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Abstract. In this paper, we introduce Learning With Quantization
(LWQ), a new problem related to the Learning With Errors (LWE) and
Learning With Rounding (LWR) problems. LWQ provides a tight secu-
rity reduction from LWE while enabling efficient ciphertext compression
comparable to that of LWR. We adopt polar lattices to instantiate the
quantizer of LWQ. Polar lattices are a specific instance of the classical
Construction D, which utilizes a set of nested polar codes as component
codes. Due to the polarization phenomenon of polar codes, the distribu-
tion of the quantization error converges to a discrete Gaussian. More-
over, the quantization algorithm can be executed in polynomial time.
Our main result establishes a security reduction from LWE to LWQ,
ensuring that the LWQ distribution remains computationally indistin-
guishable from the uniform distribution. The technical novelty lies in
bypassing the noise merging principle often seen in the security reduc-
tion of LWR, instead employing a more efficient noise matching princi-
ple. We show that the compression rate is ultimately determined by the
capacity of the “LWE channel,” which can be adjusted flexibly. Addition-
ally, we propose a full information-rate encryption framework based on
LWQ, demonstrating its advantage over constructions based on LWE and
quantized LWE. Our result answers affirmatively a question left open by
Micciancio and Schultz (CRYPTO 2023).

Keywords: Lattice-Based Cryptography · Learning With Quantization
· Polar Lattice · Ciphertext Compression · Source Coding.

1 Introduction

Regev’s Learning with Errors (LWE) problem [43] is fundamental to modern
cryptography, offering both versatility and robust security guarantees. The LWE
assumption states that the decision LWE problem is hard to solve: With proper
parameters n,m, q ∈ N and a small error distribution χe over Zm, for uniformly
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random matrices A ← Zm×n, vectors s ← Zn
q , u ← Zm

q , and an error vector
e← χe, the pair (A,As+e) is computationally indistinguishable from (A,u). It
is known that when the modulus q is sufficiently large compared to n, certain er-
ror distributions make solving LWE as hard as tackling worst-case computational
problems on lattices [43, 40, 13]. These problems are conjectured to remain diffi-
cult even for quantum computers. Beyond its strong hardness guarantees, LWE
has proven extremely useful in cryptographic applications. Since its introduction,
a significant amount of research has focused on LWE-based constructions for a
wide array of known cryptographic primitives (e.g., [23, 33, 24, 14, 42], among
many others).

However, the inherent randomness in the LWE problem—specifically, the
randomness involved in generating the error vector e—prevents straightforward
constructions of certain cryptographic primitives that require determinism. To
address the issue, the Learning With Rounding (LWR) problem was introduced
by Banerjee, Peikert, and Rosen [8] as a derandomized version of the LWE
problem. Instead of adding an error vector e to As to hide its exact values,
LWR releases a deterministically rounded version of As. In particular, for some
p < q, an element-wise rounding function ⌊·⌉p : Zm

q → Zm
p is applied. The LWR

assumption is expressed as follows: (A, ⌊As⌉p) is computationally indistinguish-
able from (A, ⌊u⌉p). We can also write ⌊As⌉p = As + eQ with the rounding
error eQ, but the storage size for the term ⌊As⌉p is smaller than that of LWE.
The applications of LWR span various areas, including pseudorandom functions
[8], reusable randomness extractors [2], and public key encryption schemes such
as Saber [20] and Lizard [15].

The hardness of LWR is mostly established through a reduction from the
quantized LWE problem. The reduction of Banerjee, Peikert, and Rosen re-
quires the the modulus q has to be super-polynomial, which makes all of the
computations less efficient. Moreover, the ratio of the input-to-output modulus
q/p is super-polynomial, meaning that we must throw away a lot of informa-
tion when rounding and therefore get fewer bits of output per LWR sample. In
practical applications, it is advantageous to use a smaller modulus q to enable
more efficient implementations. However, establishing the hardness of LWR with
polynomial modulus q is a significant open question as noted in [8].

Subsequent research [2, 10, 37] has further examined this area. The size of q
was reduced to a polynomial by assuming it is a prime in [2, 37], but their results
do not address cases where q is a power of two, where the rounding function be-
comes particularly straightforward. Restricting on the number of query samples,
[10] also showed that q can be polynomial. From the terminology of this paper,
a principle called noise merging is frequently involved in the hardness proof of
LWR. For instance, the security reduction of [8] is

(A, ⌊As+ e⌉p) ≈c (A, ⌊u⌉p)→ (A, ⌊As⌉p) ≈c (A, ⌊u⌉p). (1)

Its noise merging principle is that a large uniform noise eQ can merge a small
noise e to itself:

eQ + e ≈s eQ. (2)
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Additionally, noise merging is utilized in the lossy code-based security reduction
in [2] and is applied using the Rényi divergence metric in [10].

Informally, we can think of the width of a Gaussian e as σ, and the element-
wise width of eQ as σQ = q/(2p). We have to choose σQ ≫ σ to enable the
noise merging technique. This situation is not ideal as a smaller modulo-to-noise
ratio q/σ implies more secure LWE [43]. Moreover, the noise merging technique
does not ensure that a larger compression ratio for quantized LWE samples (and
therefore a large σQ) corresponds to a more difficult LWE problem; it only says
that a large σQ makes LWR as hard as LWE of noise width σ. The above analysis
leads us to the following question: can we design a variant with tighter security
reduction from LWE?

1.1 Our Contribution

Our primary contribution is the introduction of a variant termed Learning With
Quantization (LWQ), along with a reduction from LWE. This approach utilizes
a lattice to quantize the vector As in a randomized and vector-wise manner,
resulting in an observation term represented as As+ eQ, where eQ denotes the
error introduced by quantization. This method offers several advantages: first, it
eliminates the error vector e of LWE and reduces the size of As similar to LWR;
second, it achieves greater quantization efficiency compared to LWR due to the
more flexible choice of Λ, where LWR is only a degenerate case of LWQ with
deterministic quantization and Λ = q

pZ
m; and third, it provides a tight security

reduction from LWE, where a higher degree of quantization corresponding to an
increased level of security. The main result of this paper is the following theorem:

Theorem 1 (Informal, see Theorem 5 for formal statement). If there
exists an oracle that can distinguish the LWQ distribution LWQΛ,d from the
uniform distribution with non-negligible advantage, then it can also distinguish
the LWE distribution from uniform with non-negligible advantage.

In a sense, LWQ can be seen as an advanced method for approximating
the LWE distribution while simultaneously compressing ciphertexts. The proof
techniques and results are new and flexible. Specifically, we build reduction from
LWE to LWQ, rather than from quantized LWE.

An observant reader may realize that it is impossible to prove indistinguisha-
bility between naive LWQ and LWE, as the support set is different: the quanti-
zation ∈ Zm

q ∩Λ, while As+ e ∈ Zm
q . To do so, we resort to an adapted form of

dithering, which is the process of adding a small amount of artificial noise to the
data/signal to align the support set of quantization errors. In general, dithering
leads to QΛ(As− d) using a uniform vector d which is public. Our adapted
form is to transmit QΛ(As− d) + d = As + eQ ∈ Zm

q , where the quantization
error eQ becomes independent of the input and is uniformly distributed over the
Voronoi region of the quantization lattice. Then we can focus on proving

(A,As+ eQ) ≈s (A,As+ e). (3)
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The consequence of this technique is that the parameters can be chosen based
on noise matching : eQ ≈s e, rather than noise merging. This allows for more
flexible parameter choices for LWQ, including polynomial and power-of-2 moduli,
among others. Up to this point, (A,As+eQ) appears to be merely an alternative
implementation of LWE. We further produce the dither from a random oracle,
thus compressing the ciphertext while still maintaining computational security.

Our second contribution, as detailed in Section 4, is the introduction of polar-
lattice-aided quantization to prove eQ ≈s e. We can consider eQ as being uni-
formly distributed over the Voronoi region of Λ: eQ ∼ U(VΛ ∩ Zm). A powerful
theory of lattices states that if the normalized second moment (NSM) of a lattice
G(Λ) converges to 1

2πe ≈ 0.0585, then the Voronoi region takes the shape of a
sphere, and the uniform distribution over this sphere is equivalent to a Gaus-
sian distribution. For example, the NSMs for the integer lattice Z, checker-board
lattice D4, and Gosset lattice E8 are: 0.08333, 0.07660, 0.07168 [18]. We identify
two technical hurdles in adopting this theory. First, a randomized construction
of Λ becomes hard to decode as the problem dimension increases. Second, the
convergence speed of G(Λ)→ 1

2πe is important. Fortunately, polar lattices have
efficient polynomial-time decoding, and the distribution of its quantization error
eQ can be analyzed via either the statistical distance or the Kullback-Leibler di-
vergence. The takeaway of this contribution is that, the quantization error eQ of
polar-lattice-aided LWQ is close to a discrete Gaussian distribution, while that
of LWR is close to a uniform distribution over a hypercube. Since LWQ permits
a tight security reduction based on noise matching rather than noise merging, it
offers stronger hardness guarantees than LWR.

Lastly, we highlight the advantages of LWQ by illustrating its benefits via an
encryption framework based on it. There is growing interest in enhancing the in-
formation rate—the size ratio of plaintext to ciphertext—in lattice-based homo-
morphic encryption schemes, which has led to the development of constructions
achieving rates asymptotically close to 1 [12]. Recently, Micciancio and Schultz
[35] introduced a quantized LWE-based encryption framework to analyze the
information rate of lattice-based encryption, where the scaled Zm lattice and
dual of Davenport’s lattice (a generalization of D∗m) were used. In particular,
their work [35, Bound 2] demonstrates that, under a heuristic assumption, if σQ
(the width of the quantization noise) and σ (the width of the LWE noise) satisfy
σQ ≤ O(σ), it becomes impossible for a perfectly-correct quantized LWE-based
framework to achieve an asymptotic rate of 1− o

(
1

log2 q

)
. This scenario can be

interpreted as the failure of noise merging, where eQ + e ≈s eQ. LWQ offers a
straightforward solution to overcome this limitation by excluding the error term
e, enabling it to achieve a rate of 1 with polynomial modulus. To the best of our
knowledge, the proposed LWQ-based encryption scheme is the first to achieve a
full information rate.

To summarize, LWQ serves as a “one code for all” solution: it unifies noise
addition, compression, and error correction into a single step, where the noise
naturally arises from quantization. In contrast, the standard approach typically
requires separate codes for error correction and compression [35]. In LWQ, a
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single lattice code not only achieves capacity for the “LWE channel,” but also
provides optimal ciphertext compression under the given noise constraint.

Remark 1 (Role of the public dither). While d is indeed public, this does not
compromise the security reduction. We can define a slight variation of the LWQ
distribution LWQΛ,d in the following triplet form 4:

LWQ′Λ,d = (A,b = QΛ(As− d),d).

Here, the effective noise can be written as e′ = QΛ(As − d) − As, which is a
function of d and hence depends on it. However, this dependency does not affect
the reduction from LWQ to LWE as we argue below.

The security argument proceeds in three steps:

1. The two distributions LWQΛ,d and LWQ′Λ,d are equivalent. From the distri-
bution LWQ′Λ,d, we can recover the LWQ distribution by simply adding the
second and third elements:

LWQΛ,d = (A,b = QΛ(As− d) + d).

Conversely, since As+ eQ = QΛ(As− d) + d, one can recover QΛ(As− d)
by subtracting d.

2. We show that LWQΛ,d is statistically close to the standard LWE distribution
(A,As+ e), where e is a discrete Gaussian. This follows from the fact that
polar lattice aided dithered quantization noise eQ converges to a discrete
Gaussian under appropriate conditions.

3. By the hardness of the LWE assumption, distinguishing LWQΛ,d from uni-
form is computationally hard. Therefore, distinguishing LWQ′Λ,d from uni-
form must also be hard, since the transformation from LWQ′Λ,d to LWQΛ,d

is efficiently computable.

Thus, although d is public and appears in the distribution, it does not invali-
date the reduction. Our security reduction remains sound: any adversary capable
of distinguishing LWQ′Λ,d samples (A, QΛ(As−d),d) from uniform can be used
to construct an adversary that breaks the LWE problem.

There is, however, a trade-off associated with LWQ. Even if

(A, QΛ(As− d) + d) ≈s (A,As+ e),

the public dither d cannot be reused as a source of pseudorandomness. Conse-
quently, only the quantized component QΛ(As − d) can contribute to pseudo-
random output. This means that LWQ inherently produces fewer pseudorandom
bits than LWE, which in turn explains its ability to compress ciphertexts.

