Zm
q .

Otherwise, they are random over Zn×m
q × Zm

q .
Init: C selects a challenge public key pk∗

S = AS of data sender and
several challenge secret key in broadcast list {pk∗

R,i = AR,i}i∈L∗.
Setup: C obtains the public parameter pp through calling Setup(1λ) al-

gorithm, except that A = ASR
∗
K − h∗G ∈ Zn×m

q for a random value h∗ ∈ Zq

and a matrix R∗
K ∈ {−1, 1}m×m, and then sends it to A.

Phase 1: A executes these following queries adaptively:

• OH1: A inputs a keyword ckj to issue H1 queries at most qH1 for
j ∈ [qH1]. Initially, C creates a empty list LH1, and selects π∗

1 ∈
[qH1] as a challenge query. For the j-th query, if j = π∗

1, C sets
H1(ckj) = AK, selects TH1(ckj) ∈ Zm×m randomly. Then, C adds
{ckj, H1(ckj),TH1(ckj)} to LH1, and then returns H1(ckj) to A. Oth-
erwise, if ckj has been queried, C returns H1(ckj) in LH1 to A. Other-
wise, C invokes TrapGen(n,m, q) to generate a matrix AH ∈ Zn×m

q and

17

a basis TAH
∈ Zm×m of Λ⊥

q (AH). Subsequently, C sets H1(ckj) = AH

and TH1(ckj) = TAH
, sends H1(ckj) to A, and then adds {ckj, H1(ckj),

TH1(ckj)} to LH1.

• OH2: In this phase, A issues H2 queries at most qH2 after inputting
a keyword ckj for j ∈ [qH2]. C first creates a empty list LH2, and
selects π∗

2 ∈ [qH2] as a challenge query. For the j-th query, if j = π∗
2,

C sets H2(ckj) = h∗, adds {ckj, H2(ckj)} to LH2, and returns h∗ to
A. Otherwise, if ckj has been queried, C returns H2(ckj) in LH2 to A.
Otherwise, C chooses a random value h ∈ Zq as H2(ckj), sends it to
A, and adds {ckj, H2(ckj)} to LH2.

• OCT: After obtaining a keyword ck and the receivers’ public keys in
broadcast list {pkR,i}i∈L from A, C calls Encrypt(pp, ck,pk∗

S, sk
∗
S,

{pkR,i}i∈L) algorithm to generate a ciphertext CT, and sends it to A.

• OTD: After obtaining a keyword tk, the sender’s public key pkS and
a receiver γ ∈ L from A, C executes the OH1 and OH2 oracle to query
the hash value of tk. If H1(tk) = AK or H2(tk) = h∗, this proce-
dure is aborted by C. Otherwise, C obtains {tk, H1(tk),TH1(tk)} and
{tk, H2(tk)} in LH1 and LH2. Then, C calculates tS, tK and tU as
in Trapdoor algorithm, and invokes εT ← GenSamplePre(AR,1 | · · · |
AR,l | H1(tk),TH1(tk), {l + 1}, tU , σ) such that (AR,1 | · · · | AR,l |
H1(tk))εT = tU mod q. Finally, C returns TD = (tS, tK , εT) to A.

Challenge: A transmits ck∗
0, ck

∗
1 ∈ Zn

q to C, which have not been queried
in Phase 1. Then, C chooses ξ ∈ {0, 1}, and calculates a challenge cipher-
text CT∗

ξ = ({c∗R,i}i∈L∗ , c∗K , ε
∗
C), where c∗R,i = aR,i for i ∈ L∗, c∗K = aK and

ε∗C ← Z2m
q . After that, C returns CT∗

ξ to A.
Phase 2: A executes these queries as above, and promises neither ck∗

0

nor ck∗
1 can be queried.

Guess: A outputs a random bit ξ′ ∈ {0, 1} after receiving CT∗
ξ. If ξ

′
= ξ,

A wins this game, and C outputs 1. Otherwise, C outputs 0.
Analysis: We demonstrate two cases according to the sampling way of

LWE instances. If these instances are sampled from the OS, we have:

c∗R,i = aR,i = A⊤
R,is+ eR,i,where i ∈ L∗,

c∗K = aK = A⊤
Ks+ eK = H1(ck

∗
ξ)

⊤s+ eK ,

ε∗C ← Z2m
q .

18

Thus, CT∗
ξ = ({c∗R,i}i∈L∗ , c∗K , ε

∗
C) is a valid ciphertext. When A compro-

mise our scheme with advantage ϵ1, Pr[ξ′ = ξ|OLWE = OS] = 1
2
+ ϵ1.

Otherwise, CT∗
ξ is uniform over (Zm

q)
l × Zm

q × Z2m
q . In this case, Pr[ξ′ =

ξ|OLWE = O$] =
1
2
. Due to the probability of executing this procedure with

probability
qH1

+qH2
−1

qH1
qH2

, the advantage of C to solve the LWEn,m,q,χ hardness is
(qH1

+qH2
−1)ϵ1

2qH1
qH2

, which is also non-negligible.

Theorem 2. Assuming that the LWEn,m,q,χ hardness holds, our proposed
BroSearch satisfies IND-IKGA security in the random oracle model. For any
PPT adversary A, if A can compromise our scheme with a non-negligible ad-
vantage ϵ2, then we can construct a PPT challenger C to solve the LWEn,m,q,χ

hardness with a non-negligible probability.

Proof 2. If a PPT adversary A can compromise the IND-IKGA security
with a non-negligible advantage, we can construct a challenger C who can
solve the LWEn,m,q,χ hardness. The following procedures show the interaction
between A and C.

LWE Instances: This procedure is the same as Theorem 1, except that
(AS, aS) and (AK , aK) are sampled as LWE instances in this phase.

Init: C selects a challenge public key pk∗
S = AS of data sender and a

challenge secret key pk∗
R,γ = AR,γ of data receiver where γ ∈ L∗.

Setup: This procedure is the same as Theorem 1.
Phase 1: A executes these following queries adaptively:

• OH1: This procedure is the same as Theorem 1.

• OH2: This procedure is the same as Theorem 1.

