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Abstract. Multivariate public key cryptography (MPKC) is one of the
most promising alternatives to build quantum-resistant signature schemes,
as evidenced in NIST’s call for additional post-quantum signature schemes.
The main assumption in MPKC is the hardness of the Multivariate
Quadratic (MQ) problem, which seeks for a common root to a system
of quadratic polynomials over a finite field. Although the Crossbred al-
gorithm is among the most efficient algorithm to solve MQ over small
fields, its complexity analysis stands on shaky ground. In particular, it
is not clear for what parameters it works and under what assumptions.
In this work, we provide a rigorous analysis of the Crossbred algorithm
over any finite field. We provide a complete explanation of the series
of admissible parameters proposed in previous literature and explicitly
state the regularity assumptions required for its validity. Moreover, we
show that the series does not tell the whole story, hence we propose an
additional condition for Crossbred to work. Additionally, we define and
characterize a notion of regularity for systems over a small field, which
is one of the main building blocks in the series of admissible parameters.

Keywords: Admissible parameters · Crossbred · Semi-regular · MQ Problem ·
Post-quantum · Cryptography

1 Introduction

The Multivariate Quadratic (MQ) problem lies at the heart of several crypto-
graphic constructions. In its search version, it consists in finding a common root
to a system of m quadratic polynomials in n variables over a finite field of size
q. Its decision version is NP-complete, it is expected to be hard on average for a
wide range of parameters, and it is believed to be hard even on quantum comput-
ers. That is why, it has become specially relevant in the quest for post-quantum
primitives, giving rise to an area of research called multivariate public key cryp-
tography (MPKC), cf. [DY09]. In fact, several of the submissions to the latest



NIST Post-Quantum Standarization process, include among their assumptions
the hardness of some sort of MQ problem [CSD].

In order to tune the parameters of MQ-based cryptosystems, it is important
to estimate precisely the concrete hardness of the MQ problem. There are several
algorithms to solve MQ with different tradeoffs depending on the parameters,
the structure of the polynomials, and the computational resources available. We
refer the reader to [BMSV22] for a recent survey.

In this paper, we focus our attention on a particular algorithm and on a spe-
cific scenario, that nevertheless, has a significant impact on cryptanalysis. The
Crossbred algorithm [JV18] stands as one of the most efficient to solve random
MQ instances over small finite fields. In theory, it is the most efficient algo-
rithm to attack several cryptosystems, as shown by Bellini et al. in [BMSV22].
In practice, it has been used to solve some of the largest known instances, as
reported in the Fukuoka MQ-challenge [YDH+15]. We concentrate on the com-
plexity of Crossbred for random instances where the size of the field is larger
than 2, but still small, say less than 25. Such instances are relevant for UOV,
MQDSS, MAYO, and MQOM [KPG99, CHR+16, Beu22, BFR23] among other
cryptosystems.

The Crossbred algorithm builds upon algebraic matrix-based methods such
as F4, F5 and XL. Those methods search for a “good” representation of the
ideal generated by the polynomials, on a large enough subspace, usually capped
by total degree. Their complexity is thus bounded by the complexity of doing
linear algebra on the so called Macaulay matrix(

n+ d

d

)ω

,

where d is a cap on the degree that guarantees the presence of the desired
representation and ω is the linear algebra constant. Hybrid algorithms such as
BooleanSolve [BFSS13] traverse all possible values of n − k variables, checking
consistency of the partially evaluated polynomials. They check the consistency
using a matrix-based approach, therefore their complexity is in order of

qn−k

(
k + d

d

)ω

,

where d is expected to be smaller.
The Crossbred algorithm, first described by Joux and Vitse in [JV18], splits

the work in a different fashion. It first finds, in the Macaulay matrix of degree D,
a number of polynomials of degree less than or equal to d in the first k variables,
and then it traverse all possible values of n − k variables, checking consistency
of the partially evaluated polynomials. The values of k, D, and d must be so
that, after assigning values to the last n− k variables, the resulting system can
be solved at degree d. Its complexity is thus in the order of(

n+D

D

)ω

+ qn−k

(
k + d

d

)ω

. (1)
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The rationale behind this approach is that the initial work on the larger matrix
of size

(
n+D
D

)
might substantially reduce the size of the remaining qn−k matrices

of size
(
k+d
d

)
.

Despite its apparent efficiency, the complexity of the Crossbred algorithm is
not well established. One important missing ingredient is a complete and formal
discussion on the notion of semi-regularity for finite fields of size q > 2. Bardet
et al. [BFSY05] precisely defines and characterize a notion of semi-regularity
for sequences of polynomials over GF(2). Although other works, such as [YC04]
consider similar notions for finite fields of size q > 2, to the best of our knowledge,
there is no complete rigorous treatment of the subject.

Perhaps more crucial, it is not trivial to predict “admissible parameters”, i.e,
values of k, D, and d for which the Crossbred algorithm succeeds. Joux and Vitse
in [JV18] did predict admissible parameters for d = 1, assuming the sequence
of polynomials is regular or semi-regular, which is a plausible assumption for
random quadratic systems, c.f. [BFSY05]. For d ≥ 1 and GF(2), Joux and Vitse
stated that k, D, and d are admissible if the coefficient of xDyd in the series

(1 + x)n−k

(1− x)(1− y)

(
(1 + xy)k

(1 + x2y2)m
− (1 + x)k

(1 + x2)m

)
− (1 + y)k

(1− x)(1− y)(1 + y2)m
(2)

is non-negative. However, they did not explain where the series come from, nei-
ther state the necessary assumptions. Other works have expanded the original
complexity analysis of Crossbred. Duarte [Dua23] and Nakamura et al. [Nak23]
try without success to explain the series (2). Bellini et al. [BMSV22] state a
similar series for q > 2, but they provide no further details.

Our Contribution

We state four equivalent conditions for a sequence of polynomials over a finite
field to be semi-regular. Because the notion depends on the field size, we call a
sequence that satisfies these conditions q-semi-regular. This generalizes the work
over GF(2) of Bardet et al. [BFSY05] and complements the work for arbitrary
finite fields of Yang and Chen [YC04]. Our complete treatment of the subjects
reaffirms the correctness of the notion of regularity and provides solid ground
for a complexity analysis. Moreover, the sequence of vector spaces that we use to
analyze the polynomial system is different from previous approaches, effectively
decoupling the syzygies coming from commutativity from the syzygies coming
from the Frobenious maps, as in

0 → (R/Si)d−2q

×fq−1
i−−−−→ (R/Si−1)d−2

×fi−−→ (R/Si−1)d → (R/Si)d → 0,

where R is the underlying ring and Si = ⟨f1, . . . , fi⟩. We believe that this ap-
proach simplifies and illuminates the proofs and makes it easier to extend to
other cases.

We then provide a rigorous analysis of admissible parameters for Crossbred.
We identify two necessary conditions for Crossbred to work under regularity
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assumptions. For the first condition, corresponding to Joux-Vitse’s condition
(2) above, we explain in detail what it guarantees and we state the necessary
assumptions. Next, we explain why this condition is not sufficient, which leads to
a second condition. Just as an example, in the case of GF(2), the new condition
can be simply stated as

[yD]

[
(1 + y)k

(1− y)(1 + y2)m

]
+

= 0,

where [·]+ denotes the truncated series from the first non-positive coefficient. In-
tuitively, we need this condition to hold, so that it is possible to solve the system
of m equations in k variables that results after partially evaluating the last n−k
variables at degree D. Although, Crossbred does not explicitly construct the
degree D Macaulay matrix of the partially evaluated polynomials, all the poly-
nomials used to check the consistency correspond to vectors in its span, hence
D must reach such a threshold. For this condition we also explicitly state the
assumptions that allow it to operate. Finally, we provide empirical evidence that
confirms that randomly chosen polynomials satisfy all the proposed assumptions
with high probability. Based on this analysis and on the experimental evidence,
we concluded that the two conditions predict all admissible parameters.

As a consequence of our analysis, given an instance of the MQ problem, the
set of parameters for which Crossbred works is a subset of what was predicted
prior to this work. This yields higher estimates of the complexity of Crossbred.
In Section 6, we show evidence indicating that the changes in the complexity are
relative small for cryptographically large instances. For instance, the security of
the UOV signature scheme against the direct attack using Crossbred is at most
four bits higher than estimated before for all its parameter sets.

