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Abstract

A zero-bit watermarked language model produces text that is indistinguishable from that of the
underlying model, but which can be detected as machine-generated using a secret key. Unfortunately,
merely detecting AI-generated spam, say, as watermarked may not prevent future abuses. If we could
additionally trace the text to a spammer’s API token or account, we could then cut off their access or
pursue legal action.

We introduce multi-user watermarks, which allow tracing model-generated text to individual users or
to groups of colluding users. We construct multi-user watermarking schemes from undetectable zero-bit
watermarking schemes. Importantly, our schemes provide both zero-bit and multi-user assurances at the
same time: detecting shorter snippets just as well as the original scheme, and tracing longer excerpts to
individuals. Along the way, we give a generic construction of a watermarking scheme that embeds long
messages into generated text.

Ours are the first black-box reductions between watermarking schemes for language models. A major
challenge for black-box reductions is the lack of a unified abstraction for robustness — that marked text
is detectable even after edits. Existing works give incomparable robustness guarantees, based on bespoke
requirements on the language model’s outputs and the users’ edits. We introduce a new abstraction
to overcome this challenge, called AEB-robustness. AEB-robustness provides that the watermark is de-
tectable whenever the edited text “approximates enough blocks” of model-generated output. Specifying
the robustness condition amounts to defining approximates, enough, and blocks. Using our new abstrac-
tion, we relate the robustness properties of our message-embedding and multi-user schemes to that of
the underlying zero-bit scheme, in a black-box way. Whereas prior works only guarantee robustness for a
single text generated in response to a single prompt, our schemes are robust against adaptive prompting,
a stronger and more natural adversarial model.

1 Introduction

Generative AI models can now produce text and images not easily distinguishable from human-authored
content. There are many concerns about the undisclosed use of generative AI, whether for nefarious or banal
purposes. Watermarking is one approach for detecting and tracing the provenance of generative AI outputs,
and it raises challenging technical and policy questions [Sri24, BG24].

Watermarking for generative AI is on the cusp of deployment. In July 2023, the White House secured
commitments from seven industry leaders to manage and mitigate risks posed by AI: Amazon, Anthropic,
Google, Inflection, Meta, Microsoft, and OpenAI [Hou23a, Hou23b]. Among the commitments is the de-
velopment of watermarking and other provenance techniques for the next generation of audio and image
models. A few months later, President Biden issued an executive order directing federal agencies to “es-
tablish standards and best practices for detecting AI-generated content,” including guidance on the use of
watermarking [Hou23c]. Google already watermarks all content produced by the Lyria music generation
model [SG23], and OpenAI has a working prototype for watermarking text produced by ChatGPT [Aar22].

A burgeoning line of research studies watermarking for language models specifically, where strong statis-
tical and cryptographic guarantees (and negative results [ZEF+23]) can be proved or heuristically justified
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[Aar22, KGW+23a, CGZ23, FGJ+23, KTHL23, CG24]. These schemes envision a setting where a user
queries a language model through some interface. For example, querying GPT-4 using ChatGPT or the
API. The model deployer, e.g., OpenAI, uses a secret watermarking key in conjunction with the underlying
language model to produce watermarked text. The mark can be extracted from the text using the secret
key.

To be useful, watermarking schemes must have four properties. Existing schemes achieve these guaran-
tees, though the formalisms and assumptions vary greatly. First is soundness: marks must not be falsely
detected in text not generated by the watermarked model (low Type I error). Second is completeness: ver-
batim outputs of the watermarked model are detectable (low Type II error). Third is robustness to edits:
marks are detectable even after marked text is edited, say by deleting or rearranging phrases. Finally, wa-
termarking should not noticeably degrade the quality of the model’s outputs. The strongest version of this
is undetectability, requiring that the outputs of the marked and unmarked models are indistinguishable.

All existing works share two major drawbacks. First, none of them considers robustness when users
adaptively prompt the model. Second, merely detecting watermarked text is not always enough. As we
explain below, sometimes we need to trace text to a specific user of the language model.

Adaptive prompting We introduce and build watermarking schemes that are robust to adaptive
prompting. Existing works define security for a single text T produced by the model in response to any
single prompt Q. But no user issues just one prompt! Even benign users interact with the models, adaptively
refining the prompts and generations as they go. Current definitions don’t even imply that the resulting
text is marked, let alone robust to edits. We give the first definitions and proofs of robustness when users
interactively query a language model and derive text from the whole interaction.

Multi-user watermarks We introduce and build a multi-user watermarking scheme for language
models. In such a scheme, model-generated outputs can be traced to specific users, even when users collude.

Detecting watermarks isn’t always enough to mitigate harms. Consider a ChatGPT-powered bot carrying
out romance scams to trick victims into transferring large sums of money. The gullible victims won’t check
for watermarks themselves. And any single messaging platform detecting the watermarks and banning the
bot won’t help much — the scammer can always switch to a different platform. After the scam is revealed,
the watermarked text — the bot’s messages — may be available to law enforcement, the messaging platform,
or the language model provider. But there doesn’t seem to be any way to arrest the scammer or protect
future victims.

We’d like to trace the watermarked text to a specific user. The bot is querying ChatGPT using the
scammer’s user account or API token. If the marked text revealed the user, one could directly cut off the
scammer’s access to the model or seek legal recourse.

We also want security when multiple users collude. Consider three users each using ChatGPT to col-
laboratively write a shoddy legal brief or CCS submission. They might independently borrow from their
respective model outputs, while making edits and adding text of their own. Robust multi-user watermarking
guarantees that at least one of the three is identified, but no innocent users are.

As a first attempt at building multi-user watermarking for n users, one might use a different secret key for
each user. But merely detecting the watermark would require checking each of the n secret keys. This would
be too slow for widespread watermark detection: ChatGPT reportedly has more than 180 million monthly
active users. In contrast, our multi-user watermarking scheme takes O(log n) time to detect watermarked
text (omitting other parameters). Without collusions, tracing also takes O(log n) time, which is optimal
as log n bits are needed to identify a user. With collusions, tracing takes O(n log n) time (performing a
O(log n)-time check for each user).

Adding the ability to trace individual users should not compromise the detection of watermarked text in
contexts where tracing may not be needed (e.g., spam filtering). Our multi-user construction leaves untouched
the guarantees of the underlying watermarking scheme. You get the best of both robustness guarantees at the
same time! A short marked text is detectable as before, and a longer marked text is traceable to individuals.
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Black-box reductions for watermarking schemes We give a black-box construction of multi-user
watermarking from existing watermarking schemes. Our high level approach to building multi-user water-
marking is relatively simple. Suppose you have an L-bit watermarking scheme: one that embeds an L-bit
message into generated text. Then, ignoring collusions, the obvious idea is to embed an ID unique to each
user. (Our scheme can be made robust to collusions using a cryptographic primitive called a fingerprinting
code, though this doesn’t work generically.) So it suffices to build an L-bit scheme out of a so-called zero-bit
watermarking scheme, where text is simply viewed as “marked” or “unmarked.”1 We use a natural idea.
We sample 2L secret keys ki,b, one for each index i and bit b. To embed a message m, we use the zero-bit
scheme with the keys ki,m[i] for each index i. The result is text watermarked under L different keys which
together reveal the message.

The challenge is saying anything interesting about our construction while treating the underlying water-
marking scheme as a black box. It’s not even clear how to state the appropriate robustness guarantee, let
alone prove it. The issue is that every watermarking construction has a bespoke formulation of completeness2

(which verbatim model outputs are marked) and a bespoke formulation of robustness3 (which edits preserve
the mark), see Appendix A. There are two ways forward: choose a specific scheme and tailor the results, or
invent a unifying language for watermarking robustness and completeness.

We present a new framework for describing robustness and completeness guarantees of watermarking
schemes, called AEB-robustness. AEB-robustness provides that text is watermarked if it Approximates
Enough Blocks of model-generated text. Specifying the robustness condition amounts to defining “approxi-
mates,” “enough,” and “blocks.” All else equal, a scheme is more robust if looser approximations are allowed;
fewer blocks are required; or blocks require less entropy.

Our black-box reductions only affect how many blocks are enough, not what constitutes a block nor an
approximation thereof. Our results hold for any (efficiently-checkable) definition of a block and any definition
of string approximation.

With the language of AEB-robustness, our theorems are easy to state informally. Let λ be a cryptographic
security parameter. SupposeW is a (zero-bit) watermarking scheme that is undetectable, sound, and robust
whenever one block is approximated (R1-robust). Our L-bit scheme is undetectable, sound, and robust
whenever k = O(Lλ) blocks are approximated (Rk-robust). Our multi-user scheme is undetectable, sound,
and robust for n > 1 users and c > 1 collusions whenever k = O(c2 log2(c) log(n)λ) blocks are approximated.
We adopt the cryptographic approach of analyzing security against all efficient adversaries. A byproduct is
that our theorems only apply when the underlying watermarking scheme is cryptographically-secure.

1.1 Our contributions

We continue the study of watermarking schemes for language models with provable guarantees. Except
where specified, our constructions require cryptographically-strong undetectability and soundness, and that
the underlying scheme is AEB-robust.

1. We give the first black-box reductions among watermarking schemes, using a new framework for de-
scribing the robustness of watermarking schemes, called AEB-robustness. We give the first definitions
for robustness against adaptive prompting, and prove that existing undetectable watermarking schemes
are adaptively robust.

2. We construct L-bit watermarks with provable robustness from zero-bit watermarking schemes. We also
construct lossy L-bit watermarks, which yield an improved multi-user scheme.

3. We define multi-user watermarking schemes, which allow tracing model-generated text to users. Our
construction achieves provable robustness and collusion resistance from our L-bit watermarking scheme

1With one exception [CG24], all the existing schemes we study are zero-bit schemes.
2All seemingly-incomparable lower bounds on entropy: watermark potential [KTHL23], min-entropy per block [FGJ+23],

spike entropy [KGW+23a], empirical entropy [CGZ23, CG24], and on-average high entropy / homophily [ZALW23].
3All requirements on susbtrings: equality [CGZ23, FGJ+23], edit distance [KTHL23, ZALW23], produced by a binary-

symmetric channel [CGZ23].
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and a fingerprinting code. It leaves unaffected the stronger robustness of the underlying zero-bit
watermarking scheme, essentially allowing both schemes to be used at once.

1.2 Related work

A recent flurry of work on the theory of watermarking language models was kicked off by [Aar22] and
[KGW+23a]. We directly build on this line of work, especially those with strong provable guarantees for
undetectability [CGZ23], robustness [KTHL23, CG24] or public detection [FGJ+23]. See Appendix A for an
in-depth discussion of some of these schemes. We adapt and extend the cryptographic-style definitions of
[CGZ23, FGJ+23, CG24], which enables security proofs against arbitrary efficient adversaries. Other recent
work proves strong impossibility results against motivated and resourced adversaries [ZEF+23, PHZS24].
But watermarking can still be useful — a little additional overhead can make a bad actor’s job significantly
harder. Concurrently, many more applied works have advanced the practice of watermarking language
models [QYH+24, NJA24, LRW+24, JGHG24, XYL24, CLW+24] and other generative AI models [HD17,
ZKJFF18, WKGG24].

Earlier work develops steganography for language models [KJGR21]. Steganography [Hop04, Cac00] and
watermarking for language models are closely related, both embedding a message into a model’s outputs.
While steganography requires that the existence of the message be hidden, watermarking requires that the
message persist even when generated text is modified.

We make extensive use of fingerprinting codes [BS98]. We make black-box use of existing codes, par-
ticularly those that are robust to adversarial erasures. Asymptotically-optimal codes are given by [Tar08,
BKM10], while [NFH+07] focus on concrete efficiency.

1.3 Outline

The rest of the paper is structured as follows. Section 2 defines prefix-specifiable language models, the type
of models we watermark, and robust fingerprinting codes, which are used in our constructions. Section 3
gives definitions for watermarking language models. We define zero-bit, L-bit, and multi-user watermarking
schemes, along with their important properties: undetectability, soundness, completeness, and robustness.
Section 4 defines block-by-block robust watermarks, our framework for constructing and proving black-box wa-
termarking constructions. Appendix A shows that some existing watermarking schemes are block-by-block.
Section 5 constructs an L-bit watermarking scheme from zero-bit watermarking schemes. We show that
the L-bit scheme inherits undetectability, soundness, and robustness from the underlying zero-bit scheme.
Section 6 constructs a multi-user watermarking scheme from our L-bit scheme and robust fingerprinting
codes. As before, the multi-user scheme preserves the undetectability, soundness, and robustness guarantees
of the underlying watermarking scheme. We additionally preserve the efficiency and utility of the original
zero-bit scheme throughout our black-box usage. The above constructions all require the underlying wa-
termarking scheme to be cryptographically undetectable. In Section 7, we show that it is possible to build
robust multi-user watermarking schemes out of watermarking schemes that are not undetectable, albeit with
less impressive robustness parameters.

2 Preliminaries

2.1 Notation

For n ∈ N, we denote by [n] the set {1, 2, . . . , n}. A polynomial, sometimes denoted poly(·), is some function
for which there is a constant c with poly(n) = O(nc). A function is negligible if it is asymptotically smaller
than any inverse polynomial, and we use negl(·) to denote an arbitrary negligible function. Throughout
the paper, we use λ to denote the security parameter of the scheme, which specifies the security level of
the protocol. We say an algorithm is efficient or poly-bounded if its runtime is bounded above by some
polynomial.
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In our pseudocode, we use “x ← y” to assign x the value of y. Likewise we use “x←$ y” to denote
sampling (uniformly) from y and assigning the value to x (e.g. x←$ [n] denotes selecting a random integer
between 1 and n inclusive). The item y may also be a randomized function, which could just be viewed
as running the function with fresh randomness. We also sometimes use true and false in place of 1 and 0,
respectively, to make the semantics of an algorithm more clear.

For a finite set Σ called an alphabet, the set Σ∗ denotes the set of all finite-length sequences of elements
of Σ, called strings. Language models are typically defined with respect to an alphabet T , whose elements
are called tokens. The length of a string T is denoted |T |. For a string T , we define T [i] to be the token at
index i in the string, for 1 ≤ i ≤ |T |. The concatenation of string S to string T is denoted T∥S.4 We use ϵ to
denote the empty string (in contrast to ε which usually denotes a real number). The empty string satisfies
|ϵ| = 0 and ϵ∥T = T = T∥ϵ for all T . We use ∆ to denote the normalized Hamming distance between strings

of the same length. Specifically, for S, T ∈ ΣL, let ∆(S, T ) := 1
L ·
∑L

i=1 1(S[i] ̸= T [i]).
For 0 ≤ δ ≤ 1, L ∈ N and a string y ∈ {0, 1}L, we define the δ-erasure ball Bδ(y) ⊆ {0, 1,⊥}L to be

the set of all strings z ∈ {0, 1,⊥}L where zi = ⊥ for at most ⌊δL⌋ indices i, and otherwise zi = yi. For
Y ⊆ {0, 1}L, we define Bδ(Y ) = ∪y∈Y Bδ(y).

2.2 Language models

A language model Model is a randomized algorithm that takes as input a prompt Q and outputs a generation T
in response.5 Language models are defined with respect to a set of tokens T , where prompts and generations
are strings Q,T ∈ T ∗. For example, OpenAI’s GPT-4 uses a set of 100,000 tokens, with the tokens ‘water,’
‘mark’, and ‘ing’ composing the word ‘watermarking’. The token set contains a termination token, which we
denote ⊥ ∈ T . Every generation T ends in ⊥, and ⊥ appears nowhere else in T .