• OCT: After obtaining a keyword ck and the receivers’ public keys {pkR,i}i∈L
from A, C executes the OH1 and OH2 oracle to query the hash value of
tk. If H1(tk) = AK or H2(tk) = h∗, this procedure is aborted by
C. Otherwise, C obtains {tk, H1(tk),TH1(tk)} and {tk, H2(tk)} in LH1

and LH2. Then, C calculates {cR,i}i∈L, cK and cU as in Encrypt algo-
rithm, and invokes εC ← SampleRight(AS, (H2(ck)−h∗)G,R∗

K ,TG, cU , σ)
such that (AS | (A + H2(ck)G))εC = cU mod q. Finally, C returns
CT = ({cR,i}i∈L, cK , εC) to A.

• OTD: After obtaining a keyword tk, the sender’s public key pkS and a
receiver γ ∈ L from A, C calls Trapdoor(pp, tk, {pk∗

R,i}i∈L, sk∗
R,γ,pkS)

algorithm to generate a trapdoor TD, and sends it to A.

19

Challenge: A transmits tk∗
0, tk

∗
1 ∈ Zn

q to C, which have not been queried
in Phase 1. Then, C chooses ξ ∈ {0, 1}, and calculates a challenge ci-

phertext TD∗
ξ = (t∗S, t

∗
K , ε

∗
T), where t∗S = aS, t

∗
K =

(
aS

(R∗
K)

⊤aS

)
and ε∗T ←

Z(l+1)m
q . After that, C returns TD∗

ξ to A.
Phase 2: A executes these queries as above, and promises neither tk∗

0

nor tk∗
1 can be queried.

Guess: A outputs a random bit ξ′ ∈ {0, 1} after receiving TD∗
ξ. If ξ

′
= ξ,

A wins this game, and C outputs 1. Otherwise, C outputs 0.
Analysis: We demonstrate two cases according to the sampling way of

LWE instances. If these instances are sampled from the OS, we have:

t∗S = aS = A⊤
S s+ eS,

t∗K =

(
aS

(R∗
K)

⊤aS

)
=

(
A⊤

S s+ eS
(ASR

∗
K)

⊤s+ (R∗
K)

⊤eS

)
= (AS | A+H2(tk

∗
ξ)G)⊤s+ (e⊤S | e⊤SRK)

⊤,

ε∗T ← Z(l+1)m
q .

Thus, TD∗
ξ = (t∗S, t

∗
K , ε

∗
T) is a valid trapdoor. When A compromise our

scheme with advantage ϵ2, Pr[ξ
′ = ξ|OLWE = OS] =

1
2
+ ϵ2. Otherwise, TD∗

ξ

is uniform over Zm
q ×Zm

q ×Z(l+1)m
q . In this case, Pr[ξ′ = ξ|OLWE = O$] =

1
2
.

Due to the probability of executing this procedure with probability
qH1

+qH2
−1

qH1
qH2

,

the advantage of C to solve the LWEn,m,q,χ hardness is
(qH1

+qH2
−1)ϵ2

2qH1
qH2

, which

is also non-negligible.

6. The Design of FS-BroSearch: An Enhanced Version

In this section, FS-BroSearch is proposed as an enhanced version of our
BroSearch.

6.1. Concrete Construction

6.1.1. System Initialization

In this procedure, TA initializes the entire system by calling the Setup(1λ)
algorithm. It first sets several system parameters n, m, q, σ, l, a gadget ma-
trix G ∈ Zn×m

q , and a broadcast list L = {1, · · · , l}. Secondly, TA initializes
all nodes in the binary tree, and sets τ as the depth of the binary tree, where

20

T = 2τ , as in Fig. 3 (An example at τ = 4). Then, TA chooses several

matrices A ∈ Zn×m
q , U ∈ Zn×n

q and {A(0)
j ,A

(1)
j }j∈[τ] ∈ Zn×m

q uniformly. As
same as in BroSearch, two hash functions are defined as H1 : Zn

q → Zn×m
q

and H2 : Zn
q → Zn×n

q . Finally, TA obtains the public parameter and sends it
to other entities. The public parameter is defined as:

pp := (n,m, q, σ, l, τ, T,G,L,A,U, {A(0)
j ,A

(1)
j }j∈[τ], H1, H2)

6.1.2. Key Generation

This procedure generates public and secret keys for the data sender and
receiver through KeyGenS(pp) and KeyGenR(pp) algorithms, respectively.

For the data sender, this procedure is identical to that of BroSearch. TA
sets the public and secret keys of the data sender as:

pkS := AS, skS := TAS
.

For the data receiver i ∈ L, TA Invoke (AR,i,0,TAR,i,0
)← TrapGen(n,m, q)

to generate an uniformly matrix AR,i,0 ∈ Zn×m
q and a basis TAR,i,0

∈ Zm×m

for Λ⊥
q (AR,i,0), and defines the public and initial secret keys of the data re-

ceiver i as:
pkR,i := AR,i,0, skR,i,0 := TAR,i,0

At last, TA sends (pkS, skS) and {(pkR,I,0, skR,I,0)}i∈L to a data sender
and several data receivers in broadcast list L over a secure channel.

Root

1

2

3

4

Bin(t) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Level

Leaf

Node

Root

Node

Figure 3: The binary tree utilized to secret key update for data receivers, and the number
of levels τ = 4.

21

6.1.3. Key Update

We set bin(t) as the τ bits binary representation of t, Node(bin(t)) as
the minimal cover set of leaf node bin(t), which denotes the smallest set
that includes a common ancestor node of each leaf node in {bin(t),bin(t +
1), · · · ,bin(T−1)}, and does not include any ancestor nodes of each leaf node
in {bin(0),bin(1), · · · ,bin(t − 1)}. For example, in Fig. 3, Node(0010) =
{001, 01, 1}. The secret key of a data receiver i ∈ L with t is defined as the
set of bases corresponding to several nodes in Node(bin(t)).

To achieve forward security, a data receiver i ∈ L updates its secret key
through theKeyUpdateR(pp,pkR,i, skR,i,t) algorithm when the secret key is
compromised. In this procedure, the data receiver inputs the secret key skR,i,t

with time period t and obtains skR,i,t+1 with t+1, where t ∈ {0, 1, · · · , T−2}.
and the specific procedure can be divided into two cases.