Related Work

There are two lines of work that are specially relevant to our contributions, works
that discuss semi-regularity for polynomials over a finite field and those that
discuss the admissible parameters and complexity of the Crossbred algorithm.

The notion of semi-regular for the specific case of a sequence of polynomials
over GF(2) was introduced by Bardet et al. in [BFSY05]. Their original definition
is for homogeneous polynomials over the quotient ring F[x1, . . . , xn]/⟨x2

1, . . . , x
2
n⟩,

and they prove that their definition is equivalent to a specific Hilbert series.
Some additional details are provided in [Bar04]. Our contribution is directly
influenced by these works, as we generalize this notion and characterization
for fields of size q > 2. On a more recent work, Bardet et al. use a slightly
different definition for semi-regularity over GF(2). Aiming at a more precise
complexity analysis of their algorithm to solve a system of polynomial equations
over GF(2), they consider a homogenized version, where the ring is simply the
polynomial ring F[x1, . . . , xn, h] and the ideal includes the homogenized field
equations x2

1−x1h, . . . , x
2
n−xnh. Our work does not use this definition, but our

results could be easily extended in this direction.
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Other works have established the Hilbert series of what we call a q-semi-
regular sequence. For example, Yang and Chen [YC04, Theorem 2] implicitly
establish the result as a means for a bound on the number of linearly indepen-
dent XL equations. However, the assumptions necessary for the result are not
explicitly stated. They seem to suggest that they are assuming that the sequence
is generic, which makes no sense over a finite field, and they use without prov-
ing a form of the principle of inclusion-exclusion that is not true in general for
vector spaces. Our work does not contradict their findings, but it provides a
more solid ground. Moreover, their work only establishes the form of the Hilbert
series, while we also establish the other implication that given such a Hilbert
series, we can infer regularity. Similarly, in [YCBC07, Proposition 3.4], Yang et
al. actually use the term q-semi-regular without properly defining it and citing
back to [YC04]. In conclusion, it seems that the idea of q-semi-regularity and its
Hilbert series has become Folklore knowledge, yet to the best of our knowledge,
it has not been precisely defined or characterized.

Studies on the Crossbred algorithm’s complexity and parameter selection
have provided valuable insights. Joux and Vitse [JV18] introduced a bivariate
series which aims to predict parameter admissibility for systems over F2 un-
der some unspecified regularity assumptions. Bellini et al. [BBSV22] provided
a generalized series over Fq. Chen et al. [CHR+20] investigated the algorithm’s
complexity and proposed a validation condition for parameter triples (D, d, k),
although it may overlook certain valid parameters. Duarte [Dua23] attempted
to derive the generating series of admissible parameters for solving polynomial
systems over Fq, but his study has some inaccuracies. Nakamura [Nak23] focused
on parameter selection, offering two validation formulas for parameter sets. We
discuss these studies in more detail in Section 2.2.

Organization

In Section 2, we establish some notation and basic definitions. In Section 2.1, we
describe the Crossbred algorithm, including a discussion about previous works
on admissible parameters, and its complexity. In Section 3, we define the notion
of q-semi-regular and establish four equivalent statements for it. In Section 4,
we provide a rigorous analysis of the Crossbred algorithm over any finite field,
including a formal definition of admissible parameters and the assumptions that
allow us to precisely predict admissibility. Finally, in Section 5, we describe
experimental results that test the assumptions, and in Section 6, we discuss
implications to cryptography.

2 Preliminaries

Notation. Let Fq denote the finite field of order q. For the description of the
Crossbred algorithm we will consider a polynomial ring over Fq in n variables
partitioned into two sets x = (x1, . . . , xk) and y = (y1, . . . , yn−k), which we will
denote by Fq[x,y]. The total degree of a polynomial f ∈ Fq[x,y] is denoted
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by deg(f), and its degree in the first k variables by degk(f). The left-kernel
of a matrix M will be denoted by ker(M), its rank by rank(M), its corank by
corank(M) and its number of columns by ncols(M). The dimension of a vector
space V over Fq will be denoted by dim(V). Given a power series H(z) and a non-
negative integer d, we denote by [zd]H(z) the coefficient of zd in H, by [H(z)]d
the series H truncated up to degree d, and by [H(z)]+ the series H truncated
at its first non-positive coefficient. In our analysis, we utilize the following two
power series:

Mn,q(z) =

(
1− zq

1− z

)n

, Hn,m,q(z) =

(
1− zq

1− z

)n(
1− z2

1− z2q

)m

.

For a subset S of a ring R, we denote by ⟨S⟩ the ideal of R generated by S.

Definition 1 (MQ problem). Let F = (f1, . . . , fm) be a sequence of quadratic
polynomials in n variables x1, . . . , xn over a finite field Fq. Given a vector
t = (t1, . . . , tm) ∈ Fm

q , the multivariate quadratic (MQ) problem aims to find
a solution in Fn

q that satisfies the system of equations:

fi(x1, . . . , xn) = ti, i = 1, . . . ,m. (3)

This definition of the problem is known as the search version of MQ problem.
The decisional version of the problem seeks to determine if the system (3) has a
solution. The MQ problem over a finite field is known to be NP-complete [GJ90].

Let F = (f1, . . . , fm) be a sequence of polynomials in Fq[x1, . . . , xn], let σ be
a monomial order and D a positive integer. Consider the set S of all polynomials
of the form mfi, where m is a monomial in Fq[x1, . . . , xn] and deg(mf) ≤ D. The
Macaulay matrix of F of degree D, denoted as MacD(F), is a matrix whose rows
are labeled by polynomials in S and whose columns are labeled by monomials
in the support of S. The columns are sorted according to σ in decreasing order
from left to right, and the order of the rows does not matter for our purposes.
The entry of MacD(F) in the row labeled mfi and column t is thus the coefficient
of t in the polynomial mfi.

2.1 The Crossbred Algorithm

The Crossbred algorithm, introduced by Joux and Vitse in 2018 [JV18], is de-
signed to solve the MQ problem over a finite field. It is parameterized by a triple
of positive integers (D, d, k). For a given sequence F of m quadratic polynomials
in n variables, the algorithm proceeds in two steps. In the preprocessing step,
it finds a sufficient number of linearly independent polynomials within the ideal
generated by F —ensuring that each of these polynomials satisfies the condition
that every specialization of the last n − k variables yields a polynomial of de-
gree at most d in the first k variables. Then, in the linearization step, for every
b ∈ Fn−k

q , the algorithm specializes b in each of the found polynomials and, if
d > 1, in the original polynomials in F . The algorithm then tries to solve the
resulting k-variate specialized system by direct linearization.
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In Algorithm 1 we present a slightly modified version of the Crossbred al-
gorithm. In this version r is the maximum number of polynomials that can be
obtained in the preprocessing step, while in the original version r is a parameter.
Our choice simplifies the analysis of the admissible parameters, but in practice
one might decide to control r for efficiency.

The pseudocode of Algorithm 1 involves two submatrices of the Macaulay
matrix MacD(F):

– MackD,d(F): the row submatrix of MacD(F) whereby each row (m, f) has the
property degk(m) ≥ d− 1.

– Mk
D,d(F): the column submatrix of MackD,d of columns corresponding to

monomials m with degk(m) > d.

Algorithm 1 The Crossbred Algorithm

Require: A quadratic sequence in n variables F = (f1, . . . , fm) ⊂ Fq[x,y] and
positive integers D, d, k

Preprocessing step:

1: Construct the matrices MackD,d(F) and Mk
D,d(F).

2: Find a basis (v1, . . . ,vr′) for the left-kernel of Mk
D,d(F).

3: Compute the set of polynomials P = {p1, . . . , pr} corresponding to a basis of the
vector space spanned by {vi ·MackD,d(F) : i = 1, . . . , r′}.
Linearization step:

4: for b ∈ Fn−k
q do

5: P|b ←
(
p1(x,b), . . . , pr(x,b)

)
6: F|b ←

(
f1(x,b), . . . , fm(x,b)

)
7: Mb ← Macd(F|b ∪ P|b)
8: Test the consistency of the linear system Mb · (z, 1)⊤ = 0.
9: if the linear system is consistent then

10: Find (c, 1) such that Mb · (c, 1)⊤ = 0.
11: Define a as the last k coordinates of c.
12: if F(a,b) = 0 then
13: return (a,b).

