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Abstract
Multiple works have designed or used maliciously secure honest majority MPC protocols over

Z2k using replicated secret sharing (e.g. Koti et al. USENIX’21, and the references therein). A
recent trend in the design of such MPC protocols is to first execute a semi-honest protocol, and
then use a check that verifies the correctness of the computation requiring only sublinear amount
of communication in terms of the circuit size. The so-called Galois ring extensions are needed in
order to execute such checks over Z2k , but these rings incur incredibly high computation overheads,
which completely undermine any potential benefits the ring Z2k had to begin with.

In this work we revisit the task of designing sublinear distributed product checks on replicated
secret-shared data over Z2k among three parties with an honest majority. We present a novel
technique for verifying the correctness of a set of multiplication (in fact, inner product) triples,
involving a sublinear cost in terms of the amount of multiplications. Most importantly, unlike
previous works, our tools entirely avoid Galois ring extensions, and only require computation over
rings of the form Z2ℓ . In terms of communication, our checks are 3 ∼ 5× lighter than existing
checks using ring extensions, which is already quite remarkable. However, our most noticeable
improvement is in terms of computation: avoiding extensions allows our checks to be 17.7 ∼ 44.2×
better than previous approaches, for many parameter regimes of interest. Our experimental results
show that checking a 10 million gate circuit with the 3PC protocol from (Boyle et al., CCS’19)
takes about two minutes, while our approach takes only 2.82 seconds.

Finally, our techniques are not restricted to the three-party case, and we generalize them to
replicated secret-sharing with an arbitrary number of parties n. Even though the share size in this
scheme grows exponentially with n, prior works have used it for n = 4 or n = 5—or even general n
for feasibility results—and our distributed checks also represent improvements in these contexts.

1 Introduction
With the recent emergence of large language models, machine learning has again demonstrated its
remarkable ability to extract intricate patterns from massive training data, revolutionizing various
fields from natural language processing to image recognition and beyond. Consequently, a huge
amount of data (which may contain sensitive information) is collected and used for training these
models, leading to growing concerns about privacy leakage issues. Privacy-Preserving Machine Learn-
ing (PPML) has been proposed in response to these concerns. By integrating privacy-enhanced tech-
niques, PPML frameworks ensure that sensitive data remains protected during training and inference
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processes. Among all these techniques, Secure Multi-Party Computation (MPC) has shown to be a
vital and promising cryptographic tool, standing out by its relatively reduce overhead, strong privacy
guarantees, as well as trustlessness of hardware.

Originating from Yao’s millionaire problem [Yao82], MPC has evolved as a typical and blooming
cryptographic primitive for enhancing privacy, upon which many excellent PPML frameworks [MR18,
KPPS21, WTB+21, PS20, DEK21, CRS20] are built. Informally, it enables a set of n mutually
distrustful parties to securely compute a given function on their individual private inputs, while leaking
only the final output. In the passive adversarial model, an adversary who corrupts t out of the n
involved parties obeys the protocol specification but tries to learn the honest parties’ inputs. For
honest majority (where t < n/2), a common paradigm for designing MPC protocols is using secret-
sharing, with Shamir secret-sharing being a prime example. However, for a small amount of parties
Replicated Secret Sharing [ISN89] (RSS) has proven to be a much more suitable choice—the state-
of-the-art RSS-based three-party computation protocol [AFL+16] only incurs a communication cost
of one element per multiplication gate per party. Many popular PPML frameworks [MR18, KPPS21,
PS20, DEK21, CRS20] have adopted such protocols as basic building blocks.

In the active security model, the adversary can arbitrarily deviate from the protocol specification,
and thus may cause more serious harm. Ideally, a protocol would achieve guaranteed output delivery
(GOD), meaning that these adversarial deviations cannot prevent honest parties from learning the
output. However, occasionally the relaxed notion of security with abort is useful (as it is simpler and
typically more efficient), dictating that active adversaries may learn the output while preventing the
honest parties to do so, but are not able to learn any information besides the output about these
parties’ inputs. Generally, constructing actively secure computation protocols is more difficult than
constructing passively secure ones, since extra checks are required to detect potentially malicious
behavior. A common approach for active security over fields is using IT-MACs [CGH+18a], which
typically increases communication of the underlying passive protocol by at least 2×. Distributed
product checks [GSZ20, BGIN19, BGIN20] on the other hand have been recently developed as an
appealing alternative that, asymptotically, incurs no extra cost with respect to passive security.

Unfortunately, these techniques do not work well when computations are conducted over rings like
Z2k , which arises from the fact that these structures have undesirable properties such as existence of
non-zero zero divisors or lack of invertibility, and thus further disable polynomial interpolation, the
Schwartz-Zippel lemma, and other essential tools. In fact, even Shamir secret sharing with passive
security over Z2k turns out to be challenging [ACD+19], as it highly relies on polynomial interpolation
operations. Other secret sharing schemes, such as RSS, are more suitable for Z2k , and this is the
scheme we focus on in our work. We note that the share size of RSS grows exponentially with the
number of parties n, and hence our work is mostly suitable for small n, and in particular we target the
relevant case of 3-party computation with 1 actively corrupted party (which is the minimum number of
parties for honest majority). We remark that, however, our techniques naturally extend to the general
case of n parties and can potentially be used when n is a small constant (in fact, our presentation is
for the n-party case, while we focus our experiments on n = 3).

