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Abstract. Embedded curves are elliptic curves defined over a prime field whose order
(characteristic) is the prime subgroup order (the scalar field) of a pairing-friendly
curve. Embedded curves have a large prime-order subgroup of cryptographic size
but are not pairing-friendly themselves. Sanso and El Housni published families of
embedded curves for BLS pairing-friendly curves. Their families are parameterized by
polynomials, like families of pairing-friendly curves are. However their work did not
found embedded families for KSS pairing-friendly curves. In this note we show how
the problem of finding families of embedded curves is related to the problem of finding
optimal formulas for G1 subgroup membership testing on the pairing-friendly curve
side. Then we apply Smith’s technique and Dai, Lin, Zhao, and Zhou (DLZZ) criteria
to obtain the formulas of embedded curves with KSS, and outline a generic algorithm
for solving this problem in all cases. We provide two families of embedded curves for
KSS18 and give examples of cryptographic size. We also suggest alternative embedded
curves for BLS that have a seed of much lower Hamming weight than Sanso et al. and
much higher 2-valuation for fast FFT. In particular we highlight BLS12 curves which
have a prime-order embedded curve that form a plain cycle (no pairing), and a second
(plain) embedded curve in Montgomery form. A Brezing-Weng outer curve to have a
pairing-friendly 2-chain is also possible like in the BLS12-377-BW6-761 construction.
All curves have j-invariant 0 and an endomorphism for a faster arithmetic on the
curve side.
Keywords: pairing-friendly curves · SNARK

1 Introduction
Elliptic curves for proof systems. With the development of proof-of-knowledge
systems, in particular SNARK (Succinct Non-interactive ARgument of Knowledge), Pairing-
friendly curves know a recent regain of interest. These curves are elliptic curves usually
defined over a prime field Fp and equipped with an efficient bilinear map e(·, ·) that pairs
points on the curve and outputs a value in a finite field. To instantiate the proof systems,
a set of elliptic curves is required, and how they are related to each other varies. One
case study can be first a zero-knowledge proof using a group of an elliptic curve, then a
SNARK to prove the verification step of the previous proof, then a second SNARK to
prove the verification circuit of the former. However the elliptic curves involved are not
designed in the order they are used. The starting point is usually a pairing-friendly curve
that is used for a SNARK, Groth [Gro16] was the first to achieve a cost as small as three
pairings and additional multiplications/exponentiations. One starts by choosing that curve
because a pairing-friendly curve should be designed on purpose. Usually, elliptic curves
are not pairing-friendly. For the initial step (a first proof), Kosba et al. [KZM+15] were
the first to introduce what is called now an embedded curve, that is a plain elliptic curve
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2 Embedded curves

(non-pairing-friendly) whose field of definition has order given by the prime-order subgroup
of the pairing-friendly curve. For the second SNARK, in the Geppetto work [CFH+15],
Costello et al. constructed a 2-chain of pairing-friendly curves where a prime-order BN
curve is the base curve. There are also cycle variants. One can mention ZEXE’s cycle
of pairing-friendly MNT curves [BCG+20], hybrid cycles (half-pairing cycles) made of a
pairing-friendly BN curve and a plain curve, such as the Aztec Protocol half-pairing cycle
made of the Ethereum BN-254 curve whith the plain curve Grumpkin [Azt] of 254 bits,
Mina testnet half-cycle of 382 bits [Mec20], Pluto-Eris half-cycle [Hop21] of 446 bits; plain
cycles (secp256k1 and secq256k1 [Poe18], Tweedle [Hop17b, BGH19], Pasta [Hop20b]).
A survey paper can be found at [AEHG22].

Embedded curves. The initial proof statement is better formulated in a field that
avoids arithmetic mismatch. For that, embedded curves are designed so that their field of
definition is the scalar field of the pairing-friendly curve (the SNARK curve). Figure 1
from [AEHG22] illustrates the CØCØ embedded curve construction. The embedded curve
does not form a cycle. For CØCØ, the embedded curve has order a small factor times
a prime, hence cannot form a cycle (for that a prime-order curve would be required).
Jubjub [Hop17a] and Bandersnatch [MSZ21] are embedded curves in twisted Edwards
form for the BLS12-381 curve.