14: return ⊥.

In the linearization step, if the linear system Mb · (z, 1)⊤ = 0 is inconsis-
tent, then the specialized polynomial system F|b is inconsistent. However, the
converse is not true. For the Crossbred algorithm to work effectively, the param-
eters (D, d, k) must be chosen so that for most b ∈ Fn−k, the inconsistency of
the system F|b implies the inconsistency the linear system Mb · (z, 1)⊤ = 0. In
Section 4, we propose a definition for admissible parameters aiming at this goal,
and in Section 5, we report experimental results that confirm its effectiveness.

Remark 1. We highlight that when d = 1, MackD,d(F) is equal to MacD(F).
As for any monomial u of deg ≤ D − 2, each row of MacD(F) corresponding
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to polynomials u · fi satisfies degk(u) ≥ d − 1 = 0, implying that all the rows
are included in MackD,d(F). As the new polynomials pi obtained during the

preprocessing phase correspond to linear combinations vi · MackD,d(F), after

specifying the original system F , at some b ∈ Fn−k
q , the system F|b, will not

contribute independent polynomials from P|b for solving the specified system.
Therefore, in Step 7 of the Algorithm 1, only Macd(P|b) is considered during
the linearization phase.

2.2 Admissible Parameters

For the Crossbred algorithm to work effectively, the parameters (D, d, k) must
be chosen so that it becomes feasible to verify the consistency of the system F|b
through linearization at degree d. Joux and Vitse refer to such a triple (D, d, k)
as admissible [JV18]. In this subsection, we present and explain previous works
that have attempted to predict these admissible parameters.

It has already been observed in [JV18] that finding such a triple (D, d, k)
for a given number of variables n and a number of polynomials m over F2 is a
non-trivial task.

Joux and Vitse predict admissible parameters (D, d, k) by using the bi-variate
series

Sk,2(w, z) :=
(1 + w)n−k

(1− z)(1− w)

(
(1 + wz)k

(1 + w2z2)m
− (1 + w)k

(1 + w2)m

)
− (1 + z)k

(1− w)(1− z)(1 + z2)m
. (4)

More precisely, (D, d, k) are predicted admissible if [wDzd]Sk,q(w, z) ≥ 0. Bellini
et al. introduced a generalized approach for series over Fq, which is expressed as

Sk,q(w, z) :=
Hk,m,q(wz) ·Mn−k,q(w)−Hn,m,q(w)−Hk,m,q(z)

(1− z)(1− w)
, (5)

where Hn,m,q(z) = Mn,q(z) ·
(

1−z2

1−z2q

)m
and Mn,q(z) =

(
1−zq

1−z

)n
[BBSV22]. We

highlight that neither work ( [JV18] nor [BBSV22]) provides an explanation for
the series Sk,q(w, z) or describes the claimed regularity assumption under which
the series effectively detects admissible parameters.
In [CHR+20], Chen et al. consider the the following condition

dim
(
ker
(
Mk

D,d(F)
))

− dim
(
ker
(
MackD,d(F)

))
≥

d∑
i=0

(
k + i− 1

i

)
. (6)

We believe that the mentioned condition aims to ensure the validity of the pa-
rameter triple (D, d, k) for a specific input system F . We stress that the condition
in Equation (6) does not count for the polynomials associated with Macd(F|b)
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for some b ∈ Fn−k
q , which are not in the row-span of MackD,d(F). This omission

may lead to potential failure in detecting some valid parameter sets.
In Duarte’s study [Dua23], an attempt was made to explain and derive the

generating series of admissible parameters shown in Equation (5). However, the
analysis lacks rigorousness; it does not provide the necessary regularity assump-
tions for the series in Equation (5) to hold, and it is flawed. For instance, in
Section 6, the author claims that the coefficients of the initial part of the series

expressed as (1+wz)k(1+w)n−k

(1+w2z2)m , “represent the formal power series of the corank

of Mk
D,d.” This claim is proven inaccurate by the following example.

Example 1. Consider the values n = m = 5, k = 4, D = 4, and d = 2. The

corank(Mk
D,d) is 0, while the coefficient of w4z2 in (1+wz)k(1+w)n−k

(1+w2z2)m is 5.

Let LackD,d(F) denotes the row submatrix of MacD(F) whereby each row (m, f)
has the property degk(m) < d − 1. Then, this series characterizes the formal
power series of the corank of Lk

D,d, where Lk
D,d denotes the column submatrix

of LackD,d with columns corresponding to monomials m having degk(m) ≤ d.
Further discussion on this will be presented in Section 4.

In Nakamura’s work [Nak23], the investigation focuses on parameter selec-
tion in the Crossbred algorithm, presenting two formulas to validate parameter
sets. To derive the first formula, the author assumes that, in the preprocessing
phase, the newly computed polynomials in P do not correspond to any vector in
VLackD,d

(F), where VLackD,d
(F) denotes the vector space spanned by the rows of

LackD,d(F). Let V≤d,D(F) be a vector space spanned by rows of MacD(F) whose
corresponding polynomials have degk ≤ d and deg ≤ D. Then, with the above
assumption, the author estimates the rank(P) by the dimension of a vector space
V such that

V ⊕VLackD,d
(F) = V≤d,D(F). (7)

Using the above equation, the author mentions that the algorithm works, i.e.,
the parameters D, d, k are admissible if

rank(P) = dim(V) = dim(V≤d,D(F))− dim(VLackD,d
(F))

≥
(
k + d

d

)
− rank

(
Macd(F|b)

)
− 1. (8)

The author states that a parameter set is admissible if and only if the above
inequality holds. Note that the author derived the above inequality (8) with
the assumption that the newly computed polynomials in P do not belong to
VLackD,d

(F) since from (7), V ∩ VLackD,d
(F) = {0}, but that may not hold in

general, as the vector space spanned by the newly computed polynomials P
might have a non-trivial intersection with VLackD,d

(F), see Figure 1. However,

for practical purposes, we are interested only in those new polynomials in P,
which are independent of LackD,d(F). Further, to derive the second formula, the
author considers a vector space V′ such that

V′ ⊕
(
Vdegk≤d,D(F) ∩Vdegk≤d,D(F|b)

)
= Vdegk≤d,D(F),
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where Vdegk≤d,D(F|b) denotes the vector space spanned by

(u · g | g ∈ F|b,degk(u) ≤ d− 2,deg(u) ≤ D − 2).

Here, the author calculates rank(P) by the dimension of V′, indicating indepen-
dence from Vdegk≤d,D(F|b), which contributes to the rank of Macd(F|b). We
treat a general scenario in the Section 4.

2.3 Complexity of the algorithm

We briefly provide below an estimate for the complexity of the Crossbred al-
gorithm, similar to the one given in [BMSV22]. In the preprocessing phase of
the algorithm, we need to find r linearly independent vectors in the kernel of
the matrix Mk

D,d(F) that are not in the kernel of MackD,d(F). This can be done

by finding the kernel of Mk
D,d(F) using Gaussian elimination on the matrix. In

this case, the complexity of the preprocessing step is O(ncols(Mk
D,d(F))ω), where

2 ≤ ω ≤ 3. Alternatively, these kernel vectors can be found by repeatedly using
the block Wiedemann algorithm. The complexity of finding a kernel vector with
the block Wiedemann algorithm [Kal95] is given by

3

(
n+ 2

2

)
·
(
ncols(Mk

D,d(F))
)2

.

The required number of kernel vectors r can be upper bounded by
(
k+d
d

)
;

then, the complexity of the preprocessing step is upper bounded by

3

(
k + d

d

)(
n+ 2

2

)
·
(
ncols(Mk

D,d(F))
)2

.

Therefore, the complexity of the preprocessing step is

min

(
O(ncols(Mk

D,d(F)ω), 3

(
k + d

d

)(
n+ 2

2

)
·
(
ncols(Mk

D,d(F))
)2)

.

The complexity of the linearization phase is upper-bounded by O(qn−k
(
k+d
d

)ω
).

Finally, the complexity of the Crossbred algorithm, as the number of multipli-
cations over Fq, is given by

min

(
O(ncols(Mk

D,d(F))ω), 3

(
k + d

d

)(
n+ 2

2

)
·
(
ncols(Mk

D,d(F))
)2)

+O
(
qn−k

(
k + d

d

)ω)
.