4 Quantization for LWE with a public dither in a similar form has been used in [35,
Fig. 3]. It is also stated in [35] that “security of our construction easily follows”.
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1.2 Technical Overview

We show that the LWQ and LWE distributions are statistically indistinguishable:

Theorem 2 (Informal, see Theorem 4 for formal statement). There exist
a sequence of efficient lattice quantizers QΛ+d with random dither d such that
the LWQ distribution LWQΛ,d is statistically indistinguishable from the LWE
distribution.

In this work, we will adopt polar lattices to instantiate LWQ, whose running
time is quasilinear with binary component codes. The technical novelty is to
prove the quantization noise eQ of dithered quantization converges to a discrete
Gaussian distribution. This is key to prove the closeness of the LWQ and LWE
distributions, therefore justifying the hardness of LWQ. Readers unfamiliar with
coding theory may treat polar lattices as a black box. Next we briefly explain
how our method works (see Section 4 for technical details).

The central idea is to use polar lattice quantization to simulate the “LWE
channel.” Recall that the LWE problem involves an additive noise channel model,
represented by b = As+ e, where the received signal b is the sum of the trans-
mitted data As and a noise component e added during transmission. In lattice
quantization-based data compression, a test channel serves as a hypothetical
model of the quantization process, analogous to the additive noise channel, aim-
ing to describe the statistical relationship between the input and output for a
target distortion; see [19, Chapter 10].

Definition 1 (Test channel). The statistic of the test channel for polar quan-
tization is described by the relationship

Y = X + E mod q, (4)

where E is an additive discrete Gaussian noise.

In Section 4, we construct a polar lattice over this test channel. Due to the
polarization phenomenon, we obtain two types of bits: “frozen bits,” which are
nearly independent of the input, and “information bits,” which can be determined
from other bits. In a polar code, frozen bits are replaced with random bits, which
essentially form the random dither of a polar lattice. We prove that the polar
lattice approximates the test channel very well:

Theorem 3 (Informal, see Theorem 6 for formal statement). The sta-
tistical distance between the joint distribution QX[m],Y [m] induced by the polar
lattice and PX[m],Y [m] induced by the above test channel is negligible.

Remark 2. LWQ is dithered, meaning the so-called frozen bits in polar codes are
assumed to be uniformly random. This is not merely a technical aspect of the
proof but is also crucial for achieving statistical indistinguishability between the
LWE and LWQ distributions.

Remark 3. For simplicity, we will assume the modulus size q is a prime power
in the proofs of the above theorems. However, it is possible to remove this small
restriction by using polar codes of arbitrary alphabet size [46, 44].
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Compression rate vs capacity We will show in Section 3.2 that, asymptoti-
cally, the minimum compression rate Rc of LWQ is characterized by the capacity
of the “LWE channel” (4). A noisier channel has smaller capacity, thus enabling
more compression. Since the “LWE channel” is virtual here, one can tune the
noise variance to obtain any rate 0 < Rc < log2 q, offering great flexibility.

Thus, we uncover a novel connection between information theory and the
LWE problem. By linking the compression rate to the capacity of the “LWE
channel,” we unite the concepts of information-theoretic compression and com-
putational security, which may have far-reaching implications to lattice-based
cryptography.

Running time Assuming q = pr where p is a prime and r ∈ N. The running
time of both encoding and decoding for a p-ary polar code of blocklength m
using an ℓ × ℓ kernel is O(pℓm log2m) [45]. Since for a polar lattice, the num-
ber of levels r = logp q, the overall running time of a polar lattice quantizer is
given by O(pℓm log2m · logp q). In practical implementation, we often use bi-
nary polar codes where p = ℓ = 2 such that the running time is reduced to
O(m log2m · log2 q). However, there is a trade-off between the running time and
convergence speed 2−ω(λβ) of the statistical distance where 0 < β < 1 is a pa-
rameter depending on p. A large p and ℓ enables the parameter β → 1, while
for p = ℓ = 2, we only obtain β < 1/2. To sum up, the running time of a polar
lattice using binary codes is quasilinear Õ(m). See Remark 7 for more details.

1.3 Related Work

Quantization in lattice-based cryptography Nowadays, lattice-based cryptogra-
phy can operate as quickly as conventional public-key cryptosystems such as
RSA. However, their ciphertexts are significantly larger, necessitating the use of
compression algorithms to save bandwidth. A prevalent compression technique
is scalar quantization, also known as modulus switching/modulus reduction. For
instance, CKKS homomorphic encryption [14] employs simple modulus reduc-
tion to a smaller modulus before computation on ciphertexts at different levels.

Another variant of LWE, known as LWER, was introduced in CRYSTALS-
Kyber [47]. This variant essentially combines LWE and LWR. In LWER, LWE
ciphertexts are compressed using scalar quantization, resulting in two main ad-
vantages: bandwidth savings due to compression and an increased noise level
resulting from quantization error.

Ciphertext compression in lattice based cryptography is closely tied to lattice-
aided quantization. Unlike computationally-hard random lattices for security,
here the quantization lattice should be fast-decodable. By increasing the dimen-
sion of quantization, vector quantization can be expected to outperform scalar
quantization [51]. Certain performance benefits of vector quantization have been
justified in the secret-key encryption framework [35], and to reduce the cipher-
text rate of CRYSTALS-Kyber [31].



8 S. Lyu, L. Liu, C. Ling

The inquiry into optimal lattices for quantization, aiming for the smallest av-
erage distortion, is different from sphere packing [49, 17]. The theoretical proof of
optimal lattice quantizers has been limited to dimensions up to 3 (i.e., Z, A2, A∗3)
[9], although efforts to identify good lattice quantizers have resulted in periodic
updates of tables for small-dimensional lattices ≤ 24 [1]. Closely related research
focuses on the pursuit of optimal quantization lattices in the information theory
community. In this context, dithered quantization has been under development
for decades [53], where a (pseudo-)random signal, known as a dither, is intro-
duced to the input signal before quantization. This regulated perturbation has
the potential to enhance the statistical characteristics of the quantization error.
While obtaining the rate-distortion bound with random lattices seems feasible
[51], decoding a high-dimensional random lattice poses challenges. For a con-
tinuous Gaussian source, an explicit construction of polar lattices to achieve
the rate-distortion bound has been presented in [29], where the computational
complexity of the quantizer is O(m log2m).

Polar codes and polar lattices The polar lattices investigated in this work orig-
inate from polar codes [3]. Polar codes represent a significant breakthrough in
coding theory, as they are the first class of codes that are efficiently encod-
able and decodable while achieving both channel capacity and Shannon’s data
compression limit [3]. The effectiveness of polar codes lies in the polarization
phenomenon: through Arıkan’s polar transform, the information measures of
synthesized sources or channels converge to either 0 or 1, simplifying the cod-
ing process. Additionally, the state-of-the-art decoding algorithm operates with
O(m log2 log2m) complexity for blocklength m [50]. Due to their outstanding
performance, polar codes have been widely adopted in various practical applica-
tions, including fifth-generation (5G) wireless communication networks [21]. To
help readers understand polar quantizers, an overview of polar codes is provided
in Appendix A.

Polar lattices are an instance of the well-known Construction D [18, p.232]
which uses a set of nested polar codes as component codes. Thanks to the nice
structure of Construction D, both the encoding and decoding complexity of po-
lar lattices are quasilinear in the block length (i.e., dimension of the lattice). A
construction of polar lattices achieving the Shannon capacity of the Gaussian
noise channel was presented in [30]. A follow-up work [29] gave a construction
of polar lattices to achieve the rate-distortion bound of source coding for Gaus-
sian sources. Note that the two types of polar lattices constructed in [30, 29] are
related but not the same (i.e., one for channel coding and the other for source
coding). The multilevel structure of polar lattices enables not only efficient en-
coding and decoding algorithms, but also a layer-by-layer implementation.

2 Preliminaries

Table 1 summarizes a few important notations in this paper for easy reference.
We follow the standard asymptotic notationsO(·), o(·), Ω(·), ω(·), Θ(·) etc. We let
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λ denote the security parameter throughout the paper. A function negl : N→ R+

is negligible if for every positive polynomial p(λ), there exists λ0 ∈ N such that
negl(λ) < 1

p(λ) for all λ > λ0. The notation X ≈s Y (resp. X ≈c Y ) means
that the random variables X and Y are statistically indistinguishable (resp.
computationally indistinguishable) throughout the paper.

Symbol Definition
x a boldface lower case for vectors
X a boldface capital for matrices

x ∼ U (random variable) x admits a uniform distribution on U
x← χ (sample) x is drawn according to distribution χ

Zq set {0, 1, ..., q − 1}
Zn
q
∗ set of integer vectors (s1, ..., sn) ∈ Zn

q with gcd(s1, ..., sn, q) = 1

Xℓ binary representation random variable of X at level ℓ
xi
ℓ i-th realization of Xℓ

xi:j
ℓ shorthand for (xi

ℓ, ..., x
j
ℓ)

xi
ℓ:ȷ realization of i-th random variable from level ℓ to level ȷ

[m] set of all integers from 1 to m

XI subvector of X [m] with indices limited in I ⊆ [m]

Table 1: Notations

2.1 Lattices and Quantization

A lattice Λ is a discrete additive subgroup of Rn. The rank of a lattice is the
dimension of the subspace of Rn that it spans. A lattice is called full-rank if its
rank equals its dimension. A basis B of a full-rank lattice Λ ⊂ Rn is a set of
linearly independent vectors {b1,b2, . . . ,bn} in Rn such that every vector in the
lattice Λ can be written as an integer linear combination of the basis vectors.
The dual of a lattice Λ in Rn, denoted Λ̃, is the lattice given by the set of all
vectors y ∈ Rn such that ⟨x,y⟩ ∈ Z for all vectors x ∈ Λ.

For v ∈ Rn and Λ ⊂ Rn, a lattice coset v + Λ is defined as:

v + Λ = {v +w | w ∈ Λ}.

A coset representative is a specific vector chosen from each coset to uniquely
represent that coset. The notation Λ/Λ′ denotes the set of all distinct cosets of
Λ′ in Λ. The coset representatives of Λ/Λ′ can be described as a set of vectors
vi ∈ Λ such that:

Λ =
⋃
i

(vi + Λ′).

Definition 2 (Fundamental Region). A fundamental region of the lattice Λ
is a bounded set PΛ that satisfies the following properties:
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1. Covering Property: The union of translates of PΛ by lattice points covers the
entire space Rn, i.e., ∪v∈Λ(v + PΛ) = Rn.

2. Partitioning Property: For any pair of distinct lattice points v and w in Λ,
if their corresponding translated fundamental regions intersect, then v must
equal w.

The half-open Voronoi region VΛ is a fundamental region which encompasses the
set of points in Rn that are closer to the origin than to any other lattice point.

A nearest neighbor quantizer refers to a function that maps a vector y ∈ Rn

to the closest lattice point in Λ via the following rule:

QΛ(y) = argmin
λ∈Λ

∥y − λ∥ (5)

where ties are broken in a systematic manner (such that y−QΛ(y) ∈ VΛ). The
quantization can be implemented in polynomial time by choosing fast-decodable
lattices for Λ, such as Zn, the tensor product Zn/8 ⊗ E8 (based on the Gosset
lattice), or polar lattices.

In lossy source coding, quantization is often combined with a dithering tech-
nique. Our approach employs a compensated dithered quantizer where the dither
is added back prior to transmission rather than in the reconstruction step,
slightly differing from conventional subtractive dithering (cf. [51, 35]):

Definition 3 (Compensated Dithered Quantizer). A compensated dithered
quantizer over lattice Λ samples d← PΛ and outputs

QΛ(y − d) + d. (6)

Equivalently, this process corresponds to quantizing y to a coset Λ+d of Λ:

QΛ+d(y) = argmin
λ∈Λ

∥(y − d)− λ∥+ d (7)

= QΛ(y − d) + d. (8)

The quantization error eQ = QΛ+d(y) − y ∼ U(VΛ), i.e., eQ is uniformly dis-
tributed over the Voronoi region VΛ and independent of y.

Definition 4 (Second moment [51]). The second moment of a lattice is de-
fined as the second moment per dimension of a random variable u which is
uniformly distributed over the Voronoi region VΛ:

γ2(Λ) =
1

n
E∥u∥2 =

1

n

1

det(Λ)

∫
VΛ
∥x∥2 dx

where E denotes expectation, and det(Λ) is the volume of the Voronoi region.