If the time period t = 0, the data receiver owns the initial secret key
skR,i,0 = TAR,i,0

with t = 0. Due to Node(bin(1)) = Node(0001) = {0001, 001,
01, 1}, it obtains skR,i,1 = {TAR,i,0001

,TAR,i,001
,TAR,i,01

,TAR,i,1
} with t = 1

through calling
TAR,i,Θ

← ExtBasis(AR,i,Θ,TAR,i,0
),

where Θ ∈ {0001, 001, 01, 1}.
If the time period t ≥ 1, the data receiver parses bin(t) = (t1, t2, · · · , tτ) ∈

{0, 1}τ , and calculates the minimal cover set with time period t+1, denoted
Node(bin(t+ 1)). For Θj = (θ1, · · · , θζ , · · · , θj) ∈ Node(bin(t+ 1)), if there
exists a basis TAR,i,Θj

in skR,i,t, the data receiver adds this basis to skR,i,t+1.

Otherwise, it sets a node Θζ = (θ1, · · · , θζ) ∈ {0, 1}ζ , which is an ancestor
node of Θj in skR,i,t, and then invoke the following algorithm to generate the
aforementioned basis TAR,i,Θj

.

TAR,i,Θj
← ExtBasis(AR,i,Θj

,TAR,i,Θζ
),

where AR,i,Θj
= (AR,i,0|A(θ1)

1 | · · · |A
(θj)
j) ∈ Zn×(j+1)m

q .
Ultimately, the data receiver i obtains skR,i,t+1 := {TAR,i,Θj

}Θj∈Node(bin(t+1))

as the secret key with t+ 1.

6.1.4. Ciphertext Calculation

To calculate the keyword ciphertext with time period t, the data sender
calls the Encrypt(pp, ck,pkS, skS, {pkR,i}i∈L, t) algorithm.

The data sender parses bin(t) = (t1, t2, · · · , tτ) ∈ {0, 1}τ , and chooses
a vector s ∈ Zn

q , several error vectors {eR,i}i∈L ∈ χm, {eT,j}j∈[τ] ∈ χm,

22

eK ∈ χm, eU ∈ χn. For j ∈ [τ], it calculates several vectors cT,j = (A
(tj)
j)⊤s+

eT,j ∈ Zm
q to embed the time period into the ciphertext. As same as in

BroSearch, the data sender calculates several vectors cR,i = A⊤
R,i,0s + eR,i ∈

Zm
q for i ∈ L, cK = H1(ck)

⊤s + eK ∈ Zm, cU = U⊤s + eU ∈ Zn
q and

εC ← SampleLeft(AS,A + H2(ck)G,TAS
, cU , σ) to achieve the ciphertext

broadcast and keyword authentication.
To sum up, the data sender outputs the ciphertext corresponding to the

keyword ck with time period t as:

CTt := ({cR,i}i∈L, {cT,j}j∈[τ], cK , εC).

6.1.5. Trapdoor Generation

With an interested keyword tk ∈ Zn
q as input, a data receiver γ ∈ L exe-

cutes the Trapdoor(pp, tk, {pkR,i}i∈L, skR,γ,t,pkS, t) algorithm to obtain a
trapdoor with the keyword tk and time period t.

The date receiver first chooses a vector s′ ∈ Zn
q , several error vectors

eS ∈ χm, e′U ∈ χn, and a matrix R′
K ∈ {−1, 1}m×m. Afterward, it calculates

three vectors tS = A⊤
S s

′+eS ∈ Zm
q , tK = (A+H2(tk)G)⊤s′+(R′

K)
⊤eS ∈ Zm

q

and tU = Us′ + e′U ∈ Zn
q as the same as in BroSearch.

If skR,γ,t does not contain TAR,γ,bin(t)
, the data receiver invokes the follow-

ing algorithms to obtain a basis TAR,γ,bin(t)
in Z(τ+1)m×(τ+1)m for Λ⊥

q (AR,γ,0 |
A

(t1)
1 | · · · | A(tτ)

τ).

TAR,γ,bin(t)
← ExtBasis(AR,γ,0 | A(t1)

1 | · · · | A(tτ)
τ ,TAR,γ,Θj

),

where Θj is an ancestor node of bin(t) and j < τ .
Following that, the data receiver generates a vector εT statistically dis-

tributed in D(l+τ+1)m

Λ
tU
q (AR,1,0|···|AR,l,0|A

(t1)
1 |···|A(tτ)

τ |H1(tk))
through the following algo-

rithm:

εT ← GenSamplePre(AR,1,0 | · · · | AR,l,0 | A(t1)
1 | · · · | A(tτ)

τ | H1(tk),

TAR,γ,bin(t)
, {γ, l + 1, · · · , l + τ}, tU , σ),

such that (AR,1,0 | · · · | AR,l,0 | A(t1)
1 | · · · | A(tτ)

τ | H1(tk))εT = tU mod q.
Eventually, the data receiver sends the trapdoor TDt := (tS, tK , εT) to cloud
server.

23

6.1.6. Search

As similar as in BroSearch, CS calculates a number d = ε⊤C(t
⊤
S | t⊤K)⊤ −

(c⊤R,1 | · · · | c⊤R,l | c⊤T,1 | · · · | c⊤T,τ | c⊤K)εT ∈ Zq If |d| < ⌊ q
4
⌋, this procedure

outputs 1 meaning that CT and TD correspond to the same keyword, and
returns the search result to the data receiver. Otherwise, this procedure
outputs 0.

6.2. Security Analysis

Theorem 3. Assuming that the LWEn,m,q,χ hardness holds, our proposed
FS-BroSearch satisfies IND-CKA security in the random oracle model. For
any PPT adversary A, if A can compromise our scheme with a non-negligible
advantage ϵ3, then we can construct a PPT challenger C to solve the LWEn,m,q,χ

hardness with a non-negligible probability.

Proof 3. We define an adversary A and a challenger C as in Theorem 1.
LWE Instances: This procedure is the same as Theorem 1, except that

{AR,i, aR,i}i∈L, (AK , aK) and {AT,j, aT,j}j∈[τ] are sampled as LWE instances
in this phase.