We restrict our attention to prefix-specifiable models. Model is prefix-specifiable if for all prompts Q
and all prefixes T , one can efficiently compute a new prompt denoted Q∥T such that the distributions (i)
Model(Q||T ) and (ii) Model(Q) conditioned on Model(Q)≤|T | = T are identical. This is a very natural
theoretical assumption to make, as most popular transformer models have this property since they depend
only on the prior tokens viewed. This assumption was also made by prior work [KGW+23a, CGZ23, CG24].
For a more complete discussion about prefix-specifiable models and their limitations, we direct the reader to
Section 6 of [CGZ23].

2.3 Fingerprinting codes

Fingerprinting codes allow for efficient tracing of pirated digital content. In a canonical example, a film
distributor is sending a movie to several reviewers in advance of a screening. To combat any pre-release leaks,
the distributor embeds a distinct codeword in every copy, where each letter in the codeword is embedded
in a particular scene of the movie. If a reviewer leaks the movie to the public, the distributor can extract
the codeword from the leaked copy and trace it back to the guilty party. The tracing task becomes more
difficult, however, if the reviewers can collude: by picking and choosing scenes from each of their copies,
the reviewers may hope to leak a version of the movie that cannot be traced back to any colluding party.
Fingerprinting codes guarantee that the distributor can still identify a guilty party so long there are at most
c colluders and they are restricted to picking scenes from their own c copies. In general, one cannot hope to
identify more than one guilty party, as the colluders can always choose to leak a copy without any edits.

Definition 2.1 (Fingerprinting codes – syntax [BS98]). A fingerprinting code is a pair of efficient algorithms
FP = (FP.Gen,FP.Trace) where:

• FP.Gen(1λ, n, c, δ) → (X, tk) is a randomized algorithm that takes as input a security parameter λ, a
number of users n, a maximum number of colluders c, and an erasure bound 0 ≤ δ < 1, and outputs a
binary code X ∈ {0, 1}n×L of size n and length L, and a tracing key tk.

4As explained in Sec. 2.2, we also use ∥ to specify the prefix of a language model’s output.
5Note that that our notation differs from prior work. Here, Model outputs a string in T ∗ (like Model in [CGZ23, CG24]),

rather than a distribution over the next token.
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• FP.Trace(y, tk) → S is a deterministic algorithm that takes as input any string y ∈ {0, 1,⊥}L and a
tracing key tk, and outputs a subset S ⊆ [n] of accused users.

For u ∈ [n], we denote the codeword assigned to user u by Xu, the uth row of X. For C ⊆ [n], we denote
the codewords assigned to the set of colluders C by XC , the submatrix (Xu)u∈C . Throughout our paper,
we assume that the length L of the fingerprinting code FP is a deterministic function of λ, n, c and δ. Most
fingerprinting codes, including the ones we use [BKM10, NFH+07], have this property.

Fingerprinting codes provide a guarantee when a subset of users C produce a codeword y by picking and
choosing the individual bits of the codewords in XC . Robust fingerprinting codes also allow a δ-fraction of
the bits to be adversarially erased. The feasible set contains all strings y that the colluding parties are able
to create.

Definition 2.2 (Feasible sets). For X ∈ {0, 1}n×L, C ⊆ [n], the feasible set is

F (XC) := {y ∈ {0, 1}L : ∀i ∈ [L], ∃x ∈ XC , x[i] = y[i]}.

In particular, if every x ∈ XC has the same value b at index i, then yi = b. For 0 ≤ δ ≤ 1, the δ-feasible
ball is Fδ(XC) := Bδ(F (XC)).

The goal of the colluders is to output some feasible word y ∈ Fδ(XC) such that FP.Trace(y, tk) = ∅ (no
user is accused) or that FP.Trace(y, tk) ̸⊆ C (an innocent user is accused). The fingerprinting code is secure
if this happens with negligible probability.

Definition 2.3 (Fingerprinting codes – robust security [BKM10]). A fingerprinting code FP is robust if for
all 0 ≤ δ ≤ 1, c ≥ 1, n ≥ c, C ⊆ [n] of size |C| ≤ c, and all efficient adversaries A, the following event
occurs with negligible probability:

• y ∈ Fδ(XC), AND // y is feasible

• FP.Trace(z, tk) = ∅ OR FP.Trace(z, tk) ̸⊆ C // no or false accusation

in the probability experiment defined by (X, tk)← FP.Gen(1λ, n, c, δ) and y ← A(XC).

Tardos’s fingerprinting code [Tar08] is asymptotically optimal, but not robust to adversarial erasures.
The fingerprinting code of Boneh, Kiayias, and Montgomery [BKM10] is based on the Tardos code but is

robust. For n > 1 users, c > 1 colluders, and a δ erasure bound, it has length L = O
(
λ(c log c)2 log n/(1−δ)

)
,

but with very large constants.

2.4 Balls and bins

Our lossy watermarking schemes allow some of the mark to get erased. Our analysis will use the following
lemma about throwing k balls into L bins uniformly at random. The lemma defines k∗, the number of balls
needed to guarantee that at most δL bins are empty except with probability e−λ. The proof uses standard
techniques and is deferred to Appendix C.

Lemma 2.4. For λ, L ∈ N and 0 ≤ δ < 1, define

k∗(L, δ) = min

L · (lnL+ λ); L · ln

 1

δ −
√

λ+ln 2
2L

 (1)

Then, after throwing k ≥ k∗(L, δ) balls into L bins, fewer than δL bins are empty except with probability at
most e−λ.
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3 Watermarks for Language Models

This section defines the syntax and properties of watermarking schemes. We introduce multi-user water-
marking schemes that can trace watermarked text to an individual user, even in the presence of collusions.

We require robustness/completeness to hold in the face of adaptive prompting. All prior works only
require completeness and robustness for a single text generated using a fixed prompt. But this is not how
generative models are used in reality. Users interact with the models, adaptively refining the prompts and
generations until they are satisfied with the result. In this setting, existing definitions don’t make any
guarantees at all! We instead require that completeness and robustness hold for adversaries that adaptively
query the model, possibly selecting text from many responses. In Section 4.1, we will show that in some
cases non-adaptive robustness implies adaptive robustness.

We consider three types of watermarking schemes: zero-bit, L-bit, and multi-user watermarking. An
L-bit watermarking scheme embeds into generated text an L-bit message which can later be extracted using
a secret key. In a zero-bit watermarking scheme, text is viewed as either marked or unmarked, but there is no
message to be extracted from marked text. The name stems from viewing zero-bit watermarking as a special
case of L-bit watermarking, with message space containing only one message. A multi-user watermarking
scheme allows for tracing model-generated text back to the user (or group of users) who prompted the
generation.

We call the robustness properties of the three types of schemes robust detection, robust extraction, and
robust tracing, respectively. We use robust when the meaning is clear from context. Definitions for zero- and
L-bit watermarking are adapted from existing works, though we relax correctness to require only (1 − δ)L
bits of the message to be recovered. Our notation most closely follows [CGZ23, CG24].

3.1 Zero- and L-bit watermarking syntax

We give the syntax of zero-bit watermarking and L-bit watermarking schemes. The difference is whether
the watermark is binary — marked or unmarked — or encodes a message. Throughout the paper we focus
on the secret key setting, where Detect and Wat share a key sk generated by KeyGen.

For zero-bit watermarking, the algorithm Wat is the watermarked version of the language model, with the
same inputs and outputs. The Detect algorithm indicates whether text is considered marked or unmarked.

Definition 3.1 (Zero-bit watermarking – Syntax). A zero-bit watermarking scheme for a language model
Model over T is a tuple of efficient algorithms W = (KeyGen,Wat,Detect) where:

• KeyGen(1λ) → sk is a randomized algorithm that takes a security parameter λ as input and outputs a
secret key sk.

• Watsk(Q) → T is a keyed randomized algorithm that takes a prompt Q as input and outputs a string
T ∈ T ∗.

• Detectsk(T ) → b is a keyed deterministic algorithm that takes a string T ∈ T ∗ as input and outputs a
bit b ∈ {0, 1}.

An L-bit watermarking scheme allows a message m ∈ {0, 1}L to be embedded in generated text and
later extracted. The syntax is the natural generalization of the above, though we rename Detect to Extract,
reflecting its new semantics. Observe that a 1-bit scheme can be used to construct a zero-bit scheme by
taking Watsk(Q) := Watsk(1, Q) and Detectsk(T ) := 1

(
Extractsk(T ) = 1

)
. Likewise for L > 1.

Definition 3.2 (Watermarking syntax – L-bit). An L-bit watermarking scheme for a language model Model
over T is a tuple of efficient algorithms W = (KeyGen,Wat,Extract) where:

• KeyGen(1λ) → sk is a randomized algorithm that takes a security parameter λ as input and outputs a
secret key sk.
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• Watsk(m,Q) → T is a keyed randomized algorithm that takes as input a message m ∈ {0, 1}L and a
prompt Q ∈ T ∗ and outputs a string T ∈ T ∗.

• Extractsk(T ) → m̂ is a keyed deterministic algorithm that takes a string T ∈ T ∗ as input and outputs
a message m̂ ∈ {0, 1,⊥}L.

3.2 Properties of watermarking schemes

Watermarking schemes must have four properties. First is soundness: marks must not be falsely detected
(resp. extracted, traced) in text not generated by the watermarked model (low Type I error). Second,
watermarking should not noticeably degrade the quality of the model’s outputs. The strongest version
of this is undetectability : the marked and unmarked models are indistinguishable. Third is completeness:
the marks are detectable in verbatim outputs from the watermarked model (low Type II error). Fourth is
robustness to edits: marks are detectable even after marked text is edited, say by deleting or rearranging
phrases, or by pasting an excerpt into an unmarked document. All the existing schemes offer some degree
of all four guarantees, though the formalisms and assumptions vary greatly.

We now define these properties for L-bit watermarking. We defer to Appendix B definitions of unde-
tectability, soundness, completeness, and robust detection for zero-bit watermarking, as they are special cases
of the L-bit definitions. We require negligible probabilities of failure against arbitrary efficient adversaries,
in part because such strong guarantees lend themselves to black-box reductions. Some prior works target
weaker guarantees, in particular by relaxing undetectability. In Section 7, we give some limited results for
schemes that are not undetectable.

Soundness requires that Extract returns ⊥L except with negligible probability for all strings T containing
at most poly-many tokens.

Definition 3.3 (Soundness – L-bit). An L-bit watermarking scheme W = (KeyGen,Wat,Extract) is sound
if for all polynomials poly and all strings T ∈ T ∗ of length |T | ≤ poly(λ),

Pr
sk←$ KeyGen(1λ)

[Extractsk(T ) ̸= ⊥L] < negl(λ).

Undetectability requires that outputs of the watermarked model Wat must be computationally indistin-
guishable from outputs of the underlying model Model. In particular, this implies that any computationally-
checkable utility guarantees of Model also hold for Wat.

Definition 3.4 (Undetectability – L-bit). Define the oracle Model′(m,Q) := Model(Q). An L-bit water-
marking scheme W = (KeyGen,Wat,Extract) for Model is undetectable if for all efficient adversaries A,∣∣∣∣Pr[AModel′(·,·)(1λ) = 1]− Pr

sk←$ KeyGen(1λ)
[AWatsk(·,·)(1λ) = 1]

∣∣∣∣ < negl(λ).

Completeness and robustness Formally defining completeness and robustness requires some care. We
focus on robustness, as completeness is a special case.

Intuitively, robustness should guarantee something like the following: if T ←$ Watsk(m,Q) and T̂ ≈ T ,
then Extractsk(T̂ ) = m. But this requirement is too strong. Soundness requires that any fixed string, say
the text of The Gettysburg Address, is unmarked with high probability. But then so must the text T
generated in response to the query Q = What is the text of The Gettysburg Address?, assuming the
model answers correctly.

To deal with this issue, existing works impose a requirement on the entropy of T , for various notions of
entropy. In light of the above, robustness should guarantee something like the following. If T ←$ Watsk(m,Q),
then one of the following holds with high probability: (i) T lacks sufficient entropy; (ii) T̂ ̸≈ T ; or (iii)
Extractsk(T̂ ) = m. Instantiating the definition requires specifying what exactly conditions (i) and (ii) mean.

Our definition of robustness is agnostic to this choice (though our constructions require additional struc-
ture, see Sec. 4). Instead, we define robustness relative to a generic robustness condition R which evaluates
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to 1 when both (i) T has sufficient entropy, and (ii) T̂ ≈ T . Note that R only defines a sufficient condition
for extracting the mark. It may sometimes hold that Extractsk(T̂ ) = m even when R = 0.

Our definition of robust extraction is also parameterized by a number 0 ≤ δ ≤ 1. A scheme is lossy if
δ > 0, and lossless if δ = 0. We omit δ for lossless schemes, writing R-robust/complete. Recall that Bδ(m)
is the set of all strings m̂ ∈ {0, 1,⊥}L that agree with m except for at most ⌊δL⌋ indices.

Definition 3.5 (Robustness condition). A robustness condition is a (deterministic, efficient) function R :
(λ, (Qi)i, (Ti)i, T̂ ) 7→ b, where λ ∈ N; Qi, Ti, T̂ ∈ T ∗ for all i; and b ∈ {0, 1}.

Definition 3.6 ((δ,R)-Robust extraction – L-bit, adaptive). An L-bit watermarking scheme W = (KeyGen,
Wat,Extract) is adaptively (δ,R)-robustly extractable with respect to robustness condition R if for all mes-
sages m ∈ {0, 1}L, and all efficient adversaries A, the following event FAIL occurs with negligible probability:

• R
(
λ, (Qi)i, (Ti)i, T̂

)
= 1, AND // robustness condition holds

• m̂ ̸∈ Bδ(m) // the mark is corrupted

in the probability experiment defined by

• sk←$ KeyGen(1λ)

• T̂ ← AWatsk(m,·)(1λ), denoting by (Qi)i and (Ti)i the sequence of inputs and outputs of the oracle

• m̂← Extractsk(T̂ ).

Completenss is almost identical, with the additional clause “AND T̂ ∈ (Ti)i” added to FAIL (see Defini-
tion B.3).

3.3 Multi-user watermarks

We now define a multi-user watermarking scheme. We consider a watermarking scheme which is deployed
for a set of users U and generalize the notation for zero-bit watermarking. Our definition has three functions
that nearly match the syntax and semantics of zero-bit watermarking. The only difference among the first
three functions is that Wat takes as input both a user and a prompt. The new functionality of a multi-user
watermarking scheme is Trace, which given some text T̂ can output the user that produced T̂ .

Our syntax tracks the following intended usage. The watermarker initially sets up their system by
generating a secret key sk with KeyGen. For each user u, they provide oracle access to Watsk(u, ·), fixing the
first input u. This models, say, a signed-in user interacting with ChatGPT.

To detect only the presence of a watermark in a candidate text T̂ , the watermarker can run Detectsk(T̂ )
exactly as in a zero-bit watermarking scheme. If they want to determine which user(s) the text belongs
to, they can run Tracesk(T̂ ), which outputs the (possibly empty) set of users whose watermarked outputs
generated T̂ .