BN curve E1(Fp)
of prime order r

y2 = x3 + b

elliptic curve E0(Fr)
of order 4s

Montgomery form
CØCØ: given r, search for a curve

E0 over Fr of order 4 times a prime

statement
in a group of
prime order s
over a field Fr

SNARK with
a pairing e :

G1 ×G2 → GT

#Gi = r

polynomials
in Fr[X]

arithme-
tisation

proof of
the circuit

Figure 1: Kosba et al. construction [KZM+15], figure from [AEHG22]

Our contributions. We extend the construction of Sanso and El Housni [SEH24] to
KSS curves and give, based on Dai, Lin, Zhao, and Zhou theorem [DLZZ23] and Smith
technique [Smi15], an algorithm to derive the parameterized families of embedded curves
which have the same discriminant as the pairing-friendly curve. To obtain prime-order
embedded curves, the polynomial parameterizing the curve order should generate primes,
a problem well-known in pairing-friendly constructions (see the Taxonomy paper [FST10]).
For KSS18 curves of discriminant −D = −3, we obtain two embedded curve families that
can generate curves of prime order. For KSS16 curves of discriminant −D = −4, the
embedded curve with −D = −4 cannot be of prime order however its order can be four
times a prime. We wrote a SageMath/Python script based on the tnfs-alpha code to
generate seeds of BLS and KSS pairing-friendly curves that have a suitable embedded curve.
Ou technique can be extended to Scott–Guillevic (Aurifeuillean) and Gasnier–Guillevic
curves [SG18, GG23].

Organization of the paper. In Section 2 we propose better seeds (with much lower
Hamming weight) for endomorphism-equipped embedded curves with BLS12. We target a
2-valuation of 232 | p− 1, r − 1. In Section 3 we solve the problem highlighted by Sanso
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and El Housni for KSS and provide endomorphism-equipped prime-order embedded curve
families for KSS18. We also provide such families of order four times a prime for KSS16
curves. We conclude in Section 5.

2 Endomorphism-equipped embedded curves with BLS12
and BLS24

2.1 Sanso and El Housni construction of embedded curve families
with BLS12 and BLS24

In [SEH24] Sanso and El Housni introduce a technique to obtain families of endomorphism-
equipped embedded curves with BLS. They observe that the scalar field of BLS12 curves
r(u) = u4− u2 + 1 can be written in the form r(u) = (t2

e + 3y2
e)/4 = ((2u2− 1)2 + 3(1)2)/4

to generate an embedded curve family with −D = −3, and r(u) = (t2
e + 4y2

e)/4 =
((2u)2 + 4(1− u2)2)/4 to generate an embedded curve family with −D = −4.

We rephrase Sanso and El Housni procedure as Algorithm 2.1. The output for BLS12
is Table 1 for embedded curves with j-invariant 0 (−D = −3). Two families can produce
prime-order embedded curves. For −D = −4, Sanso and El Housni procedure will
output Table 2. curves with j-invariant 1728 cannot have prime order as they always
have at least one point of order two and an even order. One can note that the order is
u4 − 3u2 + 4 = u2(u2 − 1)− 2u2 + 4 which is always even whenever the parity of u.

Table 1: Parameters (te, ye) such that r = (t2
e + 3y2

e)/4 with −D = −3. A first pair is
(t1, y1) = (2u2 − 1, 1) and the other pairs are for the quadratic, cubic and sextic twists.
The fourth one’s order r + 1− te = u4 − 2u2 + 4 is not prime but can give three times a
prime (u = 1 mod 3).

(te, ye) s.t. r = (t2
e + 3y2

e)/4 r + 1− te family
t1, y1 2u2 − 1, 1 u4 − 3u2 + 3 yes
−t1, y1 −2u2 + 1, 1 (u2 − u + 1)(u2 + u + 1) no

(t1 + 3y1)/2, (t1 − y1)/2 u2 + 1, u2 − 1 (u− 1)2(u + 1)2 no
(t1 − 3y1)/2, (t1 + y1)/2 u2 − 2, u2 u4 − 2u2 + 4 (yes)
−(t1 − 3y1)/2, (t1 + y1)/2 −u2 + 2, u2 u4 no
−(t1 + 3y1)/2, (t1 − y1)/2 −u2 − 1, u2 − 1 u4 + 3 yes

Table 2: Parameters (te, ye) such that r = (t2
e + 4y2

e)/4 with −D = −4. A first pair is
(t1, y1) = (2u2 − 2, u) and the other pairs are for the quadratic and quartic twists. The
first one’s order r + 1− te is not prime but can give two times a prime.