Given that achieving active security over Z2k is not an easy task, it has become the topic of study of
multiple works [ACD+19, ADEN21, BGIN19, BGIN20]. The core techniques used in these works can
be roughly divided into two. One is the “SPDZ2k trick” [ADEN21, OSV20, CRFG20, CDE+18], which
adapts MACs to work over Z2k by making use of a larger ring Z2k+s , where s is roughly the security
parameter. While being lightweight in terms of computation, the SPDZ2k trick incurs ≥ 2× overheads
in communication. The second approach is to use a Galois ring extension of Z2k , which is a ring of
the form Z2k [X]/(f(X)), where f(X) is a degree-d monic polynomial over Z2k that is irreducible when
taken modulo 2. As observed initially in [ACD+19], Galois ring extensions serve as a fundamental tool
for Z2k -based MPC, because of the following reasons: (1) Z2k can be embedded in these rings, and (2)
they behave in almost the same way as the field GF(2d), which enables translating most field-based
techniques to the ring case [EXY22, BBCG+19, BGIN19, PS20, KKPRG22, KPPS21]. Given these
properties, Galois ring extensions have been used to adapt sublinear distributed product checks to
Z2k [BBCG+19, BGIN19], with the intent of reducing the passive-to-overhead to ≈ 1×, asymptotically.
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In fact, it is only through Galois rings that such checks over Z2k are known.
Unfortunately, Galois rings, albeit convenient and elegant, add several concrete overheads in terms

of communication and computation. A Galois ring element is a polynomial of degree < d with coeffi-
cients in Z2k , and hence it is d times larger than a single element of Z2k . As a result, representing an
element of Z2k as an element in the Galois ring brings an overhead of d, which depending on the ap-
plication at hand can be as large as the statistical security parameter.1 Even more critically, the main
practical drawback of Galois rings is that computation over these rings, even for a moderately large
degree, is fairly expensive. Libraries such as ZEN2 or NTL3, which to the best of our knowledge can
be considered the state-of-the-art for Galois ring computations, are experimentally shown in [DEK21,
Section 5]—and also in our work—to be insufficient for practical MPC.

This leads to a very unfortunate situation: Sublinear distributed product checks over Z2k using
Galois rings allow a transition from passive to active security essentially for free in communication
(asymptotically in |C|). The computation overhead and its concrete communication, however, are too
large to be practical. On the other hand, the SPDZ2k-based approach, while being computationally
efficient, brings at least 2× overhead in communication. This sets the stage for the question:

Can we obtain concretely efficient sublinear distributed product checks over Z2k without
making use of Galois rings? That is, can we obtain actively secure honest majority protocols
over Z2k that (1) add no communication overhead (asymptotically) with respect to passive
security and (2) achieve comparable concrete efficiency with protocols based on SPDZ2k
trick?

1.1 Our Contribution
In this work, we address the aforementioned question by making the following contributions:

Contribution 1. We design a novel sublinear distributed product check protocol which entirely
avoids ring extensions and works natively over a ring of the form Z2ℓ . Our techniques are specifically
tailored to the RSS scheme in the honest-majority setting, which is the preferred method for a small
number of parties [BGIN19, BGIN20, PS20, KKPRG22, KPPS21, HKK+23]. It is much cheaper in
computation than the ring-extension-based verification protocols used in [BGIN19, BGIN20, PS20,
KKPRG22, KPPS21], and meanwhile only incurs sublinear communication cost, and thus have the
same amortized asympotical communication complexity as the underlying passively secure protocol.

Contribution 2. We fully implement our protocol in the MP-SPDZ framework [Kel20] and bench-
mark its efficiency in the three-party case, upon the state-of-the-art RSS-based passively secure proto-
col [AFL+16]. We also implement in the same framework the ring extension-based sublinear distributed
product check protocol from [BGIN19]. Experiment results show that in the LAN (and WAN) set-
ting, our protocol achieves up to 44.2× (and 9.7× resp.) speedup than [BGIN19], with 1.22× more
lightweight communication cost.

Our checks can be used for concretely efficient passive-to-active MPC compilation over Z2k , and we
describe in Section C an MPC protocol that uses our checks for security with abort, and extend it to
GOD in Section F. As we mentioned, for n = 3 our protocol drastically improves both in communication
and computation over [BGIN19], and makes sublinear checks over Z2k concretely practical. We report
extensive experimental results in this setting, and we have made our MP-SPDZ source code available,4
including the implementation of our protocol and that of [BGIN19], which has not been implemented
to the best of our knowledge. Finally, distributed checks on RSS-shared multiplication triples is a core

1Works like [EXY22] have made use of reverse multiplication-friendly embeddings (RMFEs) to reduce the overhead
of this large size from d to a constant > 2. However, these techniques are mostly of theoretical interest at the moment.

2https://zenfact.sourceforge.net/
3https://libntl.org/
4https://github.com/AntCPLab/malicious_3pc_arithmetic
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primitive that has been used (with expensive Galois ring extensions) in several actively secure protocols
over Z2k [BGIN19, BGIN20, PS20, KKPRG22, KPPS21, HKK+23], for n = 3 and other small values
of n too. Our efficient verification can be used as a drop-in replacement to improve the performance
of these works and bring them closer to practical MPC, without any trade-offs or downsides.

