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Abstract

Unpredictable functions (UPFs) play essential roles in classical cryptography, including message
authentication codes (MACs) and digital signatures. In this paper, we introduce a quantum analog of
UPFs, which we call unpredictable state generators (UPSGs). UPSGs are implied by pseudorandom
function-like states generators (PRFSs), which are a quantum analog of pseudorandom functions (PRFs),
and therefore UPSGs could exist even if one-way functions do not exist, similar to other recently introduced
primitives like pseudorandom state generators (PRSGs), one-way state generators (OWSGs), and EFIs.
In classical cryptography, UPFs are equivalent to PRFs, but in the quantum case, the equivalence is not
clear, and UPSGs could be weaker than PRFSs. Despite this, we demonstrate that all known applications
of PRFSs are also achievable with UPSGs. They include IND-CPA-secure secret-key encryption and
EUF-CMA-secure MACs with unclonable tags. Our findings suggest that, for many applications, quantum
unpredictability, rather than quantum pseudorandomness, is sufficient.
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1 Introduction

1.1 Background

Pseudorandom functions (PRFs), first formalized by Goldreich, Goldwasser and Micali in 1984 [GGM86],
are one of the most fundamental primitives in classical cryptography. A PRF is an efficiently-computable
keyed function that is computationally indistinguishable from a random function for any polynomial-time
adversary that can query the function. PRFs have many important applications in cryptography, and in
particular, they are essential building blocks of EUF-CMA-secure message authentication codes (MACs) and
IND-CPA-secure secret-key encryption (SKE).

Naor and Reingold [NR98] introduced a related primitive so-called unpredictable functions (UPFs). Like
PRFs, a UPF is an efficiently-computable keyed function, but the crucial difference is that the goal of the
adversary is not to distinguish it from the random function, but to predict the output corresponding to an
input that was not queried before. More precisely, let f := {fk}k be an efficiently-computable keyed function.
Then f is a UPF if it satisfies the following property, which is called unpredictability:

Pr[y = fk(x) : k ← {0, 1}λ, (x, y)← Afk(·)] ≤ negl(λ) (1)

for any polynomial-time adversary A, where x was not queried by A. It is easy to see that PRFs imply UPFs.
The other direction is not straightforward, but Naor and Reingold showed that UPFs imply PRFs [NR98], and
therefore PRFs and UPFs are actually equivalent.

What happens if we consider quantum versions of PRFs and UPFs? Recently, quantum analogs
of elementary primitives, including one-way functions (OWFs), pseudorandom generators (PRGs), and
PRFs, have been extensively studied [JLS18, MY22b, AQY22, BCQ23, AGQY22, Yan22, MY22a, BBSS23,
ALY23, MPSY24]. For example, pseudorandom states generators (PRSGs) introduced by Ji, Liu, and
Song [JLS18] are a quantum analog of PRGs. One-way states generators (OWSGs) introduced by Morimae
and Yamakawa [MY22b] are a quantum analog of OWFs. EFIs introduced by Brakerski, Canetti, and
Qian [BCQ23] are a quantum analog of EFID [Gol90].1 There are mainly two reasons why studying such
new quantum elementary primitives are important. First, they could be weaker than (quantumly-secure)
OWFs [Kre21, KQST23], which are the most fundamental assumption in classical cryptography. More
precisely, even if BQP = QMA or P = NP and therefore OWFs do not exist, these new primitives could
exist (relative to oracles). Second, despite that, they have many useful applications, such as private-key
quantum money, SKE, non-interactive commitments, digital signatures, and multiparty computations, etc.
These facts suggest that these primitives will play the role of the most fundamental assumptions in quantum
cryptography, similar to OWFs in classical cryptography.

Quantum versions of PRFs were already studied. There are two quantum analogs of PRFs. One is
pseudorandom unitary operators (PRUs) that were introduced by Ji, Liu, and Song [JLS18].2 It is a set {Uk}k
of efficiently implementable unitary operators that are computationally indistinguishable from Haar random
unitary operators. The other quantum analog of PRFs is pseudorandom function-like states (generators)
(PRFSs) that were introduced by Ananth, Qian and Yuen [AQY22]. A PRFS is a QPT algorithm that, on
input a secret key k and a classical bit string x, outputs a quantum state ϕk(x). The security roughly means
that no QPT adversary can tell whether it is querying to the PRFS oracle or to the oracle that returns Haar

1An EFID is a pair of two efficiently samplable classical distributions that are statistically far but computationally indistinguishable.
An EFI is its quantum analog: a pair of two efficiently generatable quantum states that are statistically far but computationally
indistinguishable.

2Weaker variants, so-called pseudorandom states scramblers [LQS+23] and pseudorandom isometries [AGKL23] were recently
introduced. They are shown to be constructed from OWFs.
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random states.3 EUF-CMA-secure MACs (with quantum tags) and IND-CPA-secure SKE (with quantum
ciphertexts) can be constructed from PRFSs [AQY22].

On the other hand, no quantum analog of UPFs was explored before. Is it equivalent to a quantum analog
of PRFs, such as PRUs or PRFSs? Does it imply EUF-CMA-secure MACs and IND-CPA-secure SKE like
PRFSs and PRUs? Can we gain any meaningful insight for quantum cryptography by studying it?

1.2 Our Results

The goal of the present paper is to initiate the study of a quantum version of UPFs which we call unpredictable
state generators (UPSGs). We define UPSGs and construct several cryptographic applications from UPSGs.
UPSGs are implied by PRFSs, and therefore UPSGs could exist even if OWFs do not exist, similar to PRSGs,
OWSGs, and EFIs. As we will explain later, the equivalence between PRFSs and UPSGs are not clear, and
UPSGs could be weaker than PRFSs. Despite this, we show that all known applications of PRFSs are also
achievable with UPSGs.4 This finding provides us with an insightful observation: For many applications,
quantum unpredictability, rather than quantum pseudorandomness, is sufficient.

Relations among our results and known results are summarized in Figure 1.

Defining UPSGs. Our first contribution is to define UPSGs. A UPSG is a QPT algorithm Eval that, on
input a secret key k and a classical bit string x, outputs a quantum state ϕk(x). Intuitively, the security
(unpredictability) is as follows: no QPT adversary, which can query the oracle Eval(k, ·), can output (x∗, ρ)
such that x∗ was not queried and ρ is close to ϕk(x∗).5

In the classical case, PRFs and UPFs are equivalent [NR98]. What happens in the quantum case? In
fact, we can show that PRFSs imply UPSGs. However, the other direction is not clear. In the classical case,
the construction of PRFs from UPFs is done by using the Goldreich-Levin [NR98, GL89]: if fk(·) is a UPF,
gk,r(x) := fk(x) · r is a PRF with the key (k, r), where x · y is the inner product between bit strings x and y.
However, we cannot directly apply that idea to UPSGs: In particular, what is ϕk(x) · r?

In summary, a quantum analog of UPFs, UPSGs, are implied by PRFSs, which especially means that
UPSGs could also exist even if OWFs do not exist. However, the equivalence is not clear, and UPSGs could
be weaker than PRFSs. Then, a natural question is the following: Do UPSGs have useful applications like
PRFSs?

IND-CPA-secure SKE. Our second contribution is to construct IND-CPA-secure SKE (with quantum
ciphertexts) from UPSGs. In the classical case, unpredictability implies pseudorandomness [NR98], which
implies encryption. However, in the quantum case, as we have explained before, we do not know how
to convert unpredictability to pseudorandomness, and therefore it is not self-evident whether SKE can be
constructed from UPSGs. Despite this, we show that it is actually possible:

Theorem 1.1. If UPSGs exist, then IND-CPA-secure SKE exist.

IND-CPA-secure SKE can be constructed from PRFSs [AQY22]. Theorem 1.1 shows that such SKE can
be constructed from a possibly weaker primitive, UPSGs.

3If the query x was not queried before, the oracle samples a new Haar random state ψx and outputs it. If the query x was done
before, the oracle outputs the same ψx that was sampled before.

4Strictly speaking, MACs with unclonable tags that are realized with PRFSs satisfy the security against QPT adversaries that
query the oracle quantumly, but those realized with UPSGs satisfy that only for the classical oracle query.

5We could consider classical query or quantum query. In the latter case, it is not clear what we mean by “not queried”. One
possible formalization, which we actually adopt, is to define that a bit string x was not queried if the weight of |x⟩ is zero for all
quantum queries. For more precise statements, see Section 3.1.
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MACs with unclonable tags. Our third contribution is to define and construct EUF-CMA-secure MACs
with unclonable tags from UPSGs.6 The unclonability of tags roughly means that no QPT adversary can,
given t-copies of a quantum tag, output a large (possibly entangled) quantum state that contains at least t+ 1
valid tag states. MACs with unclonable tags are useful in practical applications. For example, consider the
following attack (which is known as the replay attack in the classical cryptography): Alice sends the message
“transfer $100 to Bob” with a MAC tag to a bank. Malicious Bob can steal the pair of the message and the
tag, and sends it ten times to the bank so that he can get $1000. In the classical cryptography, the standard
EUF-CMA security of MACs cannot avoid such an attack, and some higher-level treatments are necessary.
For example, common techniques are using counters or time-stamps, but they require the time synchronization
among users.

If tags are unclonable, we can avoid such a replay attack. Actually, it is easy to see that UPSGs imply
EUF-CMA-secure MACs with quantum tags. (We have only to take ϕk(x) as the tag of the message x.)
However, the mere fact that tags are quantum does not automatically imply the unclonability of tags. Moreover,
it is not self-evident whether the quantum unpredictability implies unclonability. (Quantum pseudorandomness
implies unclonability [JLS18], but it is not clear whether a possibly weaker notion of quantum unpredictability
also implies unclonability.) Despite that, we show that MACs with unclonable tags can be constructed from
UPSGs.

Theorem 1.2. If UPSGs exist, then EUF-CMA-secure MACs with unclonable tags exist.

EUF-CMA-secure MACs with unclonable tags can be constructed from PRFSs [AQY22].7 Theorem 1.2
shows that EUF-CMA-secure MACs with unclonable tags can be constructed from a possibly weaker primitive,
UPSGs.8

Private-key quantum money. The definition of MACs with unclonable tags straightforwardly implies
that of private-key quantum money schemes in [JLS18]. We therefore have the following as a corollary of
Theorem 1.2. ( For the definition of private-key quantum money schemes and a proof of Corollary 1.3, see
Appendix B.)

Corollary 1.3. If UPSGs exist, then private-key quantum money schemes exist.

OWSGs and EFIs. IND-CPA-secure SKE implies one-time-secure SKE, and one-time-secure SKE implies
OWSGs and EFIs [MY22a]. We therefore have the following as a corollary of Theorem 1.1.

Corollary 1.4. If UPSGs exist, then OWSGs and EFIs exist.

However, thus obtained OWSGs are mixed OWSGs (i.e., the ones with mixed states outputs), because
ciphertexts of the SKE from UPSGs are mixed states. We can actually directly show that UPSGs imply pure
OWSGs:

Theorem 1.5. If UPSGs exist, then pure OWSGs exist.

Because pure OWSGs are broken if PP = BQP [CGG+23], we also have the following corollary:

Corollary 1.6. If UPSGs exist, then PP ̸= BQP.
6We will see that the unclonability of tags automatically implies EUF-CMA security, and therefore we have only to focus on the

unclonability of tags.
7[AQY22] only showed that PRFSs imply EUF-CMA-secure MACs with quantum tags, but we can easily show that tags are

actually unclonable because their tags are pseudorandom.
8Strictly speaking, there is a difference: MACs with unclonable tags that are realized with PRFSs satisfy the security against QPT

adversaries that query the oracle quantumly, but those realized with UPSGs satisfy only the security against the classical query.
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1.3 Technical Overview

IND-CPA-secure SKE from UPSGs. Let us first recall a construction of IND-CPA-secure SKE from UPFs
in classical cryptography. In the classical case, we first use the Goldreich-Levin [GL89] to construct PRFs
from UPFs: Let fk(·) be a UPF. Then gk,r(x) := fk(x) · r is a PRF with the key (k, r) [NR98]. With a PRF
Fk(·), an IND-CPA-secure SKE scheme can be constructed as follows: The secret key is the key of the PRF.
The ciphertext of a message m is ct = (r, Fk(r)⊕m) with a random bit string r.