The averaged quantization error of the (compensated) dithered quantizer can
be quantified by γ2(Λ): for any distribution of y, with d ∼ U(PΛ), then

1

n
E ∥eQ∥2 = γ2(Λ). (9)
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The figure of merit for a lattice quantizer is the normalized second moment
(NSM), i.e., the second-moment to volume ratio, defined as

G(Λ) =
γ2(Λ)

det2/n(Λ)
. (10)

Given a fixed dimension, a lattice with a smaller NSM is considered better. The
minimum possible value of G(Λ) over all lattices in Rn is denoted by Gn.

Definition 5 (Quantization-good [51]). A sequence of lattices Λ(n) with grow-
ing dimension is called good for mean squared error quantization if

lim
n→∞

G(Λ(n)) =
1

2πe
. (11)

For any r > 0, define the Gaussian function on Rn with width parameter r:

∀x ∈ Rn, ρr(x) = e−π∥x∥
2/r2 .

Note that although we refer to r as the width of ρr, the actual standard deviation
of ρr is r√

2π
. A discrete Gaussian distribution is defined as follows: For any

c ∈ Rn, r > 0,

DΛ,r,c(x) =
ρr(x− c)

ρr(Λ− c)
, ∀x ∈ Λ (12)

Sampling from DΛ,r,c yields a distribution centered at c. We abbreviate DΛ,r,0

as DΛ,r.

2.2 Statistics

To demonstrate that the distribution of the quantization errors closely resembles
discrete Gaussians, we introduce the following statistical measures.

Definition 6 (Statistical Distance). The statistical distance between two prob-
ability distributions P and Q over the same sample space X is defined as:

∆(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)|.

Definition 7 (KL Divergence). The Kullback-Leibler (KL) divergence be-
tween two probability distributions P and Q over the same sample space X is
defined as:

DKL(P∥Q) =
∑
x∈X

P (x) log2
P (x)

Q(x)
.

Definition 8 (Computational Indistinguishability). Two probability en-
sembles P = {Pn}n∈N and Q = {Qn}n∈N are computationally indistinguishable
(denoted P ≈c Q) if for every probabilistic polynomial-time (PPT) distinguisher
D, there exists a negligible function negl(·) such that:∣∣∣∣ Pr

x←Pn

[D(x) = 1]− Pr
x←Qn

[D(x) = 1]

∣∣∣∣ = negl(n).
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Definition 9 (Statistical Indistinguishability). Two probability ensembles
P = {Pn}n∈N and Q = {Qn}n∈N are statistically indistinguishable (denoted
P ≈s Q) if their statistical distance is negligible in n:

∆(Pn, Qn) =
1

2

∑
x∈X
|Pn(x)−Qn(x)| = negl(n).

By Pinsker’s inequality ∆(Pn, Qn) ≤
√

ln 2
2 DKL(Pn∥Qn), negligible KL di-

vergence implies statistical indistinguishability: DKL(Pn∥Qn) = negl(n) =⇒
∆(Pn, Qn) = negl(n).

3 Hardness Results of LWQ

3.1 Definition

In the following, we review the definitions of LWE and LWR, and present our
generalization called LWQ.

Definition 10 (LWE/LWR/LWQ distributions). Let n,m, p, q be positive
integers with q > p > 1, and Λ be an m-dimensional integer lattice satisfying
qm > det(Λ) > 1. For a “secret” s ∈ Zn

q , and an error distribution χm
e over Zm,

samples for the LWE/LWR/LWQ distributions are respectively generated by

– LWEχm
e

: A← Zm×n
q , e← χm

e , and output (A,b = As+ e) ∈ Zm×n
q × Zm

q .
– LWR q

pZm : A← Zm×n
q , and output (A,b = ⌊As⌉p) ∈ Zm×n

q × Zm
p .

– LWQΛ,d: A← Zm×n
q , d← Zm/Λ and output (A,b = QΛ+d(As)) ∈ Zm×n

q ×
Zm
q .

Note that our definition of the LWQ distribution always includes a dither
term d. In essence, we quantize to a lattice coset Λ+ d for a random dither d.

Definition 11 (LWE/LWR/LWQ problems). Decision problem: It chal-
lenges an adversary to distinguish between LWE/LWR/LWQ distributions and
the respective uniform distributions. Search problem: Given m samples from
the LWE/LWR/LWQ distribution, where s is sampled from some distribution χn

s

(fixed for all samples), the search problem asks to recover s.

For convenience, this paper considers q such that qZm ⊂ Λ. LWQ generalizes
LWR in two ways: i) it employs vector quantization instead of scalar quanti-
zation, thereby the quantization error admits a distribution that more closely
resembles a Gaussian, and ii) it introduces dithering, ensuring that the quanti-
zation error is independent of the input. This approach enables LWQ to benefit
from a tight security reduction from LWE. When instantiated with Λ = q

pZ
m

where p divides q, this scalar-LWQ amounts to dithered LWR, which enjoys
better security guarantees than LWR.
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Remark 4. The primary advantage of LWQ over LWE is the reduced size of the
samples, as the dithering vector d is public. Given an LWQ sample (A,b =
QΛ+d(As) = QΛ(As − d) + d), the coset representative d = b mod Λ can be
efficiently identified in polynomial time [51]. Here the mod Λ operation maps the
input to its coset representative in a fundamental parallelepiped PΛ, which can be
computed using standard techniques such as Babai’s nearest plane algorithm [5]
(or the nearest neighbor quantizer (5) if it runs in polynomial time). Then we
may rewrite the LWQ sample as

(A, QΛ(As− d),d).

Note that a uniform distribution over (Zm
q ∩Λ)× (Zm/Λ) is the same as that

over Zm
q . Thus, QΛ(As − d) is pseudorandom, while the matrix A and dither

d can be transmitted as seeds of an extendable-output function (XOF). These
seeds, which do not need to remain secret, can effectively serve as the public
information in practice.

Let H : {0, 1}k → Zm×n
q × (Zm/Λ) be an XOF, and (A,d) = H(seed)

(with proper domain separation). Then storing an LWQ sample in the form of
(A, QΛ(As−d),d) requires k+log2

(
qm

det(Λ)

)
bits. On the contrary, LWE requires

k + log2 (q
m) bits.

From the results of Regev [43] and Peikert [40], for any m = nO(1), any
modulus q ≤ 2n

O(1)

, and for a (discrete) Gaussian distribution χe with parameter
σ ≥ 2

√
n, solving decision LWE is at least as hard as solving GapSVPγ and

SIVPγ on arbitrary n-dimensional lattices, where γ = Õ
(
nq
σ

)
. Moreover, for

moduli q of a certain form, the (average-case decision) LWE problem is equivalent
to the (worst-case search) LWE problem, up to a poly(n) factor in the number
of samples used. Although the primary hardness justification of LWE [43] is
based on continuous Gaussian errors, it also holds when the error distribution
is a discrete Gaussian, χm

e = DZm,σ. This reduction can be proved by applying
a randomized rounding algorithm to the b samples of LWEχm

e =ρσ/σm (cf. [41,
Theorem 3.1]). Unless otherwise specified, we define the hardness of the LWE
assumption as the computational indistinguishability between LWE samples and
uniform random samples:

LWEχm
e =DZm,σ

≈c U(Zm×n
q × Zm

q ). (13)

3.2 Hardness of LWQ with polar lattices

We prove the asymptotic hardness of LWQ by showing the distributions of LWQ
and LWE are statistically indistinguishable, for carefully designed polar lattice
quantizers. The polar lattice presented in Section 4 is inherently dithered (cf.
Section 1.2), and the quantizer can be described by QΛ+d for a random dither d.
Nevertheless, we will show later in this subsection that dithering can be generated
by an extendable-output function as far as the computational indistinguishability
of LWQ is concerned.
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We will establish the following bound on the statistical distance between the
LWQ and LWE distributions. The proof is essentially a translation of Theorem 6
in Section 4.2 from the language of coding theory into that of cryptography. We
assume s ∈ Zn

q
∗ such that As admits a uniform distribution on Zm

q . This is a
minor condition as the probability s ∈ Zn

q
∗ is at least 1−O(1/2n) for s ∈ Zn

q .
We rewrite the following distributions given earlier to serve our purpose.

– Consider the LWE distribution LWEχm
e =DZm,σ

: PA,b where b = X [m] =

Y [m] + e mod qZ where Y [m] = As and ei ∼ DZ,σ.
– Consider the LWQ distribution LWQΛ,d: QA,b where b = X [m] = QΛ+d(Y

[m])
where Y [m] = As and d← Zm/Λ.

Theorem 4 (LWQ ≈s LWE). Let m = m(λ), n = n(λ), q = p(λ)r(λ) where
λ is the security parameter, p(λ) is a prime number and r(λ) ∈ N. Let s ∈ Zn

q
∗.

There exist a sequence of efficient lattice quantizers QΛ+d, indexed by dimension
m, such that the statistical distance between the LWE distribution PA,b and the
LWQ distribution QA,b satisfy:

∆ (PA,b,QA,b) = 2−ω(λβ), ∀ 0 < β < 1. (14)

Proof. Given the secret s, the LWE distribution satisfies

PA,b =
∑
As

PA,As,b =
∑
As

PA · PAs|A · Pb|As, (15)

which is due to the Markov chain5 A → As → b. Notice that for given s and
samples Y [m], PAs|A is indeed an indicator function 1{As = Y [m]}. Therefore,
recalling that b = X [m], we have

PA,b = PAPX[m]|Y [m] . (16)

Analogously, the LWQ distribution satisfies

QA,b = PAQX[m]|Y [m] (17)

because A and Y [m] are the same as those in the LWE distribution.

5 In information theory, random variables X, Y , Z are said to form a Markov chain
X → Y → Z if their joint probability distribution function satisfy P (x, y, z) =
P (x)P (y|x)P (z|y) [19].
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Now we have

∆ (PA,b,QA,b)

=
1

2

∑
A

PA(·)
∑
X[m]

∣∣PX[m]|Y [m](·)− QX[m]|Y [m](·)
∣∣

=
1

2

∑
As

PAs|A(·)
∑
A

PA(·)
∑
X[m]

∣∣PX[m]|Y [m](·)− QX[m]|Y [m](·)
∣∣

=
1

2

∑
As

∑
A

PAs,A(·)
∑
X[m]

∣∣PX[m]|Y [m](·)− QX[m]|Y [m](·)
∣∣

=
1

2

∑
Y [m]

PY [m](·)
∑
X[m]

∣∣PX[m]|Y [m](·)− QX[m]|Y [m](·)
∣∣

= ∆
(
PX[m],Y [m] ,QX[m],Y [m]

)
≤ r ·m

√
ln 2 · 2−mβ′

, β < β′ < 1

(18)

where the second equality of (18) holds since PAs|A is an indicator function
when s is given, and the last inequality is obtained by instantiating with a polar
lattice and applying Theorem 6 and Remark 7 in Section 4. Note that Remark 7
allows to choose a parameter β′ ∈ (β, 1) for any given 0 < β < 1.

Since r = logp q is fixed by LWE, and since the term 2−m
β′

/2 dictates the

bound r ·m
√

ln 2 · 2−mβ′
, we may set m = Θ(λ) such that r ·m

√
ln 2 · 2−mβ′

=

2−ω(λβ). ⊓⊔

Informally, this theorem shows that the LWE noise can be substituted with
the quantization noise of LWQ while preserving security.

Remark 5. Theorem 4 holds under KL divergence too, by applying Lemma 5 in
Appendix D.

Theorem 5 (LWE reduced to LWQ). Let m = m(λ), n = n(λ), q = p(λ)r(λ)

where λ is the security parameter, p(λ) is a prime number and r(λ) ∈ N. Let
s ∈ Zn

q
∗. Let LWQ be instantiated with the quantization lattice Λ in Theorem 4,

of dimension m and modulus q. If there exists an oracle that can distinguish
the LWQ distribution from the uniform distribution U(Zm×n

q × Zm
q ) with non-

negligible advantage, then it can also distinguish the LWE distribution from uni-
form with non-negligible advantage.

Proof. We consider an oracle interacting as part of probabilistic experiments
called games in the following.

– G0: The oracle is given LWQ samples: c← LWQΛ,d.
– G1: In this game, we give the oracle samples from LWE: c← LWEχm

e =DZm,σ
.

– G2: In this game, uniform samples are given: c← Zm×n
q × Zm

q .
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G0 and G1 are statistically indistinguishable as LWQΛ,d and LWEχm
e =DZm,σ

are statistically indistinguishable, thus

AdvG0,G1(A) =
∣∣Pr(A(LWQΛ,d) = 1)− Pr(A(LWEχm

e =DZm,σ
) = 1)

∣∣ (19)

≤ ∆(LWQΛ,d, LWEχm
e =DZm,σ

) (20)

= 2−ω(λβ), ∀ 0 < β < 1 (21)

where the inequality is due to the data processing inequality of distributions,
and the last equality is due to Theorem 4.