Our result is obtained by a novel use of the SPDZ2k trick in the context of sublinear distributed
product checks. Compared to Galois rings, the SPDZ2k trick is much more efficient both in terms
of computation and representing ring elements: it only requires working over the ring Z2k+s where
s is roughly the statistical security parameter, which for k ≈ s is only about twice the size as Z2k

(whereas the element size of a Galois ring would be O(k ·s)), and furthermore computing over this ring
is quite efficient as it is simple arithmetic modulo a power of two (instead of large-degree polynomials
over these rings). Sadly, the SPDZ2k trick is far less flexible and way less algebraically elegant than
using Galois rings: it is only useful for enabling a one-degree version of Schwartz-Zippel lemma (which
is limited but is already handy, e.g., for enabling MACs [CDE+18]), and it does not enable things
like polynomial interpolation or general Schwartz-Zippel. Unfortunately, these properties are essential
in the design of all existing sublinear distributed product checks [BBCG+19, BGIN20, BGIN19]. In
other words: it is not known how to obtain any form of sublinear checks without relying on polynomial
interpolation, which over Z2k requires Galois rings.

Our main conceptual contribution lies in providing an alternative to the recursion tricks used in
existing sublinear distributed product checks, without using polynomial interpolation. Instead, we
leverage the SPDZ2k trick, avoiding expensive Galois ring extensions altogether. This turns out to be
highly non-trivial given that all existing distributed checks use polynomial interpolation, and as we
mentioned earlier the SPDZ2k trick is not that flexible nor “algebraically-friendly”. We believe our
ideas can be used in other contexts where sublinearity is required but standard techniques such as
polynomial interpolation are expensive.

Outline of the Document. In Section 2 we introduce some preliminaries. In Section 3 we show how
the task of distributedly checking a set of secret-shared products reduces to a series of checks where
there is a single prover who knows the underlying secrets. This is important since our final check, as in
prior works, relies on the existence of such party who can assist in the verification. Section 4 presents
our main construction, which is a distributed check protocol for the single-prover setting, avoiding
Galois ring extensions. Section 5 contains the soundness analysis of the protocol together with some
optimizations, and finally we discuss in Section 6 our implementation and the experimental results.
We refer the readers to Section H for more discussion about related works.

2 Preliminaries
2.1 Basic Notation
Let P = {P1, . . . , Pn} be a set of n parties, and t a threshold s.t. n = 2t + 1. We denote by [n]
the set {1, · · · , n}. We use Z2k for the ring modulo 2k, and sometimes use ≡k to explicitly represent
congruence modulo 2k. We use bold letters to denote vectors of values. Let κ be the statistical security
parameter, and σ the computational security parameter. We use PRGK for pseudo-random generators
with a key K ∈ {0, 1}σ to generate randomness, where the target domain will be clear from context.

For positive integers k, s, we define a function Po2 : Z2k+s → {0, 1, . . . , k + s} that maps a given
input to the number of 2-factors in its prime decomposition: Po2(0) = k+s, and for all x ∈ Z2k+s \{0},
Po2(x) is the largest ℓ s.t. 2ℓ divides x.

2.2 Security Model
In this work, we focus on multi-party setting in an honest majority against a malicious adversary
controlling up to t = (n−1)/2 corrupted parties. We assume that every two of the parties are connected
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via a secure (private and authentic) synchronous channel. We focus on security with (selective) abort,
where the adversary can instruct all functionalities to send an abort signal to (some of) the parties,
which then halt. We use the client-server model, and only consider the case where the adversary
controls exactly t = (n− 1)/2 parties (see Section B for more details).

2.3 Replicated Secret Sharing
A t-out-of-n replicated secret sharing (RSS) scheme [ISN89, BGIN20] in the setting of n = 2t + 1
consists of the following two procedures:

• share(x,D): This procedure allows a dealer D to distribute a secret x to the parties, and each
party gets a sharing of the secret x. Specifically, to share a secret x, the dealer samples random
additive share xT for every set T ⊆ P with |T | = t+ 1, that is, x =

∑
T⊂P:|T |=t+1 xT . Then for

each share xT , the dealer hands it to the parties in T .

• reconstruct([[x]], D): This procedure allows the parties to reveal the secret x to the party D. To
do this, for each T ⊆ P with |T | = t+ 1 and D ̸∈ T ,5 one party in T (say, the one with smallest
index) sends its share xT to D. Then each party sends a hash of his share of [[x]] to D. After
receiving these messages from all parties, D checks the consistency of the hashes for [[x]]. If
any inconsistency is detected, it aborts the procedure; otherwise it reconstructs the secret x by
computing x =

∑
T⊂P:|T |=t+1 xT .

To reconstruct N secrets each party must receive
(
n−1
t+1

)
·N missing shares in total, which corre-

sponds to the number of sets of size t+1 that this party does not belong to, and also n− 1 hash
digests.

Below we use [[·]]k to denote the RSS scheme over Z2k . When k is clear from context or talking
about general cases, we simply write [[x]]. For a vector x, we use [[x]] (w.r.t. [[x]]k) to denote a vector
of replicated secret sharings, one for each value in x.

RSS satisfies several useful properties we will make use of throughout our work. We list them
below, and refer the reader to Section A for details.

• Pairwise Consistency. It is possible for the parties to check that they receive consistent shares,
meaning each party in a set T receives the same term xT .