However, a similar strategy does not work in the quantum case. In particular, we do not know how to
convert UPSGs to PRFSs: what is ϕk(x) · r!?

Our idea is to use the duality between the swapping and the distinction [AAS20, HMY23, KMNY23].
The duality intuitively means that distinguishing two orthogonal states |ψ⟩ and |ϕ⟩ is as hard as swapping
|ψ⟩ + |ϕ⟩ and |ψ⟩ − |ϕ⟩ with each other. Our ciphertext for a single bit message b ∈ {0, 1} is, then,
ctb := (x, y, |ctbx,y⟩), where |ctbx,y⟩ := |0∥x⟩|ϕk(0∥x)⟩+ (−1)b|1∥y⟩|ϕk(1∥y)⟩, and x and y are random bit
strings. Here, |ϕk(0∥x)⟩ and |ϕk(1∥y)⟩ are outputs of UPGSs on inputs 0∥x and 1∥y, respectively. The
secret key of our SKE scheme is the key k of the UPSGs. If a QPT adversary can distinguish ct0 and ct1,
then due to the duality, we can construct another QPT adversary that can convert |ϕk(0∥x)⟩ to |ϕk(1∥y)⟩.
However, it contradicts the unpredictability of the UPSGs.

This argument seems to work. There is, however, one subtle issue here. The adversary of the IND-CPA
security can query the encryption oracle, but in general we do not know whether the duality works if the
distinguisher queries to an oracle, because the swapping unitary is constructed from the distinguishing unitary
and its inverse.

We can solve the issue by observing that the oracle query by the adversary can actually be removed.
Because the oracle is an encryption algorithm for single-bit messages and because the adversary queries to
the oracle only polynomially many times, we can remove the oracle by giving sufficiently many outputs of the
oracle to the adversary in advance as an auxiliary input. The duality in [HMY23] takes into account of the
auxilially inputs to the adversary, and therefore now we can use the duality.

MACs with unclonable tags from UPSGs. It is straightforward to see that UPSGs imply EUF-CMA-secure
MACs with quantum tags, because we have only to take the output ϕk(x) of the UPSG on input x as the tag
corresponding to the message x. However, the mere fact that the tags are quantum does not automatically mean
that they are unclonable. PRFSs also imply EUF-CMA-secure MACs with quantum tags, and in that case, the
unclonability of tags is straightforward, because quantum pseudorandomness implies unclonability [JLS18].
However, in the case of UPSGs, it is not clear whether the quantum unpredictability is also sufficient for
unclonability.

Our idea to construct unclonable tags is to use the unclonability of random BB84 states. (In other words,
to use Wiesner money [Wie83].) Assume that a UPSG exists. Then, there exists an EUF-CMA-secure MAC.
(Actually, in the following argument, any EUF-CMA-secure MACs even with classical tags are fine.) Let
τm be a tag corresponding to a message m. Then, if we set τ ′m := τm ⊗ |x⟩⟨x|θ as a new tag, it becomes
unclonable. Here, x, θ are random bit strings, |x⟩θ :=

⊗
iH

θi |xi⟩, H is the Hadamard gate, and xi and θi
are ith bit of x and θ, respectively.

However, the verifier who wants to verify the tag cannot verify τ ′m, because the verifier does not know x
and θ. Let us therefore modify our tag as τ ′′m := (x, θ, τm ⊗ |x⟩⟨x|θ). Now, this can be verified by doing the
projection onto |x⟩θ, but the unclonability is no longer satisfied because x and θ are open.

To solve the issue, we introduce IND-CPA-secure SKE. Fortunately, as we show in this paper, IND-
CPA-secure SKE exists if UPSGs exist. Let us modify our tag as τ ′′′m := Enc(sk, (x, θ)) ⊗ τm ⊗ |x⟩⟨x|θ,
where Enc is the encryption algorithm of the SKE scheme. Now it is unclonable due to the security of
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the SKE scheme, but it is no longer authenticated: Enc(sk, (x, θ))⊗ τm ⊗ |x⟩⟨x|θ could be replaced with
Enc(sk, (x′, θ′))⊗ τm ⊗ |x′⟩⟨x′|θ′ with another x′ and θ′ chosen by the adversary, because encryption does
not necessarily mean authentication. The adversary who knows x′ and θ′ can of course make many copies of
the tag.

The problem is finally solved by considering the following tag: τ ′′′′m := Enc(sk, τm∥x∥θ ⊗ |x, θ⟩⟨x, θ|)⊗
|x⟩⟨x|θ, where τm∥x∥θ is the tag corresponding to the message m∥x∥θ.

1.4 Open Problems

To conclude Introduction, let us provide some interesting open problems.

1. Do UPSGs imply PRFSs? Or can we separate them?

2. Is there any application that is possible with PRFSs, but not with UPSGs? So far, all known applications
of PRFSs are achievable with UPSGs.

3. We show that EUF-CMA-secure MACs are possible with UPSGs. How about EUF-CMA-secure digital
signatures? Can we realize them with UPSGs? So far, we do not know how to realize them even with
PRUs.9

4. Do OWSGs imply UPSGs? It is neither known whether PRSGs imply PRFSs.

9Recently, [CM24] showed an oracle separation between PRUs and EUF-CMA-secure digital signatures with classical signatures.
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Figure 1: Relation among primitives. The red color arrows represent our results. A dotted arrow from
primitive A to primitive B represents that primitive A with pure outputs implies primitive B.
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2 Preliminaries

2.1 Basic Notations

We use the standard notations of quantum computing and cryptography. For a bit string x, xi denotes the ith
bit of x. For two bit strings x and y, x∥y means the concatenation of them. We use λ as the security parameter.
[n] means the set {1, 2, ..., n}. For any set S, x← S means that an element x is sampled uniformly at random
from the set S. We write negl to mean a negligible function and poly to mean a polynomial. PPT stands for
(classical) probabilistic polynomial-time and QPT stands for quantum polynomial-time. For an algorithm A,
y ← A(x) means that the algorithm A outputs y on input x.

For simplicity, we sometimes omit the normalization factor of a quantum state. (For example, we write
1√
2(|x0⟩+ |x1⟩) just as |x0⟩+ |x1⟩.) I := |0⟩⟨0|+ |1⟩⟨1| is the two-dimensional identity operator. For the

notational simplicity, we sometimes write I⊗n just as I when the dimension is clear from the context. We
use X , Y and Z as Pauli operators. For a bit string x, Xx :=

⊗
iX

xi . We use Y y and Zz similarly. For
two density matrices ρ and σ, the trace distance is defined as TD(ρ, σ) := 1

2∥ρ− σ∥1 = 1
2Tr

[√
(ρ− σ)2

]
,

where ∥ · ∥1 is the trace norm.

2.2 Lemmas

We use the following lemma by Hhan, Morimae and Yamakawa [HMY23] (based on [AAS20]).

Lemma 2.1 (Duality Between Swapping and Distinction [HMY23], Theorem 5.1). Let |ψ⟩ and |ϕ⟩
be orthogonal n-qubit states. Assume that a QPT algorithm A with some m-qubit advice state |τ⟩ can
distinguish |ψ⟩ and |ϕ⟩ with advantage ∆. Then, there exists a polynomial-time implementable unitary V
over (n+m)-qubit states such that

| ⟨α| ⟨τ |V |β⟩ |τ⟩+ ⟨β| ⟨τ |V |α⟩ |τ⟩ |
2 = ∆, (2)

where |α⟩ := |ψ⟩+|ϕ⟩√
2 and |β⟩ := |ψ⟩−|ϕ⟩√

2 .

We also use the security of Wiesner money [Wie83, MVW12].

Lemma 2.2 (Security of Wiesner Money [MVW12]). Let us consider the following security game:

1. The challenger C chooses x, θ ← {0, 1}λ and sends |x⟩θ to the adversary A. Here, |x⟩θ :=⊗
i∈[λ]H

θi |xi⟩.

2. A sends a 2λ-qubit state ρ to C.

3. C projects ρ onto |x⟩⊗2
θ . If the projection is successful, C outputs ⊤. Otherwise, C outputs ⊥.

For any unbounded adversary A, Pr[⊤ ← C] ≤ negl(λ).

2.3 Cryptographic Primitives

The following is the standard definition of IND-CPA-secure SKE schemes for classical messages. However,
in this paper, we consider general cases where ciphertexts can be quantum states.
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Definition 2.3 (IND-CPA-Secure SKE for Classical Messages). An IND-CPA-secure secret-key encryption
(SKE) scheme for classical messages is a set of algorithms (KeyGen,Enc,Dec) such that

• KeyGen(1λ)→ sk : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
secret key sk.

• Enc(sk,m) → ct : It is a QPT algorithm that, on input sk and a classical bit string (plaintext) m,
outputs a ciphertext ct, which can be a quantum state in general.

• Dec(sk, ct)→ m : It is a QPT algorithm that, on input sk and ct, outputs m.
We require the following two properties.

Correctness: For any bit string m,

Pr[m← Dec(sk, ct) : sk← KeyGen(1λ), ct← Enc(sk,m)] ≥ 1− negl(λ). (3)

IND-CPA security (against classical query): For any QPT adversary A,

Pr

b = b′ :

sk← KeyGen(1λ)
(m0,m1, st)← AEnc(sk,·)

b← {0, 1}
ct← Enc(sk,mb)

b′ ← AEnc(sk,·)(st, ct)

 ≤
1
2 + negl(λ), (4)

where A can only classically query Enc(sk, ·).
We also need IND-CPA-secure SKE for quantum messages.

Definition 2.4 (IND-CPA-Secure SKE for Quantum Messages [BJ15, ABF+16]). An IND-CPA-secure
secret-key encryption (SKE) scheme for quantum messages is a set of algorithms (KeyGen,Enc,Dec) such
that

• KeyGen(1λ)→ sk : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
secret key sk.

• Enc(sk, ρ) → ct : It is a QPT algorithm that, on input sk and a quantum state ρ on the register M,
outputs a quantum state ct on the register C.

• Dec(sk, ct)→ ρ : It is a QPT algorithm that, on input sk and a state ct on the register C, outputs a
state ρ on the register M.

We require the following two properties.

Correctness:
E

sk←KeyGen(1λ)
∥Dec(sk, ·) ◦ Enc(sk, ·)− id∥⋄ ≤ negl(λ), (5)

where id is the identity map, Enc(sk, ·) is a CPTP map10 that runs the encryption algorithm Enc with
sk on the plaintext state, Dec(sk, ·) is a CPTP map that runs the decryption algorithm Dec with sk on
the ciphertext state, and Dec(sk, ·) ◦ Enc(sk, ·) is the composition of Dec(sk, ·) and Enc(sk, ·). Here
∥F − E∥⋄ := maxρ ∥(F ⊗ id)(ρ)− (E ⊗ id)(ρ)∥1 is the diamond norm between two CPTP maps F and E
acting on n qubits [Wat18], where the max is taken over all 2n-qubit states ρ.

10In this paper, we sometimes use the same notation Enc for an algorithm and a CPTP map, but we believe there is no confusion.
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IND-CPA security: Let us consider the following security game:

1. The challenger C runs sk← KeyGen(1λ).

2. The adversary A can query the oracle Enc(sk, ·). (This means that A can apply the CPTP map
Enc(sk, ·) on the register M of any A’s state ρM,Z over the registers Z and M, and get another state
ρ′Z,C over the registers Z and C.)

3. A sends two registers M0 and M1 to C.

4. C chooses b← {0, 1} and applies the CPTP map Enc(sk, ·) on Mb. C then sends the output to A.

5. A can query the oracle Enc(sk, ·).

6. A sends b′ ∈ {0, 1} to C.

7. If b = b′, C outputs ⊤. Otherwise, C outputs ⊥.

For any QPT adversary A, Pr[⊤ ← C] ≤ 1
2 + negl(λ).