Now we use proof by contradiction. Assuming the oracle can only distinguish
the LWE distribution with negligible advantage, then we have

AdvG0,G2(A) ≤ AdvG0,G1(A) + AdvG1,G2(A) = negl(λ) (22)

which contradicts with our assumption of LWQ. ⊓⊔

A direct consequence of Equation (22) is the following result.

Corollary 1 (LWQ ≈c Uniform). Under the LWE assumption and the set-
tings of Theorem 4, the LWQ distribution is computationally indistinguishable
from the uniform distribution U

(
Zm×n
q × Zm

q

)
.

3.3 Compression rate

In essence, we simulate the LWE channel using a polar lattice (which may also
be viewed as a q-ary polar code) so that LWEχm

e =DZm,σ
≈s LWQΛ,d. This is

illustrated in Fig. 1 6. The bits of UI are determined by the LWE channel, while
those of UF serve as the random dither. Basically, the bits of UI are compressed
LWE samples, and the LWE assumption implies that they are pseudorandom.

The LWE channel (4) is a so-called Z/qZ channel with well-defined capacity
C(Z/qZ, σ2) [22] (see Appendix A.4 for details). Define the rate of the com-
pressed ciphertext Rc ≜ 1

m log2

(
qm

det(Λ)

)
bits per sample. The theory of polar

lattices shows that any rate Rc above channel capacity C(Z/qZ, σ2) is achievable
for source coding [29]. In the language of Shannon’s lossy compression theory,
for a given test Z/qZ channel between the source random variable and its recon-
struction, the lowest achievable compression rate is the capacity C(Z/qZ, σ2).
Note that the Z/qZ channel inherits the symmetric nature of the lattice partition
channels [22], and the standard channel polarization technique for the symmet-
ric rate-distortion function [26] works well in this context. In fact, by channel
polarization, as m→∞,

Rc → C(Z/qZ, σ2).

6 Note that we write As = b + e mod qZ in the figure, which is statistically equiv-
alent to b = As + e mod qZ due to the symmetry of χm

e = DZm,σ. Reversing the
input/output is a common practice for the test channel in source coding theory [19].



17

Fig. 1: Simulating the LWE channel using a polar lattice (which may be viewed
as a q-ary polar code due to the mod q operation).

Thus, the compression rate Rc is ultimately determined by the capacity of the
LWE channel. For the parameters q = poly(n) and σ = Ω(

√
n) in LWE, the

capacity can be made explicit: it is possible to show C(Z/qZ, σ2) ≈ log2

(
q√

2πe·σ

)
[22]. Intuitively, log2

(√
2πe · σ

)
of the log2 (q) bits are buried under noise.

If the noise variance σ2 increases, the channel capacity C(Z/qZ, σ2) decreases,
and does the rate R. Conversely, if σ2 decreases, channel capacity C(Z/qZ, σ2)
increases, as does R. However, it is important to note that the “LWE channel” is
virtual, meaning σ2 is a free parameter that can be adjusted. Consequently, any
rate 0 < Rc < log2 (q) can be achieved by appropriately tuning σ2. Remarkably,
efficiency and security (Rc vs. σ2) align: higher compression is accompanied by
increased security. The trade-off, however, is that greater compression results in
fewer pseudorandom numbers being generated.

4 Polar Lattice for Quantization

The idea of polar quantizer is to use multilevel error correction codes to decode
(quantize) inputs at each level. Throughout this section, we assume s ∈ Zn

q
∗

such that As admits a uniform distribution on Zm
q . We often assume q = 2r for

r ∈ N and it is straightforward to extend to the case q = pr for prime p.

4.1 Polar Quantizer: Construction

In this subsection, we present an explicit construction of polar lattices [30, 29]
for the dithered quantization of random integers, which produces Gaussian-like
quantization errors. In a nutshell, the quantizer consists of a series of decoders
for polar codes according to the multilevel structure of “Construction D” [22].
For convenience, we present Construction D using binary polar codes, whereas
the extension to nonbinary codes is straightforward [18].

For those unfamiliar with polar codes or polar lattices, it could be useful
to treat the polar lattice quantizer as a black box, as shown in the dashed box
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in Fig. 2, whose task is to mimic the test channel between X and Y in Fig.
1. From the perspective of lossy compression, the test channel for the source
Y ∼ PY is defined by the transition probability PY |X , where X is referred to
as the reconstruction of the source. As can be seen in Fig. 1, the statistic of
the test channel is described by the relationship Y = X +E mod qZ, where E
is an additive discrete Gaussian noise. Note that for this test channel, defined
from the information theory, is purely based on the statistic of E, which is not
necessarily generated by the lattice quantization operation. However, Theorem 6
illustrates that the difference between these two test channels can be negligible,
which confirms the motivation of introducing lattice quantization in our LWQ
scheme. Moreover, the relationship between the lattice quantization from Y [m]

to X [m] and the lattice construction based on the test channel from X [m] to Y [m]

will be explained in Remark 8.

𝑌[𝑚] Polar Decoder 𝑋1
[𝑚]

1

+

−

mod 2

⋯
Polar Decoder 𝑋𝑟

[𝑚]mod 2𝑟−1

2𝑟−2

1

⋯

2𝑟−1

mod 2𝑟 𝑋[𝑚]

−

+
Polar Decoder 𝑋𝑟−1

[𝑚]mod 2𝑟−2

⋯

2𝑟−2

⋯

Fig. 2: The internal structure of a polar lattice quantizer.

Definition 12 (Partition Chain). A sublattice Λ′ ⊂ Λ induces a partition
(denoted by Λ/Λ′) of Λ into equivalence groups modulo Λ′. The order of the
partition is denoted by |Λ/Λ′|, which is equal to the number of cosets. If |Λ/Λ′| =
2, this is called a binary partition. A lattice partition chain, which is denoted by
Λ(Λ0)/Λ1/ · · · /Λr−1/Λ

′(Λr) for r ≥ 1, is a sequence of nested lattices.

If only one level is used (r = 1), the construction is called Construction A. If
multiple levels are used, it is called Construction D. For each partition Λℓ−1/Λℓ

(1 ≤ ℓ ≤ r), a code Cℓ over Λℓ−1/Λℓ selects a sequence of coset representatives
aℓ in a set Aℓ of representatives for the cosets of Λℓ. This construction requires
a set of nested linear binary codes Cℓ with block length m and dimension kℓ,
represented as [m, kℓ] codes for 1 ≤ ℓ ≤ r, with C1 ⊆ C2 ⊆ · · · ⊆ Cr. We use the
partition chain Z/2Z/4Z/ · · · in the following.
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Algorithm 1 Polar Lattice Quantization Algorithm

Require: Source Y [m] ∈ [−2r−1, 2r−1)m.
Ensure: Quantized output X [m].
1: Initialize R[m] = Y [m];
2: for ℓ = 1 to r do
3: Execute SC decoding to obtain X

[m]
ℓ from R[m] mod 2ℓ. ▷ Decodes binary

polar codes
4: R[m] = R[m] − 2ℓ−1X

[m]
ℓ . ▷ Interference cancellation

5: end for
6: Return X [m] = X

[m]
1 + 2X

[m]
2 + · · ·+ 2r−1X

[m]
r mod 2rZ.

Definition 13 (Construction D). Let ψ be the natural embedding of Fm
2 into

Zm, where F2 is the binary field. Consider a basis d1,d2, · · · ,dm of Fm
2 such

that d1, · · · ,dkℓ
span Cℓ. The Construction D lattice consists of all vectors of

the form

r∑
ℓ=1

2ℓ−1
kℓ∑
j=1

ujℓψ(dj) + 2rz, (23)

where ujℓ ∈ {0, 1}, z ∈ Zm, and ψ denotes the embedding into Rm.

The quality of a subchannel is generally identified based on its associated
Bhattacharyya parameter.

Definition 14. Given a binary-input memoryless symmetric channel (BMSC)
W with transition probability PY |X , the Bhattacharyya parameter Z ∈ [0, 1] is
defined as

Z(W ) = Z(X|Y ) ≜
∑
y

√
PY |X(y|0)PY |X(y|1). (24)

E.g., in [4], the rate of channel polarization is characterized in terms of the
Bhattacharyya parameter as

lim
m→∞

Pr
(
Z(W (i)

m ) < 2−m
β
)
= C, for any 0 < β <

1

2
.

This means that as the block length m becomes very large, the probability that
the Bhattacharyya parameter Z(W (i)

m ) of a subchannel W (i)
m is less than 2−m

β

approaches the channel capacity C. For efficient construction of polar codes,
Z(W

(i)
m ) can be evaluated using the methods introduced in [48, 39].

In the context of lossy compression, polar codes can achieve the rate-distortion
bound for binary symmetric sources [27]. To achieve a target distortion:

– A test channel W : X → Y is constructed for the source Y and the recon-
struction X.
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– Polar codes for compression are constructed according to the test channel
W , with the information set defined as I ≜ {i ∈ [m] : Z(W

(i)
m ) < 1− 2−m

β}.

By the duality between channel coding and source coding, the Successive Can-
cellation (SC) decoding algorithm for polar channel coding transforms into the
SC encoding algorithm for polar source coding. Given m i.i.d. sources Y [m]:

– The polarized bits UF are almost independent of Y [m] since Z(W
(i)
m ) ≥

1− 2−m
β

by definition.
– Compression of Y [m] is achieved by replacing UF with random bits and

saving the relevant bits UI , which are determined from Y [m] and UF using
the SC encoder.

The channel splitting process also leads to a simple SC decoding algorithm to
achieve the so-called symmetric capacity [3], which executes maximum a poste-
riori (MAP) decoding for each subchannel sequentially from i = 1 to m. By the
union bound, the block error probability of SC decoding can be upper-bounded
by

∑
i∈I Z(W

(i)
m ). See Appendix A.2 or [3, Section VIII] for more details on the

SC decoding algorithm.
Pseudo-codes of the polar lattice quantization algorithm are given in Algo-

rithm 1 where q is a power of 2. For the samples Y [m], the decoder at each level
tries to find the best binary representative of the lattice point X [m] close to Y [m],
using the results of all previous levels. The multilevel structure of polar lattices
not only provides us a feasible complexity of the quantization operation for high
dimensional lattices, but also paves for us a path to the rich theory of binary
polar codes.

The next subsection will show that the distribution of Y [m]−X [m] is close to
that of m i.i.d. discrete Gaussian random variables. Fig. 3 shows a comparison
between the distribution of quantization noise Y −X achieved by the polar lattice
quantizer and the genuine discrete Gaussian distribution DZ,σ with parameters
σ = 3, r = 8 and m = 220.

Dithered quantization with polar lattices In the literature on traditional
lattice quantization [52], the source vector is shifted by dithering d while the
quantization lattice remains fixed (the output is QΛ(As− d)). In contrast, our
dithered quantization compensates the dither vector and output: QΛ(As−d)+d.
This type of quantization can be easily implemented via a polar lattice. Specif-
ically, when the frozen bits are chosen randomly, the output of a polar lat-
tice quantizer QΛ+d belongs to a random coset Λ + d, where the randomness
d is determined by the frozen bits. This can be understood as follows. Let
UFΛ = {UF1

1 , . . . , UFr
r } denote the collection of all frozen bits across the r levels.

For a specific choice uFΛ = {uF1
1 , . . . , uFr

r }, the resulting offset from Λ can be
expressed as

d =

r∑
ℓ=1

2ℓ−1
N∑

j=kℓ+1

ujℓψ(gj), (25)
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Fig. 3: A comparison between the distribution of quantization noise Y −X and
DZ,σ=3.

where ujℓ ∈ {0, 1} and gkℓ+1, . . . ,gN are the remaining base vectors in the vector
space spanned by GN after selecting g1, . . . ,gkℓ

for the binary code at level ℓ.
Clearly, Λ corresponds to the all-zero configuration of UFΛ , and Λ + d forms a
valid partition of Zm as UFΛ traverses all possible choices.

Remark 6. The dither d of LWQ is public, thus an extendable-output function
can be used to produce the dither, with only the generator’s seed needing to be
shared as part of the public key. This approach allows LWQ to achieve compu-
tational indistinguishability from LWE while also reducing bandwidth.

4.2 Polar Quantizer: Performance Analysis

We now analyze the distribution of quantization noise. Let Y [m] denote m sam-
ples drawn from As. The quantization result or the so-called reconstruction of
Y [m] is denoted by X [m], which is also in Zm

q .