3 Semi-regular Sequences over Fq

In this section, we prove the equivalence of four statements about a sequence
of polynomials over Fq. These statements naturally generalize the notion of
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semi-regularity; thus we define a sequence that satisfies them as q-semi-regular.
Throughout this section we denote by R the quotient ring

R = Fq[x1, . . . , xn]/⟨xq
1, . . . , x

q
n⟩.

For f̄ ∈ R, its degree is deg(f̄) = min{deg(g) : g ∈ f̄}. We will mostly omit the
bar to denote elements in R for ease in notation. With this notion of degree, R
is a graded ring, and we denote by Rd its degree d subgroup 3. We first define
the notions of degree of regularity and trivial syzygies in this context.

Definition 2. The degree of regularity of a homogeneous ideal I ⊆ R, de-
noted as dreg(I), is the minimum integer d, if any, such that dim(Id) = dim(Rd),
where Id = Rd ∩ I.

Let F = (f1, . . . , fm) ∈ Rm be a fixed sequence. A syzygy of F is an se-
quence s = (s1, . . . , sm) such that

∑m
i=1 sifi = 0. The set of all syzygies of F

is an R-submodule of Rm. The degree of s, denoted by degF (s), is degF (s) =
max{deg(si) + deg(fi) : 1 ≤ i ≤ m}. Sometimes we omit the reference to F ,
when it is clear from the context.

For i ̸= j ∈ {1, . . . ,m}, commutativity induces a syzygy of the form

fiej − fjei, (9)

where ei is the canonical basis vector of Rm. Furthermore, the Frobenius map
induced a syzygy of the form

fq−1
i ei. (10)

Definition 3. Given F = (f1, . . . , fm) ∈ Rm, we define the trivial syzygies of
F , denoted as Syztriv(F), to be the R-submodule generated by the syzygies of
types (9) and (10).

For the remaining of this section, let us assume that f1, . . . , fm ∈ R are
homogeneous quadratic polynomials. For i = 1, . . . ,m, let Fi := (f1, . . . , fi),
Si := ⟨Fi⟩, and let S0 = 0 and F = Fm. We now state and prove several lemmas
that lead to the equivalence of four statements about F .

Lemma 1. Let i ∈ {1, . . . ,m}. Suppose that for all g ∈ R, fig ∈ Si−1 and

deg(fi) + deg(g) < dreg (Si), imply g ∈ Si−1 +
〈
fq−1
i

〉
. Then, for all g ∈ R,

fq−1
i g ∈ Si−1 and deg(fq−1

i g) < dreg (Si), imply g ∈ Si.

Proof. Suppose g ∈ R is such that fq−1
i g ∈ Si−1 and deg(fq−1

i g) < dreg (Si).
Since the f ′

is are homogeneous, we may assume that g is also homogeneous.

3 We naturally extend this notation. For any homogeneous ideal or graded ring M
and any non-negative integer d, Md denotes its degree d homogeneous component.
If d < 0, then Md = 0.
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Since fi(f
q−2
i g) ∈ Si−1 and deg(fi(f

q−2
i g)) < dreg (Si), by hypothesis, we have

fq−2
i g ∈ Si−1 +

〈
fq−1
i

〉
. Thus,

fq−2
i g =

i−1∑
k=1

αkfk + β1f
q−1
i

for some αk’s and β1 in R, equivalently

fq−2
i (g − β1fi) = fq−2

i g − β1f
q−1
i =

i−1∑
k=1

αkfk. (11)

Since the fi’s and g are homogeneous, we may assume that the αk’s and β1 are
also homogeneous. Let us note that fq−2

i (g−β1fi) ∈ Si−1. If q = 2, then g ∈ Si,
and we obtain the desired result.
Now, let us assume that q > 2. For some homogeneous αk’s and β1 in Equa-
tion (11) we have that fq−2

i g − β1f
q−1
i is either homogeneous or zero. That

is,
deg(fif

q−3
i (g − β1fi)) ≤ deg(fq−2

i g) < dreg (Si) .

So, by the hypothesis, we have

fq−3
i (g − β1fi)− β2f

q−1
i =

i−1∑
k=1

α′
kfk,

for some α′
k, β2 ∈ R. If q = 3, it follows that g ∈ Si. In general, applying the

hypothesis q − 1 times, we get

g − β1fi − β2f
2
i − · · · − βq−1f

q−1
i =

i−1∑
k=1

α′′
kfk,

and we conclude that g ∈ Si.

Lemma 2. Let i ∈ {1, . . . ,m}. For all g ∈ R, fig ∈ Si−1 and deg(fi)+deg(g) <

dreg (Si), imply g ∈ Si−1 +
〈
fq−1
i

〉
, if and only if, for all d < dreg (Si), the

following sequence is exact

0 → (R/Si)d−2q

×fq−1
i−−−−→

χd,i

(R/Si−1)d−2

×fi−−→
ϕd,i

(R/Si−1)d
πi→ (R/Si)d → 0. (12)

Proof. Fix i ∈ {1, . . . ,m}. (=⇒) Let d < dreg (Si). First, note that since πi is
the canonical map, it is clearly surjective. Next, let us show that χd,i is injective.

Let g ∈ R of degree d − 2q be such that g + Si ∈ ker(χd,i). Then gfq−1
i ∈ Si−1

and
deg(fq−1

i g) ≤ 2(q − 1) + (d− 2q) = d− 2 < d < dreg(Si),

so by Lemma 1, g ∈ Si and it follows that g + Si = 0.
Now, let us show that ker(ϕd,i) = Im(χd,i). Let g ∈ R of degree d − 2 be such
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that g + Si−1 ∈ ker(ϕd,i). Then gfi ∈ Si−1 and deg(g) + deg(fi) = d < dreg(Si),

so by hypothesis g ∈ Si−1 +
〈
fq−1
i

〉
, hence

g − hif
q−1
i =

i−1∑
k=1

hkfk ∈ Si−1,

for some h1, . . . , hi ∈ R. Therefore g + Si−1 ∈ Im(χd,i)
4. The other inclusion

follows immediately from the fact that fq
i = 0.

(⇐=) If the sequence (12) is exact, then for d < dreg (Si), we have that
ker(ϕd,i) ⊆ Im(χd,i). Let g ∈ R be such that fig ∈ Si−1 and deg(fi) + deg(g) <
dreg (Si). Then with d = deg(g) + deg(fi) < dreg(Si) we have that g + Si−1 ∈
ker(ϕd,i) ⊆ Im(χd,i), so g ∈ Si−1 +

〈
fq−1
i

〉
.

Lemma 3. Let i ∈ {1, . . . ,m}. Suppose that for all g ∈ R, fig ∈ Si−1 and

deg(fi)+deg(g) < dreg (Si), imply g ∈ Si−1+
〈
fq−1
i

〉
. Then, every s ∈ Syz(Fi)

of degree less than dreg(Si) belongs to Syztriv(Fi).

Proof. Fix i ∈ {1, . . . ,m} and let s = (g1, . . . , gi) ∈ Ri be a syzygy of Fi such
that degFi

(s) < dreg (Si), so that

g1f1 + g2f2 + · · ·+ gifi = 0. (13)

It follows that gifi ∈ Si−1 and

deg(figi) ≤ deg(s) = max
1≤k≤i

(
deg(fk) + deg(gk)

)
< dreg(Si).

Then,

gi =

i−1∑
k=1

αi,kfk + βif
q−1
i ,

for some αi,k, βi ∈ R. Now, multiplying by fi, replacing in (13) and grouping
like terms we obtain

f1(g1 + αi,1fi) + f2(g2 + αi,2fi) + . . .+ fi−1(gi−1 + αi,i−1fi) = 0. (14)

We can then apply again the hypothesis to fi−1(gi−1 + αi,i−1fi), noting that

deg (fi−1(gi−1 + αi,i−1fi)) ≤ max

{
deg(fi−1) + deg(gi−1),
deg(αi,i−1) + deg(fi) + deg(fi−1)

}
< dreg(Si),

from which we conclude that

gi−1 + αi,i−1fi =

i−2∑
k=1

αi−1,kfk + βi−1f
q−1
i−1 ,

4 Note that this is also true if d− 2q < 0, in which case (R/Si)d−2q = 0 and hi must
be zero so that g ∈ Si−1 and hence ϕd,i is injective.
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Multiply fi−1 and replacing in (14) we get

f1(g1 + αi,1fi + αi−1,1fi−1) + f2(g2 + αi,2fi + αi−1,2fi−1) + . . .