The following lemma is essentially shown in [BJ15]. We give its proof in Appendix A.

Lemma 2.5 (IND-CPA security for classical messages implies that for quantum messages [BJ15]). If
IND-CPA-secure SKE schemes for classical messages that are secure against QPT adversaries that query the
encryption oracle classically exist, then IND-CPA-secure SKE schemes for quantum messages exist.

The following lemma can be shown with the standard hybrid argument [BJ15].

Lemma 2.6 (IND-CPA-multi security [BJ15]). Let (KeyGen,Enc,Dec) be an IND-CPA-secure SKE scheme
for quantum messages. Let t be a polynomial. Let us consider the security game that is the same as that of
Definition 2.4 except for the following two modifications.

• In step 3, A sends two registers M′
0 and M′

1 to C. Here, M′
0 consists of t registers {Mi

0}i∈[t], and M′
1

consists of t registers {Mi
1}i∈[t]. For each i ∈ [t] and b ∈ {0, 1}, |Mi

b| = |Mb|, where |A| is the size
(i.e., the number of qubits) of the register A.

• In step 4, C chooses b← {0, 1} and applies the CPTP map Enc(sk, ·) on each Mi
b for i ∈ [t]. C then

sends the all outputs to A.

Then, in this modified game, Pr[⊤ ← C] ≤ 1
2 + negl(λ) for any QPT adversary A and any polynomial t.

Definition 2.7 (One-way States Generators (OWSGs) [MY22a, MY22b]). A one-way states generator
(OWSG) is a set of algorithms (KeyGen,StateGen,Ver) such that

• KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
key k.

• StateGen(k)→ ϕk : It is a QPT algorithm that, on input k, outputs a quantum state ϕk.

• Ver(k′, ϕk)→ ⊤/⊥ : It is a QPT algorithm that, on input ϕk and a bit string k′, outputs ⊤ or ⊥.

We require the following correctness and security.
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Correctness:

Pr[⊤ ← Ver(k, ϕk) : k ← KeyGen(1λ), ϕk ← StateGen(k)] ≥ 1− negl(λ). (6)

Security: For any QPT adversary A and any polynomial t,

Pr[⊤ ← Ver(k′, ϕk) : k ← KeyGen(1λ), ϕ⊗tk ← StateGen(k)⊗t, k′ ← A(1λ, ϕ⊗tk )] ≤ negl(λ). (7)

Here, ϕ⊗tk ← StateGen(k)⊗t means that the StateGen algorithm is run t times.

3 Unpredictable State Generators

3.1 Definition

In this subsection, we define UPSGs. The syntax is given as follows.

Definition 3.1 (Unpredictable States Generators (UPSGs)). An unpredictable states generator is a set
(KeyGen,Eval) of QPT algorithms such that

• KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
key k.

• Eval(k, x)→ (x, ϕk(x)) : It is a QPT algorithm that, on input k and a bit string x, outputs x and a
quantum state ϕk(x).

In general, ϕk(x) could be mixed states, but in this paper, we restrict them to pure states.
The security, which we call unpredictability, roughly means that no QPT adversary (who can quantumly

query to Eval(k, ·)) can output (x∗, ρ) such that x∗ was not queried and ρ is close to |ϕk(x∗)⟩. In order to
formally define it, we have to clarify what we mean by “quantumly query” and “not queried before”.

Quantum query. We assume that |ϕk(x)⟩ ← Eval(k, x) is the following QPT algorithm: on input k and
x, it applies a unitary Uk on |x⟩X |0...0⟩Y,Z to generate |x⟩X |ϕk(x)⟩Y |junkk⟩Z and outputs the X and Y
registers. Note that it is not the most general case. First, as we have mentioned, we assume that the output
|ϕk(x)⟩ is pure. Second, in general, the junk state |junkk⟩ could depend on x, but we here assume that it
depends only k. These two restrictions seem to be necessary to well define the quantum query.

With such Eval, the quantum query to the oracle Eval(k, ·) means the following:

1. A state
∑
x αx |x⟩X |ξx⟩ is input to the oracle, where {αx}x are any complex coefficients and {|ξx⟩}x

are any states.

2. The oracle adds the ancilla state |0...0⟩Y,Z and appliesUk on the registers X,Y,Z of
∑
x αx |x⟩X |0...0⟩Y,Z |ξx⟩

to generate
∑
x αx |x⟩X |ϕk(x)⟩Y |junkk⟩Z |ξx⟩.

3. The oracle removes the junk register Z and outputs the state
∑
x αx |x⟩X |ϕk(x)⟩Y |ξx⟩.

12



Not queried. We define the word “not queried” as follows. Assume that A queries the oracle q times. For
each i ∈ [q], let |ψi⟩ be the entire A’s state immediately before its ith query to the oracle. (Without loss of
generality, we can assume that A postpones all measurements to the last step, and then A’s entire state is
always pure.) We say that x∗ is not queried if ⟨ψi|(|x∗⟩⟨x∗|X ⊗ I)|ψi⟩ = 0 for all i ∈ [q]. Here, for each
i ∈ [q], |ψi⟩ =

∑
x cx|x⟩X ⊗ |ηx⟩.

Now we define the unpredictability.

Definition 3.2 (Unpredictability). Let us consider the following security game:

1. The challenger C runs k ← KeyGen(1λ).

2. The adversary AEval(k,·)(1λ) outputs a bit string x∗ and a quantum state ρ, and sends them to C. Here,
A can make quantum queries to Eval(k, ·). x∗ should not be queried by A.

3. C projects ρ onto |ϕk(x∗)⟩. If the projection is successful, C outputs ⊤. Otherwise, C outputs ⊥.

For any QPT adversary A, Pr[⊤ ← C] ≤ negl(λ).

Remark 3.3. Note that the projection of ρ onto |ϕk(x∗)⟩ can be done as follows:

1. Prepare |x∗⟩⟨x∗| ⊗ ρ⊗ |junkk⟩⟨junkk|.

2. Apply U †k on |x∗⟩ ⟨x∗| ⊗ ρ⊗ |junkk⟩ ⟨junkk|.

3. Measure all qubits in the computational basis. If the result is x∗∥0...0, the projection is successful.
Otherwise, the projection is failed.

Remark 3.4. It is easy to see that UPSGs with O(log λ)-qubit output do not exist.11

Remark 3.5. In [BZ13], they define a security of digital signatures against quantum adversaries. Their security
definition is as follows: any QPT quantum adversary, who queries the signing oracle t times, cannot output
t+ 1 valid message-signature pairs. We could define a quantum version of unpredictability based on their
security definition, but exploring this possibility is beyond the scope of the present paper. At least, their
definition seems to be incomparable to Definition 3.2. In particular, we do not know how to construct
IND-CPA-secure SKE from their definition, because we do not know how to use the duality in that case.

3.2 Relation to PRFSs

In this section, we recall the definition of PRFSs and construct UPSGs from PRFSs.

Definition 3.6 (Pseudorandom Function-Like States (PRFSs) [AQY22, AGQY22]). A pseudorandom
function-like state (PRFS) (generator) is a set of algorithms (KeyGen,Eval) such that

• KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
secret key k.

• Eval(k, x) → |ϕk(x)⟩ : It is a QPT algorithm that on input k and a bit string x, outputs a quantum
state |ϕk(x)⟩.

11The adversary has only to output 0...0 and maximally-mixed state.
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We require the following security. For any QPT adversary A,

|Pr[1← AEval(k,·)(1λ)]− Pr[1← AOHaar (1λ)]| ≤ negl(λ). (8)

Here,AEval(k,·) means thatA can quantumly query the oracle Eval(k, ·) in the sense of Section 3.112. AOHaar

means that A can quantumly query the oracle OHaar in the following sense.

1. A state
∑
x αx |x⟩X |ξx⟩ is input to the oracle, where {αx}x are any complex coefficients and {|ξx⟩}x

are any states.

2. The oracle returns
∑
x αx |x⟩X |ψx⟩Y |ξx⟩, where |ψx⟩ is a Haar random state.

Theorem 3.7. If PRFSs exist then UPSGs exist.

Proof of Theorem 3.7. Let (KeyGen,Eval) be a PRFS. We show that it is a UPSG. Assume that it does not
satisfy the unpredictability. Then, there exist a polynomial p and a QPT adversary A that can quantumly
query Eval(k, ·) such that∑

k

Pr[k ← KeyGen(1λ)]
∑
x∗
⟨x∗|⟨ϕk(x∗)|AEval(k,·)(1λ)|x∗⟩|ϕk(x∗)⟩ ≥

1
p(λ) (9)

for infinitely many λ ∈ N. Here, A(·)(1λ) denotes the state of A(·) before the measurement. Then, the
following QPT adversary B breaks the security of PRFS.

1. The challenger C′ of the PRFS chooses b← {0, 1}.

2. Run A on input 1λ. WhenA queries the oracle, B simulates it by querying B’s oracle (that is Eval(k, ·)
if b = 0 and OHaar if b = 1).

3. B measures the first register of A(·)(1λ) to get x∗. Query x∗ to B’s oracle to get |ξ⟩, which is
|ξ⟩ = |ϕk(x∗)⟩ if b = 0 and a Haar random state |ψx∗⟩ if b = 1.

4. B does the swap test between the second register of A(·)(1λ) and |ξ⟩. If the swap test succeeds, B
outputs 1. Otherwise, B outputs 0.

If b = 0,

Pr[1← B] = 1
2 + 1

2
∑
k

Pr[k ← KeyGen(1λ)]
∑
x∗
⟨x∗|⟨ϕk(x∗)|AEval(k,·)(1λ)|x∗⟩|ϕk(x∗)⟩ (10)

≥ 1
2 + 1

2p(λ) (11)

for infinitely many λ. Here we have used Equation (9). On the other hand, if b = 1,

Pr[1← B] = 1
2 + 1

2
∑
k

Pr[k ← KeyGen(1λ)]
∑
x∗

E
|ψ⟩←µ

⟨x∗|⟨ψ|AOHaar (1λ)|x∗⟩|ψ⟩ (12)

≤ 1
2 + negl(λ), (13)

where µ denotes the Haar measure and we have used E|ψ⟩←µ ⟨ψ|σ |ψ⟩ ≤ negl(λ) for any state σ. Therefore,
B breaks the security of the PRFS.

12In [AQY22, AGQY22], they do not explicitly consider the junk state |junkk⟩. Here, we assume that |junkk⟩ is independent of x
similarly to the case of UPSGs.
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3.3 Pure OWSGs from UPSGs

In this section, we show that UPSGs imply OWSGs with pure output states.

Theorem 3.8. If UPSGs exist, then pure OWSGs exist.

Proof. Let (UPSG.KeyGen,UPSG.Eval) be a UPSG. From it, we construct a pure OWSG (KeyGen, StateGen)
as follows.

• KeyGen(1λ) → k′ : Run k ← UPSG.KeyGen(1λ). Choose xi ← {0, 1}ℓ for i ∈ [n]. Here,
n := |k|+ λ. Output k′ := (k, x1, ..., xn).

• StateGen(k′) → ψk′ : Parse k′ = (k, x1, ..., xn). Run ϕk(xi) ← UPSG.Eval(k, xi) for i ∈ [n].
Output ψk′ := (

⊗n
i=1 ϕk(xi))⊗ (

⊗n
i=1 |xi⟩).