– Consider the first case in which the correlation between Y [m] and X [m] is
due to an i.i.d. discrete Gaussian random vector E[m], i.e., Y i = Xi + Ei

mod qZ for each i ∈ [m], and Ei ∼ DZ,σ. The joint distribution between
X [m] and Y [m] in this case is denoted by PX[m],Y [m] .

– Consider the second case in which the correlation between Y [m] and X [m]

is generated by the polar lattice quantizer, i.e., X [m] = QΛ(Y
[m]). The joint

distribution between X [m] and Y [m] in this case is denoted by QX[m],Y [m] .
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We will show the statistical distance ∆(PX[m],Y [m] ,QX[m],Y [m]) vanishes sub-
exponentially in m in a layer-by-layer manner, corresponding to the multi-level
quantization process of polar lattices. Notice that each Xi ∈ Zq, i ∈ [m] can be
uniquely represented by a binary sequence Xi

1, ..., X
i
ℓ, ..., X

i
r, and Xi

ℓ determines
the coset of the binary partition 2ℓ−1Z/2ℓZ for 1 ≤ ℓ ≤ r. Given a source vector
Y [m], the (m-dimensional) polar lattice quantizer tries to find the coset leader
X

[m]
1 at the first level; then it decides the coset leader X [m]

2 at the second level
using both X

[m]
1 and Y [m]; the process keeps going at level ℓ, where X [m]

ℓ is
decoded from Y [m] and X

[m]
1:ℓ−1; the process ends at the final r-th level, where

X
[m]
r is decoded from Y [m] and X [m]

1:r−1.
From the perspective of lossy compression in information theory, PY |X is

called the test channel with input (reconstruction) X and output (source) Y . As
can be seen in Fig. 1, since Y = X + E mod qZ, the test channel is a discrete
additive white Gaussian noise channel with a modulo qZ operation at the end.
Following the step of Forney et al. [22], the test channel can be partitioned into
r 2ℓ−1Z/2ℓZ binary-input channels with 1 ≤ ℓ ≤ r, which are called binary
partition channels.

In fact, the polar lattice consists of the component polar codes designed
for these r partition channels. More explicitly, the first level Z/2Z partition
channel completely determines the joint distribution PX1,Y of X1 and Y , and Y
mod 2Z is a sufficient statistic of Y with respect to X1. The polar code C1 at the
first level is constructed according to the Z/2Z channel, which is equivalently
described by W1 : X1 −→

PY |X1

Y . Let U [m]
1 = X

[m]
1 Gm be the bits after channel

polarization at level 1. The information set of C1 is defined as I1 ≜ {i ∈ [m] :

Z(U i
1|U1:i−1

1 , Y [m]) ≤ 1 − 2−m
β} for any 0 < β < 0.5, and the frozen set of C1

is the complement set F1 ≜ Ic1. By this definition, the correlation between UF1
1

and Y [m] is negligible. The polar quantizer assigns uniformly random bits that
are independent of Y [m] to UF1

1 , and then determines UI11 from Y [m] and UF1
1

using the SC encoding algorithm. The reconstruction at level 1 is obtained from
the inverse polarization transform X

[m]
1 = U

[m]
1 G−1m = U

[m]
1 Gm.

Lemma 1. Let Q
U

[m]
1 ,Y [m] denote the resulted joint distribution of U [m]

1 and Y [m]

according to the encoding rules (26) and (27) at the first partition level.

U i
1 =

0 w. p. PUi
1|U

1:i−1
1 ,Y [m]

(
0|u1:i−11 , y[m]

)
1 w. p. PUi

1|U
1:i−1
1 ,Y [m]

(
1|u1:i−11 , y[m]

) if i ∈ I1 (26)

U i
1 =


0 w. p.

1

2

1 w. p.
1

2
.

if i ∈ F1 (27)
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Let P
U

[m]
1 ,Y [m] denote the joint distribution directly generated from PX1,Y , i.e.,

U i
1 is generated according to the encoding rule (26) for all i ∈ [m]. The statistical

distance between P
U

[m]
1 ,Y [m] and Q

U
[m]
1 ,Y [m] is upper-bounded as follows:

∆
(
P
U

[m]
1 ,Y [m] ,QU

[m]
1 ,Y [m]

)
≤ m

√
ln 2 · 2−mβ , 0 < β <

1

2
. (28)

Proof. See Appendix C.

After finishing the encoding at level 1, the polar lattice quantizer proceeds to
level 2 in a similar manner. The 2Z/4Z partition channel completely determines
the joint distribution PX2,Y |X1

of X2 and Y given the previous quantization
result X1, and Y −X1 mod 4Z is a sufficient statistic of Y with respect to X2.
The polar code C2 at the second level is constructed according to the 2Z/4Z
channel, which is equivalently described by W2 : X2 −→

PY,X1|X2

(Y,X1). Let U [m]
2 =

X
[m]
2 Gm be the bits after channel polarization at level 2. The information set

of C2 is defined as I2 ≜ {i ∈ [m] : Z(U i
2|U1:i−1

2 , X
[m]
1 , Y [m]) ≤ 1 − 2−m

β} for
0 < β < 1/2, and the frozen set is defined as F2 ≜ Ic2.

Lemma 2. Let Q
U

[m]
1 ,U

[m]
2 ,Y [m] denote the resulted joint distribution of U [m]

1 ,

U
[m]
2 and Y [m] according to the encoding rules (26) and (27) at the first partition

level, and then rules (29) and (30) at the second partition level.

U i
1 =

0 w. p. P
Ui

2|U
1:i−1
2 ,X

[m]
1 ,Y [m]

(
0|u1:i−12 , x

[m]
1 , y[m]

)
1 w. p. P

Ui
2|U

1:i−1
2 ,X

[m]
1 ,Y [m]

(
1|u1:i−12 , x

[m]
1 , y[m]

) if i ∈ I2 (29)

U i
2 =


0 w. p.

1

2

1 w. p.
1

2
.

if i ∈ F2 (30)

Let P
U

[m]
1 ,U

[m]
2 ,Y [m] denote the joint distribution directly generated from PX1,X2,Y ,

i.e., U i
1 and U i

2 are generated according to the encoding rule (26) and rule (29)
for all i ∈ [m], respectively. The statistical distance between P

U
[m]
1 ,U

[m]
2 ,Y [m] and

Q
U

[m]
1 ,U

[m]
2 ,Y [m] is upper-bounded as follows:

∆
(
P
U

[m]
1 ,U

[m]
2 ,Y [m] ,QU

[m]
1 ,U

[m]
2 ,Y [m]

)
≤ 2m

√
ln 2 · 2−mβ , 0 < β <

1

2
. (31)

Proof. Assume an auxiliary joint distribution Q′
U

[m]
1 ,U

[m]
2 ,Y [m] resulted from using

the encoding rule (26) for all U i
1 with i ∈ [m] at the first partition level, and

rules (29) and (30) at the second partition. Clearly, Q′
U

[m]
1 ,Y [m] = P

U
[m]
1 ,Y [m] and

Q′
U

[m]
2 |U [m]

1 ,Y [m] = Q
U

[m]
2 |U [m]

1 ,Y [m] . By the triangle inequality,
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∆
(
P
U

[m]
1 ,U

[m]
2 ,Y [m] ,QU

[m]
1 ,U

[m]
2 ,Y [m]

)
≤ ∆

(
P
U

[m]
1 ,U

[m]
2 ,Y [m] ,Q

′
U

[m]
1 ,U

[m]
2 ,Y [m]

)
+∆

(
Q′

U
[m]
1 ,U

[m]
2 ,Y [m] ,QU

[m]
1 ,U

[m]
2 ,Y [m]

)
,

(32)

where the first term on the right hand side can be upper bounded bym
√
ln 2 · 2−mβ

using the same method as in the proof of Lemma 1, and the second term is equal
to ∆

(
P
U

[m]
1 ,Y [m] ,QU

[m]
1 ,Y [m]

)
. ⊓⊔

After the lattice quantization process with r sequential levels, the joint dis-
tribution produced by the lattice quantizer is denoted by Q

U
[m]
1:r ,Y [m] , and the

joint distribution directly generated from m i.i.d. test channels is denoted by
P
U

[m]
1:r ,Y [m] . By induction, we obtain∆

(
P
U

[m]
1:r ,Y [m] ,QU

[m]
1:r ,Y [m]

)
≤ rm

√
ln 2 · 2−mβ .

We arrive at the following theorem on the distribution of quantization noise,
which shows the quantization noise closely resemble an i.i.d. discrete Gaussian
distribution.

Theorem 6. The statistical distance between the joint distribution induced by
the polar lattice and that by an i.i.d. discrete Gaussian distribution is bounded
by

∆
(
PX[m],Y [m] ,QX[m],Y [m]

)
≤ r ·m

√
ln 2 · 2−mβ , 0 < β <

1

2
. (33)

Proof. By the inverse polarization transformX
[m]
ℓ = U

[m]
ℓ Gm from ℓ = 1 to r, we

immediately have ∆
(
PX[m],Y [m] ,QX[m],Y [m]

)
≤ r ·m

√
ln 2 · 2−mβ , by induction.

⊓⊔

Remark 7. The restriction 0 < β < 1
2 in Theorem 6 is due to the standard 2× 2

kernel [ 1 0
1 1 ] of binary polar codes, which results in sub-exponential decay of the

statistical distance. Nevertheless, it is possible to obtain any value 0 < β < 1 by
using nonbinary polar codes with prime alphabet size p and carefully designed
kernels [36]; thus we can obtain almost exponential decay of the statistical dis-
tance. More precisely, [36] showed that using a p-ary ℓ × ℓ kernel (1 < ℓ ∈ N),
it is possible to obtain β = log2(ℓ!)/(ℓ log2 ℓ). But there is a price to pay: the
decoding complexity will become O(pℓm log2m) [45]. Although using nonbinary
polar codes in Construction D will increase the computational complexity, it is
still O(m log2m) for fixed p and ℓ.

Remark 8. Observant readers may wonder why our polar lattice quantizer is
constructed based on the forward test channel X −→

PY |X
Y , with additive noise E

mod qZ, whereas the quantization performance shown above is analyzed from
the reversed direction Y −→

PX|Y
X. The reason is that when X and Y are both

uniform in Zq, we have PX|Y = PY |X , and the additive noise E is pairwisely
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independent of bothX and Y . To see this, letting PX(x) = 1/q, we have PY (y) =∑
x PX,Y (x, y) = 1

q

∑
x PE(y − x) = 1/q. Therefore, PX = PY = 1/q, and

hence PY |X = PX|Y . The symmetry of the test channel, which is termed as the
mod Λ/Λ′ channel, is discussed in more detail by Forney et al. in [22].

Remark 9. We note that the validity of polar lattice structure can be easily
guaranteed. Taking the above simulation as an example, when constructing mul-
tilevel polar codes along the binary partition chain Z/2Z/ · · · /2rZ for the ad-
ditive discrete Gaussian test channel (σ = 3), the capacities of the partition
channels from ℓ = 1 to r are given by 0, 3.2732×10−10, 0.0056, 0.3933, 0.9690,
1.0000 and 1.0000, respectively. The size of the information set is chosen as
|Iℓ| = ⌈m · C(Wℓ)⌉, where C(Wℓ) denotes the capacity of the ℓ-th partition
channel. As a result, the component polar codes are consecutively nested by
ensuring Iℓ ⊆ Iℓ+1 for 1 ≤ ℓ ≤ r − 1, and we have an ascertained polar lat-
tice quantizer. Moreover, the constructed polar lattice is roughly sphere-bound
achieving, by the capacity-achieving property of polar codes for all partition
levels.

5 Improving Lattice-Based Secret-Key Encryption

This section introduces a secret-key LWQ-based encryption framework, denoted
as LWQE,Λ,d, and contrasts it with LWE and quantized LWE (LWEQ) based
frameworks from [35]. Specifically, LWEE,χe

represents the encryption framework
without quantization, while LWEQE,χe,Λ corresponds to LWE[E,Λ] as described
in [35]. It is important to note that the LWER problem in CRYSTALS-Kyber [47]
represents a special case of LWEQ where the quantization is rounding. In com-
parison to quantized LWE [35], LWQ streamlines the processes of noise addition
and quantization into a single step, where only quantization noise is present while
ensuring security. This efficiency suggests that LWQ could serve as a potential
alternative to LWE, LWR, or LWER in a range of cryptographic scenarios, of-
fering a favorable balance between efficiency and security. E.g., in addition to
the presented secret-key encryption hereby, we show in Appendix E that LWQ
can be employed to reduced the size of public key of plain-LWE based public
key encryption (PKE).