• Linear Operations. It is possible to perform affine operations on secret-shared data locally. For
adding a public value, only a set of parties T0 of size t+ 1 needs to know the value.

• Local Multiplication. It is possible to locally multiply two sharings [[x]]k, [[y]]k to obtain additive
shares of the product ⟨x · y⟩.

• Local conversion. Given a sharing [[x]], the parties can locally obtain sharings [[xS ]] for every
S ⊆ P with |S| = t+ 1.

• Modulo reduction. For a secret sharing [[x]]k+s where x ∈ Z2k+s where s is a positive integer, the
parties can locally obtain [[x mod 2k]]k.

2.4 Some Ideal Functionalities
As in [BGIN19], we assume instantiations for some functionalities in order to sample shares of random
values, sample public coins, and also distribute shared inputs. The functionalities are described at a
high level below. For instantiations we refer the reader to Section C.1 in the Supplementary Material.

• Frand: This functionality samples a random r ∈ Z2k , and distributes a sharing [[r]]. This can be
instantiated with the help of a shared key setup and a PRG non-interactively.

5In particular, D could be a client and in this case D /∈ T for every set T .
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• Fcoin: This functionality samples a random r ∈ Z2k , and distributes the public value r.

• Finput: Here, a party Pi provides as input a value x ∈ Z2k , and the functionality distributes
shares [[x]] to the parties.

2.5 Actively Secure MPC from Product Verification.
Using the RSS (or in fact, any linear secret sharing) scheme, a general template to design an MPC
protocol for a given arithmetic circuit is to (1) distribute shares of the inputs, (2) use linearity to handle
addition gates, (3) use some actively secure multiplication protocol to handle multiplication gates, and
(4) reconstruct the output at the end of the computation. As in [BGIN20], we consider an instantiation
of the multiplication by first using any passively secure multiplication protocol that preserves privacy
under the presence of a malicious adversary, followed by a sublinear check that ensures that all the
products were executed correctly, while involving a communication that is sublinear in the number of
multiplication gates. We describe these different components below.

Passive Multiplication Functionality. We let Fmult be a functionality that takes as input consis-
tent sharings [[x]], [[y]], and outputs consistent sharings [[x · y+ ϵ]], where ϵ is some additive error chosen
by the adversary. This can be instantiated in multiple ways, and our techniques are agnostic to the
underlying implementation. We discuss multiple instantiations in Section C.2 of Appendix.

Claim 2.5.1 (On inner products). It is common for many applications (such as these in the context of
machine learning) to make use of inner products. Instantiations of Fmult such as the ones mentioned
in Section C.2 can be easily generalized to handle inner products [[x ·y]]← [[x]] · [[y]] involving the same
communication as a single multiplication. Our verification techniques accommodate for this case, and
we present them in this more general setting.

Inner-Product Checking Functionality. We let FVrfySSIP
6 be a functionality that, on input a

series of secret-shared inner products {([[ai]]k, [[bi]]k, [[ci]]k)}mi=1, and indicates the parties whether the
inner products are correct or not. A more detailed description is given in Section 3.1.

3 Reducing Distributed Prover to Single Prover Checks
The ability to check secret-shared inner-products {([[ai]]k, [[bi]]k, [[ci]]k)}mi=1 lies at the core of the MPC
protocol described in Section C, and it is the central component that enables compiling passive-to-active
security with only sublinear — in fact logarithmic — communication overhead. We can interpret this
as a proof that these tuples lie in a given language (i.e. the language of correct inner-products), where
the input is distributed (i.e. secret-shared) among multiple provers (i.e., the distributed-prover case).

It turns out that having a single prover who knows the underlying secrets (i.e., the single-prover
case) greatly helps in designing an efficient instantiation, and the bulk of our work will focus on
this particular scenario. In this section, we show that a verification protocol for the single-prover
case can be used to design a verification protocol for the distributed-prover case. First, we define in
Section 3.1 the corresponding functionalities: FVrfySSIP for the distributed-prover case, and FVrfyIP
for the single-prover scenario. Then, in Section 3.3 we provide the concrete instantiation of FVrfySSIP
in the FVrfyIP-Hybrid Model (other functionalities like Fcoin are used in this instantiation, as we will
see).

6This stands for verify secret-shared inner products.
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FUNCTIONALITY 3.1.1. (FVrfySSIP - Verifying Secret-Shared Inner-Product Triples).

Let S be the ideal world adversary.

1. FVrfySSIP receives m from all parties. Then for all i ∈ [m], FVrfySSIP receives honest parties’
shares of ([[ai]]k, [[bi]]k, [[ci]]k). For each replicated secret sharing, FVrfySSIP checks whether
honest parties’ shares satisfy pairwise consistency. If not, FVrfySSIP sends honest parties’
shares to S. Then for each honest party, FVrfyIP receives an output from S and passes it to
the honest party as the output of the functionality. (In this case, we essentially give up the
security of honest parties.)

2. Otherwise, FVrfySSIP reconstructs the whole sharings ([[ai]]k, [[bi]]k, [[ci]]k) for all i ∈ [m], and
sends the shares of corrupted parties to S. In addition, FVrfySSIP computes
ϵi ≡k ci − ai · bi and sends ϵi to S.