Init: C selects a challenge time period t∗ where bin(t∗) = (t∗1, · · · , t∗τ) ∈
{0, 1}τ , a challenge public key pk∗

S = AS of data sender and several challenge
secret key in broadcast list {pk∗

R,i = AR,i}i∈L∗.
Setup: Base on Theorem 1, we add the generation procedure of several

matrices {A(0)
i ,A

(1)
i }i∈[τ]. Specifically, C invokes (A0,TA0)→ TrapGen(n,m, q)

to generate an uniformly matrix A0 ∈ Zn×m
q and a basis TA0 ∈ Zm×m of

Λ⊥
q (A0). For the node Tj = (t1, · · · , tj) and j = [τ], if Tj = (t∗1, · · · , t∗j), C

sets A
(tj)
j = AT,j. Otherwise, C invokes (A

(tj)
j ,T

A
(tj)

j

) → TrapGen(n,m, q)

to generate an uniformly matrix A
(tj)
j ∈ Zn×m

q and a basis T
A

(tj)

j

∈ Zm×m of

Λ⊥
q (A

(tj)
j).

Phase 1: A executes these following queries adaptively:

• OH1: This procedure is the same as Theorem 1.

• OH2: This procedure is the same as Theorem 1.

• OKU: After obtaining a time period t for i ∈ L from A, C calculates
the secret key skR,i,t with time period t. Specifically, if t ≥ t∗ where

bin(t) = (t1, · · · , tτ), C invokes TTj ← ExtBasis(AR,i,0 | A(t1)
1 | · · · |

24

A
(tj)
j ,T

A
(tj)

j

) to generate a basis TTj for node Tj. After that, C calcu-

lates skR,i,t which includes several bases in Node(bin(t)) as the secret
key with time period t, and returns it to A.

• OCT: After obtaining a keyword ck, the receivers’ public keys in broad-
cast list {pkR,i}i∈L and a time period t from A, C calls Encrypt(pp, ck,
pk∗

S, sk
∗
S, {pkR,i}i∈L, t) algorithm to generate a ciphertext CTt, and

sends it to A.

• OTD: After obtaining a keyword tk, the sender’s public key pkS and a
time period t from A, C selects a challenge receiver γ ∈ L∗, and executes
the OH1 and OH2 oracle to query the hash value of tk. If H1(tk) =
AK or H2(tk) = h∗, this procedure is aborted by C. Otherwise, C
calculates tS, tK, tU and TAR,γ,bin(t)

as in Trapdoor algorithm, and

invokes εT ← GenSamplePre(AR,1,0 | · · · | AR,l,0 | A(t1)
1 | · · · | A(tτ)

τ |
H1(tk),TH1(tk), {l + τ + 1}, tU , σ) such that (AR,1,0 | · · · | AR,l,0 |
A

(t1)
1 | · · · | A(tτ)

τ | H1(tk))εT = tU mod q. Finally, C returns TDt =
(tS, tK , εT) to A.

Challenge: Base on Theorem 1, we add c∗T,j = aT,j for j ∈ [τ].
Phase 2: This procedure is the same as Theorem 1.
Guess: This procedure is the same as Theorem 1.
Analysis: We demonstrate two cases according to the sampling way of

LWE instances. If these instances are sampled from the OS, we have:

c∗R,i = aR,i = A⊤
R,is+ eR,i,where i ∈ L∗,

c∗T,j = aT,j = A⊤
T,js+ eT,j,where j ∈ [τ]

c∗K = aK = A⊤
Ks+ eK = H1(ck

∗
ξ)

⊤s+ eK ,

ε∗C ← Z2m
q .

Thus, CT∗
t,ξ = ({c∗R,i}i∈L∗ , {c∗T,j}j∈[τ], c∗K , ε∗C) is a valid ciphertext. When

A compromise our scheme with advantage ϵ3, Pr[ξ′ = ξ|OLWE = OS] =
1
2
+ ϵ3. Otherwise, CT∗

t,ξ is uniform over (Zm
q)

l × (Zm
q)

τ × Zm
q × Z2m

q . In
this case, Pr[ξ′ = ξ|OLWE = O$] =

1
2
. Due to the probability of executing

this procedure with probability
qH1

+qH2
−1

qH1
qH2

, the advantage of C to solve the

LWEn,m,q,χ hardness is
(qH1

+qH2
−1)ϵ3

2qH1
qH2

, which is also non-negligible.

25

Theorem 4. Assuming that the LWEn,m,q,χ hardness holds, our proposed
FS-BroSearch satisfies IND-IKGA security in the random oracle model. For
any PPT adversary A, if A can compromise our scheme with a non-negligible
advantage ϵ4, then we can construct a PPT challenger C to solve the LWEn,m,q,χ

hardness with a non-negligible probability.

Proof 4. We define an adversary A and a challenger C as in Theorem 2.
LWE Instances: This procedure is the same as Theorem 2.
Init: This procedure is the same as Theorem 2.
Setup: This procedure is the same as Theorem 2.
Phase 1: A executes these following queries adaptively:

• OH1: This procedure is the same as Theorem 2.

• OH2: This procedure is the same as Theorem 2.

• OKU: This procedure is the same as Theorem 2.

• OCT: This procedure is the same as Theorem 2, except that a time
period t is obtained and C calculates {cR,i}i∈L, {cT,j}j∈[τ], cK and cU
as in Encrypt algorithm.

• OTD: This procedure is the same as Theorem 2, except that a time pe-
riod t is obtained and C calls Trapdoor(pp, tk, {pk∗

R,i}i∈L, sk∗
R,γ,pkS, t)

algorithm to generate a trapdoor TDt.

Challenge: This procedure is the same as Theorem 2, except that C
samples ε∗T ← Z(l+τ+1)m

q , and returns TD∗
t,ξ to A.

Phase 2: This procedure is the same as Theorem 2.
Guess: This procedure is the same as Theorem 2.
Analysis: Similar to Theorem 2, TD∗

t,ξ = (t∗S, t
∗
K , ε

∗
T) is a valid cipher-

text. The advantage of C to solve the LWEn,m,q,χ hardness is
(qH1

+qH2
−1)ϵ4

2qH1
qH2

,

which is also non-negligible.