+fi−2(gi−2 + αi,i−2fi + αi−1,i−2fi−1) = 0.

After repeating the same procedure i times, in the last step we get

g1 = −
i∑

k=2

αk,1fk + β1f
q−1
1 ,

and
f1(g1 + αi,1fi + αi−1,1fi−1 + αi−2,1fi−2 + . . .+ α2,1f2) = 0,

thus we conclude that for 1 ≤ j ≤ i,

gj =

j−1∑
k=1

αj,kfk −
i∑

k=j+1

αk,jfk + βjf
q−1
j .

Now, denoting by ek the k-th canonical basis vector of Ri, we have

(g1, . . . , gi) =(
−

i∑
k=2

αk,1fk + β1f
q−1
1

)
e1 +

(
α2,1f1 −

i∑
k=3

αk,2fk + β2f
q−1
2

)
e2+

· · ·+

(
i−1∑
k=1

αi,kfk + βif
q−1
i

)
ei

= α2,1(f1e2 − f2e1) + · · ·+ αi,1(f1ei − fie1)

+ α3,2(f2e3 − f3e2) + · · ·+ αi,i−1(fi−1ei − fiei−1) +

i∑
k=1

βkf
q−1
k ek

=
∑

j<k≤i

αk,j(fjek − fkej) +

i∑
k=1

βkf
q−1
k ek.

It follows that (g1, g2, . . . , gi) ∈ Syztriv.

Lemma 4. Let i ∈ {1, . . . ,m}. Suppose that every s ∈ Syz(Fi) of degree less
than dreg(Si) belongs to Syztriv(Fi). Then, for all g ∈ R, fig ∈ Si−1 and

deg(fi) + deg(g) < dreg (Si), imply g ∈ Si−1 +
〈
fq−1
i

〉
.

Proof. Fix i ∈ {1, . . . ,m} and let g ∈ R be such that gfi ∈ Si−1 and deg(g) +
deg(fi) < dreg(Si). Since the fi’s are homogeneous, there exist polynomials
g1, . . . , gi−1 of degree deg(g) such that

i−1∑
k=1

gkfk − gfi = 0.
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Therefore, (g1, . . . , gi−1,−g) is a syzygy of Fi of degree deg(g) + deg(fi) <
dreg(Si). Then, by hypothesis, this syzygy belongs to Syztriv, and there exist
αjk, βj ∈ R such that

(g1, . . . , gi−1,−g) =
∑

j<k≤i

αjk(fjek − fkej) +
∑
j≤i

βjf
q−1
j ej .

Looking at the i-th position of the expression, it follows that

−g =

i−1∑
j=1

αjifj + βif
q−1
i ,

which implies that g ∈ Si−1 +
〈
fq−1
i

〉
.

Lemma 5. Suppose that for all i ∈ {1, . . . ,m} and d < dreg (Si), the sequence
(12):

0 → (R/Si)d−2q

×fq−1
i−−−−→

χd,i

(R/Si−1)d−2

×fi−−→
ϕd,i

(R/Si−1)d
πi→ (R/Si)d → 0

is exact. Then, for all i ∈ {1, . . . ,m}, the Hilbert series of R/Si is

[Hn,i,q(y)]+ =

[
(1− yq)n

(1− y)n

(
1− y2

1− y2q

)i
]
+

.

Proof. The dimension of Rδ for δ ∈ Z is given by the coefficient of yδ in the
series:

(1− yq)n

(1− y)n
.

In other words, the Hilbert function of R, denoted by HFR, is expressed as:

HFR(δ) = [yδ]
(1− yq)n

(1− y)n
for all δ ∈ Z. (15)

The relationship (15) is established in Lemma 1 of [YC04]. Now, since the
sequence (12) is exact, we can deduce the following relationship between the
Hilbert functions for all k ∈ {1, . . . ,m} and d < dreg(Sk)

HFR/Sk
(d)−HFR/Sk

(d− 2q) = HFR/Sk−1
(d)−HFR/Sk−1

(d− 2).

Knowing that Equation (12) holds for d < D := dreg(Si), we have

D−1∑
d=0

(HFR/Si
(d)−HFR/Si

(d− 2q))yd =

D−1∑
d=0

(HFR/Si−1
(d)−HFR/Si−1

(d− 2))yd,

(1− y2q)

D−1∑
d=0

HFR/Si
(d)yd = (1− y2)

D−1∑
d=0

HFR/Si−1
(d)yd.
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Hence,

D−1∑
d=0

HFR/Si
(d)yd =

1− y2

1− y2q

D−1∑
d=0

HFR/Si−1
(d)yd. (16)

By recursively applying the relation Equation (16), from i down to 1, we obtain

D−1∑
d=0

HFR/Si
(d)yd =

(
1− y2

1− y2q

)i D−1∑
d=0

HFR(d)y
d

=

(
1− y2

1− y2q

)i [(
1− yq

1− y

)n]
D−1

=

[(
1− y2

1− y2q

)i(
1− yq

1− y

)n
]
D−1

.

Since D = dreg(Si),
∑D−1

d=0 HFR/Si
(d)yd = HSR/Si

(y), then

HSR/Si
(y) =

[(
1− yq

1− y

)n(
1− y2

1− y2q

)i
]
D−1

.

It remains to show that D is the degree of the first non-positive coefficient of
Hn,i,q(y). Note that D ≤ dreg(Si−1) ≤ dreg(Si−2) ≤ · · · ≤ dreg(S1). Thus, there
exists j ∈ {1, . . . , i} such that at degree d = D, the sequence (12) is not exact
for j ≤ k ≤ i and it is exact for 1 ≤ k < j. Using a similar argument as above,
we can deduce that for 1 ≤ k < j, HFR/Sk

(D) =
[
yD
]
Hn,k,q(y).

Let g ∈ R of degreeD−2q be such that g+Sk ∈ ker(χD,k), for j ≤ k ≤ i. Then

fq−1
k g ∈ Sk−1 and deg(fq−1

k g) = D − 2 < D ≤ dreg(Sk). This is equivalent to

fk(f
q−2
k g) ∈ Sk−1 and deg(fk(f

q−2
k g)) < dreg(Sk). Therefore, by Lemma 1, χD,k

is injective. Furthermore, it always holds that Im(χD,k) ⊆ ker(ϕD,k) and that
πk is surjective. Since the sequence is not exact in degree d = D for j ≤ k ≤ i,
the condition that is not satisfied is ker(ϕD,k) ⊆ Im(χD,k). Hence, we have
rank(χD,k) < null(ϕD,k), where rank(χD,k) and null(ϕD,k) denote the dimension
over Fq of the image space of χD,k and the kernel space of ϕD,k, respectively.
Therefore,

HFR/Sj−1
(D) = null(πj) + rank(πj)

= rank(ϕD,j) +HFR/Sj
(D)

= HFR/Sj−1
(D − 2)− null(ϕD,j) +HFR/Sj

(D)

< HFR/Sj−1
(D − 2)− rank(χD,j) +HFR/Sj

(D)

= HFR/Sj−1
(D − 2)−HFR/Sj

(D − 2q) +HFR/Sj
(D).
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Notice that (1− y2q)Hn,j,q(y) = (1− y2)Hn,j−1,q(y). It thus follows that

HFR/Sj
(D) > HFR/Sj−1

(D)−HFR/Sj−1
(D − 2) +HFR/Sj

(D − 2q)

=
[
yD
]
Hn,j−1,q(y)−

[
yD−2

]
Hn,j−1,q(y) +

[
yD−2q

]
Hn,j,q(y)

=
[
yD
]
Hn,j−1,q(y)−

[
yD
]
y2Hn,j−1,q(y) +

[
yD
]
y2qHn,j,q(y)

=
[
yD
]
Hn,j,q(y).

This last inequality can be used inductively from j down to i to prove that
HFR/Si

(D) ≥
[
yD
]
Hn,i,q(y). With this inequality and knowing thatHFR/Si

(D)
is zero since D = dreg(Si), we have the desired result.