3. FVrfySSIP checks if the equation ci ≡k ai · bi holds for all i ∈ [m].

• If it doesn’t hold for some i ∈ [m], FVrfySSIP sends abort to all honest parties and S.
• Otherwise, FVrfySSIP receives a command out ∈ {accept, abort} from S and sends out

to all honest parties.

3.1 Functionalities for Inner-Product Verification
3.1.1 Distributed Prover.

First, we formalize FVrfySSIP as Functionality 3.1.1, which corresponds to the functionality that checks
for the correctness of the inner-products in the case where the underlying secrets are not necessarily
known to any particular party. We assume these m triples are computed by an inner-product protocol
that is secure up to additive attacks (see Section C.2) and thus revealing the additive error of each
inner-product triple to the ideal adversary is allowed. We also assume that for each replicated secret
sharing, the shares of honest parties satisfy the pairwise consistency (See Section A).

3.1.2 Single Prover.

Recall that our goal is to instantiate FVrfySSIP by first reducing it to a check in which the underlying
secrets are known to a particular party. The corresponding functionality, which we denote by FVrfyIP,
appears formally as Functionality 3.2.1. Here, as in FVrfySSIP, we also assume that the shares of honest
parties satisfy the pairwise consistency (See Section A).

3.2 Recap of the Approach in [BGIN20]
In order to instantiate the distributed-prover check FVrfySSIP based on the single-prover one FVrfySSIP,
we follow a similar approach as in [BGIN20]. Consider m secret-shared inner-products (of potentially
different dimensions) {([[ai]]k, [[bi]]k, [[ci]]k)}mi=1, where |ai| = |bi| = δi, [[ai]]k = ([[ai,1]]k, . . . , [[ai,δi ]]k),
[[bi]]k = ([[bi,1]]k, . . . , [[bi,δi ]]k). Our goal is to verify that for all i ∈ [m], ci ≡k ai · bi ≡k

∑δi
j=1 ai,j · bi,j .

In [BGIN20], this is approached by first letting all parties compute a random linear combination of all
inner-product triples so that the verification task is reduced to verifying a single inner-product triple
([[a]], [[b]], [[c]]) of dimension δ =

∑m
i=1 δi. Then by the property of the replicated secret sharing scheme,

all parties can locally compute an additive sharing ⟨c⟩ := ⟨a · b⟩ = [[a]] · [[b]] (see Section A). Now, each
party Pj distributes replicated shares of his/her additive share c(j), as [[c(j)]]. Then all parties check
that

1. Each party Pj correctly computes and shares [[c(j)]].
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FUNCTIONALITY 3.2.1. (FVrfyIP - Verifying Secret-Shared Inner-Product Triples Known by
A Single Party).

Let S be the ideal world adversary.

1. FVrfyIP receives the prover’s identity j, a parameter p, and honest parties’ shares of
{([[µi]]k, [[νi]]k, [[wi]]k)}

p
i=1. For each replicated secret sharing, FVrfyIP checks whether honest

parties’ shares satisfy pairwise consistency. If not, FVrfyIP sends the identity j and honest
parties’ shares to S. Then for each honest party, FVrfyIP receives an output from S and
passes it to the honest party as the output of the functionality. (In this case, we essentially
give up the security of honest parties.)

2. Otherwise, FVrfyIP reconstructs the whole sharings ([[µi]]k, [[νi]]k, [[wi]]k) for all i ∈ [p], and
sends the identity j and the shares of corrupted parties to S. In addition, if Pj is
corrupted, FVrfyIP also sends the whole sharings {([[µi]]k, [[νi]]k, [[wi]]k)}

p
i=1 to S.

3. FVrfyIP checks if wi ≡k µi · νi holds for all i ∈ [p].

• If it doesn’t hold for some i ∈ [p], FVrfyIP sends abort to all honest parties and S.
• Otherwise, FVrfyIP receives a command out ∈ {accept, abort} from S and sends out to

all honest parties.

2. The secret of [[c]] is identical to the secret of
∑n

j=1[[c
(j)]].

However, this approach only works over a large enough ring extension (or a large enough finite
field), and does not work over the ring Z2k . When we work over a (large enough) ring extension, a
random linear combination of all inner-product triples satisfies that if one of the inner-product triples
is incorrect, then the resulting inner-product triple is also incorrect with overwhelming probability (to
be more concrete, the failure probability is roughly the inverse of the so-called Lenstra constant of the
ring extension). Thus, checking the resulting inner-product triple is sufficient. However, recall that
the main goal in our work is to operate over the ring Z2k directly, and if we attempt to follow the
template in [BGIN20] in this case, the failure probability can be as large as 1/2: consider an example
where there is a single inner-product triple with additive error ϵ = 2k−1. Then as long as the random
coefficient is a multiple of 2, the additive error will vanish in the resulting triple.

3.3 Instantiating FVrfySSIP in the FVrfyIP-Hybrid Model
Our idea is to boost the 1/2 soundness that stems from using Z2k by repeating the approach above κ
times. This ensures that, if one of the m inner-product triples is incorrect, then one of the κ resulting
inner-product triples is also incorrect with probability 1 − 2−κ. We note that it is sufficient to use
random coefficients over Z2 rather than Z2k to achieve the same effect.7 The idea of using random
bits as coefficients is also used in several previous works such as [KPRS22]. To generate the random
coefficients, we let all parties jointly sample a random PRG seed which is expanded locally by each
party.