The presented LWE-, LWEQ-, and LWQ-based secret-key encryption schemes
all use a triplet (KGen,Encrypt,Decrypt). For fair comparison, they share a com-
mon KGen and nested lattice error-correction structures.

The key generation function KGen(1λ) along with the standard choice of
parameters from LWE are defined as follows:

– Select m = nO(1), and q ∈ [nO(1), 2O(n)]. Let χe be a discrete Gaussian error
distribution of parameter σ ≥ 2

√
n, and a private key distribution χn

s over
Zn
q
∗ with respect to the security parameter λ. Sample s← χn

s until s ∈ Zn
q
∗

(e.g., s← Zn
q , which satisfies s ∈ Zn

q
∗ with overwhelming probability).

– Targeting specific error correction capacity and quantization noise level,
choose the error correction lattice E and quantization lattice Λ from the
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partition chain of polar lattices:

qZm ⊂ E ⊆ Λ ⊂ Zm.

– Specify the lattice encoding function ecE that maps a message µ ∈ {0, 1}|pt|,
where |pt| = log2

(
qm

det(E)

)
, to a lattice point within the error correction

lattice E, and the lattice decoding function dcE that recovers the original
message by decoding a noisy lattice point back into the message space.

– Return the private key s.

Scheme Encrypts(µ) Decrypts(A,b)
Ciphertext Ciphertext

Error ẽ Size |ct|

LWEE,χe [35]
A← Zm×n

q , e← χe

b = As+ e+ ecE(µ)
Return (A,b)

Return dcE (b−As) e |seed(A)|+ log2(q
m)

LWEQE,χe,Λ [35]
A← Zm×n

q , e← χe

b = QΛ(As+ e) + ecE(µ)
Return (A,b)

Return dcE (b−As) e+ e′
Q |seed(A)|+ log2(

qm

det(Λ)
)

LWQE,Λ,d (proposed)
A← Zm×n

q , d← Zm/Λ
b = QΛ+d(As) + ecE(µ)
Return (A,b)

Return dcE (b−As) eQ |seed(A,d)|+ log2(
qm

det(Λ)
)

Table 2: Comparison of encryption frameworks based on LWE, LWEQ, and
LWQ.

The (Encrypt,Decrypt) algorithms for LWEE,χe
, LWEQE,χe,Λ, and the pro-

posed LWQE,Λ,d are summarized in Table 2. These schemes differ only in the
encryption process. Since E ⊆ Λ, we have QΛ(As+ e+ecE(µ)) = QΛ(As+ e)+
ecE(µ) and QΛ+d(As + ecE(µ)) = QΛ+d(As) + ecE(µ). Thus, in all these
schemes, the message ecE(µ) is encrypted by masking it with a pseudorandom
vector. Define the effective ciphertext error as

ẽ = b−As− ecE(µ).

Table 2 shows that the effective ciphertext errors for these schemes are e, e+e′Q,
and eQ, respectively, where e′Q and eQ represent the quantization errors intro-
duced by QΛ and QΛ+d, respectively. The storage sizes for A and (A,d) are
denoted as |seed(A)| and |seed(A,d)|, respectively, leveraging XOF-based com-
pact representations [35]. The performance differences between these schemes
are reflected in the ciphertext error ẽ and the ciphertext size |ct|.

5.1 Security

In these encryption schemes, the pseudorandomness of the ciphertext, ensuring
RND-CPA security [35], is derived from the hardness of the decision LWE and
LWQ assumptions.
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Definition 15 (RND-CPA). An encryption scheme (KGen,Encrypt,Decrypt)
is said to be pseudorandom under chosen plaintext attack if any efficient (proba-
bilistic polynomial-time) adversary A can only achieve at most negligible advan-
tage in the following game, parameterized by a bit b ∈ {0, 1}:

1. s← KGen(1λ),
2. b′ ← AOb(·) where Ob(µ) returns either an encryption Encrypts(µ) of the

message µ under the key s if b = 0, or a sample from a uniform distribution
that has support

{
Encrypts(µ) | s ∈ supp(KGen(1λ)),∀µ

}
if b = 1.

The adversary’s advantage is defined as Adv(A) = |Pr(b′ = 1|b = 0) − Pr(b′ =
1|b = 1)|.

Theorem 7. Under the LWE and LWQ indistinguishability assumptions, the
schemes LWEE,χe , LWEQE,χe,Λ, and LWQE,Λ,d are RND-CPA secure.

Proof. We demonstrate that if an adversary can break the RND-CPA security
of LWEE,χe , LWEQE,χe,Λ, or LWQE,Λ,d, it implies the ability to distinguish the
LWE/LWEQ/LWQ distributions from uniform distributions. We will focus on
the reduction for LWEQ, as the arguments for the other two cases are analogous.

We construct an oracle O′b for LWEQE,χe,Λ:

– Request the pair (A,b) from the LWE oracle Ob.
– Compute QΛ(b).
– Return the output (A, QΛ(b) + ecE(µ)).

SinceO′b incorporatesOb, breaking LWEQE,χe,Λ would consequently imply break-
ing the LWE assumption, establishing the RND-CPA security of the encryption
scheme.

5.2 Efficiency

The information rate R of an encryption scheme is defined as the ratio of plain-
text size to ciphertext size:

R =
|pt|
|ct|

. (34)

Notably, the contribution of XOF seeds will be excluded from |ct| in the sub-
sequent discussion, as their size is generally negligible compared to the overall
ciphertext (cf. [35]). A scheme is said to achieve perfect rate when R = 1.

The correctness of the schemes are defined as:

Definition 16. (DFR). The decryption failure rate (DFR) of an encryption
scheme (KGen,Encrypt,Decrypt) is defined as

δ = Es max
µ

Pr(Decrypts(Encrypts(µ)) ̸= µ).

The scheme is said to be δ-correct for a neglegible δ, and perfectly correct if
δ = 0.
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Theorem 8. There exists a family of polar lattices {Λm} (indexed by dimension
m) such that LWQE=Λ,Λ,d achieves: perfect correctness (δ = 0), perfect rate,
polynomial modulus q = nO(1), and security equivalent to the LWE assumption.

Proof. Instantiate LWQ with the quantization lattice Λ from Theorem 4. By
construction, LWQ is as secure as LWE with modulus q = nO(1). Regarding
perfect correctness, the decryption noise ẽ = b−As−ecE(µ) reduces to ẽLWQ =
eQ, where eQ ∼ U(VΛ∩Zm). Since s ∈ Zn

q \{0}, As is uniform over Zm
q , and thus

Pr(ẽLWQ /∈ VE) = 0. Perfect rate follows directly from |pt| = |ct| = log2

(
qm

det(Λ)

)
.
⊓⊔

It has been shown in [35] that LWEQE,χe,Λ improves the information rate of
LWEE,χe from R = 1− f(m) to 1− f(m)

log2 m , achieving a logarithmic dimensional

advantage. Nevertheless, R = 1− o
(

1
log2(q)

)
is impossible within the quantized

LWE framework [35, Bound 2].
Theorem 8 shows that LWQ-based encryption can eliminate the o(1) term

and achieve a perfect rate of R = 1. This improvement is attributed to a key
distinction: in LWE-based or LWEQ-based schemes, the o(1) term stems from
the additive noise e, which is introduced solely for security purposes. In con-
trast, LWQ fully utilizes the entire ciphertext error for compression, thereby
eliminating this overhead.

6 Conclusions and Open Questions

This paper introduces a new hardness assumption termed LWQ for lattice-based
cryptography. By combining the security guarantees of LWE with the efficiency
of public dithering via XOFs, LWQ enables primitives that achieve both provable
security and practical efficiency. Our results validate two concrete instantiations:
Scalar-LWQ enhances LWR’s security without sacrificing its storage efficiency,
while polar-LWQ optimizes LWE’s storage efficiency while retaining its security
guarantees.

To reduce the bandwidth of LWE-based applications, algebraic variants of
LWE has been developed, including Ring-LWE [32], Module-LWE [28], Middle-
Product-LWE [6], and Cyclic-LWE [25]. These variants offer more compact rep-
resentations and faster arithmetic operations, making them more suitable for
practical implementations. Future research could explore the extension of LWQ
to its algebraic counterparts.

Although our sub-exponential bound for LWQ in Theorem 4 is significantly
tighter than the polynomial bound for LWR (with a polynomial modulus q),
we have not achieved an exponential bound, which would be ideal for prac-
tical cryptographic applications. This appears to be an inherent limitation of
polar codes when analyzed under statistical distance or Kullback-Leibler (KL)
divergence. One potential approach to overcome this limitation is to use the
Rényi divergence, as a small bound on Rényi divergence is sufficient in many
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cases [7]. However, constructing polar codes under Rényi divergence remains an
open problem in coding theory, to the best of our knowledge. We encourage
further research efforts to address this challenge.

Our analysis of LWQ reveals an interesting phenomenon: in the security anal-
ysis of lattice-based cryptosystems involving LWR or LWER, quantization noise
is often approximated as a discrete Gaussian with the same variance. Conse-
quently, a quantization lattice with a larger normalized second moment would
imply higher security. This, however, contradicts our proposal of using lattices
with a small normalized second moment. This observation suggests that the ex-
isting security analysis, which models quantization noise as Gaussian in LWR
and LWER, may not be tight. We hope our work on LWQ improves the under-
standing of LWR and LWER and stimulates interest in a tighter analysis.
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A Background of Polar Codes/Lattices

A.1 Polar Codes

Polar coding [3] presents arguably the first explicit construction of codes that are
capacity-achieving for any binary-input memoryless symmetric channels (BM-
SCs). Let us break down the concept:

– BMSC and Polar Code: A BMSC is a type of communication channel
characterized by binary input and output without memory of previous in-
puts. A polar code is designed specifically for such channels and achieves
their capacity.

– Block Length and Generator Matrix: For a given BMSC, we construct
a polar code with block length m = 2t, where t is a non-negative integer. The
polar code employs a generator matrix Gm, derived by iteratively applying
the Kronecker product to the base matrix [ 1 0

1 1 ].
– Information Set and Frozen Set: Among the rows of the generator matrix
Gm, we select K specific rows to form the information set I. The remaining
rows constitute the frozen set F . The information set comprises positions
used for encoding actual data, whereas the frozen set includes positions pre-
determined to facilitate decoding.

– Channel Combination and Polarization Transform: We consider N
identical copies of the BMSC, denoted Wm, which process input vectors
X [m] to yield output vectors Y [m]. By applying the generator matrix Gm to
the input, we obtain U [m] = X [m]Gm. This transformation decomposes the
channel into m simpler subchannels.

– Subchannels and Polarization: Each subchannel W (i)
m processes part of

the transformed input U i and produces output based on the entire output
vector Y [m] and previous parts of the transformed input U1:i−1. As m (the
block length) increases indefinitely, these subchannels polarize into either
very reliable (almost error-free) or very unreliable (ineffective for communi-
cation).

– Good Subchannels and Capacity: Through channel polarization, we
can identify the good subchannels. The proportion of good subchannels ap-
proaches the channel’s capacity C as the block length m becomes large.
Hence, to achieve capacity, the K rows selected for encoding should corre-
spond to these good subchannels.

Example 1. When m = 2, the generator matrix for binary polar codes is given

by
[
1 0
1 1

]
. One may use one (r = 1) partition level Z/2Z and choose [1, 1] as the

basis for C1. Therefore, the polar lattice is made by [1, 1] · U1 + 2Z2, where U1

is the information bit of C1. The generator matrix of the 2-dimensional polar

lattice is given by
[
2 0
1 1

]
, which is indeed the famous checkerboard lattice D2.
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Example 2. When m = 4, the generator matrix for binary polar codes is given
by 

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

 .
One may use two partition levels Z/2Z/4Z and construct two binary polar codes
according to the Construction D method. For the first level, one may choose
[1, 1, 1, 1] as the basis for C1. For the second level, C2 can have bases [1, 1, 0, 0],
[1, 0, 1, 0] and [1, 1, 1, 1]. Clearly, C1 ⊂ C2. Therefore, the polar lattice is made
by [1, 1, 1, 1] · U1 + 2 · [1, 1, 0, 0] · U2 + 2 · [1, 1, 0, 0] · U3 + 2 · [1, 1, 0, 0] · U4 + 4Z4,
where U1 is the information bit of C1 and U4

2 are the information bits of C2.
Consequently, the generator matrix of the 4-dimensional polar lattice is given by

4 0 0 0
2 2 0 0
2 0 2 0
1 1 1 1

 .