Definition 3.7 (Multi-user watermarking). A multi-user watermarking scheme for a model Model over a
token alphabet T and a set of users U is a tuple of efficient algorithms W = (KeyGen,Wat,Detect,Trace)
where:

• KeyGen(1λ) → sk is a randomized algorithm that takes a security parameter λ as input and outputs a
secret key sk.

• Watsk(u,Q) → T is a keyed randomized algorithm that takes as input a user u ∈ U and a prompt
Q ∈ T ∗ and generates a response string T ∈ T ∗.

• Detectsk(T ) → b is a keyed deterministic algorithm that takes a string T ∈ T ∗ as input and outputs a
bit b ∈ {0, 1}.
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• Tracesk(T ) → S is a keyed deterministic algorithm that takes a string T ∈ T ∗ and outputs a set of
accused users S ⊆ U .

Notice that detection could simply check if Trace outputs at least one user, so our definition could remove
the explicit function Detect. However, detection alone may be much quicker or require less generated text
compared to tracing. Both are true in our construction (Section 6): detection only requires checking if a
partially-erased watermark is not empty, where extracting the partial mark takes O(log |U|) time. Tracing
amounts to checking the partial watermark against each user one-by-one, and may fail if too much of the
mark is erased.

Although it makes sense to separate these forms of detection, we also hope that the two are consistent.
In other words, if there is no detected watermark in the text, then we don’t want to accuse any users of
generating it. Alternatively, if we can find a user, then we should also detect that there is watermark.

Definition 3.8 (Consistency). We say a multi-user watermarking schemeW = (KeyGen,Wat,Detect,Trace)
is consistent if for all T ∈ T ∗ and all keys sk,

Detectsk(T ) = 0 =⇒ Tracesk(T ) = ∅.

As before, a multi-user watermarking scheme should be undetectable, sound, and robust.6 The first two
properties are straightforward generalizations of definitions for L-bit watermarking, and we defer them to
Appendix B.3.

As for robustness, we can ask for both robust detection and robust tracing. By consistency, R-robust
tracing implies R-robust detection. Motivated by the multi-user setting, we additionally consider robustness
against collusions. If a group of users u1, . . . , uc, each interacting with their own oracle, collude to produce
some text T̂ , then we still wish that Trace can find one or more of the users. Our definition below captures
this idea by allowing the adversary to query the model as c distinct users.

Definition 3.9 (R-Robust tracing against c-collusions – multi-user, adaptive). A multi-user watermarking
scheme W = (KeyGen,Wat,Detect,Trace) is R-robustly traceable against c-collusions with respect to the
robustness condition R and collusion bound c > 1 if for all C ⊆ U of size at most |C| ≤ c and all efficient
adversaries A, the following event FAIL occurs with negligible probability:

• ∀i, ui ∈ C, AND // only users in C collude

• R
(
λ, (Qi)i, (Ti)i, T̂

)
= 1, AND // robustness condition passes

•
(
S = ∅ ∨ S ̸⊆ C

)
// no or false accusation

in the probability experiment defined by

• sk←$ KeyGen(1λ)

• T̂ ← AWatsk(·,·)(1λ), denoting by (ui, Qi)i and (Ti)i the sequence of inputs and outputs of the oracle

• S ← Extractsk(T̂ ).

4 Block-by-block watermarks

This section introduces the syntax for block-by-block watermarking schemes and AEB-robustness conditions.
These abstractions provide a unified way to describe the robustness guarantees of existing schemes that
enables black-box reductions.

6We do not define completeness for multi-user watermarking, as it is just a special case of robustness, which we prove later
in the paper.
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Informally, a block-by-block scheme views a generation T as a sequence of blocks Blocks(T ), each of
which has high-enough entropy. AEB-robustness guarantees that candidate text is watermarked whenever it
Approximates Enough Blocks of model-generated text (see Figure 1). In general, these blocks do not need
to be copied verbatim and in fact only need to be approximated in the candidate text. The AEB-robustness
condition R1 requires one block to be approximated. R1 is satisfied by T̂ if there exists a single block
β ∈ ∪iBlocks(Ti) that is approximated by some substring β̂ of T̂ . For k ≥ 1, the AEB-robustness condition
Rk requires approximating k blocks. Rk checks whether at least k distinct blocks βj ∈ ∪iBlocks(Ti) are

approximated by substrings β̂j of T̂ . In our constructions, we will only require that the underlying scheme
is R1-robustly detectable. Using this underlying scheme, our multi-user construction (Section 6) will be
R1-robustly detectable and Rk-robustly traceable.

𝛽! 𝛽" 𝛽# 𝛽$ 𝛽% 𝜎𝑇!
𝑇"

𝑇"
. . .

Figure 1: Visualization of a string T̂ containing three approximate blocks from original generations T1 and
T2. This T̂ would satisfy the R3(λ, (Qi)i, (Ti)i, T̂ ) robustness condition.

We now formalize these notions. To define the AEB-robustness condition R1, we need a binary function
block (which specifies whether a given substring β ∈ T constitutes a block) and a binary relation on strings

≏ (which specifies when β̂ approximates β) denoted by β̂ ≏ β. Note that all the functions defined below
may take the security parameter λ as an additional input. We omit it to reduce notational clutter.

As already discussed, a useful measure of the entropy of a generation must be with respect to the
underlying query (and the language model). Thus we define block to take two strings as input, the generation
T and the prompt Q.

Definition 4.1 (Block). Let block : T ∗ × T ∗ → {0, 1} be a (deterministic, efficient) function. For Q ∈ T ∗,
a block with respect to Q is a string T ∈ T ∗ such that block(T ;Q) = 1. A block is minimal if no prefix is a
block.

Definition 4.2 (Block-by-block watermarking). A block-by-block watermarking scheme W is a watermark-
ing scheme that it has an additional block algorithm block : T ∗ × T ∗ → {0, 1}, which may depend on λ and
Model, but not the secret key sk.

It is easy to check that any generation of a prefix-specifiable model can be uniquely parsed into a sequence
of minimal blocks (possibly with a non-block suffix), which we denote Blocks(T ;Q).

Definition 4.3 (Blocks(T ;Q)). Let Q,T ∈ T ∗ be strings and block as above. We define Blocks(T ;Q) to
be the unique sequence (β1, β2, . . . , βB) such that: (i) T = β1∥β2∥ · · · ∥βB∥σ for some string σ; (ii) βi is a
minimal block with respect to Q∥β1∥ · · · ∥βi−1 for all i ∈ [B]; and (iii) no prefix of σ is a block with respect
to Q∥β1∥ · · · ∥βB. We call Blocks(T ;Q) the blocks of T with respect to Q.

AEB-robustness conditions involve counting the number of substrings of T̂ that approximate distinct
blocks in a generation T , where the approximation is specified by the binary relation ≏, which we typically
suppress throughout the paper for ease of notation. The function NumBlocks returns that count.

Definition 4.4 (NumBlocks). Let block and Blocks as above, and let ≏: T ∗×T ∗ → {0, 1} be a binary relation
on strings. The function NumBlocks : (T̂ ;Q,T ) 7→ n on input strings T̂ , Q, T ∈ T ∗ is defined to be the

maximum n ≥ 0 for which there exist substrings β̂1, . . . , β̂n ∈ T̂ and distinct blocks β1, . . . , βn ∈ Blocks(T ;Q)

such that β̂i ≏ βi for all i ∈ [n].
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Rk holds when at least k substrings are present in a string T̂ that approximate (according to some ≏)
blocks contained in generations (Ti)i with respect to prompts (Qi)i.

Definition 4.5 (AEB-robustness condition Rk). Fix NumBlocks as above. For k ≥ 1, the AEB-robustness
condition Rk is

Rk(λ, (Qi)i, (Ti)i, T̂ ) := 1

(∑
i

NumBlocks(T̂ ;Qi, Ti) ≥ k

)
.

We can easily compare AEB-robust watermarking schemes to one another. All else equal, a watermarking
scheme is more robust if we relax any of “approximate”, “enough”, or “blocks.” We may relax ≏, considering
more strings as approximations of a given block. We may reduce k, requiring fewer approximate blocks. Or
we may relax block, treating shorter strings as blocks.

Notice that we can trivially view any watermarking scheme as block-by-block and AEB-robust. Specifi-
cally, by defining entire generations as a single block and taking the equality relation, any complete scheme
would be R1 robust. However, this perspective is very weak. As we discuss in Appendix A, many schemes
are block-by-block and AEB-robust for non-trivial block functions and relations.

4.1 Non-adaptive to adaptive robustness

Existing watermarking schemes provide robustness guarantees that are non-adaptive in the sense that they
only allow adversaries to see a single watermarked output T before creating T̂ . See Definition B.3 in the
Appendix. We show that a non-adaptive R1-robust watermarking scheme is adaptively R1-robust, so long
as the scheme is undetectable.

Lemma 4.6 (Non-adaptive to adaptive robustness). Let W = (KeyGen,Wat,Detect) be a block-by-block
zero-bit watermarking scheme that is undetectable. If W is non-adaptively R1-robustly detectable, then it is
adaptively R1-robust.

See Lemma B.6 for a proof of the (stronger) statement for L-bit watermarking schemes and robust extraction.
We do not believe the statement holds for general robustness conditions R.

5 Zero-bit to L-bit watermarks

In this section, we construct L-bit watermarking schemes from block-by-block, zero-bit watermarking schemes.
Namely, ifW ′ is a zero-bit watermarking scheme that is undetectable, sound and R1-robust, the resultingW
is an L-bit scheme that is undetectable, sound, and Rk-robust, with k = O(Lλ). Our construction is black-
box with respect to the robustness condition of W ′, requiring only that it is R1-robust for some underlying
functions block and ≏. The resulting scheme is Rk-robust where R is induced by the same block and ≏ as
R1.

Section 5.1 gives the construction and Section 5.2 proves robustness. Section 5.3 analyzes the resulting
value of k. It suffices to set k = O(Lλ) to losslessly recover the message. For long messages (L = Ω(λ)),
recovering a constant (1− δ) fraction of the messages requires only O(L) blocks.

5.1 Constructing L-bit watermarks

Our construction is given in Figure 2. LetW ′ = (KeyGen′,Wat′,Detect′) be a zero-bit watermarking scheme.
We construct an L-bit scheme W = (KeyGen,Wat,Extract) as follows. The secret key sk consists of 2L
zero-bit keys ki,b ← KeyGen′(1λ) sampled independently, for all i ∈ [L] and b ∈ {0, 1}. The keys ki,0 and and
ki,1 are used to embed the ith bit of a message m ∈ {0, 1}L. To do so, the watermarked model Watsk(m,Q)
repeatedly samples a new block of text by calling Wat′ with key ki,m[i] for uniformly random index i←$ [L].
What constitutes a block of text is determined byW ′, which is assumed to be a block-by-block scheme. The
generated block is added to the current generation and the process is repeated. The loop exits when the
call to Wat′ fails to generate a full block of text. To extract the message from T̂ , the algorithm Extractsk(T̂ )
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KeyGen(1λ)

For i = 1, . . . , L:
ki,0←$ KeyGen′(1λ)
ki,1←$ KeyGen′(1λ)

Return sk = (ki,0, ki,1)
L
i=1

Extractsk(T̂ )

For ki,b ∈ sk:

zi,b ← Detect′ki,b
(T̂ )

For i = 1, . . . , L:

m̂i ←


⊥ if zi,0 = zi,1 = false

0 if zi,0 = true

1 otherwise

Return m̂ = m̂1m̂2 . . . m̂L

Watsk(m,Q)

T ← ϵ
While true:
k←$ {ki,b : i ∈ [L], b = m[i]}
T ′←$ Wat′k(Q∥T )
(β1, β2, . . . )← Blocks(T ′;Q∥T )
If β1 = ⊥: Exit loop
T ← T∥β1

T ← T∥T ′
Return T

Figure 2: Pseudocode for L-bit watermarking scheme of W = (KeyGen,Wat,Extract) from a block-by-block
zero-bit watermarking scheme W ′ = (KeyGen′,Wat′,Detect′).

runs Detect′(T̂ ) algorithm using every key ki,b. The ith bit of extracted message is determined by which of
the keys ki,0 or ki,1 a (zero-bit) mark was detected.

We now show that our scheme is undetectable and sound. Robustness (which implies completeness) is
more involved, and is deferred to Section 5.2. In the following, let W ′ be a zero-bit watermarking scheme
and W be the L-bit watermarking scheme described in Figure 2.

Claim 5.1 (W is undetectable). If Model is prefix-specifiable andW ′ is undetectable, thenW is undetectable.

Proof. By the undetectability of W ′, one can replace every call to Wat′k(Q∥T ) with Model(Q∥T ), with
negligible effect on the adversary’s output distribution. The result is a modified version of W that generates
the response to prompt Q by iteratively calling Model(Q∥T ) with T the prefix generated so far. Because
Model is prefix-specifiable, this is the same distribution as Model(Q).

Claim 5.2 (W is sound). Let W ′ be a block-by-block zero-bit watermarking scheme. If W ′ is sound then W
is sound.

Proof. The soundness of W follows immediately from the soundness of W ′ = (KeyGen′,Wat′,Extract′).
Specifically, observe that for a given sk = (ki,0, ki,1)

L
i=1, Extractsk(T ) ̸= ⊥L only when

Extract′ki,b
̸= ⊥ for some i ∈ [L] and b ∈ {0, 1}. So, for every polynomial p, λ, and T with |T | ≤ p(λ),

Pr
sk←$ KeyGen(1λ)

[Extractsk(T ) ̸= (⊥)L] ≤ 2L Pr
k←KeyGen′(1λ)

[Extract′k(T ) ̸= ⊥] < negl(λ),

via a union bound over every call to Extract′.

5.2 Robustness of L-bit watermarks

In this section, we prove robustness of our scheme (Theorem 5.4). Namely, our L-bit watermarking scheme
is (δ,Rk)-robust for any k ≥ k∗(L, δ) as defined in Lemma 2.4. The parameter k∗ ≤ L lnL + Lλ = O(Lλ)
for all δ (see Section 5.3 for discussion). Note that k∗ is independent of the total amount of generated text
seen by the adversary!

We actually prove a stronger result, Lemma 5.3, of which Theorems 5.4 and 6.4 are both corollaries. In
the theorems and proofs, we use the notation from Definition 2.2 to denote feasible sets.
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Lemma 5.3 (W recovers lossy descendants). Let L ∈ N, 0 ≤ δ < 1, k ≥ k∗(L, δ), and let M ⊆ {0, 1}L.
Suppose W ′ is a block-by-block zero-bit watermarking scheme that is undetectable, sound, and R1-robustly
detectable. Let W = (KeyGen,Wat,Extract) be the construction from Figure 2 using W ′.

Then for all efficient A, the following event FAIL occurs with negligible probability:

• ∀i,mi ∈M , AND // only queried messages in M

• Rk

(
λ, (Qi)i, (Ti)i, T̂

)
= 1, AND // robustness condition passes

• m̂ ̸∈ Fδ(M) // extracted message unrelated to M

in the probability experiment defined by

• sk←$ KeyGen(1λ)

• T̂ ← AWatsk(·,·)(1λ), denoting by (mi, Qi)i and (Ti)i the sequence of inputs and outputs of the oracle

• m̂← Extractsk(T̂ ).