After reducing the original verification task to the one of verifying κ inner-product triples {([[a′
i]]k,

7It is important to note that, computationally, using ring extensions is not substantially different than taking multiple
linear combinations. Using finite fields as an example: taking a linear combination of values over F2 using coefficients
over F2κ is the same as taking κ linear combinations over F2. We use bits for the linear combination but a similar
optimization can be done over the ring extension. However, the main benefit of writing such computation directly over
Z2k is that subsequent computations—in particular our instantiation of FVrfyIP—can be designed entirely over Z2k

instead of a computationally expensive extension.
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PROTOCOL 3.3.1. (ΠVrfySSIP - Verifying Secret-Shared Inner-Product Triples).

1. All parties agree on a PRG G with seed length σ.

2. All parties invoke Fcoin to generate a random seed of size σ. All parties locally expand the
seed and obtain random binary coefficients γ1, . . . ,γκ ∈ {0, 1}m.

3. For all i ∈ [κ], all parties set

[[a′
i]]k = (γi,1 · [[a1]]k, . . . , γi,m · [[am]]k),

[[b′i]]k = ([[b1]]k, . . . , [[bm]]k),

[[c′i]]k =

m∑
j=1

γi,j · [[cj ]]k.

4. For all i ∈ [κ], all parties locally compute an additive sharing ⟨c′i⟩k =

(c′
(1)
i , . . . , c′

(n)
i ) = [[a′

i]]k · [[b′i]]k. Each party Pj uses Finput to share c′
(j)
i .

5. Checking Correctness of Computation: For each party Pj and for all i ∈ [κ], let µ
(j)
i

and ν
(j)
i be vectors deduced from the j-th shares of [[a′

i]]k and [[b′i]]k respectively s.t.
c
′(j)
i = µ

(j)
i · ν

(j)
i . All parties locally convert [[a′

i]]k and [[b′i]]k to [[µ
(j)
i ]]k and [[ν

(j)
i ]]k. All

parties invoke FVrfyIP with input (j, κ, {([[µ(j)
i ]]k, [[ν

(j)
i ]]k, [[c

′(j)
i ]]k)}κi=1).

6. Checking Zero: For all i ∈ [κ], all parties locally compute [[oi]]k = [[c′i]]k −
∑n

j=1[[c
′(j)
i ]]k.

Then all parties reconstruct the secret oi using the procedure reconstruct([[oi]]k, Pj) for
j ∈ [n].

7. If FVrfyIP returns abort or there exists i ∈ [κ] s.t. oi ̸≡k 0, all parties abort, otherwise
output accept.

[[b′i]]k, [[c
′
i]]k)}κi=1, all parties locally compute an additive sharing

⟨c′i⟩k = (c′
(1)
i , . . . , c′

(n)
i ) = [[a′

i]]k · [[b
′
i]]k (1)

for all i ∈ [κ]. Then each party Pj shares his/her additive share c′
(j)
i as [[c′

(j)
i ]]k, for each i ∈ [κ]. We

will check that

1. For all i ∈ [κ], each party Pj correctly computes and shares their additive share [[c′
(j)
i ]]k.

2. For all i ∈ [κ], the secret of [[c′i]]k is identical to the secret of
∑n

j=1[[c
′(j)
i ]]k.

For the first task, as noted in [BGIN20], c′
(j)
i can be computed as an inner product of the j-th

shares of [[a′
i]]k, [[b

′
i]]k. Also, all parties can locally convert [[a′

i]]k, [[b
′
i]]k to replicated secret sharings of

the j-th shares of [[a′
i]]k, [[b

′
i]]k. At this point, we can make use of the functionality FVrfyIP (described

in Functionality 3.2.1), which allows a single prover to prove the correctness of κ inner-product triples
that are shared all parties. For the second task, for each i ∈ [κ], we simply compute [[oi]]k = [[c′i]]k −∑n

j=1[[c
′(j)
i ]]k and reconstruct oi to check whether oi ≡k 0. We summarize these ideas in protocol

ΠVrfySSIP (Protocol 3.3.1).

Lemma 3.3.1. Let κ be the statistical security parameter and σ be the computational security parame-
ter. Assume that G is a pseudorandom generator. The protocol ΠVrfySSIP securely computes FVrfySSIP
with abort in the {Fcoin,Finput,FVrfyIP}-hybrid model against a malicious adversary controlling t = n−1

2
corrupted parties.
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The proof of Lemma 3.3.1 is given in Section G.4.

4 Instantiating FVrfyIP – Verifying Inner-Product Triples with
a Single Prover

We focus now on the task of instantiating FVrfyIP, which takes as input a series of secret-shared inner-
product triples {([[µi]]k, [[νi]]k, [[wi]]k)}

p
i=1 each of dimension d, and outputs if all the tuples are correct.