For the sake of contradiction, assume that this construction is not secure. This means that there exist
polynomials p and t, and a QPT adversary A such that

1
p(λ) ≤

∑
k

Pr[k] 1
2nℓ

∑
x1,...,xn

∑
s,x′

1,...,x
′
n

Pr′[s, x′1, ..., x′n|k, x1, ..., xn]
∏
i∈[n]
|⟨ϕk(xi)|ϕs(x′i)⟩|2δxi,x′

i
(14)

=
∑
k

Pr[k] 1
2nℓ

∑
x1,...,xn

∑
s

Pr′[s, x1, ..., xn|k, x1, ..., xn]
∏
i∈[n]
|⟨ϕk(xi)|ϕs(xi)⟩|2 (15)

for infinitely many λ. Here, Pr[k] := Pr[k ← UPSG.KeyGen(1λ)] and

Pr′[s, x′1, ..., x′n|k, x1, ..., xn] := Pr[(s, x′1, ..., x′n)← A(1λ, ((
⊗
i

ϕk(xi))⊗ (
⊗
i

|xi⟩))⊗t)]. (16)

Define

K :=

k : 1
2nℓ

∑
x1,...,xn

∑
s

Pr′[s, x1, ..., xn|k, x1, ..., xn]
∏
i∈[n]
|⟨ϕk(xi)|ϕs(xi)⟩|2 ≥

1
2p(λ)

 . (17)

Then, from the standard average argument,

∑
k∈K

Pr[k] ≥ 1
2p(λ) (18)

for infinitely many λ. Define

Xk :=

(x1, ..., xn) :
∑
s

Pr′[s, x1, ..., xn|k, x1, ..., xn]
∏
i∈[n]
|⟨ϕk(xi)|ϕs(xi)⟩|2 ≥

1
4p(λ)

 . (19)

Then, from the standard average argument, for any k ∈ K,

1
2nℓ

∑
(x1,..,xn)∈Xk

≥ 1
4p(λ) (20)
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for infinitely many λ. Define

Nk :=
{
s : Pr

x←{0,1}ℓ

[
|⟨ϕs(x)|ϕk(x)⟩|2 ≥ 1

8p(λ)

]
≥ 1

2

}
. (21)

For any k and s /∈ Nk, we have

Pr
x1,...,xn←{0,1}ℓ

∏
i∈[n]
|⟨ϕs(xi)|ϕk(xi)⟩|2 ≥

1
8p(λ)

 ≤ 2−n. (22)

This is because to satisfy
∏
i |⟨ϕs(xi)|ϕk(xi)⟩|2 ≥ 1/8p(λ), we must have |⟨ϕs(xi)|ϕk(xi)⟩|2 ≥ 1/8p(λ) for

all i, and the probability that it holds is at most 1/2 for each i by the assumption that s /∈ Nk. By the union
bound, for any k,

Pr
x1,...,xn←{0,1}ℓ

∀s ∈ {0, 1}|k| \Nk,
∏
i∈[n]
|⟨ϕs(xi)|ϕk(xi)⟩|2 ≤

1
8p(λ)

 (23)

≥ 1− (2|k| − |Nk|) · 2−n (24)

≥ 1− 2−n+|k|. (25)

Define

Yk :=

(x1, ..., xn) : ∀s ∈ {0, 1}|k| \Nk,
∏
i∈[n]
|⟨ϕs(xi)|ϕk(xi)⟩|2 ≤

1
8p(λ)

 . (26)

Then, Equation (25) means

1
2nℓ

∑
(x1,...,xn)∈Yk

≥ 1− 2−n+|k| (27)

for all k. From the union bound, Equation (20), and Equation (27), for any k ∈ K,

1
2nℓ

∑
(x1,...,xn)∈Xk∩Yk

≥ 1
4p(λ) − 2−n+|k| (28)

for infinitely many λ. Then for any k ∈ K and any (x1, ..., xn) ∈ Xk ∩ Yk,

1
4p(λ) ≤

∑
s∈Nk

Pr′[s, x1, ..., xn|k, x1, ..., xn]
∏
i∈[n]
|⟨ϕk(xi)|ϕs(xi)⟩|2 (29)

+
∑
s ̸∈Nk

Pr′[s, x1, ..., xn|k, x1, ..., xn]
∏
i∈[n]
|⟨ϕk(xi)|ϕs(xi)⟩|2 (30)

≤
∑
s∈Nk

Pr′[s, x1, ..., xn|k, x1, ..., xn]
∏
i∈[n]
|⟨ϕk(xi)|ϕs(xi)⟩|2 + 1

8p(λ) (31)

≤
∑
s∈Nk

Pr′[s, x1, ..., xn|k, x1, ..., xn] + 1
8p(λ) , (32)
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which gives

∑
s∈Nk

Pr′[s, x1, ..., xn|k, x1, ..., xn] ≥ 1
8p(λ) (33)

for any k ∈ K and any (x1, ..., xn) ∈ Xk ∩ Yk.
From the A, we construct a QPT adversary B that breaks the security of the UPSG as follows.

1. Sample x1, ..., xn ← {0, 1}ℓ and x∗ ← {0, 1}ℓ.

2. For each i ∈ [n], query xi to the oracle UPSG.Eval(k, ·) t times to get ϕk(xi)⊗t.

3. Run (s, x′1, ..., x′n) ← A(1λ, (
⊗n

i=1 ϕk(xi)) ⊗ (
⊗n

i=1 |xi⟩))⊗t). If x′i ̸= xi for at least one i ∈ [n],
abort.

4. Query x∗ to the oracle UPSG.Eval(k, ·) to get ϕk(x∗). Output (x∗, ϕk(x∗)).

The probability that B wins is

1
2ℓ
∑
x∗

∑
k

Pr[k] 1
2nℓ

∑
x1,...,xn

∑
s

Pr′[s, x1, ..., xn|k, x1, ..., xn]|⟨ϕk(x∗)|ϕs(x∗)⟩|2 (34)

≥
∑
k∈K

Pr[k] 1
2nℓ

∑
(x1,...,xn)∈Xk∩Yk

∑
s∈Nk

Pr′[s, x1, ..., xn|k, x1, ..., xn] 1
2ℓ
∑
x∗
|⟨ϕk(x∗)|ϕs(x∗)⟩|2 (35)

≥ 1
2p(λ)

( 1
4p(λ) − 2−n+|k|

) 1
8p(λ)

1
8p(λ)

1
2 ≥

1
poly(λ) (36)

for infinitely many λ, which means that B breaks the security of the OWSGs. Here, we have used the definition
of Nk, Equation (33), Equation (28), and Equation (18).

4 IND-CPA-Secure SKE from UPSGs

In this section, we construct IND-CPA secure SKE from UPSGs.

Theorem 4.1. If UPSGs exist, then IND-CPA-secure SKE schemes for classical messages secure against
classically querying QPT adversaries exist.

Remark 4.2. From Lemma 2.5, IND-CPA-secure SKE schemes for classical messages secure against classically
querying QPT adversaries imply IND-CPA-secure SKE schemes for quantum messages. Therefore, the above
theorem also shows the existence of such SKE schemes if UPSGs exist.

Proof of Theorem 4.1. It suffices to construct an IND-CPA-secure SKE scheme for single-bit messages
because, from it, we can construct an IND-CPA-secure SKE scheme for multi-bit messages by parallel
repetition.13 Let (UPSG.KeyGen,UPSG.Eval) be a UPSG. As is explained in Section 3.1, we assume that
UPSG.Eval is the following algorithm: on input k and x ∈ {0, 1}ℓ, it applies a unitary Uk on |x⟩X |0...0⟩Y,Z
to generate |x⟩X |ϕk(x)⟩Y |junkk⟩Z, and outputs the registers X and Y. From (UPSG.KeyGen,UPSG.Eval),
we construct an IND-CPA-secure SKE scheme (KeyGen,Enc,Dec) for single-bit messages as follows.

13See [KL07].
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• KeyGen(1λ)→ sk : Run k ← UPSG.KeyGen(1λ) and output sk := k.

• Enc(sk, b)→ ct : Parse sk = k. Choose x, y ← {0, 1}ℓ. Generate

|ctbx,y⟩X,Y := |0∥x⟩X |ϕk(0∥x)⟩Y + (−1)b |1∥y⟩X |ϕk(1∥y)⟩Y√
2

(37)

and output ct := (x, y, |ctbx,y⟩). Here, |ctbx,y⟩ is generated as follows:

1. Prepare |0∥x⟩X |0...0⟩Y,Z + (−1)b |1∥y⟩X |0...0⟩Y,Z.
2. Apply Uk on the registers X, Y, and Z to generate

|0∥x⟩X |ϕk(0∥x)⟩Y |junkk⟩Z + (−1)b |1∥y⟩X |ϕk(1∥y)⟩Y |junkk⟩Z . (38)

3. Remove the register Z.

• Dec(sk, ct)→ b′ : Parse sk = k and ct = (x, y, ρX,Y). Run the following algorithm.

1. Prepare ρX,Y ⊗ |junkk⟩ ⟨junkk|Z.

2. Apply U †k on ρX,Y ⊗ |junkk⟩ ⟨junkk|Z.
3. Apply |0⟩ ⟨0| ⊗Xx + |1⟩ ⟨1| ⊗Xy on the register X.
4. Measure the first qubit of the register X in the Hadamard basis to get b′ ∈ {0, 1}. Output b′.

Correctness is clear. To show the security, we define Hybrid 0, which is the original security game of the
IND-CPA-secure SKE scheme between the challenger C and the QPT adversary A, as follows.

Hybrid 0

1. The challenger C runs k ← UPSG.KeyGen(1λ).

2. C chooses b← {0, 1} and x, y ← {0, 1}ℓ. C generates |ctbx,y⟩ by running UPSG.Eval(k, ·) coherently.
Here,

|ctbx,y⟩ = |0∥x⟩ |ϕk(0∥x)⟩+ (−1)b |1∥y⟩ |ϕk(1∥y)⟩√
2

. (39)

3. C sends ct := (x, y, |ctbx,y⟩) to the adversary A.

4. A can classically query to the oracle Ok, where Ok works as follows:

(a) On input c ∈ {0, 1}, it chooses x′, y′ ← {0, 1}ℓ and generates |ctcx′,y′⟩.
(b) It outputs (x′, y′, |ctcx′,y′⟩).

A sends b′ ∈ {0, 1} to C.

5. If b = b′, C outputs ⊤. Otherwise, C outputs ⊥.
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For the sake of contradiction, assume that our construction is not IND-CPA secure. This means that there
exist a polynomial p and a QPT adversary A such that

Pr[⊤ ← Hybrid 0] ≥ 1
2 + 1

p(λ) (40)

for infinitely-many λ ∈ N.
Our goal is to construct a QPT adversary B that breaks the unpredictability of the UPSG. For that goal,

we use the duality between swapping and distinction [HMY23]. However, we cannot directly use it here,
because our A queries to the encryption oracle Ok, but the distinguisher in Lemma 2.1 does not access any
oracle. To solve the issue, we have to remove the oracle Ok from Hybrid 0. Fortunately, Ok is an encryption
oracle for single-bit messages, and A makes classical queries only polynomial times. Therefore, we can give
A enough number of outputs of Ok in advance as auxiliary inputs, and A can use these states instead of the
outputs of Ok. In this way, we can remove the oracle Ok. We formalize this as Hybrid 1. It is clear that
Pr[⊤ ← Hybrid 1] = Pr[⊤ ← Hybrid 0].

Hybrid 1

1. The challenger C runs k ← UPSG.KeyGen(1λ).

2. C chooses b← {0, 1} and x, y ← {0, 1}ℓ. C generates |ctbx,y⟩ by running UPSG.Eval(k, ·) coherently.
Here,

|ctbx,y⟩ = |0∥x⟩ |ϕk(0∥x)⟩+ (−1)b |1∥y⟩ |ϕk(1∥y)⟩√
2

. (41)

3. C sends ct := (x, y, |ctbx,y⟩) to the adversary A.

4. A can classically query to the oracle Ok, where Ok works as follows:

(a) On input c ∈ {0, 1}, it chooses x′, y′ ← {0, 1}ℓ and generates |ctcx′,y′⟩.
(b) It outputs (x′, y′, |ctcx′,y′⟩).

A receives |τ⟩ :=
⊗

i∈[t],c∈{0,1} |xic⟩ |yic⟩ |ctcxi
c,y

i
c
⟩ as an auxiliary input, where t is the maximum

number of A’s queries to Ok in the step 4 of Hybrid 0, and xic, yic ← {0, 1}ℓ for each i ∈ [t] and
c ∈ {0, 1}. When A queries ci ∈ {0, 1} to Ok in its ith query, it does not query to Ok. Instead, it uses
|xic⟩ |yic⟩ |ctcxi

c,y
i
c
⟩ as the output of Ok. A sends b′ ∈ {0, 1} to C.