(te, ye) s.t. r = (t2
e + 4y2

e)/4 r + 1− te family
t1, y1 2u2 − 2, u u4 − 3u2 + 4 (yes)
−t1, y1 −2u2 + 2, u u4 + u2 = u2(u2 + 1) no

2y1, t1/2 2u, u2 − 1 u4 − u2 − 2u + 2 = (u− 1)2(u2 + 2u + 2) no
−2y1, t1/2 −2u, u2 − 1 u4 − u2 + 2u + 2 = (u + 1)2(u2 − 2u + 2) no

2.2 Better seeds of embedded curves with BLS12
In [SEH24], Sanso and El Housni propose the seed 0xb504f33499580000 that generates
a BLS12-380 curve and a prime-order embedded curve. Alternatively we generated the
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Algorithm 2.1: Generating prime-order endormorphism-equipped embbeded
curves with BLS or KSS [SEH24]

Input: parameterized pairing-friendly curve order r(u) that generates primes,
discriminant −D for the embedded curve

Output: Embedded curve families of discriminant −D or ⊥
1 if −D is a square in Q[x]/(r(x)) then
2 We(u)←

√
−D mod r(u);

3 (t1(u), y1(u))← half-gcd(We(u), r(u));
4 if t1(u)2 + Dy1(u)2 = 4r(u) then
5 for (te(u), ye(u)) in the set of twist parameters of (t1(u), y1(u)) do
6 qe(u)← r + 1− te;
7 if qe(u) is irreducible then
8 Append (te, ye, qe) to the list of families;
9 return the list of families

10 return ⊥

seeds in Table 3 of Hamming weight up to 6 in signed binary representation.
Moreover with a larger search space (Hamming weight 7), we were able to obtain seeds

in Table 4 such that the BLS12 curve E admits at the same time a prime-order embedded
curve E1 (with its cycle plain curve E0) and a second embedded curve E2 of order 4 times
a prime (like in the CØCØ construction). We think it can be of interest for interoperability
purposes.

Table 3: Seeds u of Hamming weight ≤ 6 such that the BLS12 curve E/Fp has a high
2-valuation 2L | p − 1, 2L | r − 1 and admits a prime-order embedded curve E1/Fr of
j-invariant 0 that has a plain cycle curve E0/Fq, and 2L | q − 1. For 2L | u− 1, u is odd
and the order is necessarily q = u4 − 3u2 + 3 because q′ = u4 + 3 is even for odd seeds u.
All curves have −D = −3.

seed L equation p r embedded curve plain cycle curve
EBLS/Fp (bits) (bits) equation E1/Fr equation E0/Fq

0x9ffc012000000001
263 + 261 − 250 + 240 + 237 + 1 37 y2 = x3 + 1 379 254 y2 = x3 + 7 y2 = x3 + 15

-0xff97ffdfffffffff
−264 + 255 − 253 + 251 + 237 + 1 37 y2 = x3 + 1 383 256 y2 = x3 + 11 y2 = x3 + 7

0x87fbc01000000001
263 + 259 − 250 − 246 + 236 + 1 36 y2 = x3 + 1 377 253 y2 = x3 + 13 y2 = x3 + 11

0x80067fff00000001
263 + 251 − 249 + 247 − 232 + 1 32 y2 = x3 + 1 377 253 y2 = x3 + 15 y2 = x3 + 5

3 Embedded curves with KSS18
Building on Algorithm 2.1, Sanso and El Housni looked at KSS18 curves. The difficulty
comes from finding a generic formula to express the parameterized KSS18 order r =
(u6 + 37u3 + 343)/343 as a sum of two squares r(u) = (t2

e(u) + Dy2
e(u))/4. First note the

identity a2
0 − a0a1 + a2

1 = ((2a0 − a1)2 + 3a2
1)/4. We rewrite r as

r(u) = (t2 + 3y2)/4 = ((t + y)/2)2 − y(t + y)/2 + y2 = a2
0 − a0a1 + a2

1 (1)

and deduce that (a0, a1) = ((t + y)/2, y) in other words, (t, y) = (2a0 − a1, a1). Then we
recognize that (1) is exactly the formula of Dai, Lin, Zhao, and Zhou [DLZZ23, Remark 4]
for G1 subgroup membership testing:
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Table 4: Seeds u of Hamming weight 7 such that the BLS12 curve E/Fp has a high
2-valuation, a prime-order embedded curve E1/Fr with a plain cycle curve E0/Fq and a
second embedded curve E2/Fr of order u4 + 3 = 4s where s is prime. All curves have
−D = −3.