Here, unlike FVrfySSIP, there is a single prover Pj who knows all the shares. As we have discussed in
Section 3, Protocol ΠVrfySSIP from Section 3 allows us to reduce the task of verifying multiple secret-
shared inner-product triples {([[ai]]k, [[bi]]k, [[ci]]k)}mi=1 having a total amount of δ ≥ m products, where
the underlying secrets are not known by any party (which is precisely the setting that appears when
verifying passive MPC computations), to n instances of FVrfyIP with p = κ and d = δ ·

(
n−1
t

)2.
In this section, we show how to realize FVrfyIP without using any ring extension, by only making

use of direct operations over a ring of the form Z2k , and gaining substantial benefits in practice.
We will provide a detailed overview of our techniques in what follows before presenting the formal
protocols, but in a few sentences, it is worth mentioning that our ideas are achieved by replacing
the interpolation-based recursive proofs in [BGIN20, BBCG+19, BGIN19], which require large-degree
extensions, by a different recursion approach that still achieves sublinearity without making use of
polynomial interpolation. Moving away from the traditional checks using interpolation incurs in a
small communication loss due to lack of good properties such as the maximum-distance separability
and low dimension of square code, attainable by Reed Solomon codes. However, the cost incurred by
ring extensions turns out to be higher, both computationally and also in terms of communication.

We note that for our recursion, we rely on taking linear combinations à la SPDZ2k: we use rings
of the form Z2k+s to ensure soundness somewhat proportional to 2−s. We point out that our work is
the first in considering the bridge between more “coding theory” techniques, such as the one used for
distributed zero-knowledge proofs, and more “number theory” tools such as the SPDZ2k trick.

4.1 Construction of Our Verification Protocol
Protocol Overview Let {([[µi]]k, [[νi]]k, [[wi]]k)}

p
i=1 be the set of p tuples to be verified by FVrfyIP,

where each vector has dimension d. Let Pj be the prover, who knows the underlying shares. At a very
high level, our verification protocol works as follows. First, we lift each of p input inner-product triples
we want to verify from Z2k to Z2k+s for a large enough s such that if the input inner-product triple is
incorrect, then after lifting it to Z2k+s , the new triple is still incorrect when modulo 2k. Recall that for
the input inner-product triple, the additive error can be as large as 2k−1. Then when we multiply a
random coefficient on both sides of the relation, the error will vanish when modular 2k if the coefficient
is even, which happens with probability 1/2. On the other hand, when working over the ring Z2k+s ,
the error will vanish only if the coefficient is a multiple of 2s, which happens with probability 2−s.8

In the second step, we compute a random linear combination of the p inner-product triples after
lifting so that the task is reduced to verifying a single inner-product triple. As we mentioned above,
if there is an incorrect inner-product triple, then the resulting inner-product triple is still incorrect
(when modulo 2k+s) with overwhelming probability. Recall that d denotes the dimension of each input
inner-product triple of ΠVrfyIP. Then the dimension of the inner-product triple obtained in Step 2 is
p ·d. In the third step, we try to adapt the recursion trick in [BGIN20]. Concretely, we want to reduce
the dimension of the inner-product triple we need to verify by a factor of λ (for some parameter λ)
each round. Then after logλ(pd) rounds, the task is reduced to verifying a single multiplication triple,
which can be done efficiently.

8The idea of using additional s bits was introduced in [CDE+18], and it has been used in subsequent works such
as [ACD+19, CKL21, CRFG20, OSV20]. As we will see, however, the security analysis in our case is much more involved
than in these previous works, partly stemming from the fact that we use this idea recursively.
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However, the approach in [BGIN20] heavily relies on the property of finite fields (or ring extensions).
In particular,

• In each round, the dimension reduction is achieved relying on techniques related to polynomials.
However, polynomial interpolation does not work over the ring Z2k+s .

• A key lemma required in [BGIN20] is that if the inner-product triple is incorrect at the beginning
of Round i, then after reducing the dimension in this round, the new inner-product triple (whose
dimension is reduced by λ) is still incorrect with overwhelming probability. This lemma again
relies on the property of finite fields (or ring extensions) and does not hold over the ring Z2k+s .

In the following, we will show how we tackle these issues while keeping the communication cost to
be sublinear in the size of the input inner-product triples. Let s ∈ N be an integer. As we will see
later, s will be determined by the security parameter κ. In the following, we will measure the additive
error ϵ of an inner-product triple by using Po2(ϵ) (defined in Section 2).

4.1.1 Step 1: Lifting Inner-Product Triples to Z2k+s .

In the first step, our main observation is that a replicated secret sharing [[x]]k over Z2k can be naturally
viewed as a replicated secret sharing [[x′]]k+s over Z2k+s , where x′ ∈ Z2k+s is such that x′ ≡k x. Recall
that [[x]]k is defined by {xT }T⊂P,|T |=t+1 and x ≡k

∑
T⊂P,|T |=t+1 xT . Let x′ ≡k+s

∑
T⊂P,|T |=t+1 xT .

Thus the same set of shares defines a replicated secret sharing [[x′]]k+s. In particular, we have x′ ≡k x.
Now, for each i ∈ [p], all parties view ([[µi]]k, [[νi]]k, [[wi]]k) as replicated secret sharings over Z2k+s :

([[µ′
i]]k+s, [[ν

′
i]]k+s, [[w

′
i]]k+s). Note that after lifting to Z2k+s , the inner-product triple may not be correct

anymore. However, here we make the following crucial observation: the prover party Pj can compute
µ′

i,ν
′
i, w

′
i since this party knows the whole sharings ([[µi]]k, [[νi]]k, [[wi]]k) in the clear. This allows Pj

to “correct” the inner-products so that they are correct modulo 2k+s. More precisely:

1. Pj computes hi ≡k+s µ′
i · ν ′

i − w′
i, which should be a multiple of 2k if Pj is honest.