5. If b = b′, C outputs ⊤. Otherwise, C outputs ⊥.

Let w := {xic, yic}i∈[t],c∈{0,1}, where xic ∈ {0, 1}ℓ and yic ∈ {0, 1}ℓ for each i ∈ [t] and c ∈ {0, 1}. Let
Pr[⊤ ← Hybrid 1|k, x, y,w] be the conditional probability that C outputs ⊤ given k ← UPSG.KeyGen(1λ)
and x, y,w are chosen in Hybrid 1. We define a “good” set of (k, x, y,w) as follows:

G :=
{

(k, x, y,w) : Pr[⊤ ← Hybrid 1|k, x, y,w] ≥ 1
2 + 1

2p(λ) ∧ x /∈ w ∧ y /∈ w ∧ x ̸= y

}
. (42)

Let Pr[k, x, y,w] be the probability that k, x, y and w are chosen in Hybrid 1. Then, we can show the
following lemma by the standard average argument. We give its proof later.
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Lemma 4.3.
∑

(k,x,y,w)∈G Pr[k, x, y,w] ≥ 1
4p(λ) for infinitely many λ ∈ N.

Let us fix (k, x, y,w). Moreover, assume that (k, x, y,w) ∈ G. Then from Equation (42), A of Hybrid 1
can distinguish |ct0

x,y⟩ and |ct1
x,y⟩ with an advantage greater than 1

2p using the auxiliary input |τ⟩. By using
Lemma 2.1, we can construct a polynomial-time implementable unitary V 14 such that

1
2p(λ) ≤

| ⟨0∥x| ⟨ϕk(0∥x)| ⟨τ |V |1∥y⟩ |ϕk(1∥y)⟩ |τ⟩+ ⟨1∥y| ⟨ϕk(1∥y)| ⟨τ |V |0∥x⟩ |ϕk(0∥x)⟩ |τ⟩ |
2 (43)

≤max{|⟨0∥x| ⟨ϕk(0∥x)| ⟨τ |V |1∥y⟩ |ϕk(1∥y)⟩ |τ⟩| , |⟨1∥y| ⟨ϕk(1∥y)| ⟨τ |V |0∥x⟩ |ϕk(0∥x)⟩ |τ⟩|}
(44)

≤max{∥ ⟨ϕk(0∥x)|Y (V |1∥y⟩X |ϕk(1∥y)⟩Y |τ⟩Z) ∥, (45)
∥⟨ϕk(1∥y)|Y (V |0∥x⟩X |ϕk(0∥x)⟩Y |τ⟩Z)∥}. (46)

From this V , we construct the QPT adversary B that breaks the security of the UPSG as follows.

Adversary B

1. Choose b← {0, 1}.

2. Choose x, y ← {0, 1}ℓ. If x = y, output⊥ and abort. Choose xic ← {0, 1}ℓ and yic ← {0, 1}ℓ for each
i ∈ [t] and c ∈ {0, 1}. Set w := {xic, yic}i∈[t],c∈{0,1}. If x ∈ w or y ∈ w, output ⊥ and abort.

3. If b = 0, get |0∥x⟩ |ϕk(0∥x)⟩ by querying 0∥x to UPSG.Eval(k, ·). If b = 1, get |1∥y⟩ |ϕk(1∥y)⟩ by
querying 1∥y to UPSG.Eval(k, ·).

4. For each i ∈ [t] and c ∈ {0, 1}, generate |ctcxi
c,y

i
c
⟩ by making the coherent query |0∥xic⟩+ (−1)c |1∥yic⟩

to UPSG.Eval(k, ·). Set |τ⟩ :=
⊗

i∈[t],c∈{0,1} |xic⟩ |yic⟩ |ctcxi
c,y

i
c
⟩ .

5. If b = 0, apply the unitary V on |0∥x⟩ |ϕk(0∥x)⟩ |τ⟩ and output the second register and 1∥y. If b = 1,
apply the unitary U on |1∥y⟩ |ϕk(1∥y)⟩ |τ⟩ and output the second register and 0∥x.

Since B does not abort if (k, x, y,w) ∈ G, the probability that the adversary B wins is

Pr[B wins] ≥
∑

(k,x,y,w)∈G

Pr[k, x, y,w]
2

(
∥⟨ϕk(0∥x)|Y (V |1∥y⟩X |ϕk(1∥y)⟩Y |τ⟩Z)∥2 (47)

+ ∥⟨ϕk(1∥y)|Y (V |0∥x⟩X |ϕk(0∥x)⟩Y |τ⟩Z)∥2
)

(48)

≥
∑

(k,x,y,w)∈G

Pr[k, x, y,w]
2 max

{
∥⟨ϕk(0∥x)|Y (V |1∥y⟩X |ϕk(1∥y)⟩Y |τ⟩Z)∥2 (49)

, ∥⟨ϕk(1∥y)|Y (V |0∥x⟩X |ϕk(0∥x)⟩Y |τ⟩Z)∥2
}

(50)

≥
∑

(k,x,y,w)∈G

Pr[k, x, y,w]
2

1
4p(λ)2 ≥

1
32p(λ)3 (51)

for infinitely many λ, where we have used Equation (46) in Equation (50), and Lemma 4.3 in Equation (51).
This shows that B breaks the security of the UPSG. Hence we have shown the theorem.

14Note that this V is independent of (k, x, y,w) since, in the proof of Lemma 2.1, we use A only as a black-box. For details, see
[HMY23].
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Finally, we give a proof of Lemma 4.3

Proof of Lemma 4.3. We define

T :=
{

(k, x, y,w) : Pr[⊤ ← Hybrid 1|k, x, y,w] ≥ 1
2 + 1

2p(λ)

}
. (52)

From Pr[⊤ ← Hybrid 1] = Pr[⊤ ← Hybrid 0] ≥ 1
2 + 1

p(λ) for infinitely many λ, and the definition of T ,

1
2 + 1

p(λ) ≤Pr[⊤ ← Hybrid 1] (53)

=
∑

(k,x,y,w)∈T
Pr[k, x, y,w] Pr[⊤ ← Hybrid 1|k, x, y,w] (54)

+
∑

(k,x,y,w)/∈T
Pr[k, x, y,w] Pr[⊤ ← Hybrid 1|k, x, y,w] (55)

<
∑

(k,x,y,w)∈T
Pr[k, x, y,w] +

(1
2 + 1

2p(λ)

) ∑
(k,x,y,w)/∈T

Pr[k, x, y,w] (56)

≤
∑

(k,x,y,w)∈T
Pr[k, x, y,w] + 1

2 + 1
2p(λ) (57)

for infinitely many λ, which means

∑
(k,x,y,w)∈T

Pr[k, x, y,w] ≥ 1
2p(λ) (58)

for infinitely many λ. Thus,∑
(k,x,y,w)∈G

Pr[k, x, y,w] =1−
∑

(k,x,y,w)/∈G
Pr[k, x, y,w] (59)

=1−
∑

(k,x,y,w)/∈T∨x∈w∨y∈w∨x=y
Pr[k, x, y,w] (60)

≥1−

 ∑
(k,x,y,w)/∈T

Pr[k, x, y,w] +
∑

x∈w∨y∈w∨x=y
Pr[k, x, y,w]

 (61)

≥ 1
2p(λ) − negl(λ) ≥ 1

4p(λ) (62)

for infinitely many λ, where the first inequality follows from the union bound and in the second inequality we
have used Equation (58) and

∑
x∈w∨y∈w∨x=y Pr[k, x, y,w] = negl(λ) since x, y and each element of w is

selected independently and uniformly at random.

5 MACs with Unclonable Tags

In this section, we define MACs with unclonable tags and construct it from UPSGs.
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5.1 Definition

First, we give the definition of the standard EUF-CMA-secure MACs. However, in this paper, we consider
more general case where the tags could be quantum states. MACs with classical tags can be considered as a
special case where the tags are computational-basis states.

Definition 5.1 (EUF-CMA-Secure MACs). An EUF-CMA-secure MAC is a set (KeyGen,Tag,Ver) of QPT
algorithms such that

• KeyGen(1λ)→ sigk : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
key sigk.

• Tag(sigk,m)→ τ : It is a QPT algorithm that, on input sigk and a classical message m, outputs an
n-qubit quantum state τ .

• Ver(sigk,m, ρ)→ ⊤/⊥ : It is a QPT algorithm that, on input sigk, m, and a quantum state ρ, outputs
⊤/⊥.

We require the following two properties.

Correctness: For any m,

Pr
[
⊤ ← Ver(sigk,m, τ) : sigk← KeyGen(1λ)

τ ← Tag(sigk,m)

]
≥ 1− negl(λ). (63)

EUF-CMA security: For any QPT adversary A,

Pr
[
⊤ ← Ver(sigk,m∗, ρ) : sigk← KeyGen(1λ)

(m∗, ρ)← ATag(sigk,·)(1λ)

]
≤ negl(λ), (64)

where A queries the oracle only classically, and A is not allowed to query m∗.

The following corollary is straightforward from the definition of UPSGs.

Corollary 5.2. If UPSGs exist, then EUF-CMA-secure MACs exist.

Proof of Corollary 5.2. Let (KeyGen′,Eval′) be a UPSG. We construct EUF-CMA-secure MAC (KeyGen,Tag,Ver)
as follows:

• KeyGen(1λ)→ sigk : Run k ← KeyGen′(1λ) and output it as sigk.

• Tag(sigk,m)→ τ : Parse sigk = k. Run |ϕk(m)⟩ ← Eval′(k,m) and output it as τ .

• Ver(sigk,m, ρ) → ⊤/⊥ : Parse sigk = k. Project ρ onto |ϕk(m)⟩ ⟨ϕk(m)|. If the projection is
successful, output ⊤. Otherwise, output ⊥.

The correctness is clear. The EUF-CMA-security follows from the unpredictability of UPSG.

Next, we define MACs with unclonable tags.
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Definition 5.3 (MACs with Unclonable Tags). Let (KeyGen,Tag,Ver) be an EUF-CMA-secure MAC.
If (KeyGen,Tag,Ver) satisfies the following property (which we call unclonability), we call it MAC with
unclonable tags: For any QPT adversary A and any polynomials t and ℓ,

Pr

Count(sigk,m∗, ξ) ≥ t+ 1 :

sigk← KeyGen(1λ)
(m∗, st)← ATag(sigk,·)(1λ)
τ⊗t ← Tag(sigk,m∗)⊗t
ξ ← ATag(sigk,·)(τ⊗t, st)

 ≤ negl(λ), (65)

where A queries the oracle only classically, and A is not allowed to query m∗. τ⊗t ← Tag(sigk,m∗)⊗t
means that Tag algorithm is run t times and t copies of τ are generated. ξ is a quantum state on ℓ registers,
R1, ...,Rℓ, each of which is of n qubits. Here, Count(sigk,m∗, ξ) is the following QPT algorithm: for each
j ∈ [ℓ], it takes the state on Rj as input, and runs Ver(sigk,m∗, ·) to get ⊤ or ⊥. Then, it outputs the total
number of ⊤.

Remark 5.4. EUF-CMA security is automatically implied by the unclonability, Equation (65).15

5.2 Construction from UPSGs

In this subsection, we construct MACs with unclonable tags from EUF-CMA-secure MACs and IND-CPA-
secure SKE schemes.

Theorem 5.5. If EUF-CMA-secure MACs (secure against classically querying QPT adversaries) and IND-
CPA-secure SKE schemes for classical messages (secure against classically querying QPT adversaries) exist,
then MACs with unclonable tags exist.

Because EUF-CMA-secure MACs (secure against classically querying QPT adversaries) can be constructed
from UPSG (Corollary 5.2), and IND-CPA-secure SKE schemes for classical messages (secure against
classically querying QPT adversaries) can be constructed from UPSGs (Theorem 4.1), we have the following
corollary:

Corollary 5.6. If UPSGs exist, then MACs with unclonable tags exist.