7. Performance Evaluation and Comparison

We evaluate the computational and communication overheads of our
BroSearch and FS-BroSearch. To ensure fairness, we set the parameters
q = 4097 and n = 64 and compare with other lattice-based PEKS schemes
[43], [15], [34], [35]. All experiments were implemented in Python using the

26

Table 2: Theoretical computational overhead comparison
Schemes Encrypt Trapdoor Search

FS-PEKS [43] (nm2 + nmlt + nlt)TM +
TI + TH

TNBD + TSP + nm2TM +
TI + TH

mltTM

PAEKS [15] lsTSL + (n2m+ n2ls +
3m2ls + 4nmls)TM + TH

lrTSL + (n2m+ n2lr +
3m2lr + 4nmlr)TM + TH

8mlslrTM

ABAEKS [34] TSL + [(2|att|+ 3)nm+
n2 + (|att|+ 1)m2]TM + TH

TSL + (n2 +m2 +
2nm)TM + TEpk + TH

5mTM + TEct

Re-PAEKS [35] TSL + (n2 + 3m2 +
5nm)TM + TH

TSL + (n2 + 3m2 +
5nm)TM + TH

8mTM

Our BroSearch TSL + [n2m+ n2 + (l +
1)nm]TM + 2TH

TGSP + (n2m+ n2 +m2 +
2nm)TM + 2TH

(l + 3)mTM

Our FS-BroSearch TSL + [n2m+ n2 + (l + τ +
1)nm]TM + 2TH

TEB + TGSP + (n2m+ n2 +
m2 + 2nm)TM + 2TH

(l + τ + 3)mTM

Note: lt: The security-level of testing; ls, lr: The execution number of
SampleLeft for sender and receiver defined in [15]; |att|: The length of at-
tributes; l: The number of data receivers.

NumPy library, which was conducted on a laptop with a 12th Gen Intel(R)
Core(TM) i7-12800HX CPU, 16 GB of RAM, and running in Windows 10.
Each experiment is conducted independently in each round.

7.1. Computational Overhead

To conduct a theoretical comparison of the computational overhead be-
tween our two designs and other state-of-the-art approaches [43], [15], [34],
[35], we focus solely on the following operations: TH denotes the time cost of
a hash function; TI represents the time cost of matrix inversion; TM indicates
the time cost of multiplication; TNBD, TEB, TSP , TSL and TGSP correspond
to the time costs of the NewBasisDel, ExtBasis, SamplePre, SampleLeft and
GenSamplePre algorithms, respectively; TEpk and TEct represent the time costs
of the Evalpk and Evalct algorithms, as defined in [34].

As shown in Table 2, when encrypting a keyword, our design avoids
the time-consuming matrix inversion operations and multiple invocations
of the SampleLeft algorithm, realizing much more efficient than FS-PEKS
and PAEKS, and comparable to ABAEKS and Re-PAEKS. Furthermore,
in a multi-receiver scenario, our scheme enables direct broadcasting of the
ciphertext to the receivers, eliminating the need for additional operations
such as embedding receiver attribute [34] or re-encryption [35], which is well-
suited for cloud networks. For the Trapdoor algorithm, similar to the en-
cryption process, our BroSearch demonstrates superior efficiency compared

27

0 5 10 15 20 25 30 35 40 45 50
Number of receivers

0

50

100

150

200

250

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(s

)

FS-PEKS
PAEKS
ABAEKS
Re-PAEKS
BroSearch
FS-BroSearch

(a) Encrypt algorithm

0 5 10 15 20 25 30 35 40 45 50
Number of receivers

0
100
200
300
400
500
600
700
800
900

1000

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(s

)

FS-PEKS
PAEKS
ABAEKS
Re-PAEKS
BroSearch
FS-BroSearch

(b) Trapdoor algorithm

0 5 10 15 20 25 30 35 40 45 50
Number of receivers

0

20

40

60

80

100

120

140

160

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)

FS-PEKS
PAEKS
ABAEKS
Re-PAEKS
BroSearch
FS-BroSearch

(c) Search algorithm

Figure 4: Computational overhead comparison with the number of data receivers l.

28

0 10 20 30 40 50 60 70 80 90 100
Number of keywords

0
50

100
150
200
250
300
350
400
450
500

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(s

)

FS-PEKS
PAEKS
ABAEKS
Re-PAEKS
BroSearch
FS-BroSearch

(a) Encrypt algorithm

0 10 20 30 40 50 60 70 80 90 100
Number of keywords

0
150
300
450
600
750
900

1050
1200
1350
1500

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(s

)

FS-PEKS
PAEKS
ABAEKS
Re-PAEKS
BroSearch
FS-BroSearch

(b) Trapdoor algorithm

0 10 20 30 40 50 60 70 80 90 100
Number of keywords

0

50

100

150

200

250

300

350

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)

FS-PEKS
PAEKS
ABAEKS
Re-PAEKS
BroSearch
FS-BroSearch

80 90 100

5
10
15

(c) Search algorithm

Figure 5: Computational overhead comparison with the number of keywords k.

29

Table 3: The computational overhead comparison when k = 1

Schemes Encrypt Trapdoor Search

FS-PEKS [43] 4.52s 553.51s 0.09ms
PAEKS [15] 4.53s 4.65s 0.29ms
ABAEKS [34] 0.93s 1.84s 3.09ms
Re-PAEKS [35] 0.54s 0.44s 0.06ms
BroSearch 0.33s 0.36s 0.05ms
FS-BroSearch 0.37s 14.78s 0.10ms

to FS-PEKS and PAEKS, while remaining comparable to ABAEKS and
Re-PAEKS. Further, our FS-BroSearch invokes the ExtBasis algorithm to
achieve forward security, whereas FS-PEKS employs the NewBasisDel algo-
rithm. As TNBD >> TEB, the efficiency of FS-BroSearch represents a signif-
icant advantage over FS-PEKS. While this additional operation introduces
computational overhead compared to PAEKS, ABAEKS, and Re-PAEKS,
our FS-BroSearch offers resilience against key leakage issues. In the Search
algorithm, as in FS-PEKS, PAEKS, and Re-PAEKS, the time cost of our
schemes is primarily determined by a constant-level multiplication operation,
which is more efficient than ABAEKS.