Lemma 6. Suppose that for all i ∈ {1, . . . ,m}, the Hilbert series of R/Si is

[Hn,i,q(y)]+ =

[
(1− yq)n

(1− y)n

(
1− y2

1− y2q

)i
]
+

. (17)

Then, for all i ∈ {1, . . . ,m} and d < dreg (Si), the sequence (12):

0 → (R/Si)d−2q

×fq−1
i−−−−→

χd,i

(R/Si−1)d−2

×fi−−→
ϕd,i

(R/Si−1)d
πi→ (R/Si)d → 0

is exact.

Proof. Since [Hn,i,q(y)]+ equals HSR/Si
(y) by hypothesis, its first non-positive

coefficient appears in yD, with D = dreg(Si). Since HSR/Si
is a polynomial of

degree D − 1, we have that

HSR/Si
(y) =

[
(1− yq)n

(1− y)n

(
1− y2

1− y2q

)i−1
1− y2

1− y2q

]
D−1

=
[
HSR/Si−1

(y)
]
D−1

[
1− y2

1− y2q

]
D−1

.

The previous expression gives us the relation

(1− y2q)HSR/Si
(y) = (1− y2)

[
HSR/Si−1

(y)
]
D−1

. (18)

Then

(1− y2q)

D−1∑
d=0

HFR/Si
(d)yd = (1− y2)

D−1∑
d=0

HFR/Si−1
(d)yd,

D−1∑
d=0

(HFR/Si
(d)−HFR/Si

(d− 2q))yd =

D−1∑
d=0

(HFR/Si−1
(d)−HFR/Si−1

(d− 2))yd.

Therefore

HFR/Si
(d)−HFR/Si

(d− 2q) = HFR/Si−1
(d)−HFR/Si−1

(d− 2), (19)
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for 1 ≤ i ≤ m and for all d < dreg(Si). Now, we apply induction on d to show
that Equation (12) is exact. For the base case d = 2

0 → 0
×fq−1

i−−−−→
χ2,i

(R/Si−1)0
×fi−−→
ϕ2,i

(R/Si−1)2 −→
πi

(R/Si)2 → 0

is clearly exact. Suppose Equation (12) is exact for d < d∗ < dreg(Si) and we
will show it is exact for d∗ and for 1 ≤ i ≤ m. Fix i ∈ {1, . . . ,m}. Note that

HFi−1(d
∗) = null(πi) + rank(πi)

= rank(ϕd∗,i) +HFi(d
∗)

= HFi−1(d
∗ − 2)− null(ϕd∗,i) +HFi(d

∗). (20)

From the inductive hypothesis and Lemma 1, we have that fq−1
i g ∈ Si−1 and

deg(fq−1
i g) < dreg(Si) imply g ∈ Si, that is, for d < dreg(Si)+2, χd,i is injective.

Since d∗ < d∗ +1 < dreg(Si)+ 2, then χd∗,i is injective, and hence rank(χd∗,i) =
HFi(d

∗ − 2q). It thus follows from Equation (19) that

HFR/Si−1
(d∗) = HFR/Si−1

(d∗ − 2)− rank(χd∗,i) +HFR/Si
(d∗). (21)

Then, from Equation (20) and Equation (21), it follows that null(ϕd∗,i) = rank(χd∗,i).
Since Im(χd∗,i) ⊆ ker(ϕd∗,i), it follows that Im(χd∗,i) = ker(ϕd∗,i). Therefore the
sequence is exact.

We now state the main theorem of this section, whose proof follows from the
lemmas 2, 3, 4, 5, and 6.

Theorem 1. Let f1, . . . , fm ∈ R be homogeneous quadratic, for i = 1, . . . ,m,
Fi = (f1, . . . , fi), Si := ⟨Fi⟩, and F = Fm. Then the following statements are
equivalent.

1. For all i ∈ {1, . . . ,m} and for all g ∈ R, if fig ∈ Si−1 and deg(fi)+deg(g) <

dreg (Si), then g ∈ Si−1 +
〈
fq−1
i

〉
.

2. The following sequence is exact for all i ∈ {1, . . . ,m} and d < dreg (Si)

0 → (R/Si)d−2q

×fq−1
i−−−−→

χd,i

(R/Si−1)d−2

×fi−−→
ϕd,i

(R/Si−1)d
πi→ (R/Si)d → 0.

3. For all i ∈ {1, . . . ,m}, every s ∈ Syz(Fi) of degree less than dreg(Si) belongs
to Syztriv(Fi).

4. For all i ∈ {1, . . . ,m}, the Hilbert series of R/Si is

[Hn,i,q(y)]+ =

[
(1− yq)n

(1− y)n

(
1− y2

1− y2q

)i
]
+

.

Definition 4 (q-semi-regularity). A sequence of homogeneous quadratic poly-
nomials (f1, . . . , fm) ∈ Rm is called q-semi-regular if it satisfies the equivalent
conditions of Theorem 1. A non-homogeneous quadratic sequence (f1, . . . , fm) ∈
Rm is called q-semi-regular if the sequence formed by the homogeneous part of
largest degree is q-semi-regular.
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4 Revisiting Admissible Parameters

We now come back to the question of what are admissible parameters for the
Crossbred algorithm. Intuitively a triple (D, d, k) is admissible, if the Crossbred
algorithm works for such a triple, that is, if the consistency of the specialized
system F|b can be verified by checking the consistency of the linearized system
Mb ·(z, 1)⊤ = 0 in Step 8 of the algorithm. However, it is impossible to determine
a priory if this is the case. Instead, we would like to establish conditions, on n,
m and q, that allow Crossbred to work for most systems. We have identified two
such conditions. So, we will define admissible based on these conditions, we will
then explain the rationale behind them and test them experimentally.

Definition 5 (Admissibility condition). Let m,n, q be positive integers,
where q is a prime power, and let

Sk,q(w, z) :=
Hk,m,q(wz) ·Mn−k,q(w)−Hn,m,q(w)−Hk,m,q(z)

(1− z)(1− w)
.

A triple of integers (D, d, k) is admissible for Crossbred to solve generic MQ
instances of m equations in n variables over Fq if

i) [wDzd]Sk,q(w, z) ≥ 0 and

ii) [zD]
[
Hk,m,q(z)

1−z

]
+
= 0.

Note that condition i) above is precisely the condition initially established for
F2 by Joux and Vitse in [JV18], and generalized by Bellini et al. in [BMSV22].
Next, we formally explain the rationale behind Definition 5. First, we define two
additional submatrices of MacD(F) and their corresponding vector spaces:

– LackD,d(F): the row submatrix of MacD(F) whereby each row (m, f) has the
property degk(m) < d− 1.

– Lk
D,d(F): the column submatrix of LackD,d of columns corresponding to mono-

mials m with degk(m) ≤ d.
– VLackD,d

(F): the row space of LackD,d(F).

– VMackD,d
(F): the row space of MackD,d(F).

Figure 1 illustrates how the submatrices LackD,d and Lk
D,d relate with their

counterparts MackD,d and Mk
D,d inside MacD(F). The following lemma provides

a sufficient condition for Crossbred to produce a specific number of linearly
independent polynomials in the preprocessing step.

Lemma 7. Let F ∈ Fq[x,y]
m be a quadratic sequence and D, d, k positive in-

tegers, and set I = dim
(
VLackD,d

(F) ∩ VMackD,d
(F)

)
. The preprocessing step of

Algorithm 1 produces at least

t := dim
(
ker(Mk

D,d(F))
)
− dim

(
ker(MackD,d(F))

)
− I (22)

linearly independent polynomials, none of which are in VLackD,d
(F).
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degk = d, d− 1degk > d

degk < d− 1

degk ≥ d+ 1

MackD,dMk
D,d

LackD,d Lk
D,d

degk = d− 1

degk = d

degk ≤ d− 2

Fig. 1. Visualization of Macaulay matrix MacD, MackD,d, and LackD,d. Here Mk
D,d cor-

responds to the part marked with vertical lines.

Proof. The number of linearly independent polynomials found at step 3 of Al-
gorithm 1 is given by the dimension of the vector space

O0 :=
{
vi ·MackD,d(F) | vi ∈ ker(Mk

D,d)
}
,

which is

dim(O0) = dim(ker(Mk
D,d))− dim(ker(MackD,d))

= rank(MackD,d(F))− rank(Mk
D,d(F)).