A.2 Successive Cancellation Decoding Algorithm

We briefly describe the successive cancellation (SC) decoding algorithm in this
section. For simplicity, we assume that a polar code is constructed according to
the binary-input test channel W : X → Y . Denote the source sequence by y[m]

and its reconstruction by x[m]. Let x[m] = u[m]Gm, with the frozen bits being
fixed as uF . The task of the decoder is to determine the estimation û[m] based
on y[m]. Given the channel transition probability PY |X of W , the i-th polarized
subchannel channel is defined by the following probability

W (i)
m (y[m], u1:i−1|ui) ≜

∑
ui+1:m

1

2m−1
Wm(y[m]|u[m]),

where Wm(y[m]|u[m]) = PY [m]|X[m](y[m]|u[m]Gm).

The SC decoder uses Log-Likelihood Ratio (LLR) L(i)
m

(
y[m], ûi−11

)
≜ log2

W
(i)
N (y[m],û1:i−1|0)

W
(i)
N (y[m],û1:i−1|1)

to decide the value of ûi by the decision rule.

ûi =


ui, i ∈ F
0, i ∈ I, L(i)

m

(
y[m], û1:i−1

)
≥ 0

1, i ∈ I, L(i)
m

(
y[m], û1:i−1

)
< 0

(35)

The LLR can be calculated recursively by

L(2i−1)
m

(
y[m], û1:2i−2

)
= f

(
L
(i)
m/2(y

[m/2], û1:2i−2o ⊕ û1:2i−2e ), L
(i)
m/2(y

m/2+1:m, û1:2i−2e )
) (36)



35

and

L(2i)
m

(
y[m], û1:2i−1

)
= g

(
L
(i)
m/2(y

[m/2], û1:2i−2o ⊕ û1:2i−2e ), L
(i)
m/2(y

m/2+1:m, û1:2i−2e ), û1:2i−1
)
,

(37)

where û1:2i−2o and û1:2i−2e are subvectors of û1:2i with odd and even indices
respectively, f(a, b) ≜ log2

(
ea+b+1
ea+eb

)
and g(a, b, λ) ≜ (−1)λa + b. Note that the

SC decision rule (35) is deterministic and it can be modified to the following
random rounding version for more convenient analysis.

ûi =


ui, i ∈ F
0, i ∈ I, w. p. exp(L

(i)
m )/

(
1 + exp(L

(i)
m )

)
1, i ∈ I, w. p. 1/

(
1 + exp(L

(i)
m )

) (38)

The performance difference between the two decision rules is marginal, as ob-
served in [26].

A.3 Quantization Based on Polar Lattices

Quantization and error correction are duals in the sense that: i) Error correc-
tion involves finding the closest lattice point to a noisy codeword, leveraging
redundancy to correct errors. ii) Quantization involves mapping the input vec-
tor to the nearest lattice point, effectively reducing data resolution and removing
redundancy. Consider error correction using Λ, generated by a basis matrix B:

Λ = {Bz | z ∈ Zm} .

Error correction consists of two phases:

– Encoding : c = Bm for message m.
– Decoding : Given an additive noise channel r = c + e, find c ∈ Λ such that
∥r− c∥ is minimized.

Quantization also consists of two phases:

– Quantizing : Given x ∈ Rn, find q ∈ Λ such that ∥x− q∥ is minimized.
– Indexing : m = B−1q.

Polar lattices [29] offer an efficient solution for achieving the rate-distortion
bound for the i.i.d. Gaussian source. In essence, one constructs a polar lattice for
the Gaussian source by utilizing a series of nested polar codes, as introduced by
Forney et al. [22]. These polar codes compress the Gaussian source vector based
on the characteristics of the test channel at each level. Moreover, research [30]
indicates that employing a binary lattice partition keeps the number of levels
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r relatively small (r = O(log2 log2m)), yet still enables the attainment of the
capacity 1

2 log(1 + SNR) of the additive white Gaussian noise (AWGN) channel,
where SNR represents the signal-to-noise ratio.

The concept of duality between source coding and channel coding allows us
to interpret quantization polar lattices as analogous to a channel coding lattice
constructed on the test channel [29]. In the scenario of a Gaussian source with
variance σ2

s and an average distortion ∆, the test channel effectively becomes
an AWGN channel with a noise variance of ∆. Consequently, the SNR of this
test channel equals σ2

s−∆
∆ , while its capacity is 1

2 log2

(
σ2
s

∆

)
. This insight suggests

that the rate of the polar lattice quantizer can be finely adjusted to approach
1
2 log2

(
σ2
s

∆

)
. Consequently, polar lattices demonstrate the capability to achieve

the rate-distortion bound of Gaussian sources by employing discrete Gaussian
distribution instead of continuous, offering a notable advancement in compres-
sion techniques.

A.4 Λ/Λ′ Channel

A Λ/Λ′ channel is defined according to a lattice partition Λ/Λ′, as mentioned
in Definition 12. Let X → Y denote the Λ/Λ′ channel subject to Gaussian
noise with variance σ2. The input alphabet of X is restricted to the discrete set
(Λ+a)∩PΛ′ , that is, the elements of a translate Λ+a of the lattice Λ that fall in
a fundamental region PΛ′ of Λ′. The specific choice of offset a does not affect the
essence of the Λ/Λ′ channel [22]. Then, the output Y is written as Y = X + E
mod Λ′, where E is the Gaussian noise with zero mean and variance σ2. Since
Λ is the union of the |Λ/Λ′| cosets of Λ′, the size of the input alphabet is |Λ/Λ′|.
In particular, for the Z/qZ channel, the partition order |Z/qZ| = q and X can
be chosen from any q distinct integers in PqZ when one sets a = 0.

By the regularity of the Λ/Λ′ channel [22, Theorem 4], the Λ/Λ′ channel is
symmetric and the mutual information I(X;Y ) for both uniform X and Y is
the capacity C(Λ/Λ′, σ2) of the Λ/Λ′ channel.

The capacity C(Λ/Λ′, σ2) equals the gap between the capacity of the mod-Λ′
channel and that of the mod-Λ channel [22], that is,

C(Λ/Λ′, σ2) = C(Λ′, σ2)− C(Λ, σ2), (39)

where C(Λ, σ2) ≜ log2(V (Λ)) − h(Λ, σ2) and h(Λ, σ2) is the entropy of the Λ-
aliased Gaussian noise, i.e., 7

h(Λ, σ2) ≜ −
∫
VΛ
fσ,Λ(x) log fσ,Λ(x)dx, (40)

where VΛ denotes the Voronoi region of lattice Λ and the Λ-periodic function
fσ,Λ(x) is defined as

fσ,Λ(x) ≜
∑
λ∈Λ

fσ,λ(x) =
1

(
√
2πσ)nΛ

∑
λ∈Λ

e−
∥x−λ∥2

2σ2 (41)

7 For discrete Gaussian noise, the integration in (40) is interpreted as summattion.
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where nΛ is the dimension of Λ. C(Λ′, σ2) is defined in the same manner.
The capacity C(Z/qZ, σ2) can be calculated by substituting Λ = Z, Λ′ =

qZ, and nΛ = 1. For the parameters q = poly(n) and σ = Ω(
√
n) in LWE,

the Z-aliased Gaussian noise is almost uniform, while the qZ-aliased Gaussian
noise is almost Gaussian. Therefore, C(Z, σ2) ≈ 0, while C(qZ, σ2) ≈ log2 q −
log2

(√
2πe · σ

)
. As a result, C(Z/qZ, σ2) ≈ log2 q − log2

(√
2πe · σ

)
.

A.5 Polar Lattices Based on q-ary Polar Codes and Construction A

Here we provide an alternative construction of polar lattice constructed from
q-ary polar codes and Construction A. Recall that q = 2r, and we can construct
q-ary polar codes based on the same generator matrix Gm in GF (q) [46, 38]. The
polarization effect remains when the underlying finite field moves from GF (2)
to GF (q). As mentioned in Remark 7, the 2×2 polarization kernel [ 1 0

1 1 ] can be
replaced by a larger ℓ× ℓ kernel with elements in GF (q) for better performance.
Let C denote a q-ary polar code with block length m. The lattice Λ generated
from C according to Constrction A is defined as

Λ ≜ {λ ∈ Z[m] : λ mod qZ ∈ C}.

The decoding complexity of the Construction-A polar lattice is generally higher
than the Construction-D polar lattice presented earlier. However, its construc-
tion is easier to understand as there are no nested codes involved.

B Hardness of LWQ with general quantization lattices

Beyond the specific case of polar lattices, we establish the following result for
LWQ that applies to general quantization lattices, including hypercubic lattices
Zm and root lattices like the Gosset lattice E8.

LWQ and Uniform-Noise LWE

Lemma 3 (Dithering lemma, adapted from [51]). Let Λ ⊂ Rm be a lattice
with fundamental cell PΛ and Voronoi region VΛ.

1. Continuous Case: If U ∼ U(PΛ) with density

fU (u) =

{
|PΛ|−1, u ∈ PΛ

0, otherwise
,

then the quantization error eQ = QΛ+U (y)−y is uniformly distributed over
VΛ, independent of y ∈ Rm.

2. Discrete Case: If U ∼ U(Zm/Λ), then eQ = QΛ+U (y) − y is uniformly
distributed over VΛ ∩ Zm, independent of y ∈ Zm.

Proof. Employ the fact that QΛ+U (y) is uniform over the coset Λ+U . We refer
to [51] for a complete proof. ⊓⊔
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Lemma 3 shows that uniform dithering over the fundamental cell “washes
out” dependence on the input, and makes the quantization noise eQ behave like
a uniformly random error.

Theorem 9 (LWQ ≈s uniform noise LWE). Let d ← Zm/Λ be a uni-
form dither. Then, the LWQ distribution is statistically indistinguishable from
the LWE distribution with uniform noise over VΛ ∩ Zm.

Proof. By the dithering lemma, when d← Zm/Λ, the quantization error:

eQ = QΛ(As− d)− (As− d)

is uniformly distributed over VΛ ∩ Zm and independent of As.
Rewriting the LWQ sample as (A,b) = QΛ(As − d) + d = As + eQ), this

matches the LWE distribution (A,As + e), where e ∼ U(VΛ ∩ Zm). Thus the
LWQ distribution is identical to LWE with uniform noise and their statistical
distance is zero:

∆
(
LWQΛ,d,LWEUnif(VΛ∩Zm)

)
= 0.

⊓⊔

The equivalence between LWQ and uniform-noise LWE holds for any quan-
tization lattice Λ. A particularly important case arises when Λ = q

pZ
m, as this

generalizes the widely-used LWR problem while achieving stronger security guar-
antees. We formalize this special case below; the proof follows directly from
Theorem 9 and is therefore omitted.

Corollary 2 (LWQ with Λ = q
pZ

m). Let Λ = q
pZ

m where p | q, and let
d← Zm

q/p. The scalar-LWQ distribution

LWQ q
pZm,d : (A, Q q

pZm(As− d) + d)

is statistically indistinguishable from the LWE distribution with uniform noise
over Zm

q/p.

This corollary highlights two key advantages of scalar-LWQ over LWR: Unlike
LWR’s deterministic rounding error, scalar-LWQ’s dithering ensures indepen-
dent noise uniformity over Zm

q/p, enabling direct security reductions to uniform
noise LWE. Meanwhile, scalar-LWQ matches LWR’s representation of log2(pm)
bits for b when aided by using XOF for (A,d).

LWQ and Gaussian-Noise LWE

Definition 17 (Smoothing parameter [34]). For any lattice Λ and positive
real ε > 0, the smoothing parameter ηε(Λ) is the smallest real κ > 0 such that
ρ1/κ(Λ̃ \ {0}) ≤ ε where Λ̃ is the dual lattice.

The smoothing parameter ηε(Λ) quantifies the smallest Gaussian width κ needed
to smooth out the discrete structure of a lattice Λ, making its discrete Gaussian
distribution behave like a continuous one.
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Lemma 4 (Gaussian mass bound, [34]). For any lattice Λ and c ∈ Rm,
ε > 0, and κ ≥ ηε(Λ),

ρr(Λ+ c) ∈ κm det(Λ̃)(1± ε). (42)

The discrete NSM is defined as: Ḡ(Λ) = γ̄2(Λ)/ det2/m(Λ), where γ̄2(Λ) =
1
m

∑
x∈VΛ∩Zm det(Λ)−1 ∥x∥2. Analogous to the continuous NSM G(Λ), Ḡ(Λ)

quantifies how “sphere-like” Λ is for quantization. From the high-resolution as-
sumption [51], we have G(Λ) ≈ Ḡ(Λ), and the approximation error can be arbi-
trarily small by increasing |VΛ ∩ Zm|.