Fig. 4 demonstrates the computational overhead of our BroSearch and
FS-BroSearch compared to FS-PEKS [43], PAEKS [15], ABAEKS [34], and
RE-PAEKS [35] with the number of receivers l. In Fig. 4(a), since our
BroSearch and FS-BroSearch allow a ciphertext to be broadcast to multi-
ple receivers simultaneously, the time costs of the Encrypt algorithm in
BroSearch and FS-BroSearch schemes are more efficient than the other four
schemes. Fig. 4(b) illustrates the computational overhead of the trapdoor
generation procedure. Due to the additional cost of invoking the ExtBasis
algorithm, the time cost of FS-BroSearch is higher compared to BroSearch,
PAEKS, ABAEKS, and Re-PAEKS, which is considered a trade-off between
security and efficiency. Moreover, BroSearch demonstrates superior efficiency
relative to PAEKS, ABAEKS, and Re-PAEKS. For example, when setting
l = 1, PAEKS takes 4.65s, ABAEKS takes 1.84s, and Re-PAEKS takes
0.44s, while our BroSearch only takes 0.36s. In Fig. 4(c), the search cost of
BroSearch and FS-BroSearch is much more efficient than that of ABAEKS
and is largely consistent with FS-PEKS, PAEKS, and Re-PAEKS schemes,
which are practical in cloud networks.

As depicted in Fig. 5, we illustrate the computational overhead with
a different number of keywords k during ciphertext generation, trapdoor

30

Table 4: Theoretical communication overhead comparison

Schemes Secret key Ciphertext Trapdoor

FS-PEKS [43] m2|Zq| lt(m+ 1)|Zq| m|Zq|
PAEKS [15] m2|Zq| 8mls|Zq| 8mlr|Zq|
ABAEKS [34] 4m2|Zq| (|att|+ 4)m|Zq| 5m|Zq|
Re-PAEKS [35] m2|Zq| 8m|Zq| 8m|Zq|
BroSearch m2|Zq| (l + 3)m|Zq| (l + 3)m|Zq|
FS-BroSearch m2|Zq| (l + τ + 3)m|Zq| (l + τ + 3)m|Zq|

generation, and search procedures for these six schemes. In Fig. 5(a), the
time cost of our BroSearch and FS-BroSearch is significantly lower than that
of FS-PEKS and PAEKS, which aligns with the theoretical values presented
in Tab. 2. Moreover, since a lower-dimensional matrix is used to invoke
the SampleLeft algorithm, the actual encryption overhead in our schemes is
more efficient than that of ABAEKS and Re-PAEKS, with this advantage
increasing as k grows. Fig. 5(b) and Fig. 5(c) show the computational
overhead of the Trapdoor and Search algorithms in these six schemes,
respectively. We observe that the time costs of our schemes are proportional
to the number of keywords k, and these results are consistent with those
shown in Fig. 4(b) and Fig. 4(c). For example, when k = 1, the time
costs of these six schemes are shown in Table 3. Specifically, the time costs
of the Encrypt, Trapdoor, and Search algorithms in our BroSearch are
0.33s, 0.36s, and 0.05ms, respectively, which are 61.11%, 81.82%, and 83.33%
compared to the others [43], [15], [34], [35].

Notably, since the Setup, KeyGenS, and KeyGenR algorithms are exe-
cuted less frequently than the Encrypt, Trapdoor, and Search algorithms
in real-world applications, which have minimal impact on execution efficiency
in cloud networks. Consequently, we focus only on the evaluation and com-
parison of ciphertext generation, trapdoor generation, and search procedures.

7.2. Communication Overhead

The transmission of the secret key, ciphertext, and trapdoor among par-
ticipating entities contributes to the overall communication overhead. In this
context, we provide a theoretical comparison of the communication overhead
between our BroSearch and FS-BroSearch and other state-of-the-art schemes
[43], [15], [34], [35] in Table 4, where |Zq| denotes the bit length of elements
in Zq. For the data sender’s secret key, the theoretical length across these six
schemes is m2|Zq|, and thus it will not be repeated. As indicated in Table 4,

31

the secret key size for a data receiver in our schemes is equivalent to that in
FS-PEKS, PAEKS, and Re-PAEKS, and outperforms ABAEKS due to the
integration of the access policy. During ciphertext and trapdoor generation,
the ciphertext size in our BroSearch (and FS-BroSearch) is identical to the
trapdoor size, which is influenced by the number of receivers l (and for FS-
BroSearch, also by the time period τ). While the communication overhead
of our schemes does not present a substantial advantage, our approach offers
significant benefits, including ciphertext broadcasting and forward security,
distinguishing it from other schemes.

Subsequently, we set the parameters as follows: q = 4097, |Zq| = 13,
n = 64, m = ⌈2n log q⌉ = 1537, lt = 10, ls = lr = 4, |att| = 10, l = 1,
and τ = 4. We then evaluate the communication overhead of our BroSearch
and FS-BroSearch. For example, the ciphertext size of BroSearch and FS-
BroSearch is given by (l + 3)m|Zq| = (1 + 3) × 1537 × 13 ≈ 9.76KB and
(l+ τ +3)m|Zq| = (1+4+3)×1537×13 ≈ 19.51KB, respectively. In Fig. 6,
we compare these evaluation results with those of prior works [43], [15], [34],
[35]. As shown, our schemes demonstrate advantages over existing methods
in terms of ciphertext size.

8. Conclusion

In this paper, we propose BroSearch, an outsourced data privacy-preserving
framework through efficient broadcast encrypted search for cloud networks.
Furthermore, we present a forward-secure version, called FS-BroSearch, which
successfully mitigates secret key leakage problems. Rigorous security anal-
ysis demonstrates that BroSearch and FS-BroSearch achieve IND-CKA and
IND-IKGA security in the ROM. Comprehensive experimental evaluations
also indicate that our BroSearch offers significant advantages in computa-
tional efficiency. We acknowledge that further work is required to enhance
the security level from the ROM to the standard model.

References

[1] Y. Yang, Y. Chen, F. Chen, J. Chen, An efficient identity-based provable
data possession protocol with compressed cloud storage, IEEE Transac-
tions on Information Forensics and Security 17 (2022) 1359–1371.