Proof. We will prove Lemma 5.3 via three hybrid transitions, moving from the experiment defined in the
lemma statement to one where all of the calls to the underlying zero-bit watermarking algorithm W ′ are
replaced by calls to the robustness condition R1 and to Model. In Hybrid 1, we use the soundness of W ′
to remove all calls to Detect′ that use keys unrelated to any messages m ∈ M . In Hybrid 2, we use the
R1-robustness of W ′ to remove the calls to Detect′ that use the rest of the keys, this time replacing them
with calls to R1. Finally, in Hybrid 3 we rely on the undetectability of W ′ to replace all of the calls to Wat′

with calls to Model. We then use the definition of Rk-robustness and our choice of k to complete the proof.
Let pFAIL be the probability of the event FAIL in the experiment defined in the lemma statement. Through-

out this proof, we condition on the events (∀i,mi ∈ M) and Rk(λ, (Qi)i, (Ti)i, T̂ ) = 1, both of which are
efficiently checkable by A and implied by FAIL.

Hybrid 1 (Soundness) Consider the set of keys KM = {ki,m[i] : i ∈ [L],m ∈ M}, and its complement

KM . In Hybrid 1, we modify Extractsk to remove every call to Detect′ki,b
(T̂ ) for k ∈ KM , replacing it

with zi,b ← false. Let m̂1 be the result of Extractsk(T̂ ) in Hybrid 1. By construction, if m̂1[i] ̸= ⊥, then
m̂1[i] = m[i] for some m ∈M . In other words, although there may be many ⊥ entries, non-⊥ entries of m̂1

must agree with some element of M , so m̂1 ∈ Fγ1
(M) for some γ1 ≤ 1.

Observe that the keys in KM are never used by Watsk. Hence the view of A — and in particular its
output T̂ — is independent of the keys KM . By the soundness of W ′, every call to Detect′k(T̂ ) for k ∈ KM

returns 0 with high probability. Notice that Extractsk does not change its behavior whether a call to Detect′

returns 0 or is removed entirely (the only difference between the real game and Hybrid 1), since each zi,b is
initialized to false in the hybrid.

Therefore, the output distribution of Extractsk in Hybrid 1 and the real execution are statistically close
(conditioned on ∀i,mi ∈M). Let p1 be the probability of the event FAIL in Hybrid 1. As Extractsk changed
only negligibly between the hybrids, we have that

|p1 − pFAIL| ≤ negl(λ).

Hybrid 2 (Robustness) The pseudocode for Hybrid 2 is given in Figure 3. In this hybrid, we remove
the remaining calls to Detect′ki,b

(T̂ ) for k ∈ KM , replacing each with a call to the robustness condition R1

(which requires the relevant set of queries and responses as input). So, for each ki,b, the corresponding call

to R1 is run on Qi,b and Gi,b, the sequences of queries to and generations from Wat′ki,b
in W̃atsk. The code

of W̃atsk is edited to track Qi,b and Gi,b.
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W̃atsk(m,Q)

T ← ϵ
While true:
i←$ [L] ; b← m[i]

T ′←$ Wat′ki,b
(Q∥T ) // in Hybrid 2

T ′←$ Model(Q∥T ) // in Hybrid 3

Qi,b ← (Qi,b, Q∥T )
Gi,b ← (Gi,b, T ′)
(β1, β2, . . . )← Blocks(T ′;Q∥T )
If β1 = ⊥: Exit loop
T ← T∥β1

T ← T∥T ′
Return T

Ẽxtractsk(T )

For ki,b ∈ KM :
zi,b ← R1(λ,Qi,b,Gi,b, T )

For ki,b ∈ KM :
zi,b ← false

For i = 1, . . . , L

m̂i ←


⊥ if zi,0 = zi,1 = false

0 if zi,0 = true

1 otherwise

Return m̂ = m̂1m̂2 . . . m̂L

Figure 3: Intermediate versions of Wat and Extract, used to produce outputs that are independent of the
keys, used in the proof of Lemma 5.3. The boxed lines are used only in the indicated hybrid. At setup, we
additionally initialize Qi,b,Gi,b to ( ) for all i, b.

Let m̂2 be the result of Ẽxtractsk(T̂ ) in Hybrid 2. As in Hybrid 1, m̂2 ∈ Fγ2
(M) for some γ2 ≤ 1. Moreover,

γ2 ≥ γ1, meaning that m̂2 can only contain more ⊥-entries than m̂1. This is because R1(λ,Qi,b,Gi,b, T̂ ) = 1

implies that Detect′ki,b
(T̂ ) = 1 with high probability (but not the converse), because W ′ is R1-robust.

7

Let p2 be the probability of the event FAIL in Hybrid 2. For m̂1 ∈ Fγ1
(M), m̂2 ∈ Fγ2

(M), and γ2 ≥ γ1,
we have

Pr[m̂2 ̸∈ Fδ(M)] = Pr[γ2 > δ] ≥ Pr[γ1 > δ] = Pr[m̂1 ̸∈ Fδ(M)].

Hence,
p2 ≥ p1 − negl(λ).

Hybrid 3 (Undetectability) The pseudocode for Hybrid 3 is given in Figure 3. In Hybrid 3, we remove
all use of the watermarking scheme W ′ by replacing Wat′ with Model. In these functions, we no longer
sample generations from Wat′ and instead use Model. Observe that in Hybrid 3, the adversary’s view is

independent of the indices i sampled by W̃at.
Let p3 be the probability of FAIL in Hybrid 3. By undetectability of W ′

|p3 − p2| ≤ negl(λ).

At most ⌊δL⌋ erasures Recall we are conditioning on Rk(λ, (Qj)j , (Tj)j , T̂ ) = 1. By definition, there are

k′ ≥ k substrings τ̂ ∈ T̂ that are ≏-close to disjoint blocks β ∈ ∪jBlocks(Tj ;Qj). Each such block β has an

associated index iβ : the index that was sampled by W̃atsk in the iteration that generated β. By construction,
a bit is extracted at each of these indices: m̂[iβ ] ̸= ⊥.

The indices iβ are uniform over [L] and independent of one another. Hence, the number N⊥ of indices
j where m̂[j] = ⊥ is distributed as the number of empty bins remaining after throwing k′ balls into L bins
uniformly at random. By Lemma 2.4 and the hypothesis that k′ ≥ k ≥ k∗(L, δ), we have that N⊥ ≤ ⌊δL⌋
except with probability e−λ. We know that m̂ ∈ F1(M) because m̂1 ∈ Fγ1

(M) (with high probability) and

7Otherwise, we construct adversary A′ breaking the R1-robustness of Wat′ki,b
, as follows: A′ runs A, internally simulating its

W̃at oracle, only querying its own Wat′ oracle to simulate calls to Wat′ki,b
. A′ outputs the string T̂ returned by A. Notice that

this critically uses the adaptivity of our robustness definition. However, because we assume W ′ is undetectable, non-adaptive
robustness (Definition B.3) would suffice via Lemma 4.6.
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the two games are negligibly different. Combining this fact with our argument about N⊥ shows that we have
m̂ ∈ Fδ(M), with high probability. Hence

p3 ≤ negl(λ) =⇒ pFAIL ≤ negl(λ)

Theorem 5.4 (W is robust). Suppose W ′ is a block-by-block zero-bit watermarking scheme that is unde-
tectable, sound, and R1-robustly detectable. Then theW construction from Figure 2 is an L-bit watermarking
scheme that is sound, undetectable, and (δ,Rk)-robustly extractable for k ≥ k∗(L, δ).

Proof. By Claims 5.2 and 5.1, W is sound and undetectable. Robustness is an an immediate corollary of
Lemma 5.3, fixing the subset M ⊆ {0, 1}L to be a singleton set. If an adversary can only query a fixed
message m ∈M , then the event bounded in Lemma 5.3 is exactly the definition of (δ,Rk)-robustness.

5.3 How good is Rk∗?

Theorem 5.4 states that our scheme is (δ,Rk∗)-robust where:

k∗(L, δ) = min

L · (lnL+ λ); L · ln

 1

δ −
√

λ+ln 2
2L

 (2)

This means that our watermarking scheme embeds L-bit messages into model-generated text T such that
at least a (1 − δ)-fraction of the embedded message can be recovered from any text T̂ containing at least
k∗(L, δ) approximate blocks from T . We remark that as our construction doesn’t depend on δ, it satisfies
(δ,Rk∗)-robustness for all 0 ≤ δ < 1 simultaneously.

We’d like k to be as small as possible, for two reasons. First, because smaller k means that T̂ can be
farther from T — guaranteeing stronger robustness. Second, because k blocks are required to extract the
mark even in the absence of an adversary! Language models have variable-length outputs, and too-short T
are not marked. Smaller k means that more of model’s outputs are marked. But we cannot make k too small
without a very different approach. Any scheme that embeds each bit into a distinct block of text requires
k ≥ L(1− δ) = O(L).

So how does k∗ compare to the L(1 − δ) lower bound? We consider two parameter regimes. For L <
(λ+ ln 2)/2, we have k∗ = L(lnL+ λ). As L = poly(λ), we have that k∗ = O(Lλ) and is independent of δ.
For L > (λ + ln 2)/2, the minimum is achieved at δ > 0. Taking c =

√
2L/(λ+ ln 2) and δ > 1/c, we have

that k∗ ≤ L ln
(

1
δ−1/c

)
= O(L). (Even better, k∗ < L for δ > 1/c+ 1/e.)

A possible approach for further improving the parameter k is to use error correcting codes. The idea
is simple. Let ECC be an error correcting code with block-length L′ > L. To losslessly embed a mark
m ∈ {0, 1}L, embed the codeword w = ECC(m) using an L′-bit watermarking scheme. If ŵ can be extracted
with at most δ fraction of erasures, we can decode and recover m in its entirety. The result would be
a lossless Rk′ -robust scheme for k′ = k∗(L′, δ). If L′ = o(Lλ), this yields an asymptotic improvement
k′ = o(k) = o(Lλ).

Comparison to [CG24] While most prior work constructs zero-bit watermarking, Christ and Gunn
[CG24] build both zero-bit and (lossless) L-bit watermarking schemes, from zero/L-bit pseudorandom error-
correcting codes respectively. The L-bit scheme of [CG24] and our L-bit scheme instantiated with the zero-bit
scheme of [CG24] have incomparable robustness guarantees. Roughly speaking, their zero-bit scheme is R1-
robust for blocks that require O(λ) empirical entropy. Their L-bit scheme is also R1-robust, but with “longer”
blocks requiring O(L + λ) empirical entropy. Importantly this block of text has to be a single contiguous
block that was produced in one generation.

In contrast, our L-bit scheme is Rk-robust, requiring k = O(Lλ) of the original, zero-bit blocks. While
it requires more empirical entropy overall, Rk-robustness allows these k blocks to appear anywhere in all of
the generations ever seen by the adversary.
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6 Building multi-user watermarks

In this section, we construct a multi-user watermarking scheme using L-bit watermarking schemes and
robust fingerprinting codes as black boxes. When instantiated with our L-bit scheme from Section 5, the
result is robust against colluding users as well. To our knowledge, ours is the first watermarking scheme
that is secure against any sort of collusion. The black-box nature of our construction ensures that we
can instantiate our multi-user schemes with improved parameters whenever the underlying watermarking
schemes or fingerprinting codes improve.

Section 6.1 gives the construction of our multi-user scheme and proves its undetectability, consistency,
and soundness, using the undetectability and soundness of the underlying L-bit scheme. In Section 6.2 we
prove robustness of our multi-user scheme, which follows from the robustness of the fingerprinting code and
our own L-bit scheme (Theorem 5.3). Finally, in Section 6.3 we analyze the key features of our multi-user
scheme and compare our approach to other possible constructions.

6.1 Constructing multi-user watermarks

KeyGen(1λ)

(X, tk)←$ FP.Gen′(1λ, n, c, δ)
sk←$ KeyGen′(1λ)
Return (X, tk, sk)

Wat(X,tk,sk)(u,Q)

T ←$ Wat′sk(Xu, Q)
Return T

Detect(X,tk,sk)(T̂ )

m̂← Extract′sk(T̂ )
Return 1(∃i m̂i ̸= ⊥)

Trace(X,tk,sk)(T̂ )

m̂← Extract′sk(T̂ )
If m̂ = ⊥L:

Return ∅
C ← FP.Trace′(m̂, tk)
Return C

Figure 4: Pseudocode for construction of W = (KeyGen,Wat,Detect,Trace) from fingerprinting code FP =
(FP.Gen′,FP.Trace′) and L-bit message embedding scheme W ′ = (KeyGen′,Wat′,Extract′), e.g. Figure 2.
The construction is defined for any setting of the parameters n, c > 1, and 0 ≤ δ < 1.

Our construction is given in Figure 4. Let W ′ = (KeyGen′,Wat′,Extract′) be an L-bit watermarking
scheme. The multi-user watermarking scheme W = (KeyGen,Wat,Detect,Trace) is constructed as follows.
The secret key output by KeyGen consists of the fingerprinting codewords X and the tracing key tk, as well
as the secret key sk from the L-bit scheme. In response to any prompt Q from a user u, Wat will use the
L-bit watermarking algorithm to watermark the user’s fingerprinting codeword Xu into the response. At
detection time, Detect will use the L-bit scheme to extract a message m̂ from T̂ and return 1 as long as
m̂ ̸= ⊥L. To trace a user, Trace will run the fingerprinting code’s tracing algorithm on m̂ and return the set
of accused users.

We now show that our black-box scheme is consistent, undetectable, and sound. Robustness to collusions
(and hence completeness) is deferred to Section 6.2, because it requires instantiating our multi-user scheme
with our L-bit watermarking scheme.

Claim 6.1 (W is consistent). Let L, n, c > 1 be integers and 0 ≤ δ < 1. Let W ′ be an L-bit watermarking
scheme and FP be a fingerprinting code. Then the W construction from Figure 4 is a consistent multi-user
watermarking scheme.

Proof. The algorithm Detect(X,tk,sk)(T ) = 0 only if Extractsk(T ) returns⊥L. The check in Trace will guarantee
that in such a case, Trace(X,tk,sk)(T ) = ∅.8

8Note that we may instead want to check if |{i : si = ⊥}| > δL, because in the formal fingerprinting games, FP is allowed
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Whenever our scheme is instantiated with an undetectable L-bit watermarking scheme, the overall output
will also be undetectable, because Wat just returns the value from the underlying Wat query. The proof
is omitted, as it is essentially identical to the proof of Claim 5.1. Together with Claim 5.1, we obtain
undetectable watermarking from a black-box undetectable zero-bit watermarking scheme.

Claim 6.2 (W is undetectable). If Model is prefix-specifiable and W ′ is an L-bit watermarking scheme built
from an undetectable zero-bit scheme, then the W construction from Figure 4 is undetectable.

Next we show that W is sound, as long as the underlying L-bit scheme is sound. We need this property
to ensure that we do not falsely detect a watermark when it is not present (Type I errors). Notice that
because our scheme is also consistent we will not falsely accuse users of generating unmarked text.

Claim 6.3 (W is sound). Let L, n, c > 1 be integers and 0 ≤ δ < 1. Let W ′ be a sound L-bit watermarking
scheme and FP be a fingerprinting code of length L with parameters (λ, n, c, δ). Then the W construction
from Figure 4 is a sound multi-user watermarking scheme.

Proof. The soundness of W follows immediately from the soundness of W ′ = (KeyGen′,Wat′,Extract′).
Specifically, observe that Detect(X,tk,sk)(T ) = 1 implies Extract′sk(T ) ̸= ⊥L. So, for a every poly, λ, and T
with |T | ≤ p(λ)

Pr
(X,tk,sk)←$ KeyGen(1λ)

[Detect(X,tk,K)(T ) = 1] ≤ Pr
sk′←$ KeyGen′(1λ)

[Extract′sk′(T ) ̸= ⊥L] < negl(λ).