Theorem 10 (Distance to Gaussian noise LWE). Define κ =
√

2πḠ(Λ) det1/m(Λ).
If κ ≥ ηε(Zm), the KL divergence between LWQ and LWE satisfies:

DKL((A,As+ eQ)∥(A,As+ e)) ∈ m

2
log2(2πeḠ(Λ)) + log2(1± ε). (43)

where the quantization noise eQ ∼ U(VΛ ∩Zm) and the discrete Gaussian noise
e ∼ DZm,κ.

Proof. From Lemma 4, we have

ρκ(Zm) ∈ κm(1± ε). (44)

Then we have

1

m
DKL(eQ∥e) =

1

m

∑
x∈VΛ∩Zm

det(Λ)−1 log2
ρκ(Zm)

det(Λ)ρκ(x)
(45)

∈ 1

m
log2

κm(1± ε)
det(Λ)

+ log2 e ·
π

κ2
· 1
m

∑
x∈VΛ∩Zm

det(Λ)−1 ∥x∥2 (46)

=
1

2
log2

κ2

det(Λ)2/m
+ log2 e ·

π

κ2
· 1
m

∑
x∈VΛ∩Zm

det(Λ)−1 ∥x∥2 + 1

m
log2(1± ε).

(47)

By setting the discrete un-normalized second moment as the Gaussian variance:

κ2 = 2πγ̄2(Λ) = 2π · 1
m

∑
x∈VΛ∩Zm

det(Λ)−1 ∥x∥2 , (48)

where γ̄2(Λ) = Ḡ(Λ) det2/m(Λ), we obtain

DKL(eQ∥e) ∈
m

2
log2(2πeḠ(Λ)) + log2(1± ε). (49)

Therefore, we can bound the divergence of LWQ and LWE by using

DKL((A,As+ eQ)∥(A,As+ e)) = DKL(eQ∥e). (50)

⊓⊔
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From Theorem 10, the distinguishing advantage between LWQ and LWE satis-
fies:

AdvLWQ-LWE ≤
√

ln 2

2

(m
2
log2(2πeḠ(Λ)) + log2(1 + ε)

)
. (51)

The NSM Ḡ(Λ) quantifies the security loss of LWQ relative to standard LWE.
Lattices with Ḡ(Λ) ≈ 1

2πe achieve near-optimal security, as they induce small
distinguishing advantages. However, this approach does not allow to show dimin-
ishing distinguishing advantages: since log2(2πeḠ(Λ)) = O(logm/m) for optimal
lattice quantizers [54, Lemma 1], we have m log2(2πeḠ(Λ)) = O(logm)→∞.

C Proof of Lemma 1

Proof. Using the telescoping expansion [27, Lemma 4]

B1:n −A1:n =

n∑
i=1

(Bi −Ai)A1:i−1Bi+1:n, (52)

∆
(
P
U

[m]
1 ,Y [m] ,QU

[m]
1 ,Y [m]

)
can be decomposed as

2∆
(
P
U

[m]
1 ,Y [m] ,QU

[m]
1 ,Y [m]

)
=

∑
u
[m]
1 ,y[m]

∣∣∣Q(u[m]
1 , y[m])− P(u

[m]
1 , y[m])

∣∣∣
=

∑
u
[m]
1 ,y[m]

∣∣∣∣∣∑
i

(
Q(ui1|u1:i−11 , y[m])− P(ui1|u1:i−11 , y[m])

)

·

i−1∏
j=1

P(uj1|u
1:j−1
1 , y[m])

 m∏
j=i+1

Q(uj1|u
1:j−1
1 , y[m])

P
(
y[m]

)∣∣∣∣∣ (53)

(a)

≤
∑
i∈F1

∑
u
[m]
1 ,y[m]

∣∣∣Q(ui1|u1:i−11 , y[m])− P(ui1|u1:i−11 , y[m])
∣∣∣
i−1∏

j=1

P(uj1|u
1:j−1
1 , y[m])


·

 m∏
j=i+1

Q(uj1|u
1:j−1
1 , y[m])

P
(
y[m]

)

=
∑
i∈F1

∑
u1:i
1 ,y[m]

∣∣∣Q(ui1|u1:i−11 , y[m])− P(ui1|u1:i−11 , y[m])
∣∣∣
i−1∏

j=1

P(uj1|u
1:j−1
1 , y[m])

P
(
y[m]

)
=

∑
i∈F1

∑
u1:i−1
1 ,y[m]

2P
(
u1:i−11 , y[m]

)
∆
(
QUi

1|U
1:i−1
1 =u1:i−1

1 ,Y [m]=y[m] ,PUi
1|U

1:i−1
1 =u1:i−1

1 ,Y [m]=y[m]

)
(b)

≤
∑
i∈F1

∑
u1:i−1
1 ,y[m]

P
(
u1:i−11 , y[m]

)√
2 ln 2DKL

(
PUi

1|U
1:i−1
1 =u1:i−1

1 ,Y [m]=y[m] ||QUi
1|U

1:i−1
1 =u1:i−1

1 ,Y [m]=y[m]

)
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(c)

≤
∑
i∈F1

√√√√2 ln 2
∑

u1:i−1
1 ,y[m]

P
(
u1:i−11 , y[m]

)
DKL

(
PUi

1|U
1:i−1
1 =u1:i−1

1 ,Y [m]=y[m] ||QUi
1|U

1:i−1
1 =u1:i−1

1 ,Y [m]=y[m]

)

=
∑
i∈F1

√
2 ln 2DKL

(
PUi

1
||QUi

1
|U1:i−1

1 , Y [m]
)

(d)
=

∑
i∈F1

√
2 ln 2

(
1−H(U i

1|U
1:i−1
1 , Y [m])

)
(e)

≤
∑
i∈F1

√
2 ln 2

(
1− Z(U i

1|U
1:i−1
1 , Y [m])2

)
(f)

≤ m
√
4 ln 2 · 2−mβ

where DKL(·||·) is the Kullback-Leibler divergence, and the equalities and the
inequalities follow from

(a) Q
(
ui1|u1:i−11 , y[m]

)
= P

(
ui1|u1:i−11 , y[m]

)
for i ∈ I1.

(b) Pinsker’s inequality.
(c) Jensen’s inequality.
(d) Q

(
ui1|u1:i−11

)
= 1

2 for i ∈ F1.
(e) Z(X|Y )2 ≤ H(X|Y ).
(f) Definition of F1.

⊓⊔

D KL Divergence

Lemma 5. Let Q
U

[m]
1 ,Y [m] denote the resulted joint distribution of U [m]

1 and Y [m]

according to the encoding rules (26) and (27) at the first partition level. Let
P
U

[m]
1 ,Y [m] denote the joint distribution directly generated from PX1,Y , i.e., U i

1 is
generated according to the encoding rule (26) for all i ∈ [m]. The Kullback-Leibler
divergence between P

U
[m]
1 ,Y [m] and Q

U
[m]
1 ,Y [m] is upper-bounded as follows:

DKL

(
P
U

[m]
1 ,Y [m] ||QU

[m]
1 ,Y [m]

)
≤ 2 ln 2 ·m2−m

β

. (54)

By induction, after the lattice quantization process with r sequential levels,

DKL

(
PX[m],Y [m]∥QX[m],Y [m]

)
= DKL

(
P
U

[m]
1:r ,Y [m]∥QU

[m]
1:r ,Y [m]

)
(55)

≤ 2 ln 2 · rm2−m
β

. (56)
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Proof. For the 1st level,

DKL

(
P
U

[m]
1 ,Y [m] ||QU

[m]
1 ,Y [m]

)
= ln 2 ·
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[m]
1 ,y[m]
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)
log2
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Q
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)
= ln 2 ·

∑
u
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P
(
u
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log2

P
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1 |y[m]
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Q
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= ln 2 ·

∑
u
[m]
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P
(
u
[m]
1 , y[m]

)
log2

∏m
i=1 P(u

i
1|u1:i−11 , y[m])∏m

i=1 Q(u
i
1|u

1:i−1
1 , y[m])

= ln 2 ·
∑

u
[m]
1 ,y[m]

P
(
u
[m]
1 , y[m]

) ∑
i∈F1

log2
P(ui1|u1:i−11 , y[m])

Q(ui1|u
1:i−1
1 , y[m])

= ln 2 ·
∑
i∈F1

(1−H(U i
1|U1:i−1

1 , Y [m]))

≤ ln 2 ·
∑
i∈F1

(1− Z(U i
1|U1:i−1

1 , Y [m])2)

≤ 2 ln 2 ·m2−m
β

,

(57)

where the second equality holds because PY = QY , and the first inequality holds
because Z(X|Y )2 ≤ H(X|Y ). The proof of the first part is completed.

For the second level, by the chain rule of the Kullback-Leibler divergence,

DKL

(
P
U

[m]
1:2 ,Y [m]∥QU

[m]
1:2 ,Y [m]

)
= DKL

(
P
U

[m]
1 ,Y [m]∥QU

[m]
1 ,Y [m]

)
+ E

U
[m]
1 ,Y [m]

[
DKL

(
P
U

[m]
2 |U [m]

1 ,Y [m]∥QU
[m]
2 |U [m]

1 ,Y [m]

)]
≤ 2 ln 2 ·m2−m

β

+ 2 ln 2 ·m2−m
β

,

(58)

where the first term holds because of the result for the 1st level, and the second
term can be obtained by following the steps in (57) exactly, since it can be
written as

E
U

[m]
1 ,Y [m]

[
DKL

(
P
U

[m]
2 |U [m]

1 ,Y [m] ||QU
[m]
2 |U [m]

1 ,Y [m]
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= ln 2 ·

∑
u
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1:2 ,y[m]

P
(
u
[m]
1:2 , y
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)
log2

P
(
u
[m]
2 |u

[m]
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)
Q
(
u
[m]
2 |u

[m]
1 , y[m]

) . (59)

The proof of the second part of this lemma can be completed by induction. ⊓⊔
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E Reducing the Size of Public Key in PKE

Frodo [11] is a widely studied post-quantum PKE scheme that employs LWE for
both key generation and encryption. We propose a simple modification to Frodo
by incorporating LWQ in the key generation step to reduce the public key size.
We note that improvements to the encryption step of Frodo are also possible.
However, such enhancements require a more involved analysis to carefully bal-
ance the parameters, and we leave this direction for future work. The proposed
modification to the key generation step applies equally to any PKE scheme (e.g.,
Lizard [16]) that follows the LWE-based key generation template.

The Frodo key generation operates as follows:

– Parameters: Dimensions n, ℓ, modulus q, and noise width σ.
– Key Construction:

1. Sample public matrix A← Zn×n
q

2. Sample secret key S← DZn×ℓ,σ and error E← DZn×ℓ,σ

3. Compute public matrix B = AS+E

– Output:
pk = (A | B), sk = S

Using XOFs (AES128/SHAKE128) to generate A, the public key size is:

|pk| = |seed(A)|+ log2(q) · n · ℓ bits.

With |seed(A)| = 128 bits, Frodo’s parameters and baseline public key sizes
are:

Variant n ℓ q |pk| (bytes)
Frodo-640 640 8 215 9,616
Frodo-976 976 8 216 15,632
Frodo-1344 1344 8 216 21,520

We replace LWE with LWQ in Frodo’s key generation:

– Parameters: Dimensions n, ℓ, modulus q, and noise width σ, polar lattice
Λ based on σ.

– Key Construction:
1. Sample public matrix A← Zn×n

q , D← (Zn/Λ)ℓ

2. Sample secret key S← DZn×ℓ,σ

3. Compute public matrix by lattice quantization:

B = QΛ(AS−D) +D

– Output:
pk = (A | D | B−D), sk = S
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By using XOFs to generate (A,D), the LWQ-based public key size becomes:

|pk| ≈ |seed(A,D)|+ log2

(
q√

2πe · σ

)
· n · ℓ bits.

The term log2

(
q√

2πe·σ

)
reflects the compression rate of B, due to the use of polar

lattices for quantization. Maintaining n, ℓ, q, σ and |seed(A,D)| = |seed(A)| =
128 bits, LWQ achieves reduced public-key size:

Variant Original |pk| (bytes) LWQ |pk| (bytes)
Frodo-640 9,616 7,696 (−20%)
Frodo-976 15,632 12,704 (−19%)
Frodo-1344 21,520 18,832 (−13%)