[2] V. K. Tanwar, B. Raman, R. Bhargava, Crypt-or: A privacy-preserving
distributed cloud computing framework for object-removal in the en-

32

FS-PEKS PAEKS
ABAEKS

Re-PAEKS
BroSearch

FS-BroSearch
0

3

6

9

12

15

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (M
B

) FS-PEKS
PAEKS
ABAEKS
Re-PAEKS
BroSearch
FS-BroSearch

(a) Receiver’s secret key size

FS-PEKS PAEKS
ABAEKS

Re-PAEKS
BroSearch

FS-BroSearch
0

5

10

15

20

25

30

35

40

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (K
B

) FS-PEKS
PAEKS
ABAEKS
Re-PAEKS
BroSearch
FS-BroSearch

(b) Ciphertext size

FS-PEKS PAEKS
ABAEKS

Re-PAEKS
BroSearch

FS-BroSearch
0

5

10

15

20

25

30

35

40

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (K
B

) FS-PEKS
PAEKS
ABAEKS
Re-PAEKS
BroSearch
FS-BroSearch

(c) Trapdoor size

Figure 6: Communication overhead comparison.

33

crypted images, Journal of Network and Computer Applications 208
(2022) 103514.

[3] C. Yang, Y. Liu, Y. Ding, H. Liang, Secure data migration from fair
contract signing and efficient data integrity auditing in cloud storage,
Journal of Network and Computer Applications 239 (2025) 104173.

[4] N. Anjum, Z. Latif, H. Chen, Security and privacy of industrial big
data: Motivation, opportunities, and challenges, Journal of Network
and Computer Applications (2025) 104130.

[5] G. Xu, S. Xu, X. Fan, Y. Cao, Y. Mao, Y. Xie, X.-B. Chen, Rat ring:
Event driven publish/subscribe communication protocol for iiot by re-
port and traceable ring signature, IEEE Transactions on Industrial In-
formatics (2025) 1–9doi:10.1109/TII.2025.3567265.

[6] M. Ma, B. Chen, D. Tang, M. Deng, T. Xiang, D. He, Certificateless
searchable public key encryption with trapdoor indistinguishability for
iov, IEEE Transactions on Vehicular Technology 74 (3) (2025) 5085–
5096.

[7] K. Zhang, B. Hu, J. Ning, J. Gong, H. Qian, Pattern hiding and au-
thorized searchable encryption for data sharing in cloud storage, IEEE
Transactions on Knowledge and Data Engineering 37 (5) (2025) 2802–
2815.

[8] J. Li, L. Ji, Y. Zhang, Y. Lu, J. Ning, Response-hiding and volume-
hiding verifiable searchable encryption with conjunctive keyword search,
IEEE Transactions on Computers 74 (2) (2025) 455–467.

[9] C. Liu, L. Zhu, J. Chen, Efficient searchable symmetric encryption for
storing multiple source dynamic social data on cloud, Journal of Network
and Computer Applications 86 (2017) 3–14.

[10] L. Xu, J. Li, X. Chen, W. Li, S. Tang, H.-T. Wu, Tc-pedcks: Towards
time controlled public key encryption with delegatable conjunctive key-
word search for internet of things, Journal of Network and Computer
Applications 128 (2019) 11–20.

34

[11] Q. Huang, H. Li, An efficient public-key searchable encryption scheme
secure against inside keyword guessing attacks, Information Sciences 403
(2017) 1–14.

[12] J. Tian, Y. Lu, J. Li, Lightweight searchable and equality-testable certifi-
cateless authenticated encryption for encrypted cloud data, IEEE Trans-
actions on Mobile Computing 23 (8) (2024) 8431–8446.

[13] Y. Xu, H. Cheng, J. Li, X. Liu, X. Zhang, M. Wang, Lightweight multi-
user public-key authenticated encryption with keyword search, IEEE
Transactions on Information Forensics and Security 20 (2025) 3234–
3246.

[14] Z.-Y. Liu, Y.-F. Tseng, R. Tso, M. Mambo, Y.-C. Chen, Public-key
authenticated encryption with keyword search: A generic construction
and its quantum-resistant instantiation, The Computer Journal 65 (10)
(2022) 2828–2844.

[15] L. Cheng, F. Meng, Public key authenticated encryption with keyword
search from lwe, in: European Symposium on Research in Computer
Security, Springer, 2022, pp. 303–324.

[16] S. Xu, Y. Cao, X. Chen, Y. Zhao, S.-M. Yiu, Post-quantum public-key
authenticated searchable encryption with forward security: General con-
struction, and applications, in: International Conference on Information
Security and Cryptology, Springer, 2023, pp. 274–298.

[17] L. Yao, J. Weng, A. Yang, X. Liang, Z. Wu, Z. Jiang, L. Hou, Scal-
able cca-secure public-key authenticated encryption with keyword search
from ideal lattices in cloud computing, Information Sciences 624 (2023)
777–795.

[18] L. Cheng, F. Meng, Server-aided public key authenticated searchable en-
cryption with constant ciphertext and constant trapdoor, IEEE Trans-
actions on Information Forensics and Security 19 (2024) 1388–1400.

[19] A. Kiayias, O. Oksuz, A. Russell, Q. Tang, B. Wang, Efficient encrypted
keyword search for multi-user data sharing, in: Computer Security–
ESORICS 2016: 21st European Symposium on Research in Computer
Security, Heraklion, Greece, September 26-30, 2016, Proceedings, Part
I 21, Springer, 2016, pp. 173–195.

35

[20] B. Zhang, W. Yang, F. Zhang, J. Ning, Efficient attribute-based search-
able encryption with policy hiding over personal health records, IEEE
Transactions on Dependable and Secure Computing 22 (2) (2025) 1299–
1312.

[21] G. Xu, X. Fan, S. Xu, Y. Cao, X.-B. Chen, T. Shang, S. Yu, Anonymity-
enhanced sequential multi-signer ring signature for secure medical data
sharing in iomt, IEEE Transactions on Information Forensics and Secu-
rity 20 (2025) 5647–5662.

[22] X. Liu, K. He, G. Yang, W. Susilo, J. Tonien, Q. Huang, Broadcast
authenticated encryption with keyword search, in: Australasian Confer-
ence on Information Security and Privacy, Springer, 2021, pp. 193–213.

[23] S. Mukherjee, Statistically consistent broadcast authenticated encryp-
tion with keyword search: Adaptive security from standard assump-
tions, in: Australasian Conference on Information Security and Privacy,
Springer, 2023, pp. 523–552.

[24] K. Emura, et al., Generic construction of fully anonymous broadcast au-
thenticated encryption with keyword search with adaptive corruptions,
IET Information Security 2023 (2023).