6.2 Robustness against collusions

We now describe how our multi-user scheme from Figure 4 can achieve robust collusion resistance under the
right conditions.

Our main theorem for multi-user watermarking, Theorem 6.4, requires that W is built out of the L-
bit watermarking scheme from Figure 2, which itself is built out of an undetectable zero-bit watermarking
scheme. As shown in Lemma 5.3, our L-bit scheme will only ever extract (noisy) feasible messages of the set
of the adversary’s queried messages.

Since the messages thatW watermarks are codewords from a robust fingerprinting code, the m̂ recovered
will necessarily be in the δ-feasible ball around the set of the adversary’s codewords. As long as enough blocks
are included in the adversarially generated text T̂ , we will be able to trace back to one of the colluding users.

Theorem 6.4 (W is robust). Let n, c > 1 be integers and 0 ≤ δ < 1. Let W ′ be the L-bit watermarking
scheme from Figure 2, built from a block-by-block zero-bit watermarking scheme that is undetectable, sound,
and R1-robustly detectable. Furthermore let FP be a robust fingerprinting code of length L with parameters
(λ, n, c, δ).

Then, the W construction from Figure 4 is a multi-user watermarking scheme that is consistent, sound,
undetectable, and Rk∗-robust against c-collusions, for k∗ given by Lemma 2.4.

Proof. We have already shown that W is consistent (Claim 6.1), sound (Claim 6.3), and undetectable
(Claim 6.2). Robustness is a corollary of Lemma 5.3 when using an appropriate fingerprinting code. Let C
be the set of (at most c) colluding users and apply Lemma 5.3 to M = {Xu : u ∈ C}. Then we know that
Extract′ from W ′ will return some m̂ with at most ⌊δL⌋ entries that are ⊥. Therefore, with high probability
we have m̂ ∈ Fδ(XC). By the definition of a robust fingerprinting code we know that FP.Trace′ will correctly
accuse a colluding user with all but negligible probability.

Efficiency Notice that the construction in Figure 4 only requires a single call to the underlying L-bit
scheme for every generation and detection. When tracing, it additionally only requires a single call to the
fingerprinting code’s tracing algorithm. When instantiated with the L-bit scheme in Figure 2, detecting
and tracing make 2L calls to its the underlying zero-bit scheme’s detection algorithm. Fingerprinting code

to output anything on other inputs. However, for non-contrived schemes, this is unnecessary.

18



lengths scale as the logarithm of the number of users, so our scheme is much faster (and requires much less
storage) than one which generates keys for every single user, whose detection would require linear time.

Unfortunately, existing fingerprinting codes require time linear in the number of users to trace, so our
tracing time still scales linearly. Fingerprinting tracing algorithms work by checking whether the extracted
codeword is sufficiently close to each user’s unique codeword, one by one. This means that Trace could be
used to check any set of c suspects in time linear in c. It is an interesting open problem to improve the
runtime of the fingerprint tracing, which would correspondingly improve our scheme.

6.3 Other features of our multi-user watermarks

We discuss additional features of our construction that are not captured by the above definitions or theorems,
but which offer practical improvements

Preserved zero-bit detection Theorem 6.4 proves that W is Rk-robustly traceable so long as the con-
structions in Figure 2 and Figure 4 use a zero-bit scheme that is R1-robustly detectable. Happily, the
multi-user construction from Figure 4 is also R1-robustly detectable! In particular, the Detect function
will detect if any single (approximate) block is present in a generation. This means that our construction
preserves the original robustness of the zero-bit watermarking scheme. The added benefit of finding users
and resisting (unbounded!) collusions comes essentially for free: no cost to robust detection and only a
logarithmic slowdown in Detect.

Recovering more users In our multi-user construction, we use the function Extract′ from the L-bit
scheme as a black box, returning a single bitstring which is then fed into the fingerprinting code’s tracing
algorithm to accuse some set of users. However, a different construction may be able to recover even more
colluding users. Slightly modifying the Extract′ function from Figure 2, we could allow Extract′ to return a
special character “∗” in the ith index whenever both zi,0 and zi,1 are true (since it recovered both bits in the
same index). By the soundness of the underlying zero-bit scheme, this should almost never happen when
embedding a single message, as in the normal L-bit robustness game. In the process of colluding, however,
it is likely that users with different codeword bits at index i happen to include (approximate) blocks in T̂
for both of their bits.

Therefore, the set of all strings which could be created from the extracted message m̂ ∈ {0, 1,⊥, ∗}L
is a subset of the δ-feasible ball Fδ(XC) of the colluding users’ codewords. In practice, one may want to
call FP.Trace′ on each of these strings and return the union of all users returned, which will still (with high
probability) be a subset of the colluding users. An interesting question is to design fingerprinting codes that
allow faster tracing from pirate codewords m̂ ∈ {0, 1,⊥, ∗}L than brute-force search, which requires time
exponential in the number of ∗’s.

Robust fingerprinting codes reduce k∗ Notice that our construction of multi-user watermarking uses
a robust fingerprinting code with erasure bound δ in conjunction with an L-bit watermarking scheme that
allows up to δ erasures. The length L of the fingerprinting code grows with δ. Ultimately, the parameter we
are most interested in is the number of (approximate) blocks k∗ = k∗(L, δ) = Ω(L) needed to extract the
watermark from T̂ .9

This raises the question of whether robustness (δ > 0) is helping at all, or whether we would be better off
using shorter fingerprinting codes without adversarial robustness (δ = 0). Perhaps surprisingly, robustness
yields an asymptotic10 improvement in k∗.

9Improving other robustness parameters, like the ≏-relation and block length are received in a black-box way from the
underlying zero-bit scheme and therefore can be improved immediately as future work develops.

10Showing a concrete improvement with δ > 0 amounts to the same comparison between k∗(L0, 0) and k∗(Lδ, δ) as in the
body, but with concretely optimal fingerprinting codes. It appears that the construction of [NFH+07] is much more efficient
than either of the asymptotically optimal codes we discuss. Like other fingerprinting codes, Lδ = L0/poly(1− δ). Hence taking

a constant δ ≫
√

(λ+ ln 2)/2Lδ (say, δ = 1/2) should yield k∗(Lδ, δ) = O(Lδ) = O(L0), compared to k∗(L0, 0) = O(L0λ).
However, we were unable to work out the details of [NFH+07] to our satisfaction.
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The question boils down to comparing k∗(Lδ, δ) and k∗(L0, 0), where L0 and Lδ are the lengths of the
asymptotically optimal fingerprinting codes for δ = 0 and δ > 0, respectively. For n users, c collusions,
δ adversarial erasures, and security parameter λ, the asymptotically optimal robust fingerprinting code of
[BKM10] has length

Lδ =
C(c ln c)2 ln(n)λ

1− δ

for some very large constant C. Letting W := C(c ln c)2 ln(n), we have Lδ = Wλ/(1−δ). The asymptotically
optimal non-robust fingerprinting code [Tar08] has length L0 = 100c2 ln(n)λ. Choosing δ = 1/2, we get
k∗(L 1

2
, 1/2) = O(c2 ln2(c) ln(n)λ), whereas k∗(L0, 0) = Ω(c2 ln(n)λ2). As c = poly(λ), we have k∗(L 1

2
, 1/2) =

o(L0, 0).

7 Watermarking without undetectability

Throughout the paper, we make heavy use of the undetectability of watermarking schemes. While some
watermarking schemes for language models are provably undetectable [CGZ23, FGJ+23, CG24], most are
not (e.g. [Aar22, KGW+23a, KTHL23]). Our constructions of L-bit and multi-user watermarking (Fig. 2, 4)
use an arbitrary zero-bit watermarking scheme as a building block.

In this section, we explore the robustness of our schemes when instantiated with a zero-bit scheme
that is not undetectable. We prove analogues of Theorem 5.4 and Theorem 6.4 with one very important
difference (Section 7.1). For undetectable schemes, our constructions are Rk robust for k = O(Lλ), where
k is the number of (modified) blocks of model-generated text needed to extract the watermark. Without
undetectability, we require k = Ω(B), where B is the total of blocks of model-generated text that the
adversary ever observed. Meaning that to provably extract the watermark, the adversary’s output must
contain essentially all the text produced by the model!

Still, the adversary has substantial freedom to modify the watermarked text without destroying the mark.
First, the adversary can reorder blocks arbitrarily and can include extraneous unmarked text. Second, the
adversary can modify the blocks as allowed by the underlying scheme’s robustness guarantee (≏, e.g. bounded
edit distance).

In Section 7.2, we discuss some possible approaches for improving the robustness parameter k without
undetectability. In practice, we believe that full undetectability may not be necessary for meaningful security.
Schemes that are not undetectable still offer some guarantees (e.g., bounded Renyi divergence [ZALW23]
or undetectability for a single query [KGW+23a]). In applications where these not-undetectable zero-bit
watermarking schemes are considered secure enough, we suspect our schemes would be too.

The theorems we prove in this section apply to adaptively robust watermarking schemes that are not un-
detectable. Unfortunately, we do not know if any such schemes exist. Prior works only consider non-adaptive
robustness, and we use undetectability to show that non-adaptive robustness implies adaptive robustness
(Lemmas 4.6, B.6). Without undetectability, it does not seem possible to show that our construction is
adaptively robust when the underlying scheme is only non-adaptively robust.

7.1 Robustness for k = Ω(B)

We need to prove an analogue of Lemma 5.3 without undetectability. As before, our theorems follow as
corollaries.

Undetectability is only used in the third hybrid of the proof of Lemma 5.3. The other two hybrids use
only soundness and robustness. Hybrid 3 uses undetectability to argue that which bits of the watermark
are embedded in which blocks of text is (computationally) independent from adversary’s view. The result
is that any (modified) block in the adversary’s output T̂ embeds a uniformly random bit of the message
m ∈ {0, 1}L. By a balls-in-bins argument, k = L(lnL+ λ) blocks suffice to recover the whole message.

Without undetectability, this argument breaks down. An adversary who can perfectly distinguish blocks
marked using the different keys can choose which message index i any (modified) block encodes, as each
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index corresponds to a distinct pair of keys. In the worst case, an adversary can create T̂ using k blocks
that all correspond to the same index i, and Extract would recover just one bit of the message.

To get around this, we need to require that k depends on the total number of blocks of model-generated
text seen by the adversary A:

B :=
∑
i

|Blocks(Ti;Qi)|,

where (Qi)i are A’s queries and Ti ← Watsk(Qi) are the corresponding generations. It is easy to see that if
T̂ included all B blocks, then the adversary’s hands are tied. As long as B ≥ L(lnL + λ), all message bits
will be extracted from T̂ with high probability.

The index i of the message that each block encodes is sampled uniformly at random by Wat. The
adversary is required to output k of these. We can slightly generalize the above argument to allow δL
erasures. Let s(B,L, δ) < δB be any high-probability upper bound on the total load of the ⌊δL⌋ smallest
bins after throwing B balls uniformly at random into L bins.11 (Wat throwing the balls, not A.) Then if
B ≥ L(lnL+λ) and k ≥ B−s(B,L, δ), the Extract algorithm recovers at least (1−δ)L bits of the watermark.

We now state the analogue of Lemma 5.3. Let

RDET

(
λ, (Qi)i, (Ti)i, T̂

)
= 1

(
B ≥ L(lnL+ λ)

)
∧ 1

(
NumBlocks(T̂ ;Qi, Ti) ≥ B − s(B,L, δ)

)
.

Lemma 7.1 (W recovers lossy descendants – not undetectable ). Let λ, L ∈ N, 0 ≤ δ < 1 and M ⊆ {0, 1}L.
Suppose W ′ is a block-by-block, zero-bit watermarking scheme that is sound and R1 robustly-detectable. Let
W = (KeyGen,Wat,Extract) be the construction from Figure 2 using W ′.

Then for all efficient A, the following event FAIL occurs with negligible probability:

• ∀i,mi ∈M , AND // only queried messages in M

• RDET

(
λ, (Qi)i, (Ti)i, T̂

)
= 1, AND // robustness condition passes

• m̂ ̸∈ Fδ(M) // extracted message unrelated to M

in the probability experiment defined by

• sk←$ KeyGen(1λ)

• T̂ ← AWatsk(·,·)(1λ), denoting by (mi, Qi)i and (Ti)i the sequence of inputs and outputs of the oracle

• m̂← Extractsk(T̂ ).

Proof outline. The proof exactly follows the proof Lemma 5.3 for Hybrids 1 and 2. Hybrid 3 is omitted. We
recover a message index i whenever a (modified) block in T̂ was generated using Watki,b

for some b. Because
B ≥ L(lnL + λ) and the definition of s, any set of B − s(B,L, δ) blocks were generated using a set of at
least L− ⌊δL⌋ distinct indices i, with high probability.

Theorem 7.2 (W is robust, when not undetectable). Suppose W ′ is a block-by-block, sound zero-bit water-
marking scheme. Then, the W construction from Figure 2 is an L-bit embedding scheme that is (δ,RDET)-
robust.

Proof. This follows as an immediate consequence of Lemma 7.1 following the same reasoning used in Theo-
rem 5.4.

Theorem 7.3 (W is robust, when not undetectable). Let n, c > 1 be integers and 0 ≤ δ < 1. Let W
be the L-bit embedding scheme from Figure 2, built out of a block-by-block, sound zero-bit watermarking
scheme. Furthermore let FP be a robust fingerprinting code of length L with parameters (λ, n, c, δ). Then,
the W construction from Figure 4 using W from Theorem 7.2 and FP is a consistent, sound, (c,RDET)-robust
multi-user watermarking scheme.

Proof. This follows as an immediate consequence of Lemma 7.1 following the same reasoning used in Theo-
rem 6.4.

11E.g., for B ≥ L(lnL+ λ), s(B,L, δ) ≥ ⌊δL⌋, as every bin has has load at least 1 with high probability.
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7.2 Can we do better?

We briefly describe two approaches to reducing the robustness parameter k in the absence of undetectability.

Bounded or partial undetectability Our analysis allowed for a worst-case adversary who could perfectly
distinguish blocks marked under different keys. But even watermarking schemes that are not undetectable
are not so blatantly detectable. For example, the scheme of [KTHL23] is undetectable for any single query
(“distortion-free”), and the red-/green-list scheme of [ZALW23] guarantees that the Renyi divergence between
the marked and unmarked distributions for any single token is bounded.

It’s not clear how to use these limited distinguishing guarantees to build robust L-bit / multi-user
watermarking schemes. The critical step in the proof of Lemma 5.3 is to bound the fraction δ of empty
bins after k balls are thrown into L bins. With undetectability, the balls are thrown uniformly. One idea
is to bound the distinguishing advantage of an adversary making q queries with c marks and producing B
blocks of text as only growing polynomially in q, c, or B. Then, use that result to conclude that the induced
distribution of balls-into-bins is not too far from uniform. The Renyi divergence bounds in [ZALW23] do
not seem strong enough to make this approach work, even for a single generation. Even if this idea worked,
proving adaptive robustness would still be challenging.

Heuristically duplicating keys Without undetectability, the adversary may be able to tell whenever
the same key is used to watermark a piece of text. This allows (in our construction) the adversary to only
include blocks watermarked under a few keys. In our proof, this is prevented by undetectability. Our main
results (k = O(Lλ)) should hold so long as the adversary never sees two blocks generated using the same
key.