seed L equation p r embedded curve plain cycle curve
EBLS/Fp (bits) (bits) equation E1,2/Fr equation E0/Fq

0xffff007fda000001 25 y2 = x3 + 1 383 256 E1 : y2 = x3 + 19 y2 = x3 + 7
264 − 248 + 239 − 229 − 227 + 225 + 1 E2 : y2 = x3 + 17

0xfc3ec00400000001 34 y2 = x3 + 1 383 256 E1 : y2 = x3 + 23 y2 = x3 + 29
264 − 258 + 254 − 248 − 246 + 234 + 1 E2 : y2 = x3 + 29

-0xef000ffefdffffff 25 y2 = x3 + 1 382 256 E1 : y2 = x3 + 11 y2 = x3 + 17
−264 + 260 + 256 − 244 + 232 + 225 + 1 E2 : y2 = x3 + 17

0xdf07fffdfc000001 26 y2 = x3 + 1 382 256 E1 : y2 = x3 + 11 y2 = x3 + 7
264 − 261 − 256 + 251 − 233 − 226 + 1 E2 : y2 = x3 + 23

Remark 1 ([DLZZ23, Remark 4]). The selected short vectors (a0, a1) listed in [DLZZ23,
Table 4] satisfy that {

a2
0 − a0a1 + a2

1 = r if j(E) = 0;
a2

0 + a2
1 = r if j(E) = 1728.

By [DLZZ23, Theorem 3], the recommended short vectors are actually independent with
the selection of seeds.

Then we deduce that the formula Sanso and El Housni were looking for is

(a0, a1) = ((u/7)3,−18(u/7)3 − 1) ⇐⇒ (t, y) = (20(u/7)3 + 1,−18(u/7)3 − 1) . (2)

We deduce Algorithm 3.1 and run it to obtain the prime-order endomorphism-equipped
embedded curves with KSS18.

Algorithm 3.1: Generating prime-order endormorphism-equipped embbeded
curve families with KSS18 and −D = −3

1 r(u)← (u6 − 37u3 + 343)/343, a KSS18 curve order;
2 (t1(u), y1(u))← (20(u/7)3 + 1,−18(u/7)3 − 1) ;
3 for (te(u), ye(u)) in the set of 6 twist parameters of (t1(u), y1(u)) do
4 qe(u)← r + 1− te;
5 if qe(u) is irreducible then
6 Append (te, ye, qe) to the list of families;
7 return the list of families

Table 5: Embedded curves for KSS18, parameters (te, ye) such that r = (t2
e + 3y2

e)/4 with
−D = −3. A first pair is (t1, y1) = (20(u/7)3 + 1,−18(u/7)3 − 1) and the other pairs are
for the quadratic, cubic and sextic twists. The first and fifth one’s order q = r + 1− te are
irreducible but multiple of 3.

(te, ye) s.t. r = (t2
e + 3y2

e)/4 q = r + 1− te family
t1, y1 20(u/7)3 + 1,−18(u/7)3 − 1 (u6 + 17u3 + 343)/343 (yes, 3)
−t1, y1 −20(u/7)3 − 1,−18(u/7)3 − 1 (u6 + 57u3 + 1029)/343 yes

(t1 + 3y1)/2, (t1 − y1)/2 −17(u/7)3 − 1, 19(u/7)3 + 1 (u6 + 54u3 + 1029)/343 yes
(t1 − 3y1)/2, (t1 + y1)/2 37(u/7)3 + 2, (u/7)3 u6/73 no
−(t1 − 3y1)/2, (t1 + y1)/2 −37(u/7)3 − 2, (u/7)3 (u6 + 74u3 + 1372)/343 (yes, 3)
−(t1 + 3y1)/2, (t1 − y1)/2 17(u/7)3 + 1, 19(u/7)3 + 1 (u2 − 4u + 7)(u2 − u + 7)(u2 + 5u + 7)/343 no

To conclude we mention the halographs project of Daira Hopwood at [Hop20a], who
already in 2020 obtained the formulas of prime-order j-invariant 0 embedded curves forming
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Table 6: Seeds u of Hamming weight ≤ 6 such that the KSS18 curve E/Fp has a high
2-valuation 2L | r − 1 and admits a prime-order embedded curve E1/Fr of j-invariant 0
that has a plain cycle curve E0/Fq. All curves have −D = −3.