[25] G. Xu, S. Xu, Y. Cao, K. Xiao, Y. Mao, X.-B. Chen, M. Dong,
S. Yu, Aaq-peks: An attribute-based anti-quantum public key encryp-
tion scheme with keyword search for e-healthcare scenarios, Peer-to-Peer
Networking and Applications 18 (2) (2025) 1–21.

[26] X. Chen, S. Xu, Y. Cao, Y. He, K. Xiao, Aqrs: Anti-quantum ring
signature scheme for secure epidemic control with blockchain, Computer
Networks 224 (2023) 109595.

[27] J. Jiang, D. Wang, Qpase: Quantum-resistant password-authenticated
searchable encryption for cloud storage, IEEE Transactions on Informa-
tion Forensics and Security 19 (2024) 4231–4246.

[28] S. Xu, Y. Cao, X. Chen, Y. Guo, Y. Yang, F. Guo, S.-M. Yiu, Post-
quantum searchable encryption supporting user-authorization for out-
sourced data management, in: Proceedings of the 33rd ACM Interna-
tional Conference on Information and Knowledge Management, 2024,
pp. 2702–2711.

36

[29] Z. Lin, H. Li, X. Chen, M. Xiao, Q. Huang, Identity-based encryption
with disjunctive, conjunctive and range keyword search from lattices,
IEEE Transactions on Information Forensics and Security 19 (2024)
8644–8657.

[30] Y. Cao, S. Xu, X. Chen, Y. He, S. Jiang, A forward-secure and efficient
authentication protocol through lattice-based group signature in vanets
scenarios, Computer Networks 214 (2022) 109149.

[31] X. Yu, L. Xu, X. Huang, C. Xu, An efficient lattice-based encrypted
search scheme with forward security, in: International Conference on
Network and System Security, Springer, 2022, pp. 712–726.

[32] X. Chen, S. Xu, S. Gao, Y. Guo, S.-M. Yiu, B. Xiao, Fs-llrs: Lattice-
based linkable ring signature with forward security for cloud-assisted
electronic medical records, IEEE Transactions on Information Forensics
and Security 19 (2024) 8875–8891.

[33] Y. Ge, Y. Gao, J. Ning, J. Ma, X. Chen, Verifiable multilevel dynamic
searchable encryption with forward and backward privacy in cloud-
assisted iot, IEEE Internet of Things Journal 11 (24) (2024) 40861–
40874.

[34] F. Luo, H. Wang, C. Lin, X. Yan, Abaeks: Attribute-based authenti-
cated encryption with keyword search over outsourced encrypted data,
IEEE Transactions on Information Forensics and Security 18 (2023)
4970–4983.

[35] F. Luo, H. Wang, X. Yan, Re-paeks: Public-key authenticated re-
encryption with keyword search, IEEE Transactions on Mobile Com-
puting 23 (10) (2024) 10077–10092.

[36] L. Chen, J. Li, J. Li, J. Weng, Paess: Public-key authentication encryp-
tion with similar data search for pay-per-query, IEEE Transactions on
Information Forensics and Security 19 (2024) 9910–9923.

[37] Z.-Y. Liu, Y.-F. Tseng, R. Tso, M. Mambo, Y.-C. Chen, Public-key au-
thenticated encryption with keyword search: Cryptanalysis, enhanced
security, and quantum-resistant instantiation, in: Proceedings of the
2022 ACM on Asia conference on computer and communications secu-
rity, 2022, pp. 423–436.

37

[38] A. Fiat, M. Naor, Broadcast encryption, in: Advances in Cryptol-
ogy—CRYPTO’93: 13th Annual International Cryptology Conference
Santa Barbara, California, USA August 22–26, 1993 Proceedings 13,
Springer, 1994, pp. 480–491.

[39] M. A. R. Baee, L. Simpson, X. Boyen, E. Foo, J. Pieprzyk, Ali: Anony-
mous lightweight inter-vehicle broadcast authentication with encryption,
IEEE Transactions on Dependable and Secure Computing 20 (3) (2023)
1799–1817.

[40] J. Zhang, S. Su, H. Zhong, J. Cui, D. He, Identity-based broadcast proxy
re-encryption for flexible data sharing in vanets, IEEE Transactions on
Information Forensics and Security 18 (2023) 4830–4842.

[41] H. Yin, Y. Zhu, G. Guo, W. C.-C. Chu, Privacy-preserving smart con-
tracts for confidential transactions using dual-mode broadcast encryp-
tion, IEEE Transactions on Reliability 73 (2) (2023) 1090–1103.

[42] M. Ali, H. Ali, T. Zhong, F. Li, Z. Qin, A. A. Ahmed Abdelrahaman,
Broadcast searchable keyword encryption, in: 2014 IEEE 17th Interna-
tional Conference on Computational Science and Engineering, 2014, pp.
1010–1016.

[43] X. Zhang, C. Xu, H. Wang, Y. Zhang, S. Wang, Fs-peks: Lattice-based
forward secure public-key encryption with keyword search for cloud-
assisted industrial internet of things, IEEE Transactions on Dependable
and Secure Computing 18 (3) (2021) 1019–1032.

[44] O. Regev, On lattices, learning with errors, random linear codes, and
cryptography, Journal of the ACM (JACM) 56 (6) (2009) 1–40.

[45] C. Gentry, C. Peikert, V. Vaikuntanathan, Trapdoors for hard lattices
and new cryptographic constructions, in: Proceedings of the fortieth
annual ACM symposium on Theory of computing, 2008, pp. 197–206.

[46] S. Agrawal, D. Boneh, X. Boyen, Efficient lattice (h) ibe in the standard
model, in: Advances in Cryptology–EUROCRYPT 2010: 29th Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, French Riviera, May 30–June 3, 2010. Proceedings
29, Springer, 2010, pp. 553–572.

38

[47] D. Cash, D. Hofheinz, E. Kiltz, C. Peikert, Bonsai trees, or how to
delegate a lattice basis, Journal of Cryptology 25 (2012) 601–639.

[48] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev,
V. Vaikuntanathan, D. Vinayagamurthy, Fully key-homomorphic en-
cryption, arithmetic circuit abe and compact garbled circuits, in: EU-
ROCRYPT, Springer, 2014, pp. 533–556.

39