Proof of Theorem 5.5. Let (MAC.KeyGen,MAC.Tag,MAC.Ver) be an EUF-CMA-secure MAC secure
against classically querying QPT adversaries and (SKE.KeyGen,SKE.Enc, SKE.Dec) be an IND-CPA-
secure SKE scheme for quantum messages. (From Lemma 2.5, such SKE schemes exist if SKE schemes for
classical messages secure against classically querying QPT adversaries exist.) We construct a MAC with
unclonable tags (KeyGen,Tag,Ver) as follows:

• KeyGen(1λ)→ sigk′ : Run sk ← SKE.KeyGen(1λ) and sigk ← MAC.KeyGen(1λ). Output sigk′ :=
(sk, sigk).

• Tag(sigk′,m)→ τ ′ : Parse sigk′ = (sk, sigk). It does the following:

1. Choose x, θ ← {0, 1}λ and generate |x⟩θ. Here, |x⟩θ :=
⊗

i∈[λ]H
θi |xi⟩, where H is the

Hadamard gate, and xi and θi denote the i’th bit of x and θ, respectively.

15The proof is easy. Let A be a QPT adversary that breaks the EUF-CMA security, which outputs (m∗, ρ). Then the QPT
adversary B that breaks the unclonability is constructed as follows: it first simulates A to get (m∗, ρ). It then sends m∗ to the
challenger to get its tag τ . It finally sends τ and ρ to the challenger, both of which are accepted as valid tags.
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2. Run τ ← MAC.Tag(sigk,m∥x∥θ).
3. Run ct← SKE.Enc(sk, |x∥θ⟩ ⟨x∥θ| ⊗ τ).

Output τ ′ := |x⟩⟨x|θ ⊗ ct.

• Ver(sigk′,m, ρ)→ ⊤/⊥ : Parse sigk′ = (sk, sigk). Let ρ be a state on two registers A and C. (If ρ is
honestly generated, ρA,C = (|x⟩⟨x|θ)A ⊗ ctC.) It does the following:

1. Run SKE.Dec(sk, ·) on the register C to get another state ρ′A,M on the registers A and M.
2. Measure the first 2λ qubits of M in the computational basis to get the result x′∥θ′.
3. Run MAC.Ver(sigk,m∥x′∥θ′, ·) on the remaining qubits of the register M to get v ∈ {⊤,⊥}.

Project the register A onto |x′⟩θ′ . If the projection is successful and v = ⊤, output ⊤. Otherwise,
output ⊥.

The correctness is clear. Since the unclonablity implies EUF-CMA security, it suffices to show our construction
satisfies the unclonability. Let t and ℓ be polynomials. We define the Hybrid 0 as follows, which is the
original security game of unclonability between the challenger C and QPT adversary A.

Hybrid 0

1. The challenger C runs sk← SKE.KeyGen(1λ) and sigk← MAC.KeyGen(1λ).

2. The adversary A sends m∗ to C, where A can make classical queries to the oracle Osk,sigk and does not
query m∗. Here, Osk,sigk takes a bit string m as input and works as follows:

(a) Choose x, θ ← {0, 1}λ and generate |x⟩θ.
(b) Run τ ← MAC.Tag(sigk,m∥x∥θ) and ct← SKE.Enc(sk, |x∥θ⟩ ⟨x∥θ| ⊗ τ).
(c) Output |x⟩ ⟨x|θ ⊗ ct.

3. For each i ∈ [t], C does the following.

(a) Choose xi, θi ← {0, 1}λ and generate |xi⟩θi
.

(b) Run τi ← MAC.Tag(sigk,m∗∥xi∥θi) and cti ← SKE.Enc(sk, |xi∥θi⟩ ⟨xi∥θi| ⊗ τi).

4. C sends {|xi⟩ ⟨xi|θi
⊗ cti}i∈[t] to A.

5. A sends ξR1,...,Rℓ
, where A can make classical queries to the oracle Osk,sigk and does not query m∗.

Here Rj has two registers Aj and Cj for each j ∈ [ℓ].

6. For each j ∈ [ℓ], C does the following.

(a) Run SKE.Dec(sk, ·) on the register Cj to get the state on the registers Aj and Mj .
(b) Measure the first 2λ qubits of the register Mj in the computational basis to get the result x′j∥θ′j .
(c) Run MAC.Ver(sigk,m∗∥x′j∥θ′j , ·) on the remaining qubits of the register Mj to get vj ∈ {⊤,⊥}.
(d) Project the register Aj onto |x′j⟩θ′

j

.

(e) If the projection is successful and vj = ⊤, set wj := 1. Otherwise, set wj := 0.
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7. If
∑ℓ
j=1wj ≥ t+ 1, C outputs ⊤. Otherwise, C outputs ⊥.

To show the theorem, let us assume that there exists a QPT adversary A such that Pr[⊤ ← Hybrid 0] ≥
1

poly(λ) for infinitely many λ. Our goal is to construct an adversary that breaks the security of the Wiesner
money scheme from A. For that goal, we want to make sure that two copies of |x⟩θ are generated when
C outputs ⊤. The next Hybrid 1 ensures such a situation, and the hop from Hybrid 0 to 1 can be done by
invoking the EUF-CMA security of the MAC.16

Hybrid 1

1. The challenger C runs sk← SKE.KeyGen(1λ) and sigk← MAC.KeyGen(1λ).

2. The adversary A sends m∗ to C, where A can make classical queries to the oracle Osk,sigk and does not
query m∗. Here, Osk,sigk takes a bit string m as input and works as follows:

(a) Choose x, θ ← {0, 1}λ and generate |x⟩θ.
(b) Run τ ← MAC.Tag(sigk,m∥x∥θ) and ct← SKE.Enc(sk, |x∥θ⟩ ⟨x∥θ| ⊗ τ).
(c) Output |x⟩ ⟨x|θ ⊗ ct.

3. For each i ∈ [t], C does the following.

(a) Choose xi, θi ← {0, 1}λ and generate |xi⟩θi
.

(b) Run τi ← MAC.Tag(sigk,m∗∥xi∥θi) and cti ← SKE.Enc(sk, |xi∥θi⟩ ⟨xi∥θi| ⊗ τi).

4. C sends {|xi⟩ ⟨xi|θi
⊗ cti}i∈[t] to A.

5. A sends ξR1,...,Rℓ
, where A can make classical queries to the oracle Osk,sigk and does not query m∗.

Here Rj has two registers Aj and Cj for each j ∈ [ℓ].

6. For each j ∈ [ℓ], C does the followings.

(a) Run SKE.Dec(sk, ·) on the register Cj to get the state on the registers Aj and Mj .
(b) Measure the first 2λ qubits of the register Mj in the computational basis to get the result x′j∥θ′j .
(c) Run MAC.Ver(sigk,m∗∥x′j∥θ′j , ·) on the remaining qubits of the register Mj to get vj ∈ {⊤,⊥}.
(d) Project the register Aj onto |x′j⟩θ′

j

.

(e) If the projection is successful and vj = ⊤, set wj := 1. Otherwise, set wj := 0.

7. If
∑ℓ
j=1wj ≥ t+ 1 and the event E does not occur, then C outputs ⊤. Otherwise, C outputs ⊥. Here

E is the event defined as follows:

• Event E: there exists j ∈ [ℓ] such that (x′j , θ′j) ̸∈ {(xi, θi)}i∈[t] and wj = 1.

Lemma 5.7. Pr[⊤ ← Hybrid 0] ≤ Pr[⊤ ← Hybrid 1] + negl(λ).
16This is actually a well-known technique to construct a full money from a mini-scheme [AC12].
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Proof of Lemma 5.7. We can show

Pr[E] ≤ negl(λ) (66)

whose proof is given later. If Pr[E] ≤ negl(λ),

Pr[⊤ ← Hybrid 0] = Pr[⊤ ← Hybrid 0 ∧ E] + Pr[⊤ ← Hybrid 0 ∧ Ē] (67)
≤ negl(λ) + Pr[⊤ ← Hybrid 1], (68)

which shows the lemma.
Let us show Equation (66). Assume that Pr[E] ≥ 1

poly(λ) for infinitely many λ ∈ N. Then the following
QPT adversary B breaks the EUF-CMA security of the MAC:

1. The adversary B runs sk← SKE.KeyGen(1λ).

2. B simulates the interaction between C and A in Hybrid 1 by querying to MAC.Tag(sigk, ·) up to the
step 5. Then, B gets a classical message m∗ and a state ξ on the registers R1, ...Rℓ, where m∗ is a
challenge message that A sends to C in the step 2. Here Rj has two registers Aj and Cj for each
j ∈ [ℓ].

3. For each j ∈ [ℓ], B does the following:

(a) Run SKE.Dec(sk, ·) on the register Cj to get the state on the registers Aj and Mj .
(b) Measure the first 2λ qubits of the register Mj in the computational basis to get the result x′j∥θ′j .

4. B chooses j∗ ← [ℓ]. If (x′j∗ , θ′j∗) ∈ {(xi, θi)}i∈[t], B aborts. Otherwise, B outputs m∗∥x′j∗∥θ′j∗ and
the all qubits of the register Mj∗ except for the first 2λ-qubits.

It is clear that B does not querym∗∥x′j∗∥θ′j∗ . Let Pr[Bwins] be the probability that B wins the above security
game of EUF-CMA security. Then, we have Pr[B wins] ≥ 1

ℓ Pr[E]. Therefore, B breaks the EUF-CMA
security if Pr[E] ≥ 1

poly(λ) for infinitely many λ ∈ N. This means Pr[E] ≤ negl(λ).

If Pr[⊤ ← Hybrid 1] ≥ 1
poly(λ) for infinitely many λ, at least two copies of |x⟩θ for some x and θ should

be generated due to the pigeonhole principle. In the following Hybrid 2, we randomly guess the indexes of
such states. Then we have the following lemma.

Lemma 5.8. Pr[⊤ ← Hybrid 2] ≥ 1
t Pr[⊤ ← Hybrid 1].

Hybrid 2

1. The challenger C runs sk← SKE.KeyGen(1λ) and sigk← MAC.KeyGen(1λ).

2. The adversary A sends m∗ to C, where A can make classical queries to the oracle Osk,sigk and does not
query m∗. Here, Osk,sigk takes a bit string m as input and works as follows:

(a) Choose x, θ ← {0, 1}λ and generate |x⟩θ.
(b) Run τ ← MAC.Tag(sigk,m∥x∥θ) and ct← SKE.Enc(sk, |x∥θ⟩ ⟨x∥θ| ⊗ τ).
(c) Output |x⟩ ⟨x|θ ⊗ ct.
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3. C chooses i∗ ← [t]. For each i ∈ [t], C does the following.

(a) Choose xi, θi ← {0, 1}λ and generate |xi⟩θi
.

(b) Run τi ← MAC.Tag(sigk,m∗∥xi∥θi) and cti ← SKE.Enc(sk, |xi∥θi⟩ ⟨xi∥θi| ⊗ τi).

4. C sends {|xi⟩ ⟨xi|θi
⊗ cti}i∈[t] to A.

5. A sends ξR1,...,Rℓ
, where A can make classical queries to the oracle Osk,sigk and does not query m∗.

Here Rj has two registers Aj and Cj for each j ∈ [ℓ].

6. For each j ∈ [ℓ], C does the followings.

(a) Run SKE.Dec(sk, ·) on the register Cj to get the state on the registers Aj and Mj .
(b) Measure the first 2λ qubits of the register Mj in the computational basis to get the result x′j∥θ′j .
(c) Run MAC.Ver(sigk,m∗∥x′j∥θ′j , ·) on the remaining qubits of the register Mj to get vj ∈ {⊤,⊥}.
(d) Project the register Aj onto |x′j⟩θ′

j

.

(e) If the projection is successful and vj = ⊤ and (x′j , θ′j) = (xi∗ , θi∗), set wj := 1. Otherwise, set
wj := 0.