Step 3 of Algorithm 1 finds polynomials pi corresponding to elements in O0

but we are only interested in those corresponding to vectors in O0 \VLackD,d
(F).

We highlight that in general O0 ∩VLackD,d
(F) ̸= ∅.

Consider the quotient space

O1 := O0/(O0 ∩VLackD,d
(F)).

Hence, dim(O1) indicates how many of the linearly independent polynomials
found in step 3 of Algorithm 1 correspond to vectors that are not in VLackD,d

(F).

Then, to conclude the proof, it remains to shows that dim(O1) = t, with t as in
(22). Note that dim(O1) = dim(O0)− dim(O0 ∩VLackD,d

(F)).

Next, we show that O0 ∩VLackD,d
(F) = VMackD,d

(F) ∩VLackD,d
(F). It is clear

that O0 ⊆ VMackD,d
(F). Now, suppose that c ∈ VMackD,d

(F) ∩ VLackD,d
(F) is a
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nonzero vector. On one side, we have that c = v · MackD,d(F) for some vector
v. On the other side, since c ∈ VLackD,d

(F), the coordinates of c corresponding

to monomials of degk > d are zero. Therefore, v ∈ ker(Mk
D,d(F)), which implies

that c ∈ O0.

Finally, since O0 ∩ VLackD,d
(F) = VMackD,d

(F) ∩ VLackD,d
(F), it holds that

dim(O1) = dim(O0)− I, where I = dim
(
VLackD,d

(F) ∩VMackD,d
(F)

)
.

Lemma 7 above provides a precise count for the number of “useful” polyno-
mials produced in the preprocessing step of Crossbred. For Crossbred to work,
this number must be enough so that it is possible to check the consistency of
the system F|b by linearization in Step 8. That means that preprocessing must
produce at least corank(Macd(F|b)) useful polynomials. Condition i) in Defini-
tion 5 captures precisely this requirement under the regularity assumptions a),
b), and c) in Theorem 2.

Theorem 2 (Generic admissibility condition). Let F be a quadratic se-
quence in Fq[x,y]

m. Given a triple of integers (D, d, k) and a vector b ∈ Fn−k
q .

Suppose that the following assumptions hold:

a) F is q-semi-regular.

b) The specialized sequence F|b ∈ Fq[x]
m is q-semi-regular.

c) The corank of Lk
D,d(F) is the maximum between zero and the coefficient of

wDzd in the series
Hk,m,q(wz)·Mn−k,q(w)

(1−z)(1−w) .

If D < degreg(F), d < degreg(F|b) and [wDzd]Sk,q(w, z) ≥ 0, then the prepro-
cessing step of Algorithm 1 produces at least

corank(Macd(F|b)) (23)

linearly independent polynomials, none of which are in VLackD,d
(F).

Proof. From the regularity assumptions, we obtain that

corank(MacD(F)) = [wD]
Hn,m,q(w)

1− w
= [wDzd]

Hn,m,q(w)

(1− z)(1− w)
,

corank(Macd(F|b)) = [zd]
Hk,m,q(z)

1− z
= [wDzd]

Hk,m,q(z)

(1− z)(1− w)
, and

corank(Lk
D,d(F)) = [wDzd]

Hk,m,q(wz) ·Mn−k,q(w)

(1− z)(1− w)
.

Define

Tk,q(w, z) :=
Hk,m,q(wz) ·Mn−k,q(w)−Hn,m,q(w)

(1− z)(1− w)
,

21



and set I = dim
(
VLackD,d

(F) ∩VMackD,d
(F)

)
.

[wDzd]Tk,q(w, z) = corank(Lk
D,d(F))− corank(MacD(F))

= ncols(Lk
D,d(F))− rank(Lk

D,d(F))− ncols(MacD(F)) + rank(MacD(F))

= ncols(Lk
D,d(F))− rank(LackD,d(F))− ncols(MacD(F)) + rank(MacD(F))

=
(
rank(MacD(F))− rank(LackD,d(F))

)
−
(
ncols(MacD(F))− ncols(Lk

D,d(F))
)

=
(
rank(MacD(F))− rank(LackD,d(F))

)
− ncols(Mk

D,d(F))

≤
(
rank(MacD(F))− rank(LackD,d(F))

)
− rank(Mk

D,d(F))

= rank(MackD,d(F))− I − rank(Mk
D,d(F)),

= dim
(
ker(Mk

D,d(F))
)
− dim

(
ker(MackD,d(F))

)
− I.

Now if [wDzd]Sk,q(w, z) ≥ 0, then

corank(Macd(F|b)) = [zd]
Hk,m,q(z)

1− z

= [wDzd]
Hk,m,q(z)

(1− z)(1− w)

≤ [wDzd]
Hn,m,q(w) ·Mn−k,q(w)−Hk,m,q(wz)

(1− z)(1− w)

≤ rank(MackD,d(F))− rank(Mk
D,d(F))− I

= dim
(
ker(Mk

D,d(F))
)
− dim

(
ker(MackD,d(F))

)
− I.

The result then follows from Lemma 7.

Remark 2. The admissibility condition [wDzd]Sk,q(w, z) ≥ 0 given in Theorem 2
can be expressed in terms of univariate power series only. This representation
allows to compute admissible parameters using state-of-the-art software libraries
that do not support bi-variate power series currently such as [tea23]. The con-
dition [wDzd]Sk,q(w, z) ≥ 0 can be rephrased as

C(D, d)− [wD]
Hn,m,q(w)

1− w
− [zd]

Hk,m,q(z)

1− z
≥ 0,

where

C(D, d) :=

d∑
i=0

[zi]Hk,m,q(z) · [wD−i]
Mn−k,q(w)

(1− w)
.
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We emphasize that condition i) of Definition 5 is a necessary condition for
Crossbred to work but it is not sufficient. In order to test if a vector b (chosen in
Step 4) is not part of any solution one can checks the inconsistency of the system
Fb. For this to happen, the constant polynomial 1 must be in the span of the
set of polynomials represented by Mb = Macd(F|b ∪ P|b). Although we cannot
test this a priory, notice that the rows of Mb are in the span of MacD(F|b).
Condition ii) of Definition 5 provides a sufficient condition for the polynomial
1 to be in the span of the polynomials associated with the rows of MacD(F|b)
under Assumption 1.

Assumption 1 For most quadratic sequences F ∈ Fq[x]
m, the corank of MacD(F)

is given by [zD]
[
Hk,m,q(z)

1−z

]
+
, where [·]+ denotes the truncated series from the first

non-positive coefficient.

Note that this assumption goes beyond q-semi-regular, because we are con-
sidering non-homogeneous sequences and we are not restricting D to be below
the degree of regularity. We test this assumption in Section 5 below.

Moreover, in Definition 5, neither condition i) implies condition ii), nor ii)
implies i).

Example 2. For q = 16, n = m = 8, k = 7, D = 7, d = 4, condition i) is
satisfied but not condition ii). Then, when we generate random sequences with
these parameters, the corank of MacD(F|b) is positive for all b ∈ Fn−k

q , which

implies that the corank of Mb is positive for all b ∈ Fn−k
q . Therefore, we are

unable to test the consistency of the system F|b by linearization in Step 8 of
Crossbred.

On the other hand, with q = 16, n = m = 8, k = 7, D = 7, d = 2, condi-
tion ii) is satisfied but not condition i). So we have that less than corank(F|b)
polynomials pi can be obtained in the preprocesing. Therefore, the corank of
Mb is positive for all b ∈ Fn−k

q . As a result when we generate random sequences
with these parameters, we are unable to test the consistency of the system by
linearization in Step 8 of Crossbred.

If (D, d, k) is admissible, then Crossbred most likely can test the consistency
of the specialized system F|b efficiently. By Theorem 2, Crossbred finds at least
corank(Macd(F|b)) linearly independent polynomials in the preprocessing step of
Algorithm 1, which correspond to vectors that are not in VLackD,d

(F). Moreover,

by Assumption 1 and since [zD]
[
Hk,m,q(z)

1−z

]
+
= 0, in Step 7, when the polynomi-

als in F∪P are specialized, one expects that the corank of Mb = Macd(F|b∪P|b)
is zero so that it is possible to test the consistency of the specialized system F|b
by simply computing the rank of Mb. Although there is no guarantee that this
is the case, we believe that it is a reasonable assumption.