Towards that end, one could try key duplication. Generate poly-many keys (instead of just one) for each
index-bit (i, b) pair, sampling a random key from this set at every iteration of Wat. This will reduce the
number of key collisions observed by the adversary. Though it would not make the probability of collision
negligible, it would be possible to bound the number of collisions as a function of the number of blocks
B observed. Combined with the previous approach, this may suffice. Even if not, key duplication may
improve practical security for schemes that are particularly detectable. However, key duplication comes
with a proportional increase in the runtime of our detection algorithm, which checks every possible key.
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A Implications for existing LLM watermarking schemes

As we show next, existing watermarking schemes can be viewed as block-by-block schemes. The only
meaningful restriction imposed by Definition 4.2 is on the syntax of the robustness condition R. Notice
that one could in some trivial sense view all complete schemes as block-by-block by considering an entire
generation a block. This triviality is unhelpful for our black-box constructions and unnecessary for most
schemes, but illustrates how broad our framework is in general.

Notation For a string T = τ1τ2 . . . τ|T |, we define Ti:j := τi . . . τj , T≤k := τ1:k. We write τ ∈ T to mean
that τ is a substring of T , i.e. τ = Ti:j for some i, j.

A.1 Intuition for how existing schemes work

We give a brief intuition for the two dominant approaches to watermarking language models in prior work.
Not all schemes fit into these categories, including [FGJ+23] discussed below.
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Derandomizing and measuring correlation One class of schemes work by derandomizing the language
model using the secret key and then detecting the effects of this derandomization [CGZ23, Aar22, KTHL23].
Because a probability distribution can be derandomized without being noticeably altered, these schemes
enjoy some level of undetectability.

At a very high level, the derandomization schemes work as follows. Language models generate text
token-by-token. Let Q be a prompt and T<i be an already-generated prefix. In the unmarked model, the
next token τi is sampled according to some distribution pQ(·|Q∥T<i). The marked model is the same, except
that a secret sequence σ1σ2 . . . σℓ of (pseudo-)random bits is used to derandomize the sampling of τi in a
way that induces a correlation between σi and τi. We discuss how particular schemes derandomize pQ in
Appendices A.3.1 and A.5. Each of these schemes differ in how the secret sequence is derived, how it is used
to derandomize the next token, and how the induced correlations are measured and used to detect.

Red/green lists Another class of statistical watermarking schemes bias the sampling of tokens using
using so-called red and green lists, determined using a hash function [KGW+23a, ZALW23]. Tokens in the
green list are sampled more often compared to the unmarked language model, and tokens in the red list are
sampled less often. Depending on the scheme, these red and green lists can be solely determined by a secret
key [ZALW23] or also nearby tokens [KGW+23a].

To detect whether a watermark is present within text T̂ , one can check the proportion of green list
tokens in T̂ . If the green list contains half the tokens sampled uniformly at random, say, then unmarked text
should have close to 50% green tokens. Marked text will have many more green tokens. Detection works by
testing whether the proportion of green tokens in any substring is above a statistically significant threshold.
Soundness and robustness are proved using concentration bounds on the expected number of green tokens
in unmarked and marked text, respectively. However, these schemes are not undetectable. By design, green
tokens are noticeably more likely in the watermarked model. With poly-many queries, an adversary could
conceivably reconstruct the lists in full, though this seems very costly in practice.

A.2 Undetectable watermarks [CGZ23]

The zero-bit watermarking scheme of Christ, Gunn and Zamir [CGZ23] is easily cast as a block-by-block
scheme, with all the provable properties needed to invoke our constructions: undetectability, soundness, com-
pleteness, and robustness. The robustness guarantee is called b(ℓ)-substring completeness. The construction
W from [CGZ23, Algorithms 5-6] is a

(
8

ln 2λ
√
ℓ
)
-substring complete watermarking scheme [CGZ23, Theo-

rem 8]. Robustness is guaranteed to hold for generations with enough empirical entropy, with the amount
required depending on the length of the generation.

Definition A.1 (Empirical entropy [CGZ23]). For strings τ,Q ∈ T ∗ and model Model, we define the
empirical entropy of τ with respect to Model and Q as He(τ ;Q) := − log Pr[Model(Q)≤|τ | = τ ].

Definition A.2 (Substring completeness [CGZ23]). A watermarking scheme W is b(ℓ)-substring complete
if for every prompt Q and security parameter λ:

Pr
sk←KeyGen(1λ)
T←Watsk(Q)

[
∃ length-ℓ substring τ ∈ T : He(τ ;Q) ≥ b(ℓ)︸ ︷︷ ︸

enough entropy

and Detectsk(τ) = 0︸ ︷︷ ︸
detection fails

]
< negl(λ).

To detect a watermark on input T̂ , the construction Detectsk(T̂ ) outputs the OR of Detectsk(τ̂) for all
substrings τ̂ ∈ T̂ . By substring completeness, Detectsk(T̂ ) = 1 if there exists a substring τ ∈ T that satisfies
the following two conditions:

(i) He(τ ;Q) ≥ b(|τ |).

(ii) There exists a substring τ̂ ∈ T̂ for which τ̂ = τ .

25



The watermarking schemeW described above is naturally viewed as a block-by-block scheme. Condition
(i) defines the blocks:blockCGZ(τ ;Q) = 1

(
He(τ ;Q) ≥ b(|τ |)

)
. Condition (ii) tells us that the binary relation

≏ on strings τ and τ̂ is string equality. Let RCGZ
1 be the AEB-robustness condition induced by the function

blockCGZ and the string equality relation, according to Definition 4.5. The following claim implies that W
is a block-by-block scheme.

Claim A.3. If W is an undetectable, b(ℓ)-substring complete watermarking scheme with Detect as above,
then W is adaptively RCGZ

1 -robust.

Proof. Fix a prompt Q ∈ {0, 1}∗ of length |Q| ≤ poly(λ) and efficient adversary A. To show that W is
non-adaptively RCGZ

1 -robust, it suffices to show the following:

Pr
[
Detectsk(T̂ ) = 1 | RCGZ

1 (λ,Q, T, T̂ ) = 1
]
≥ 1− negl(λ),

where sk← KeyGen(1λ), T ←Watsk(Q), and T̂ ← A(1λ, T ).
By definition of RCGZ

1 , there exist substrings τ ∈ T, τ̂ ∈ T̂ such that (i) blockCGZ(τ ;Q) = 1, and (ii) τ̂ = τ .
Because W is b(ℓ)-substring complete Detectsk(τ̂) = Detectsk(τ) = 1 with high probability. By construction,
Detect(T̂ ) = 1 with high probability, soW is non-adaptively RCGZ

1 -robust. SinceW is undetectable, applying
Lemma 4.6 completes the proof.

A.3 Watermarking from pseudorandom codes [CG24]

The watermarking schemes of Christ and Gunn [CG24] can also be cast as block-by-block schemes. They
define pseudorandom error-correcting codes (PRCs), and use PRCs to derandomize the language model.
A zero-bit PRC is a triple of randomized, efficient algorithms PRC = (KeyGen,Encode,Decode). KeyGen
generates a secret key sk. Encodesk(1) generates codewords x of length n that are pseudorandom to any
efficient adversary without sk. Decodesk(T ) attempts to decode a string T . The PRC is robust against a
channel E if

(a) For any fixed T independent of sk, Decodesk(T ) = ⊥ with high probability over sk.

(b) Decodesk(E(Encodesk(1)) = 1 with high probability over E .

Christ and Gunn construct PRCs that are robust to p-bounded channels, assuming either 2O(
√
n)-hardness

of Learning Parity with Noise (LPN) or polynomial hardness of LPN and the planted XOR problem at low
density.

Definition A.4 (p-Bounded channels). For any p ≥ 0, a length-preserving channel E : Σ∗ → Σ∗ is p-
bounded if there exists a negligible function negl such that for all n ∈ N, Prx←{0,1}n [∆(E(x), x) > p] <
negl(n), where ∆ is the normalized Hamming distance.

The watermarking robustness guarantee of [CG24, Definition 13] is called substring robustness against
a channel E . Informally, substring robustness guarantees that the watermark will be detected even from
a (sufficiently entropic) cropped string that has been corrupted by E . Substring robustness generalizes
substring completeness (Definition A.2): a scheme that is substring robust against the identity channel
I(T ) = T is substring complete. In the next section, we will show that the zero-bit watermarking scheme
W[PRC] = (KeyGen,Wat,Detect) from [CG24, Construction 7] is a block-by-block scheme, when instantiated
with a zero-bit pseudorandom code PRC that is robust to certain p-bounded channels. We first state two
robustness results in the language of [CG24]:

Lemma A.5 (Lemma 22, [CG24]). Let ε > 0 be any constant. If PRC is a zero-bit PRC with block length
n that is robust to any (1/2− ε)-bounded channel, then W[PRC] is (4

√
ε · L+ 2

√
2 · n)-substring complete.

Lemma A.6 (Lemma 23, [CG24]). Let ε, δ > 0 be any constants. If PRC is a zero-bit PRC with block length
n that is robust to any (1/2 − ε · δ)-bounded channel, then W[PRC] is (4

√
ε · L + 2

√
2 · n)-substring robust

against BSC1/2−δ, the binary symmetric channel with error rate 1/2− δ.
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A.3.1 RCG
1 -robustness of W[PRC]

We begin by describing how W[PRC] embeds and detects watermarks. To generate watermarked text T ,
Watsk samples a codeword x1 ← PRC.Encodesk(1) and uses x1 to sample the first length-n substring τ1 ∈ T .
Crucially, τ1 will be a noised version of x1, where the amount of noise is inversely proportional to the empirical
entropy of τ1. This procedure is done iteratively, so the final output is T = τ1 . . . τrσ where each τi ≈ xi. To
detect, Detectsk(T ) outputs the OR of PRC.Decodesk(τ) for all substrings τ ∈ T . By the robustness of PRC,
for all i ∈ [r], Decodesk(τi) = 1 with high probability.

Lemma A.5 establishes thatW[PRC] is b(ℓ)-substring complete so long as PRC is sufficiently robust. As in
Section A.2, this means that Detectsk(T̂ ) = 1 with high probability if there exists a substring τ that satisfies
the same conditions (i) and (ii) from Section A.2. Hence Claim A.3 implies that W[PRC] is non-adaptively
RCGZ

1 -robust.
Lemma A.6 establishes that W[PRC] is b(ℓ)-substring robust provided the underlying PRC is robust to

even noisier channels. To translate this guarantee into our language, we can keep condition (i) exactly the
same as before. However, unlike requiring some substring τ̂ ∈ T̂ to be identical to τ ∈ T as in condition
(ii), we want to relax our binary string relation, putting strings τ̂ and τ in relation only if every length-n
substring τ∗ ∈ τ is no more than (ε · (1 − δ))-far from some length-n substring τ̂∗ ∈ τ̂ , in the normalized
Hamming distance ∆. This is expressed by our (asymmetric) relation ≏CG:

τ̂ ≏CG τ ⇐⇒ ∀ length-n substrings τ∗ ∈ τ,∃ length-n substring τ̂∗ ∈ τ̂ : ∆(τ̂∗, τ∗) ≤ ε · (1− δ).

Now let RCG
1 be the AEB-robustness condition induced by the function blockCG (defined like blockCGZ but

for a different entropy requirement b(ℓ) = 4
√
ε ·ℓ+2

√
2 ·n) and the relation ≏CG, according to Definition 4.5.

The following claim implies thatW[PRC] is a block-by-block scheme when instantiated from a pseudorandom
code PRC with block length n that is robust to every (1/2− ε · δ)-bounded channel.

Claim A.7. Let ε, δ > 0 be constants. Assuming either 2O(
√
n)-hardness of LPN or polynomial hardness of

LPN and the planted XOR problem at low density, if PRC is a zero-bit PRC of block length n that is robust
to every (1/2− ε · δ)-bounded channel, then W[PRC] is adaptively RCG

1 -robust.

Proof. Fix a prompt Q ∈ {0, 1}∗ of length |Q| ≤ poly(λ) and efficient adversary A. To show that W[PRC]
is non-adaptively RCG

1 -robust, it suffices to show the following:

Pr

[
Detectsk(T̂ ) = 1 | RCG

1 (λ,Q, T, T̂ ) = 1

]
≥ 1− negl(λ).

where sk ← KeyGen(1λ), T ← Watsk(Q), and T̂ ← A(1λ, T ). As discussed above, the watermarking
scheme noisily embeds codewords xi into T , where each xi ← PRC.Encodesk(1). We are conditioning on
RCG

1 (λ,Q, T, T̂ ) = 1. By definition of RCG
1 , there exist substrings τ̂ ∈ T̂ , τ ∈ T such that (i) blockCG(τ ;Q) = 1

and (ii) τ̂ ≏CG τ . By (i) there exists some x ∈ (xi)i and some length-n substring τ∗ ∈ τ such that
∆(τ∗, x) ≤ 1/2 − ε with high probability.12 By (ii) and the definition of ≏CG there exists some length-n
substring τ̂∗ ∈ τ̂ such that ∆(τ̂∗, τ∗) ≤ ε · (1 − δ). Using the triangle inequality, (i) and (ii) together give
us ∆(τ̂∗, x) ≤ 1

2 − ε · δ with high probability. Since PRC is robust to every ( 12 − ε · δ)-bounded channel,

PRC.Decodesk(τ̂
∗) outputs 1 with high probability. By construction Detectsk(T̂ ) = 1 with high probability, so

W[PRC] is non-adaptively RCG
1 -robust. Assuming 2O(

√
n)-hardness of LPN or polynomial hardness of LPN

and the planted XOR problem at low density, and applying Lemma 4.6 completes the proof.

Christ and Gunn also build L-bit watermarking schemes, using L-bit PRCs that whose encoding functions
take messages m ∈ {0, 1}L rather than the single message m ∈ {1}. Lemma A.6 applies identically for
an L-bit watermarking scheme, so all of the robustness results described in this section extend to L-bit
watermarking schemes.

12Condition (i) implies a lower bound on the empirical entropy of τ . We can then use the reasoning in the proof of [CG24,
Lemma 22] to show the existence of some substring τ∗ ∈ τ of length n with enough empirical entropy to apply [CG24, Lemma
21], which provides the desired high-probability guarantee on the ∆-distance between τ∗ and x.

27



A.4 Publicly detectable watermarks [FGJ+23]

The zero-bit watermarking scheme of Fairoze, Garg, Jha, Mahloujifar, Mahmoody, and Wang [FGJ+23] can
also cast as a block-by-block scheme. Unlike other schemes, this one is publicly detectable. The Detect
algorithm only requires a public key, and knowledge of the public key does not undermine undetectability,
soundness, completeness, nor robustness. When used in our constructions, the resulting L-bit and multi-user
watermarking schemes are also publicly detectable.

Unlike [CGZ23], the proofs of undetectability and computational efficiency in [FGJ+23] require assuming
that each block of ℓ = ℓ(λ) tokens produced by Model has at least λ bits of min-entropy. The parameter ℓ
is assumed to be known and is used in the construction.

Assumption A.8 (Assumption 2.1 of [FGJ+23]). For any prompt Q and string T , Pr[Model(Q)1:ℓ = T ] ≤
2−λ.