7. If
∑ℓ
j=1wj ≥ t+ 1 and the event E does not occur, If

∑ℓ
j=1wj ≥ 2, C outputs ⊤. Otherwise, C

outputs ⊥. Here E is the event defined as follows:

• Event E: there exists j ∈ [ℓ] such that (x′j , θ′j) ̸∈ {(xi, θi)}i∈[t] and wj = 1.

Let us define Hybrid 3 as follows. The following lemma is straightforward.

Lemma 5.9. Pr[⊤ ← Hybrid 3] ≥ Pr[⊤ ← Hybrid 2].

Hybrid 3

1. The challenger C runs sk← SKE.KeyGen(1λ) and sigk← MAC.KeyGen(1λ).

2. The adversary A sends m∗ to C, where A can make classical queries to the oracle Osk,sigk and does not
query m∗. Here, Osk,sigk takes a bit string m as input and works as follows:

(a) Choose x, θ ← {0, 1}λ and generate |x⟩θ.
(b) Run τ ← MAC.Tag(sigk,m∥x∥θ) and ct← SKE.Enc(sk, |x∥θ⟩ ⟨x∥θ| ⊗ τ).
(c) Output |x⟩ ⟨x|θ ⊗ ct.

3. C chooses i∗ ← [t]. For each i ∈ [t], C does the following.

(a) Choose xi, θi ← {0, 1}λ and generate |xi⟩θi
.

(b) Run τi ← MAC.Tag(sigk,m∗∥xi∥θi) and cti ← SKE.Enc(sk, |xi∥θi⟩ ⟨xi∥θi| ⊗ τi).

4. C sends {|xi⟩ ⟨xi|θi
⊗ cti}i∈[t] to A.

5. A sends ξR1,...,Rℓ
, where A can make classical queries to the oracle Osk,sigk and does not query m∗.

Here Rj has two registers Aj and Cj for each j ∈ [ℓ].
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6. For each j ∈ [ℓ], C does the followings.

(a) Run SKE.Dec(sk, ·) on the register Cj to get the state on the registers Aj and Mj .
(b) Measure the first 2λ qubits of the register Mj in the computational basis to get the result x′j∥θ′j .

Set (x′j , θ′j) := (xi∗ , θi∗).
(c) Run MAC.Ver(sigk,m∗∥x′j∥θ′j , ·) on the remaining qubits of the register Mj to get vj ∈ {⊤,⊥}.
(d) Project the register Aj onto |x′j⟩θ′

j

.

(e) If the projection is successful and vj = ⊤ and (x′j , θ′j) = (xi∗ , θi∗), set wj := 1. Otherwise, set
wj := 0.

7. If
∑ℓ
j=1wj ≥ 2, C outputs ⊤. Otherwise, C outputs ⊥.

Now in Hybrid 3 two copies of |xi∗⟩θi∗ are generated. In order to use it to break the security of the
Wiesner money scheme, we have to remove the classical description of BB84 states “hidden” in the ciphertexts.
If we introduce Hybrid 4 as follows, the following lemma is straightforward.

Lemma 5.10. Pr[⊤ ← Hybrid 4] ≥ Pr[⊤ ← Hybrid 3].

Hybrid 4

1. The challenger C runs sk← SKE.KeyGen(1λ) and sigk← MAC.KeyGen(1λ).

2. The adversary A sends m∗ to C, where A can make classical queries to the oracle Osk,sigk and does not
query m∗. Here, Osk,sigk takes a bit string m as input and works as follows:

(a) Choose x, θ ← {0, 1}λ and generate |x⟩θ.
(b) Run τ ← MAC.Tag(sigk,m∥x∥θ) and ct← SKE.Enc(sk, |x∥θ⟩ ⟨x∥θ| ⊗ τ).
(c) Output |x⟩ ⟨x|θ ⊗ ct.

3. C chooses i∗ ← [t]. For each i ∈ [t], C does the following.

(a) Choose xi, θi ← {0, 1}λ and generate |xi⟩θi
.

(b) Run τi ← MAC.Tag(sigk,m∗∥xi∥θi) and cti ← SKE.Enc(sk, |xi∥θi⟩ ⟨xi∥θi| ⊗ τi).

4. C sends {|xi⟩ ⟨xi|θi
⊗ cti}i∈[t] to A.

5. A sends ξR1,...,Rℓ
, where A can make classical queries to the oracle Osk,sigk and does not query m∗.

Here Rj has two registers Aj and Cj for each j ∈ [ℓ].

6. For each j ∈ [ℓ], C does the followings.

(a) Run SKE.Dec(sk, ·) on the register Cj to get the state on the registers Aj and Mj . Does nothing
in this step.

(b) Set (x′j , θ′j) := (xi∗ , θi∗).
(c) Run MAC.Ver(sigk,m∗∥x′j∥θ′j , ·) on the remaining qubits of the register Mj to get vj ∈ {⊤,⊥}.

Does nothing in this step.
(d) Project the register Aj onto |x′j⟩θ′

j

.
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(e) If the projection is successful and vj = ⊤, set wj := 1. Otherwise, set wj := 0.

7. If
∑ℓ
j=1wj ≥ 2, C outputs ⊤. Otherwise, C outputs ⊥.

Now, we are ready to remove the information about the BB84 state from cti by invoking IND-CPA security.
We formalize it as Hybrid 5.

Hybrid 5

1. The challenger C runs sk← SKE.KeyGen(1λ) and sigk← MAC.KeyGen(1λ).

2. The adversary A sends m∗ to C, where A can make classical queries to the oracle Osk,sigk and does not
query m∗. Here, Osk,sigk takes a bit string m as input and works as follows:

(a) Choose x, θ ← {0, 1}λ and generate |x⟩θ.
(b) Run τ ← MAC.Tag(sigk,m∥x∥θ) and ct← SKE.Enc(sk, |x∥θ⟩ ⟨x∥θ| ⊗ τ).
(c) Output |x⟩ ⟨x|θ ⊗ ct.

3. C chooses i∗ ← [t]. For each i ∈ [t], C does the following.

(a) Choose xi, θi ← {0, 1}λ and generate |xi⟩θi
.

(b) Run τi ← MAC.Tag(sigk,m∗∥xi∥θi) and cti ← SKE.Enc(sk, |xi∥θi⟩ ⟨xi∥θi| ⊗ τi). Run cti ←
SKE.Enc(sk, |0...0⟩ ⟨0...0|).

4. C sends {|xi⟩ ⟨xi|θi
⊗ cti}i∈[t] to A.

5. A sends ξR1,...,Rℓ
, where A can make classical queries to the oracle Osk,sigk and does not query m∗.

Here Rj has two registers Aj and Cj for each j ∈ [ℓ].

6. For each j ∈ [ℓ], C does the followings.

(a) Does nothing in this step.
(b) Set (x′j , θ′j) := (xi∗ , θi∗).
(c) Does nothing in this step.
(d) Project the register Aj onto |x′j⟩θ′

j

.

(e) If the projection is successful, set wj := 1. Otherwise, set wj := 0.

7. If
∑ℓ
j=1wj ≥ 2, C outputs ⊤. Otherwise, C outputs ⊥.

Lemma 5.11. |Pr[⊤ ← Hybrid 4]− Pr[⊤ ← Hybrid 5]| ≤ negl(λ).

Proof of Lemma 5.11. Note that the difference between Hybrid 4 and Hybrid 5 lies only in the step 3b.
Let us consider the following security game of IND-CPA security between a challenger C′ and a QPT

adversary B:

1. The challenger C′ runs sk← SKE.KeyGen(1λ).

2. B runs sigk← MAC.KeyGen(1λ).

29



3. B simulates A in Hybrid 4 by querying to SKE.Enc(sk, ·) up to the step 2. B gets m∗, where m∗ is the
challenge message that A sends to C in the step 2.

4. B chooses i∗ ← [t]. For each i ∈ [t], B does the following: B chooses xi, θi ← {0, 1}λ and prepares
the state η0

i := |xi∥θi⟩ ⟨xi∥θi| ⊗ τi by running τi ← MAC.Tag(sigk,m∗∥xi∥θi). B also prepares the
state η1

i := |0...0⟩ ⟨0...0|.

5. B sends the states
⊗t

i=1 η
0
i and

⊗t
i=1 η

1
i to C′.

6. C′ chooses b ← {0, 1} and gets
⊗

i∈[t] cti by running cti ← SKE.Enc(sk, η0
i ) if b = 0 and cti ←

SKE.Enc(sk, η1
i ) if b = 1 for each i ∈ [t]. C′ sends

⊗
i∈[t] cti to B.

7. B generates
⊗

i∈[t] |xi⟩θi
. B simulates the interaction between C and A from the step 4 of Hybrid 4

to the last step by using
⊗

i∈[t] cti ⊗
⊗

i∈[t] |xi⟩θi
and querying to SKE.Enc(sk, ·). If C outputs ⊤, B

sends b′ := 0 to C′. Otherwise, B sends b′ := 1 to C′.

8. C′ outputs ⊤ if b = b′. Otherwise, C′ outputs ⊥.

Let Pr[b′ ← B|b← C′] be the probability that B sends b′ ∈ {0, 1} to C′ when C′ chooses b ∈ {0, 1}. It is clear
that Pr[0← B|0← C′] = Pr[⊤ ← Hybrid 4] and Pr[0← B|1← C′] = Pr[⊤ ← Hybrid 5]. Therefore, if
|Pr[⊤ ← Hybrid 4] − Pr[⊤ ← Hybrid 5]| ≥ 1

poly(λ) for infinitely many λ ∈ N, B breaks the IND-CPA
security.

Let us define Hybrid 6 as follows. The following lemma is straightforward.

Lemma 5.12. Pr[⊤ ← Hybrid 5] = Pr[⊤ ← Hybrid 6].

Hybrid 6

1. The challenger C runs sk← SKE.KeyGen(1λ) and sigk← MAC.KeyGen(1λ).

2. The adversary A sends m∗ to C, where A can make classical queries to the oracle Osk,sigk and does not
query m∗. Here, Osk,sigk takes a bit string m as input and works as follows:

(a) Choose x, θ ← {0, 1}λ and generate |x⟩θ.
(b) Run τ ← MAC.Tag(sigk,m∥x∥θ) and ct← SKE.Enc(sk, |x∥θ⟩ ⟨x∥θ| ⊗ τ).
(c) Output |x⟩ ⟨x|θ ⊗ ct.

3. C chooses i∗ ← [t]. For each i ∈ [t], C does the following.

(a) Choose xi, θi ← {0, 1}λ and generate |xi⟩θi
.

(b) Run τi ← MAC.Tag(sigk,m∗∥xi∥θi). Run cti ← SKE.Enc(sk, |0...0⟩ ⟨0...0|).

4. C sends {|xi⟩ ⟨xi|θi
⊗ cti}i∈[t] to A.

5. A sends ξR1,...,Rℓ
, where A can make classical queries to the oracle Osk,sigk and does not query m∗.

Here Rj has two registers Aj and Cj for each j ∈ [ℓ].

6. For each j ∈ [ℓ], C does the followings.

(a) Does nothing in this step.
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(b) Set (x′j , θ′j) := (xi∗ , θi∗).
(c) Does nothing in this step.
(d) Project the register Aj onto |x′j⟩θ′

j

.

(e) If the projection is successful, set wj := 1. Otherwise, set wj := 0.

7. If
∑ℓ
j=1wj ≥ 2, C outputs ⊤. Otherwise, C outputs ⊥.

Finally, we construct an adversary that breaks the security of the Wiesner money scheme from A of
Hybrid 6, which concludes our proof of the theorem.

Lemma 5.13. Pr[⊤ ← Hybrid 6] ≤ negl(λ).

Proof of Lemma 5.13. Let us assume that there exist polynomials t, ℓ and a QPT A adversary such that
Pr[⊤ ← Hybrid 6] ≥ 1

poly(λ) for infinitely many λ ∈ N. From this A, we can construct a QPT adversary B
that breaks the security of the Wiesner money scheme as follows:

1. The challenger C′ chooses x, θ ← {0, 1}λ and sends |x⟩θ to B.

2. B runs sk← SKE.KeyGen(1λ) and sigk← MAC.KeyGen(1λ).

3. B simulates the interaction between the challenger and A in Hybrid 6, where, in the step 3, B chooses
i∗ ← [t] and replaces |xi∗⟩θi∗ with |x⟩θ. Then, B gets ξR1,...Rℓ

from A. B chooses j0, j1 ← [ℓ] and
outputs the register Aj0 and Aj1 .