seed equation p r embedded curve plain cycle curve
EKSS/Fp (bits) (bits) equation E1/Fr equation E0/Fq

q = (u6 + 57u3 + 1029)/343
-0x10001efe7f00
−244 − 229 + 224 + 217 − 215 + 28 y2 = x3 + 2 348 256 y2 = x3 + 5 y2 = x3 − 4

-0xfdde07f8000
−244 + 237 + 233 + 229 − 223 + 215 y2 = x3 + 13 348 256 y2 = x3 + 13 y2 = x3 − 4

-0x1087ff6ff000
−244 − 239 − 235 + 223 + 220 + 212 y2 = x3 + 2 348 256 y2 = x3 + 5 y2 = x3 − 4

q = (u6 + 54u3 + 1029)/343
0xfffe7f11000
+244 − 229 + 227 − 220 + 216 + 212 y2 = x3 + 2 348 256 y2 = x3 + 7 y2 = x3 + 2

-0xfdffe110200
−244 + 237 + 225 − 220 − 216 − 29 y2 = x3 + 13 348 256 y2 = x3 + 11 y2 = x3 + 2

-0xfd7ffdee000
−244 + 237 + 235 + 221 + 216 + 213 y2 = x3 + 2 348 256 y2 = x3 + 7 y2 = x3 + 2

a plain cycle for BLS12 and KSS18. A careful look at the SageMath source code shows
that it uses the same formulas as [SEH24] for BLS12. For KSS18, the change of variables
u 7→ 7u allowed to obtain the formulas, avoiding the denominator issue that Sanso and El
Housni faced.

4 A generic method

4.1 Two blocking conditions in Algorithm 2.1
4.1.1 Finding a square root of −D modulo r

Looking at Algorithm 2.1, there are two steps that can fail. The first is testing if −D is
a square in Q(x)/(r(x)). We note that it is a much stronger condition than asking for
−D being a square modulo a prime integer r = r(u0) for some seed u0. For example,
−D = −2 is not a square modulo r(x) = Φ12(x) = x4 − x2 + 1 however is it a square
modulo r(u0) where u0 = −0xd201000000010000 = −(263 + 262 + 260 + 257 + 248 + 216)
is the seed of the BLS12-381 curve. Considering the Legendre symbol and the law of
quadratic reciprocity, −2 is a square modulo a prime r if and only if r = ±1 mod 8.
Back to the polynomial form of r(u), we deduce that r(u0) ≡ 1 mod 4 for any u0, and
r(u0) ≡ 1 mod 8 ⇐⇒ u0 ̸≡ 2 mod 4. However, this does not make a family. To design
a family of embedded curves with −D = −2 for BLS12 curves, one example could be to
write r(x2) = x8 − x4 + 1 (replace the variable x by x2 everywhere i.e. assume the seed is
a square) then apply Algorithm 2.1 with

√
−2 ≡ x5 + x3 − x mod r(x), a half-gcd gives

directly r(x) = (x4 − x2 + 1)2 + 2(x3 − x), and (t, y) = (2(x4 − x2 + 1), 2(x3 − x)).

4.1.2 Solving for polynomials (t, y) in the equation r = (t2 + Dy2)/4

Sanso and El Housni suggest to compute a half-gcd of r(x) and We(x) to obtain candidates
for te(x), ye(x) such that their degree is at most half the degree of r(x). We recall that
this strategy is well-known for example in cryptanalysis, in the descent step of a discrete
logarithm computation. The first occurence of this technique (applied to polynomials) is
for the initial splitting step of discrete logarithm computation in GF(2n) and dates back
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to 1984. It is known under the name Waterloo algorithm from the University of Waterloo,
ON, Canada, where the authors are from [BFHMV84, BMV84]. The idea is to express
the target (a polynomial in F2[x] of even degree n − 1) as the ratio of two polynomials
of degree (n − 1)/2, modulo an irreducible polynomial of odd degree n. The aim is to
increase the smoothness probability.

In the present case r has usually an even degree, and a half-gcd algorithm on inputs
(r(x), We(x)) with deg r > deg We outputs three polynomials I(x), U(x), V (x) such that
I(x)r(x) = U(x)− V (x)We(x) with usually deg(I) = 1, deg U, deg V ≤ deg r/2. Luckily
for BLS and BN, I = 1 and the equation t2 + Dy2 = 4r is solved, with t = 2U and y = 2V .
But for KSS18 for example, We = 2x3 + 37, U = 3, V = −2x3 − 37, I = 1372.