Assumption 2 Let (D, d, k) be a triple of admissible parameters for Crossbred
to solve generic MQ instances of m equations in n variables over Fq. Let F ∈
Fq[x1, . . . , xn]

m, b ∈ Fn−k
q , and Mb = Macd(F|b ∪P|b). If for all a ∈ Fk

q , (a,b)
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is not a solution for F(x,y) = 0, then corank (Mb) = 0. If there exists a ∈ Fk
q

such that (a,b) is a solution for F(x,y) = 0, then corank (Mb) > 0.

Experimentally we verify that Assumption 2 holds for the vast majority of
(a,b) ∈ Fk

q × Fn−k
q when they are not a solution of F , while it always holds

for a solution vector (a0,b0). We describe more details of these experiments in
Section 5.

5 Experiments

We now present empirical evidence that supports several of our theoretical re-
sults.

In all of our experiments, we choose m = n, q ∈ {3, 16}, and n ∈ {2, . . . , 10}
for q = 16 and n ∈ {2, . . . , 16} for q = 3. We varied k from 1 to n−1, and D from
2 to the minimum between Dmax = 7 and one unit less than the deg(Hn,m,q)+1,
which is the degree of regularity of a q-semi-regular sequence of m polynomials
in n variables. This upper bound Dmax = 7 was a restriction we used in order
to keep manageable the sizes of all matrices involved in the experiments. And
finally, d ranged from 1 to min{D− 1,deg(Hk,m,q)}. For each set of parameters
(q, n,m,D, d, k), we repeated five times all the experiments described in this
section.

Recall that we set x = (x1, . . . , xk) and y = (xk+1, . . . , xn). In this section,
for a given homogeneous sequence F ∈ Fq[x,y], we use Lk

D,d(F)h, MackD,d(F)h

and Mk
D,d(F)h to denote the submatrices of Lk

D,d(F), MackD,d(F) and Mk
D,d(F)

formed by the rows and columns corresponding to polynomials and monomials
of degree D, respectively. Similarly, we define Macd(F)h as the submatrix of
Macd(F) formed by the rows and columns corresponding to polynomials and
monomials of degree d, respectively.

5.1 Regularity assumptions in Theorem 2

We perform the following experiment to verify the frequency of the regularity
conditions in Theorem 2.

1. Sample a quadratic sequence F ∈ Fq[x,y]
m and denote by Fh the sequence

formed by the homogeneous part of largest degree of each polynomial in F .
2. Use Theorem 1 to check if F is q-semi-regular.
3. Sample b ∈ Fn−k

q .
4. Use Theorem 1 to check if F|b ∈ Fq[x]

m is q-semi-regular.

5. Compute corank
(
Lk
D,d(F)

)
.

In 99.99% of the instances that we considered, we obtained that

corank
(
MacD(Fh)h

)
= [wD]Hn,m,q(w),
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which implies that F was q-semi-regular in 99.99% of the instances considered
in the experiments, according to Theorem 1. Also, the condition

corank
(
Macd(Fh|b)h

)
= [wd]Hk,m,q(w),

was always met, so it follows that F|b was q-semi-regular in all the instances
considered in the experiments. Next, it was always the case that

corank
(
Lk
D,d(F)

)
= [wDzd]

Hk,m,q(wz) ·Mn−k,q(w)

(1− z)(1− w)
.

Notice that when Lk
D,d(F) has no rows, we have

corank
(
Lk
D,d(F)

)
= ncols

(
Lk
D,d(F)

)
= ncols (MacD(F))− ncols

(
Mk

D,d(F)
)
.

Thus, according to our experiments, we claim that a sequence F of quadratic
polynomials that is chosen uniformly at random from Fq[x,y]

m, has a probabil-
ity close to 1 of being q-semi-regular. That is also the case for the specialized
sequence F|b, when b is a vector chosen uniformly at random from Fn−k

q .

5.2 Testing accuracy of predictions for corank (MacD(F))

Here we present our experimental results to test Assumption 1. For a given
tuple of integer parameters (q, k,m,D), where q is a prime power, we perform
the following experiment:

1. Sample uniformly an affine quadratic F ∈ Fq[x]
m.

2. Check if corank (MacD(F)) = [zD]
[
Hk,m,q(z)

1−z

]
+
.

In only 52 out of 5085 instances that were considered, the corank of MacD(F)

was not the predicted value [zD]
[
Hk,m,q(z)

1−z

]
+
. That is, Assumption 1 is satisfied

in 99% of all the instances that were run in our experiments.

5.3 Testing effectiveness of Crossbred on admissible parameters

In this section, we show our experimental results performed to test the effec-
tiveness of Crossbred (Algorithm 1) to find solutions of quadratic systems over
finite fields, when the algorithm is instantiated on admissible parameters. In
particular, we have to experimentally verify Assumption 2.

For a given triple of integer parameters (q, n,m) and admissible parameters

(D, d, k), i.e., it holds that [wDzd]Sk,q(w, z) ≥ 0 and [zD]
[
Hk,m,q(z)

1−z

]
+

= 0, we

perform the following experiment:

1. Sample uniformly a quadratic F ∈ Fq[x,y]
m.
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2. Compute a basis B = {v1, . . . ,vs} of ker(Mk
D,d(F)).

3. Compute P = {p1, . . . , ps}, where pi is the polynomial corresponding to
vi ·MackD,d(F) and pi ̸= 0.

4. Compute P|b and F|b for a random b ∈ Fn−k
q .

5. Compute the corank of Mb := Macd(P|b ∪ F|b).

We divide all the instances considered into two groups, group G1 in which the
chosen b is part of a solution of F , and group G2 in which the chosen b is not
part of any solution of F . For each set of parameters (q, n,m,D, d, k), we count
the number of times corank(Mb) is equal to zero, and the number of times it is
not. Notice that corank(Mb) = 0 if and only if rank(Mb) = [zd]Mk,q(z)/(1− z).
In our experiments for G1 we obtained that corank(Mb) > 0 in all the instances
considered for admissible parameters. Moreover, corank(Mb) = 1 in 1013 out of
1015 and 1260 out of 1275 instances of admissible parameters for q = 16 and
q = 3, respectively; and corank(Mb) = 2 in the remaining cases. That is, there
was unique solution in 99% of the instances considered in G1. For group G2 we
found that corank(Mb) > 0 (and equal to 1) in only 10 out of 1015 and 29 out
of 1275 instances of admissible parameters for q = 16 and q = 3, respectively.
These experimental results show us that when the algorithm is instantiated on
admissible parameters, Assumption 2 is satisfied 100% of the times when b is
part of a solution of F , and 98% of the times when b is not part of any solution
of F ; which gives us a very high effectiveness for Crossbred in those cases.

6 Implications to Cryptography

In Section 4, we show that one additional condition has to be introduced over a
triple of parameters (D, d, k) for Crossbred to work, see Definition 5. This implies
that for some instance of MQ, the set of admissible parameters is a proper subset
of the set estimated in previous works and therefore the complexity of Crossbred
was underestimated.

MQ parameters Old optimal
Old Estimate

New optimal
New Estimate

(q, n,m) (D, d, k) (D, d, k)

(256, 43, 43) (24, 4, 31) 153.2 (23, 5, 32) 153.5

(16, 63, 63) (22, 3, 33) 166.1 (22, 3, 33) 166.1

(256, 71, 71) (30, 19, 63) 247.3 (30, 19, 63) 247.3

(256, 95, 95) (30, 26, 83) 334.6 (30, 22, 80) 338.6

Table 1. New estimates for the complexity of the Crossbred algorithm to perform a
forgery attack against the UOV signature scheme.

As an example, Table 1 shows the complexity estimates of Crossbred against
the instances of the MQ problem required to perform direct forgery attack
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against the UOV signature scheme, as specified in [BCD+23]. The Old optimal
set of parameters is taken from the set of parameters satisfying only condition
i) in Definition 5 and represents the optimal according to the state of the art.
The New optimal set is taken from the set of admissible parameters according
to Definition 5. Both complexity estimates are computed as the logarithm of
the number of multiplications over Fq in Crossbred, when it is instantiated with
parameters (D, d, k). We observe that for the first three instances the estimated
complexity barely changes, but for the last instance it was underestimated by a
factor of 16.
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