The probability that B wins is

Pr[B wins] ≥
(
ℓ

2

)−1

Pr[⊤ ← Hybrid 6] ≥ 2
ℓ(ℓ− 1)

1
poly(λ) . (69)

However, this contradicts the security of the Wiesner money scheme, Lemma 2.2. Therefore, Pr[⊤ ←
Hybrid 5] ≤ negl(λ).

By combining Lemmata 5.7 to 5.13, we have Pr[⊤ ← Hybrid 0] ≤ negl(λ), but it contradicts the
assumption that Pr[⊤ ← Hybrid 0] ≥ 1

poly(λ) for infinitely many λ. Therefore we have Pr[⊤ ← Hybrid 0] ≤
negl(λ).
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A Proof of Lemma 2.5

In this section, we give a proof of Lemma 2.5. To show it, we use the following lemma whose proof is
straightforward. (For example, see [Mah23].)

Lemma A.1 (Pauli Mixing). Let A be an n-qubit register. Then, for any state ρA,B on the registers A and B,

1
4n

∑
x,z∈{0,1}n

((XxZz)A)⊗ IB)ρA,B((ZzXx)A ⊗ IB) = IA
2n ⊗ ρB. (70)

Here, ρB := TrAρA,B and TrA is a partial trace of the register A.

Proof of Lemma 2.5. Let (KeyGen,Enc,Dec) be an IND-CPA-secure SKE scheme for classical messages
that is secure against QPT adversaries that query the encryption oracle classically. From this, we construct an
IND-CPA-secure SKE scheme for quantum messages (KeyGen′,Enc′,Dec′) as follows:

• KeyGen′(1λ)→ sk′ : Run sk← KeyGen(1λ) and output sk′ := sk.

• Enc′(sk′, ρ)→ ct′ : Parse sk′ = sk. Let ρ be an n-qubit state. It does the following:

1. Choose x, z ← {0, 1}n and apply XxZz on ρ.
2. Run ct← Enc(sk, x∥z).
3. Output ct′ := (XxZzρZzXx)⊗ ct.

• Dec′(sk′, ct′)→ ρ : Parse sk′ := sk. Let ct′ be a state on the register C. The register C consists of two
registers M and B. If ct′ is honestly generated, ct′C = (XxZzρZzXx)M ⊗ ctB.

1. Run Dec(sk, ·) on the register B to get x′∥z′.
2. Apply Zz′

Xx′ on the register M and output the register M.

First, we show the correctness. Fix bit strings x, z ∈ {0, 1}n and a polynomial p. Define the set

Sx,z,p :=
{

sk : Pr[x∥z ← Dec(sk, ct) : ct← Enc(sk, x∥z)] ≥ 1− 1
p(λ)

}
. (71)
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From the correctness of (KeyGen,Enc,Dec) and the standard average argument, we have

Pr[sk ∈ Sx,z,p : sk← KeyGen(1λ)] ≥ 1− negl(λ). (72)

Let us fix sk ∈ Sx,z,p. We define Enc′(sk′, ·)x,z as the following CPTP map:

1. Apply XxZz on the input register M.

2. Run ct← Enc(sk, x∥z), and set the output ct on the register B.

3. Output the registers M and B.

It is clear that ∥Dec′(sk′, ·) ◦ Enc′(sk′, ·)x,z − idM∥⋄ ≤ 2
p(λ) since sk ∈ Sx,z,p. From this and Equation (72),

Esk←KeyGen(1λ) ∥Dec′(sk′, ·) ◦ Enc′(sk′, ·)x,z − idM∥⋄ ≤ 2
p(λ) + negl(λ) for all x, z. Therefore we have

E
sk←KeyGen′(1λ)

∥Dec′(sk′, ·) ◦ Enc′(sk′, ·)− idM∥⋄ (73)

= E
sk←KeyGen′(1λ)

∥Dec′(sk′, ·) ◦ E
x,z←{0,1}n

Enc′(sk′, ·)x,z − idM∥⋄ (74)

≤ E
sk←KeyGen′(1λ)

E
x,z←{0,1}n

∥Dec′(sk′, ·) ◦ Enc′(sk′, ·)x,z − idM∥⋄ (75)

≤ 2
p(λ) + negl(λ), (76)

for any p, which shows the correctness.
Next, we show the security. We define Hybrid 0, which is the original security game of IND-CPA security

for quantum messages, as follows.

Hybrid 0

1. The challenger C runs sk← KeyGen(1λ).

2. The adversary A sends two n-qubit registers M0 and M1 to C, where A can query the oracle Osk.
Here, Osk takes n-qubit register M as input and works as follows:

(a) Choose α, β ← {0, 1}n and apply XαZβ on the register M.
(b) Run ct← Enc(sk, α∥β).
(c) Output the register M and ct.

3. C chooses b← {0, 1} and does the following:

(a) Choose x, z ← {0, 1}n and apply XxZz on the register Mb.
(b) Run ctb ← Enc(sk, x∥z).

4. C sends the register Mb and ctb to A.

5. A sends b′ ∈ {0, 1} to C, where A can query the oracle Osk.

6. If b = b′, C outputs ⊤. Otherwise, C outputs ⊥.

For the sake of contradiction, assume that there exist a polynomial p and a QPT adversary A such that
Pr[⊤ ← Hybrid 0] ≥ 1

2 + 1
p(λ) for infinitely many λ. Define the following Hybrid 1.
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Hybrid 1

1. The challenger C runs sk← KeyGen(1λ).

2. The adversary A sends two n-qubit registers M0 and M1 to C, where A can query the oracle Osk.
Here, Osk takes n-qubit register M as input and works as follows:

(a) Choose α, β ← {0, 1}n and apply XαZβ on the register M.
(b) Run ct← Enc(sk, α∥β).
(c) Output the register M and ct.

3. C chooses b← {0, 1} and does the following:

(a) Choose x, z ← {0, 1}n and apply XxZz on the register Mb.
(b) Run ctb ← Enc(sk, x∥z). Run ctb ← Enc(sk, 0...0).

4. C sends the register Mb and ctb to A.

5. A sends b′ ∈ {0, 1} to C, where A can query the oracle Osk.

6. If b = b′, C outputs ⊤. Otherwise, C outputs ⊥.

Lemma A.2. |Pr[⊤ ← Hybrid 0]− Pr[⊤ ← Hybrid 1]| ≤ negl(λ) for any QPT adversary A.

Proof of Lemma A.2. For the sake of contradiction, let us assume that there exists a polynomial p and a QPT
adversary A such that

|Pr[⊤ ← Hybrid 0]− Pr[⊤ ← Hybrid 1]| ≥ 1
p(λ) (77)

for infinitely many λ. From this A, we construct a QPT adversary B that breaks the SKE scheme for classical
messages.

1. The challenger C′ of the SKE scheme for classical messages runs sk← KeyGen(1λ).

2. B simulates A in the Hybrid 0 up to the step 2 and gets two n-qubit registers M0 and M1. Here, when
A queries Osk, B simulates it by querying Enc(sk, ·).

3. B chooses x, z ← {0, 1}n. B sends x∥z and 0...0 to C′.

4. C′ chooses b← {0, 1}. If b = 0, C′ runs ct0 ← Enc(sk, x∥z). If b = 1, C′ runs ct1 ← Enc(sk, 0...0).
Then, C′ sends ctb to B.

5. B chooses b′ ← {0, 1}. B applies XxZz on the register Mb′ .

6. B simulates A from step 4 to step 5 on input the register Mb′ and ctb.

7. B gets b′′ ∈ {0, 1} from A, and outputs 1 if and only if b′′ = b′. Otherwise, B outputs 0.
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It is easy to see that Pr[1 ← B|b = 0] = Pr[⊤ ← Hybrid 0] and Pr[1 ← B|b = 1] = Pr[⊤ ← Hybrid 1].
Therefore, from the assumption, Equation (77), we have

|Pr[1← B|b = 0]− Pr[1← B|b = 1]| ≥ 1
p(λ) (78)

for infinitely many λ, which breaks the security of the SKE scheme for classical messages.

Let us define the following Hybrid 2. From Lemma A.1, the following is straightforward.

Lemma A.3. Pr[⊤ ← Hybrid 1] = Pr[⊤ ← Hybrid 2].

Hybrid 2

1. The challenger C runs sk← KeyGen(1λ).

2. The adversary A sends two n-qubit registers M0 and M1 to C, where A can query the oracle Osk.
Here, Osk takes n-qubit register M as input and works as follows:

(a) Choose α, β ← {0, 1}n and apply XαZβ on the register M.
(b) Run ct← Enc(sk, α∥β).
(c) Output the register M and ct.

3. C chooses b← {0, 1} and does the following:

(a) Choose x, z ← {0, 1}n and apply XxZz on the register Mb. Set Mb to the maximally mixed
state I/2n.

(b) Run ctb ← Enc(sk, 0...0).

4. C sends the register Mb and ctb to A.

5. A sends b′ ∈ {0, 1} to C, where A can query the oracle Osk.

6. If b = b′, C outputs ⊤. Otherwise, C outputs ⊥.

It is clear that Pr[⊤ ← Hybrid 2] = 1
2 . Therefore, from Lemmata A.2 and A.3, we conclude that

Pr[⊤ ← Hybrid 0] ≤ 1
2 + negl(λ), but it contradicts the assumption.

B Private-Key Quantum Money

In this section, we recall the definition of private-key money and prove Corollary 1.3.

Definition B.1 (Private-Key Quantum Money Schemes [JLS18, AC12]). A private-key quantum money
scheme is a set of algorithms (KeyGen,Mint,Ver) such that

• KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
secret key k.

• Mint(k)→ $k : It is a QPT algorithm that, on input k, outputs an m-qubit quantum state $k.

• Ver(k, ρ)→ ⊤/⊥ : It is a QPT algorithm that, on input k and a quantum state ρ, outputs ⊤/⊥.

We require the following correctness and security.
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Correctness:

Pr[⊤ ← Ver(k, $k) : k ← KeyGen(1λ), $k ← Mint(k)] ≥ 1− negl(λ).

Security: For any QPT adversary A and any polynomial t,

Pr[Count(k, ξ) ≥ t+ 1 : k ← KeyGen(1λ), $⊗tk ← Mint(k)⊗t, ξ ← A($⊗tk )] ≤ negl(λ),

where ξ is a quantum state on ℓ registers, R1, ...,Rℓ, each of which is of m qubits, and $⊗tk ← Mint(k)⊗t
means that the Mint algorithm is run t times. Here, Count(k, ξ) is the following QPT algorithm: for each
j ∈ [ℓ], it takes the state on Rj as input, and runs Ver(k, ·) to get ⊤ or ⊥. Then, it outputs the total number
of ⊤.

Corollary B.2. If MACs with unclonable tags exist, then private-key quantum money schemes exist.

Proof of Corollary B.2. Let (MAC.KeyGen,MAC.Tag,MAC.Ver) be a MAC with unclonable tags. From
this, we construct a private-key quantum money scheme as follows:

• QM.KeyGen(1λ)→ k : Run sigk← MAC.KeyGen(1λ) and output k := sigk.

• QM.Mint(k)→ $k : Parse k = sigk. Run τ ← MAC.Tag(sigk, 0...0) and output $k := τ .

• QM.Ver(k, ρ)→ ⊤/⊥ : Parse k = sigk. Run v ← MAC.Ver(sigk, 0...0, ρ) and output it.

The correctness and the security are clear from those of MAC with unclonable tags.

From Corollary 5.6 and Corollary B.2, UPSGs imply private-key quantum money scheme, which means
Corollary 1.3. Namely, if UPSGs exist, then private-key quantum money schemes exist.
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