4.2 Our general solution
We stick together different pieces that come from the litterature about elliptic curves and
cryptography. In particular, we will explain the link with Smith technique [Smi15] and
Dai, Lin, Zhao, and Zhou work [DLZZ23].

Finding exact integer solutions (t, y) to the equation

r = (t2 + Dy2)/4 (3)

is linked to the problem of finding integer solutions to{
r = a2

0 − a0a1 + (D + 1)/4a2
1 if D = 3 mod 4

r = a2
0 + Da2

1 otherwise.
(4)

Dai, Lin, Zhao, and Zhou work over the integer values of the curve parameters. Their aim is
to obtain an optimal formula for G1 subgroup membership testing that is, given a point P
on E(Fp), check that [r]P = O without computing the full and costly scalar multiplication
by r. For that, the endomorphism ϕ on the curve of characteristic polynomial χϕ is used.
This technique is known as the GLV method [GLV01]. The endomorphism ϕ has eigenvalue
λϕ mod r. A Gaussian reduction gives two shorter scalars a0 + a1λϕ ≡ 0 mod r however,
as pointed out by Dai, Lin, Zhao, and Zhou, [a0]P + [a1]ϕ(P ) might actually compute a
small multiple [sr]P instead of [r]P and the test is not valid if s is not coprime to the curve
cofactor. The authors of [DLZZ23] develop a criterion to test wether the short scalars
(a0, a1) give a valid subgroup membership test. They propose an algorithm and a Magma
implementation to compute the short scalars that pass the test.

We then observe that we face a very similar problem: with an elementary change of
variables, finding (t, y) to define embedded curves correspond to finding the short scalars
(a0, a1) to design a valid and optimal G1 subgroup membership testing. However as we are
interested in defining families of embedded curves, we are interested in finding the scalars
generically, parameterized by polynomials. For that we exploit Smith technique that dates
back to an AGCT workshop at CIRM in Marseille Luminy in 2015 [Smi15].

We present our technique based on Smith idea for KSS16 and KSS18 curves. The
general strategy follows the same procedure for other pairing-friendly curves. For these
two curves the output is exactly what Dai, Lin, Zhao, and Zhou found with a Gaussian
reduction on integers (Table 7).

Table 7: From [DLZZ23, Table 4], with r = (x8 + 48x4 + 625)/61250 for KSS16, r =
(x6 + 37x3 + 343)/343 for KSS18.

Curve −D χϕ λ mod r short vector (a0, a1) criterion
KSS16 −4 X2 + 1

√
−1 = (x4 + 24)/7 ((31x4 + 625)/8750,−(17x4 + 625)/8750) a2

0 + a2
1 = r

KSS18 −3 X2 + X + 1 (−1 +
√
−3)/2 = x3 + 18 ((x/7)3,−18(x/7)3 − 1) a2

0 − a0a1 + a2
1 = r
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4.2.1 Smith technique

Smith [Smi15] is interested in computing a ready-made short basis of the lattice whose
long basis is given by the following b⃗i, where λϕi

stands for the eigenvalue of the i-th
endomorphism ϕi on the curve E.

b⃗1 = (r, 0, . . . , 0)
b⃗2 = (−λϕ2 , 1, 0, . . . , 0)
b⃗3 = (−λϕ3 , 0, 1, 0, . . . , 0)

...
b⃗d = (−λϕd

, 0, . . . , 0, 1)

In our case, there are two endomorphisms, ϕ1 = Id and ϕ2 = ϕ. We recall [Smi15,
Theorem 2].

Theorem 1 ([Smi15, Th. 2]). Let ϕ be a non-integer endomorphism of E such that
Z[π] ⊂ Z[ϕ], so π = cϕ + b for some integers c and b. Suppose that we are in the situation
of §1 with A = E and (ϕ1, ϕ2) = (1, ϕ). The vectors

b⃗1 = (b− 1, c) and b⃗2 = (c deg(ϕ) + (b− 1)tϕ, 1− b)

generate a sublattice of L of determinant #E(Fq). If G = E(Fq), then L = ⟨⃗b1, b⃗2⟩.

In [Smi15, Sect. 4], Smith provides a way for reducing the basis (⃗b1, b⃗2) in case of small
co-factors h = 2 for example, and provides a general framework for the technique.