Definition A.9 (d-Robustness, adapted from Definition 4.5 of [FGJ+23]). A publicly-detectable watermark-
ing scheme is d-robust if for every prompt Q, security parameter λ, and PPT A,

Pr

Detectpk(T̂ ) = 0 :

(sk, pk)←$ KeyGen(1λ)

T ←Watsk(Q)

T̂ ← A(pk, T )

 ≤ negl(λ)

where A is required to output T̂ that contains a substring τ̂ of length at least d that is also a substring of T .

Using a signature scheme with pseudorandom ℓsig-bit signatures, [FGJ+23] gives a (2ℓ(1 + ℓsig))-robust
watermarking scheme, where ℓ is from the min-entropy assumption above. To turn this into a block-by-block
scheme, we take blockFGJ+(τ ;Q) = 1(|τ | ≥ d), and the binary relation ≏ on strings τ̂ and τ to be string
equality. Let RFGJ+

1 be the AEB-robustness condition induced by the function blockFGJ+ and the string
equality relation, according to Definition 4.2. (Note the similarity to Sec A.2.) The following claim implies
that the scheme of [FGJ+23] is a block-by-block scheme, with d = 2ℓ(1 + ℓsig).

Claim A.10. Under Assumption A.8, if W is an undetectable, d-robust scheme then it is an adaptively
RFGJ+

1 -robust scheme.

Proof. Fix a prompt Q ∈ T ∗ of length |Q| ≤ poly(λ) and a PPT adversary A. To show that W is non-
adaptively RFGJ+

1 -robust, it suffices to show the following:

Pr
[
Detectsk(T̂ ) = 1 | RFGJ+

1 (λ,Q, T, T̂ ) = 1
]
≥ 1− negl(λ).

where sk← KeyGen(1λ), T ←Watsk(Q), and T̂ ← A(1λ, T ).
By definition of RFGJ+

1 , there exist substrings τ ∈ T, τ̂ ∈ T̂ such that (i) blockFGJ+(τ ;Q) = 1, and (ii)

τ̂ = τ . Using Assumption A.8 and the fact that W is d-robust, Detectsk(T̂ ) = 1 with high probability, so W
is non-adaptively RFGJ+

1 -robust. Since W is undetectable, applying Lemma 4.6 completes the proof.

A.5 A p-value for watermarks [KTHL23]

Slight variations of the zero-bit watermarking schemes of Kuditipudi, Thickstun, Hashimoto, and Liang
[KTHL23] can be cast as block-by-block schemes. In particular, the Inverse Transform Sampling (ITS)
scheme from [KTHL23, Section 2.3] can be modified to be complete, sound, and robust to token substitu-
tions.13 But it is not undetectable, so our main constructions cannot be applied to it. More specifically, the
“distortion-free” property achieved by the ITS scheme is essentially a single-query form of undetectability.
Across many queries, however, the outputs will be highly correlated, unlike truly undetectable schemes.

13It is unclear how to modify the ITS scheme to be robust to token insertions or deletions, because the kk term in the
statement of [KTHL23, Lemma 2.6] dominates the inverse exponential term.
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At a high level, the ITS scheme W = (KeyGen,Wat,Detect) works as follows. As sketched in Ap-
pendix A.1, Watsk(Q) outputs a generation T by using a decoder function Γ : K × ∆(T ) → T to select
successive tokens. The decoder Γ uses an element of sk and the distribution pQ to deterministically select
a token. Detection relies on a test statistic ϕ : T ∗ × K∗ → R that is designed so ϕ(T, sk) is small whenever
T ← Watsk(Q). Instead of outputting a bit, Detectsk(T̂ ) samples s secret keys sk′ independently and com-
putes p̂ = (K + 1)/(s+ 1), where K is the number of times ϕ(T̂ , sk′) ≤ ϕ(T̂ , sk). The fraction p̂ is a p-value
relative to the null hypothesis that T̂ is not watermarked.

Our definitions require that detection only errs with negligible probability. Running Detectsk as described
above would require exponential runtime to produce negligibly small p-values. Instead, we can simplify W
by detecting watermarks only when the test statistic ϕ(T̂ , sk) is below some threshold ρ:

D̃etectsk(T̂ ) = 1

(
ϕ(T̂ , sk) < ρ = −

√
|T̂ |λ
8

)
. (3)

To achieve robustness, ϕ(T̂ , sk) is constructed to be small so long as T̂ is “close enough” to some watermarked
text T . This is done by using an “alignment cost” function d : T ∗ ×K∗, where ϕ returns the minimum cost
over all alignments of candidate text T̂ with substrings σ ∈ sk. Below we state a robustness guarantee for
the ITS scheme in the language of [KTHL23]. The guarantee will depend on the observed token probabilities
of verbatim outputs of Wat, which is called the watermark potential.

Definition A.11 (Watermark potential). Given some prompt Q, the watermark potential α : T m → R of
some text T = τ1 . . . τm relative to the distribution p = pQ is

α(T ) :=
1

m

m∑
i=1

(
1− p(τi | Q∥T<i)

)
.

Furthermore, we define α̂ : T m × T m → R as

α̂(T, T̂ ) =
1

m

∑
{i:τi=τ̂i}

(
1− p(τi | Q∥T<i)

)
− 1

m

∑
{i:τi ̸=τ̂i}

(
1

|T | − 1

)
.

Note that for any T , 0 ≤ α(T ) ≤ |T |−1|T | . The robustness guarantee from [KTHL23] implies that, even if an

adversary substitutes many tokens in some watermarked text T to create T̂ , the expected p-value computed
in Detectsk(T̂ ) will be small, so long as the untouched tokens have sufficient watermark potential.

Lemma A.12 (Lemma 2.5, [KTHL23]). Let n,m ∈ N with n ≥ m, where m is the length of the gener-
ation and n is the length of the secret key. Use the decoder Γ from [KTHL23, Line (1)], alignment cost
d from [KTHL23, Line (2)], and ϕ from [KTHL23, Algorithm 3] with k = m. Let sk, sk′ ∼ Kn, with
T = Watsk(m, p,Γ). Let T̂ ∈ T m be conditionally independent of sk and sk′ given T . Then almost surely

Pr
[
ϕ(T̂ , sk′) ≤ ϕ(T̂ , sk) | T, T̂

]
≤ 2n exp(−kC2

0 α̂(T, T̂ )
2/2),

where C0 = 1/12 + o|T |(1) is a constant.

To describe our modified version of W as a block-by-block scheme, it suffices to build a robustness
condition RKTHL

1 that only holds when T has sufficient watermark potential and T̂ is no more than δ-far
from T in the normalized Hamming distance ∆. Let N := |T | be the size of the token set of the language
model. For any 0 ≤ δ < 1, we define

blockKTHL(T ;Q) = 1
(
α(T ) ≥ ρδ

)
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where

ρδ :=

(
1

C0

√
2
·

√
λ

|T |
+

δ

N − 1

)(
1− δ

)
+ δ

and C0 is the constant from Lemma A.12. Note that the lower bound enforced by blockKTHL is only satisfiable
when |T | ∈ Ω(λ). We then define T̂ ≏KTHL T ⇐⇒ ∆(T̂ , T ) ≤ δ. Let RKTHL

1 be the robustness condition
induced by blockKTHL and ≏KTHL. Whenever RKTHL

1 (λ,Q, T, T̂ ) = 1, we can derive the following lower bound
on α̂(T, T̂ ).

Lemma A.13. For any λ ∈ N, Q ∈ T ∗, and T, T̂ ∈ T m satisfying RKTHL
1 (λ,Q, T, T̂ ) = 1, we have

α̂(T, T̂ ) ≥ 1

C0

√
2
·
√

λ

m
.

Proof. Consider any set of random variables X = {X1, X2, . . . , Xm}, where each Xi ∈ [0, 1]. Let µ =
1
m

∑
i∈[m] Xi and let µ1−δ be the mean of any subset of X of size ⌊m(1− δ)⌋. Then we have

µ1−δ ≥
(
∑

i∈[m] Xi)−mδ

⌊m(1− δ)⌋
≥ µ− δ

1− δ
.

Taking Xi = (1− p(τi | Q∥T<i)) so µ ≥ ρδ, we can lower bound α̂(T, T̂ ) by

α̂(T, T̂ ) =
1

m

∑
{i:τi=τ̂i}

(
1− p(τi | Q∥T<i)

)
− 1

m

∑
{i:τi ̸=τ̂i}

( 1

N − 1

)
≥ ρδ − δ

1− δ
− δ

N − 1

=
1

C0

√
2
·
√

λ

m
,

where the final equality holds by plugging in our value of ρδ.

The following claim implies that our modified version of the ITS watermarking scheme from [KTHL23]
is a block-by-block scheme.

Claim A.14. LetW be the ITS watermarking scheme from [KTHL23, Section 2.3], using the decoder Γ from
[KTHL23, Line (1)], alignment cost d from [KTHL23, Line (2)], and ϕ from [KTHL23, Algorithm 3] with

k = m. Define W̃ to be W except using the D̃etect function from (3). Then W̃ is sound and non-adaptively
RKTHL

1 -robust.

Proof. We will start by showing that W̃ is sound. Fix a string T ∈ T ∗ of length |T | = m ≤ poly(λ). We

want to show that D̃etectsk(T ) returns 1 with negligible probability over secret keys sk of length n. Recall

that D̃etectsk(T ) returns 1 if ϕ(T, sk) < ρ, where

ϕ(T, sk) = min
σ∈sk
|σ|=m

{d(T, σ)}.

Pick an arbitrary σ ∈ sk. Then W̃ is sound by the following. Note that the second and third inequalities are
not immediate, but follow from the proofs of Lemmas 2.3 and 2.4 in [KTHL23].

Pr
[
D̃etectsk(T ) = 1

]
= Pr [ϕ(T, sk) < ρ]

≤ nPr [d(T, σ) < ρ] (Union bound)

≤ nPr [E[d(T, σ)]− d(T, σ) > −ρ] (Esk[d(T, σ)] = 0)

≤ 2n exp
(
− 2(−ρ)2

m(1/2)2

)
(Hoeffding’s bound)

= 2n exp(−λ).
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Next, fix a prompt Q ∈ T ∗ of length |Q| ≤ poly(λ) and choose an efficient adversary A. To show that

W̃ is non-adaptively RKTHL
1 -robust, it suffices to show that D̃etectsk(T̂ ) = 1 with overwhelming probability,

conditioned on RKTHL
1 (λ,Q, T, T̂ ) = 1, where sk ← KeyGen(1λ), T ← Watsk(m, pQ,Γ), and T̂ ← A(1λ, T ).

Let σ be the length-m substring of sk used by Γ to generate T . Then we have

Pr
[
D̃etectsk(T̂ ) = 1

]
= Pr

[
ϕ(T̂ , sk) < ρ

]
≥ Pr

[
d(T̂ , σ) < ρ

]
= 1− Pr

[
d(T̂ , σ) ≥ ρ

]
All that is left is to show that Pr

[
d(T̂ , σ) ≥ ρ

]
is negligible. By [KTHL23, Lemma 2.3, Observation B.1], we

have that E[d(T̂ , σ)] = −mC0α̂(T, T̂ ). Since we are conditioning on the fact that T and T̂ pass the RKTHL
1 -

robustness condition, Lemma A.13 implies E[d(T̂ , σ)] ≤ 2ρ. Then applying Hoeffding’s bound completes the
proof.

Pr
[
d(T̂ , σ) ≥ ρ

]
= Pr

[
d(T̂ , σ)− E[d(T̂ , σ)] ≥ ρ− E[d(T̂ , σ)]

]
≤ Pr

[
d(T̂ , σ)− E[d(T̂ , σ)] ≥ −ρ

]
(ρ− E[d(T̂ , σ)] ≥ −ρ)

≤ exp
(
− 2(−ρ)2

m(1/2)2

)
< exp(−λ).

A.6 Green list / red list schemes [KGW+23a, ZALW23]

The zero-bit watermarking scheme of Kirchenbauer, et al. [KGW+23a] is not undetectable, nor does it appear
to enjoy the sort of provable soundness and robustness guarantees required to apply our constructions. A
heuristic version of our main construction applied to this scheme may work well in practice, though empirical
analysis is well beyond our present scope.

We give details below, focusing on the simplified variant in [ZALW23]. You may safely skip the rest of
this subsection. We include it mainly to aid readers interested in understanding [ZALW23].

The core idea in the construction is to randomly partition the token set T into a green list G and red
list R = T \ G, and preferentially sample tokens from G.14 Note that by changing the distribution over
tokens, the scheme is not undetectable. The detection algorithm performs a hypothesis test on the fraction
of green tokens in a text, declaring the text marked if the fraction is significantly greater than some expected
threshold (i.e., rejecting the null hypothesis that the text is not marked).

Empirically and heuristically, the scheme appears well suited to a block-by-block interpretation. Detecting
the watermark requires a text T̂ to contain a long enough substring that was (close to a substring) produced
by the watermarked model. For example, see [KGW+23b] which refines the original Detect algorithm by
testing every substring of the input text (among other improvements), and empirically analyzes robustness
to paraphrasing and copy-paste attacks.

Unfortunately, it does not appear that the scheme provides the sort of provable guarantees we need to
view it as a block-by-block scheme. In brief, the scheme does not appear to simultaneously enjoy both
non-trivial soundness (low false positives) for all strings and non-trivial completeness (low false negatives)
for unmodified outputs of the watermarked model. Either type of error can be bounded (even negligibly
small), at the cost of destroying the provable guarantee on the other. Generically turning this scheme into
a block-by-block scheme seems to require simultaneously bounding both types of errors.

14The difference between [ZALW23] and the original construction of [KGW+23a] is that in the original, the green and red
lists change as a function of the preceding tokens.
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The construction is parameterized by constants γ ∈ (0, 1) and δ > 0. The parameter γ governs the size of
the green set: |G| = γ|T |. The parameter δ governs the amount that the watermarked model is biased towards
green tokens, as described below. The secret key is the green set: sk = G. The Detect algorithm computes
a z-score and compares it to some threshold ρ (which may depend on the input T ). That is, Detectsk(T ) :=

1 (zsk(T ) > ρ(T )), where ρ(T ) is a threshold and zsk(T ) := (
∑|T |

i=1 1(τi ∈ G)− γ|T |)/
√
|T |γ(1− γ).

In particular, one would need to set the threshold ρ(T ) below to satisfy both Theorems A.15 and A.16.
Consider the typical case of γ = 1/2. Theorem A.15 requires ρ(T ) ≥ 64λCmax(T )/

√
|T |. If Cmax(T ) >

|T |/64λ, then ρ(T ) >
√
T is needed.15 But Theorem A.16 requires ρ(T ) <

√
T , as κ < 1 and γ = 1/2. One

cannot have both, regardless of λ and the error rates α, β.
Given Model, prompt Q, and string T , let pi be the probability distribution over token i in the output of

Model(Q) conditioned on T1:i−1.

pi(τ | Q∥T<i) := Pr[Model(Q∥T<i)1 = τ ].

The marked model Wat samples the next token τ with probability pGi (t|Q∥T1:i), defined as:

pGi (τ | Q∥T<i) ∝ exp(δ · 1(τ ∈ G)) · p(τ | Q∥T<i).

In other words, pG is defined by upweighting the probabilities of τ ∈ G by a factor of eδ and the distribution
is renormalized (equivalently, adding δ to the logits and computing the soft-max).

The soundess guarantee of [ZALW23] is given in terms of two functions of a string T ∈ T ∗. These
functions Cmax and V both take values in [0, |T |]. The function Cmax is the more important function for our
purposes: it counts the number of occurences of the most frequent token in a string T .