We clarify that Smith’s technique starts from the curve endomorphism and the curve
coefficents and defines the basis in a context where the curve is of prime order. In our
case, we know the pairing-friendly curve coefficients and we are looking for the embedded
curve coefficients.

Another point of view is to look for a generator of a principal ideal in Q(
√
−D) of

norm r. It will be of the form τ = cω + b. But again as we are working with parameters in
polynomial form, we follow Smith technique.

We consider the pairing-friendly curve parameters (p, t, r, y) where p defines the field
characteristic, t the curve trace, r the prime order of the subgroup of embedding degree k,
and y such that t2 − 4p = −Dy2 with square-free D. We compute

√
−D modulo r(x) in

polynomial form. Actually #E(Fp) = cr = ((t−2)2+Dy2)/4 so
√
−D = (t−2)/y mod r(x).

Inverting y(x) is done with an extended Euclidean algorithm on r(x), y(x). Then we run a
half-gcd algorithm to obtain

√
−D ≡ U(x)/V (x) of reduced degrees and U, V coprime. At

this point we introduce Smith basis reduction technique. The first vector of the basis is
b⃗1 = (U(x),−V (x)). We need to complete the basis: the second vector is (DV (x),−U(X)).
Observe that the determinant of

B =
[

U(x) −V (x)
DV (x) −U(x)

]
is det(B) = U2(x)+DV 2(x) and is a multiple of r(x). For each factor ℓ of the determinant,
we reduce the basis. It consists in finding a left kernel of B in Z/ℓZ. At the end of this
process we expect to obtain a reduced basis whose determinant is exactly r(x).

For D = 3 mod 4 and characteristic polynomial χ = X2 + tϕX + degϕ of discriminant
t2
ϕ − 4 degϕ = −D with tϕ = 1 and degϕ = (D + 1)/4, a variant can be used (to avoid a

factor 4). Compute (−tϕ +
√
−D)/2 = λ as U(x)/V (x) modulo r(x). The first vector is

(U(x),−V (x)). The second vector is (tϕU(x) + deg ϕV (x), U(X)) so that the determinant
of the basis matrix is U2(x) + tϕU(x)V (x) + deg ϕV 2(x). Once the matrix is reduced of
determinant exactly r, we obtain the embedded curve coefficients from the formulas (1).
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4.2.2 Application to KSS18

A curve like KSS18 with j-invariant 0 has complex multiplication (CM) by Z[(−1+
√
−3)/2].

The Frobenius is π = (−t + y
√
−3)/2 so that ππ = (t2 + 3y2)/4. For the embedded

curve parameters we are looking for (te, ye) such that (t2
e + 3y2

e)/4 = r. We denote
τ = (te + ye

√
−3)/4. The endomorphism ϕ on KSS18 has characteristic polynomial

χ = X2 + X + 1 and its eigenvalue is λϕ = (−1 +
√
−3)/2. We obtain λ = x3 + 18, already

of degree deg r/2. No half-gcd is required. The first basis vector is b⃗1 = (x3 + 18,−1) and
a second vector can be b⃗2 = (1, x3 + 19). We define the basis[

λ −1
deg ϕ λ + 1

]
=

[
x3 + 18 −1

1 x3 + 19

]
whose determinant is 343r(x) = 73 · r. The aim is to reduce this basis by a factor 73. We
are looking for a linear combination

(i⃗b1 + jb⃗2)/343 = ((j + 18i + i · x3)/343, (19j − i + j · x3)/343)

such that the denominator 343 will simplify and the coefficients will be integers. Note that
x ≡ 14 mod 21 hence 7 | x, 343 | x3 and we are looking for i, j ∈ Z/343Z satisfying

j + 18i ≡ 0 mod 343 ⇐⇒ 19j − i = 0 mod 343 indeed 1/18 = −19 mod 343 .

We have a degree of freedom on j as i = 19j mod 343. We test all 1 ≤ j < 343, and keep
the pairs such that b⃗i,j = (i⃗b1 + jb⃗2)/343 = (a0, a1) satisfies a2

0 + a0a1 + a2
1 = r (with

exactly r, not a multiple). Finally we obtain a solution whose coefficients are integer-valued
assuming x ≡ 14 mod 21 like for KSS18 curves.

(i, j) = (19, 1), b⃗ = (19⃗b1+b⃗2)/343 = ((1+19λr)/73, (λr+1)−19) = (19(x/7)3+1, (x/7)3) .
(5)

The pair (a0, a1) = (19(x/7)3 + 1, (x/7)3) corresponds to a twist of the embedded curve
given by Dai, Lin, Zhao, and Zhou parameters.

4.2.3 Application to KSS16

For KSS16 curves, the endomorphism has characteristic polynomial χ = X2 + 1. One
obtains, with λϕ = (x4 + 24)/7,

b⃗1 = (1, λϕ) = (1, (x4 + 24)/7), b⃗2 = (λϕ,−1) = ((x4 + 24)/7,−1) .

The determinant of the matrix made of b⃗1, b⃗2 is det
[

b⃗1
b⃗2

]
= −1250r(x) and we are looking

for a linear combination to simplify by 1250 = 2 · 54,

(i⃗b1 + jb⃗2)/1250 = (i + j(x4 + 24)/7, i(x4 + 24)/7− j)/1250

such that the denominator 1250 will simplify and the coefficients will be integers. Note
that x ≡ 25, 45 mod 70 hence x ≡ 5 mod 10, 54 | x4. With x = 10x0 + 5 = 5(2x0 + 1)),

(i⃗b1 + jb⃗2) = (i + j(54(2x0 + 1)4 + 24)/7, i(54(2x0 + 1)4 + 24)/7− j)
= (i + j(54 + 24)/7, i(54 + 24)/7− j) mod 1250

and we are looking for i, j ∈ Z/2 · 54Z satifying

i + (54 + 24)/7j ≡ 0 mod 2 · 54 ⇐⇒ i + 807j ≡ 0 mod 2 · 54 .
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(Note that ((54 + 24)/7)2 = −1 mod 2 · 54 so that the two constraints are equivalent). We
have a degree of freedom on j as i = −807j = 443j mod 2 · 54. We test the pairs (i, j)
and keep those such that (a0, a1) = (i⃗b1 + jb⃗2) satisfies a2

0 + a2
1 = r(x). We obtain integer

valued parameters for x ≡ ±25 mod 70 for KSS16:

(i, j) =(31, 17),

b⃗ =(31⃗b1 + 17⃗b2)/1250 = ((31 + 17λϕ)/1250, (31λϕ − 17)/1250)
=((17(x/5)4 + 1)/14, (31(x/5)4 + 1)/14) . (6)

Algorithm 4.1: Generating embbeded curve families with KSS16 and −D = −4
1 r(u)← (u8 + 48u4 + 625)/61250, a KSS16 curve order;
2 (t1(u), y1(u))← ((31(u/5)4 + 1)/7,−(17(u/5)4 + 1)/14) ;
3 for (te(u), ye(u)) in the set of 4 twist parameters of (t(u), y(u)) do
4 qe(u)← r + 1− te;
5 if qe(u) is irreducible then
6 Append (te, ye, qe) to the list of families;
7 return the list of families

We give in Table 8 the results of Alg. 4.1 applied to KSS16 parameters.

Table 8: Embedded curves for KSS16, parameters (te, ye) such that r = (t2
e + 4y2

e)/4 with
−D = −4. A first pair is (t1, y1) = ((31(u/5)4 + 1)/7,−(17(u/5)4 + 1)/14) and the other
pairs are for the quadratic and quartic twists. The polynomials for the orders are all
irreducible but have cofactors 2, 2, 32, and 20.

(te, ye) s.t. r = (t2
e + 4y2

e)/4 q = r + 1− te family
t, y (31(u/5)4 + 1)/7, (−17(u/5)4 − 1)/14 (u8 − 386u4 + 55 · 17)/61250 (yes, 2)
−t, y (−31(u/5)4 − 1)/7, (−17(u/5)4 − 1)/14 (u8 + 482u4 + 54 · 113)/61250 (yes, 2)

2y, t/2 (−17(u/5)4 − 1)/7, (31(u/5)4 + 1)/14 (u8 + 286u4 + 54 · 113)/61250 (yes, 32)
−2y, t/2 (17(u/5)4 + 1)/7, (31(u/5)4 + 1)/14 (u8 − 190u4 + 55 · 17)/61250 (yes, 20)

5 Conclusion
In this preliminary note we generalized Sanso and El Housni work on families of embedded
curves for SNARKs. The source code will be made available later. Examples of embedded
cycles and embedded Montgomery curves for BLS24 will be provided in a later version of
this work.
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