Cmax(T ) := max
τ∈T

∑
i∈|T |

1(τi = τ) V (T ) :=
1

|T |
∑
τ∈T

(∑
i∈|T |

1(τi = τ)

)2

Theorem A.15 (Soundness, Theorem C.4 of [ZALW23]). For any T ∈ T ∗

Pr
sk

[
zsk(T ) >

√
64 log(9/α)V (T )

1− γ
+

16 log(9/α)Cmax(T )√
|T |γ(1− γ)

]
< α. (4)

In particular, taking ρ(T ) ≥
√

64 log(9)λV (T )
1−γ + 16 log(9)λCmax(T )√

|T |γ(1−γ)
, we get Pr[Detectsk(T ) = 1] < 2−λ.

Completeness requires two conditions on Model for the prompt Q whose definitions we omit: on-average
high entropy and on-average homophily ([ZALW23, Assumptions C.9, C.12]).

Theorem A.16 (Completeness, adapted from Theorem C.13 of [ZALW23]). Fix Model and Q. Suppose that
β, κ ∈ (0, 1) and |T | satisfy the following, where c1 and c2 are some constants that depend on the parameters
δ and γ.

• |T | ≥ c1 · log(1/β)(1−κ)2 .

• Model has β-on-average-homophily for Q

• Model has (ξ, β/3)-on-average-high-entropy for Q, for ξ = c2 · 1−κ
log2(|T |/β)

Then

Pr

[
zsk(T ) <

κ(eδ − 1)
√
|T |γ(1− γ)

1 + (eδ − 1)γ

]
≤ β (5)

In particular, Pr[Detectsk(T ) = 0] ≤ 2−λ for threshold ρ(T ) <
κ(eδ−1)

√
|T |γ(1−γ)

1+(eδ−1)γ .
15Observe that Cmax(T )/|T | is the frequency of the most common token in T . For natural language, Cmax(T ) = Ω(T ) is

typical. For example, about 7% of the words in the Brown Corpus are “the”. The condition Cmax(T ) > |T |/64λ only requires
that there exists a token with frequency 1/64λ in T .
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B Reference: definition variants

B.1 Zero-bit watermarking

Definition B.1 (Undetectability – zero-bit). A zero-bit watermarking scheme W = (KeyGen,Wat,Detect)
for Model is undetectable if for all efficient adversaries A,∣∣∣∣Pr[AModel(·)(1λ) = 1]− Pr

sk←$ KeyGen(1λ)
[AWatsk(·)(1λ) = 1]

∣∣∣∣
is at most negl(λ).

Definition B.2 (Soundness – zero-bit). A zero-bit watermarking scheme W = (KeyGen,Wat,Detect) is
sound if for all polynomials poly and all strings T ∈ T ∗ of length |T | ≤ poly(λ),

Pr
sk←$ KeyGen(1λ)

[Detectsk(T ) ̸= 0] < negl(λ).

For all of the robustness definitions below, completeness can be defined by including the extra clause T̂ = T
(or T̂ ∈ (Ti)i in the adaptive setting). To save space, we only explitly define completeness in Definition B.3.

Definition B.3 (R-Robust/Complete detection – zero-bit, non-adaptive). A zero-bit watermarking scheme
W = (KeyGen,Wat,Detect) is non-adaptively R-robustly/completely detectable with respect to the robust-
ness condition R if for all efficient adversaries A, all polynomials poly, and all prompts Q ∈ T ∗ of length
|Q| ≤ poly(λ), the following event FAIL occurs with negligible probability:

• T̂ = T , AND // the adversary outputs T

• R(λ,Q, T, T̂ ) = 1, AND // the robustness condition passes

• Detectsk(T̂ ) = 0 // the mark is removed

in the probability experiment defined by

• sk← KeyGen(1λ)

• T ←$ Watsk(Q)

• T̂ ← A(1λ, T ).

Definition B.4 (R-Robust detection – zero-bit, adaptive). A zero-bit watermarking scheme W = (KeyGen,
Wat,Detect) is adaptively R-robustly detectable with respect to the robustness condition R if for all efficient
adversaries A, the following event FAIL occurs with negligible probability:

• R(λ, (Qi)i, (Ti)i, T̂ ) = 1, AND // the robustness condition passes

• Detectsk(T̂ ) = 0 // the mark is removed

in the probability experiment defined by

• sk← KeyGen(1λ)

• T̂ ← AWatsk(·)(1λ), denoting by (Qi)i and (Ti)i the sequence of inputs and outputs of the oracle.

We also say a scheme satisfying this definition is (δ,R)-robust.
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B.2 L-bit watermarking

Definition B.5 ((δ,R)-Robust extraction – L-bit, non-adaptive). An L-bit watermarking scheme W =
(KeyGen,Wat,Extract) is non-adaptively (δ,R)-robustly extractable with respect to the robustness condition
R if for all efficient adversaries A, all messages m ∈ {0, 1}L, all polynomials poly, and all prompts Q ∈ T ∗
of length |Q| ≤ poly(λ), the following event FAIL occurs with negligible probability:

• R(λ,Q, T, T̂ ) = 1, AND // the robustness condition passes

• m̂ ̸∈ Bδ(m) // the mark is corrupted

in the probability experiment define by

• sk←$ KeyGen(1λ)

• T ←$ Watsk(m,Q)

• T̂ ← A(1λ, T )

• m̂← Extractsk(T̂ ).

Lemma B.6 (L-bit Adaptivity from Undetectability). Let W = (KeyGen,Wat,Extract) be a block-by-block
L-bit watermarking scheme that is undetectable. If W is non-adaptively R1-robust, then it is adaptively
R1-robust.

Proof. Fix some m ∈ {0, 1}L. For any R, non-adaptive R-robustness for any fixed prompt implies non-
adaptive R-robustness for any distribution over prompts. The latter implies adaptive R-robustness for any
adversary A1 making only a single query to its oracle, as the queried prompt is sampled from a fixed
distribution independent of sk. It remains to show that adaptive R1-robustness for single query implies
adaptive R1-robustness for any q = poly(λ) queries.

Suppose for contradiction that there exists an adaptive-robustness adversary AO(·) making q queries for

which Pr[FAIL] ≥ f , for q, f = poly(λ). We define AWatsk(·)
1 making a single query as follows.

1. Sample j∗←$ [q] uniformly at random.

2. Run AO(·)(1λ), responding to query Qi as follows:

(a) For i ̸= j∗, return Ti ← Model(Qi).

(b) For i = j∗, issue challenge query Qj∗ and return Tj∗ ←Watsk(m,Qj∗).

3. When A outputs T̂ , output T̂ .

By undetectability of W,

Pr
[
R1

(
λ, (Qi)i, (Ti)i, T̂

)
= 1 ∧ Extractsk(T̂ ) ̸= m

]
≥ f − negl(λ)

Recall that R1(λ, (Qi)i, (Ti)i, T̂ ) = 1 iff there exists a substring τ̂ ∈ T̂ that is ≏-close to a block in
∪iBlocks(Ti;Qi), for functions ≏ and Blocks as defined by R1. Hence if R1(λ, (Qi)i, (Ti)i, T̂ ) = 1, there
exists i∗ ∈ [q] such that R1(λ,Qi∗ , Ti∗ , T̂ ) = 1. By construction, j∗ = i∗ with probability 1/q. Therefore,

Pr
[
R1

(
λ,Qj∗ , Tj∗ , T̂

)
= 1 ∧ Extractsk(T̂ ) ̸= m

]
≥ f − negl(λ)

q

violating the hypothesis that W is adaptively R1-robust for a single query.
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B.3 Multi-user watermarking

Definition B.7 (Undetectability – multi-user). Define the oracle Model′(u,Q) := Model(Q). A multi-
user watermarking scheme W = (KeyGen,Wat,Detect,Trace) for Model is undetectable if for all efficient
adversaries A, ∣∣∣∣Pr[AModel′(·,·)(1λ) = 1]− Pr

sk←$ KeyGen(1λ)
[AWatsk(·,·)(1λ) = 1]

∣∣∣∣
is at most negl(λ).

Definition B.8 (Soundness – multi-user). A multi-user watermarking scheme W = (KeyGen,Wat,Detect,
Trace) is sound if for all polynomials poly and all strings T ∈ T ∗ of length |T | ≤ poly(λ),

Pr
sk←$ KeyGen(1λ)

[Detectsk(T ) = 1] ≤ negl(λ).

C Proof of Lemma 2.4

Lemma C.1. For λ, L ≥ 1 and 0 ≤ δ < 1, define

k∗(L, δ) = min

L · (lnL+ λ); L · ln

 1

δ −
√

λ+ln 2
2L

 (6)

Then, after throwing k ≥ k∗(L, δ) balls into L bins, fewer than δL bins are empty except with probability at
most e−λ.

Proof. If k ≥ L(lnL+ λ) balls are thrown into L bins, all bins are occupied except with probability at most
L(1− 1

L )
L(lnL+λ) < Le−(lnL+λ) = e−λ. In this case, 0 bins are empty, and the claim holds.

Now suppose L(lnL + λ) > k ≥ −L ln

(
δ −

√
λ+ln 2
2L

)
. Then δ >

√
λ+ln 2
2L > 0. The analysis uses the

Poisson approximation to balls and bins. Let X = (X1, . . . , XL) be a multinomial random variable over ZL
≥0

where each Xi denotes the number of balls in bin i. Let Y = (Y1, . . . , YL) where each Yi ∼ Pois(k/L) i.i.d.
is Poisson with mean k/L. Let E = {x ∈ NL

0 :
∑

i 1(xi = 0) > δL} be the event that more than δL bins are
empty.

Let Wi = 1{Yi = 0} and W =
∑L

i=1 Wi. E[W ] = Le−k/L. Applying a Hoeffding bound,

Pr
Y
[E] = Pr[W − E[W ] > L(δ − e−k/L)]

≤ exp
(
−2L(δ − e−k/L)2

)
≤ exp(−λ− ln 2)

Where the last inequality comes from our choice of k. Observe that the above requires δ− e−k/L > 0, which
holds because k > L ln(1/δ).

The Poisson approximation gives PrX [E] ≤ 2PrY [E] for any event E that is monotically decreasing with
the number of balls k [MU05, Corollary 5.11]. Throwing more balls only decreases the probability that more
than δL are empty. Hence PrX [E] ≤ e−λ.

D Discussion of sub-uniform recovery

Our main L-bit watermarking scheme allows δ · L bits of the embedded message to be erased. It is natural
to hope that the erased bits are distributed uniformly at random. But an adversary might want to erase
some bits more than others. For example, the higher-order bits if the message is a timestamp.
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Can we ensure that the adversary cannot influence which indices of the message are erased? In the
proof of Lemma 5.3, we transition to a game (Hybrid 3) where the indices are erased uniformly at random.
Perhaps surprisingly, however, this does not imply that our scheme extracts a message with uniformly random
erasures.16 We present an informal argument to provide intuition as to why this implication cannot hold.

Suppose the adversary is using our L-bit scheme and can choose which messages are embedded into the
text. Then they could generate watermarked outputs T0 ← Watsk(m0, Q0) and T1 ← Watsk(m1, Q1), where
m0 = 0L and m1 = 0∥1L−1. Suppose they edit T0 and T1, editing blocks uniformly at random, ultimately
outputting some T̂ that contains enough of T0 and T1 such that every index in m0 and m1 is embedded once
in expectation. In this case, there would likely be two blocks in T̂ generated using k1,0, none generated using
k1,1, and one generated using ki,b for every other i ∈ [L], b ∈ {0, 1}. Suppose our Extract algorithm is better
at extracting when two blocks generated with the same key are present than it is when only one block is
present. It would then be more likely that Extract recovers the first bit of the embedded message than any
other bit.

Intuitively, this may not seem like an issue. In fact, by making it easier to recover certain bits, the
adversary appears to be helping the watermarker. But this is not strictly better than having uniformly
random erasures. To see why, we can model the adversary’s behavior by first erasing bits uniformly at
random and then allowing the adversary to choose which bits become “unerased.” We call the resulting
distribution of the indices of erased bits “sub-uniform.” A scheme that is secure under uniformly random
erasures is not necessarily secure against a sub-uniform adversary. For instance, the Tardos fingerprinting
code [Tar08] is secure against uniform erasures. If the watermarking scheme is embedding codewords from
the Tardos code, the adversary may be able to reveal bits that make it harder for them to be traced.

To be clear, this adversary is exceptionally weak. If a fingerprinting code is robust to uniform erasures
and has the (informal) property that revealing more bits always improves the chance of tracing to a guilty
party, then it will also be robust to sub-uniform erasures. This is an intuitive property for a fingerprinting
code to have, although not all satisfy it (and most do not prove it).

Before we go on to prove any results, we formally define sub-uniform distributions in Definition D.1.
Informally, we can compare the definition to the above game as follows. First, we choose a uniformly
random subset Y , then an adversary can pick any X ⊆ Y . This corresponds exactly to erasing uniformly
random indices of a message (those in Y ) and then allowing an adversary to unerase indices of its choice
(those in Y \X). The indices that remain are those in X.

Definition D.1. For a universe U , integer 0 ≤ s ≤ |U|, and random variable of a uniformly random subset
of size s, Us ⊆ U , we say a random variable V supported on 2U is s-sub-uniform if there exists a distribution
(coupling) W = (X,Y ) over 2U × 2U , with marginal distributions X = V and Y = Us, such that X ⊆ Y
always.

Lemma D.2 formalizes the type of distribution that our erasures follow. So long as fingerprinting codes are
robust with respect to sub-uniform erasures, they can be used in a black-box way with our L-bit watermarking
construction in Figure 2 to create multi-user watermarks. In the following lemma, we use the notation Projδ
to denote a randomized function that adds erasures uniformly at random to its input until it has at least
⌊δL⌋ entries equal to ⊥.

Lemma D.2. Suppose W ′ is a block-by-block zero-bit watermarking scheme that is undetectable, sound, and
R1-robustly detectable. Let W = (KeyGen,Wat,Extract) be the L-bit watermarking scheme from Figure 2
using W ′.

Let I⊥(m̂) = {i : i ∈ [L], m̂[i] = ⊥} and 0 ≤ δ < 1. Then, for all efficient A, the set I⊥(m̂) is
computationally indistinguishable from a ⌊δL⌋-sub-uniform random variable in the probability experiment
defined by

• sk←$ KeyGen(1λ)

• T̂ ← AWatsk(·,·)(1λ)

16The implication does hold if the adversary only ever queries a single message.
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• m̂← Projδ(Extractsk(T̂ ))

and conditioned on Rk being satisfied.

Proof outline. The proof follows via the techniques used in the proof of Lemma 5.3. Notice that the code
of Hybrid 3 will return a message with uniformly randomly distributed erasures. If we consider running the
same adversary with W in Hybrid 3 and in the original game, then we can construct a distribution W based
on this adversary. Specifically, the distribution of erasures in Hybrid 3 is indistinguishable from a uniformly
random subset of size ⌊δL⌋ because we have composed it with Projδ. Call this subset I3⊥(m̂). Based on the
arguments in Hybrids 1 and 2, we know that the original game will only have strictly fewer ⊥ entries. So the
joint distribution W = (I⊥(m̂), I3⊥(m̂)), is indistinguishable from a ⌊δL⌋-sub-uniform joint distribution.
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