2. Pj shares hi/2
k using Finput to all parties using the replicated secret sharing over Z2s . Then all

parties locally multiply their shares of [[hi/2
k]]s by 2k modulo 2k+s. In this way, all parties can

obtain a replicated secret sharing [[hi]]k+s such that hi is a multiple of 2k. A central observation
is that, since the parties are multiplying by 2k, a malicious prover cannot “correct” the lower-bit
error of the inner-product triple by secret-sharing an incorrect [[hi/2

k]]s.

3. All parties using [[hi]]k+s to correct the inner-product triple over Z2k+s by setting [[w̃′
i]]k+s :=

[[w′
i]]k+s + [[hi]]k+s.

Note that if the prover Pj is an honest party, then ([[µ′
i]]k+s, [[ν

′
i]]k+s, [[w̃

′
i]]k+s) is a correct inner-

product triple over Z2k+s . On the other hand, if Pj is a corrupted party and ([[µi]]k, [[νi]]k, [[wi]]k)
is incorrect modulo 2k, then ([[µ′

i]]k+s, [[ν
′
i]]k+s, [[w̃

′
i]]k+s) is still incorrect not only modulo 2k+s, but

modulo 2k. In particular, w̃′
i − µ′

i · ν ′
i ≡k wi − µi · νi ̸≡k 0. This means that the additive error

ϵi := w̃′
i − µ′

i · ν ′
i satisfies that Po2(ϵi) ≤ k − 1.

4.1.2 Step 2: Merging into One Inner-Product Triple.

In the second step, we reduce the p inner-product triples over Z2k+s to a single inner-product triple
of dimension p · d. This is done by generating p random coefficients in Z2k+s then computing a linear
combination of the p triples with these random coefficients. Concretely,

1. All parties invoke Fcoin to prepare p random coefficients θ1, . . . , θp ∈ Z2k+s .

2. All parties turn to verify
∑p

i=1 θi ·µ′
i ·ν ′

i ≡k+s

∑p
i=1 θi · w̃′

i. To this end, all parties set [[x]]k+s =
(θ1 · [[µ′

1]]k+s, . . . , θp · [[µ′
p]]k+s), [[y]]k+s = ([[ν ′

1]]k+s, . . . , [[ν
′
p]]k+s) and [[z]]k+s =

∑p
i=1 θi · [[w̃′

i]]k+s.
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Note that if the prover party Pj is honest, then ([[x]]k+s, [[y]]k+s, [[z]]k+s) is a correct inner-product
triple over Z2k+s . On the other hand, if Pj is corrupted, let ϵi := w̃′

i − µ′
i · ν ′

i be the additive error of
the i-th inner-product triple. If there exists i⋆ such that Po2(ϵi⋆) ≤ k − 1, then with overwhelming
probability, ([[x]]k+s, [[y]]k+s, [[z]]k+s) is an incorrect inner-product triple over Z2k+s . In fact, we can
show an even stronger statement: With probability 1 − 2−κ, the additive error ϵ = z − x · y is not a
multiple of 2k+κ. In other words, with probability 1− 2−κ, Po2(ϵ) < k + κ.

4.1.3 Step 3: Reducing the Dimension of the Inner-Product Triple.

Besides using the larger ring Z2k+s , the techniques described so far carry a close resemblance with
previous sublinear distributed zero-knowledge proofs [BGIN20]. However, as we will see, the third
step is where we fundamentally deviate from the previous template. In this step, we try to reduce
the dimension of the inner-product triple ([[x]]k+s, [[y]]k+s, [[z]]k+s) obtained in Step 2 by a factor of
λ, where λ is a chosen parameter. Recall that d is the dimension of each input inner-product triple
([[µi]]k, [[νi]]k, [[wi]]k). Then the dimension of ([[x]]k+s, [[y]]k+s, [[z]]k+s) is d′ = pd. We first review how
the line of works [BBCG+19, BGIN19, BGIN20] achieves the dimension reduction.

Review of techniques in [BBCG+19, BGIN19, BGIN20] At a high level, the vectors x,y are
divided into λ sub-vectors of the same dimension d′/λ: x = (x1, . . . ,xλ) and y = (y1, . . . ,yλ). Then,
we define two vectors of degree-(λ − 1) polynomials f(·),h(·) such that f(i) = xi, g(i) = yi for all
i ∈ [λ], and we define a degree-(2λ − 2) polynomial h := f · g (i.e., the inner-product between f and
g).

Note that the prover Pj can compute f(·), g(·), h(·) in clear. Now we ask Pj to share h(i) for
i ∈ {2, . . . , 2λ−1}. Since we should have

∑λ
i=1 h(i) = z, all parties compute [[h(1)]] = [[z]]−

∑λ
i=2[[h(i)]].

At this stage, all parties can use {[[f(i)]]}λi=1 to compute replicated secret sharings of the coefficients
of f(·) via interpolation. Note that interpolation only involves linear operations. Similarly, all parties
can use {[[g(i)]]}λi=1 to compute replicated secret sharings of the coefficients of g(·) via interpolation.
And all parties can use {[[h(i)]]}2λ−1

i=1 to compute replicated secret sharings of the coefficients of h(·)
via interpolation.

Note that, if x · y ̸= z, since x · y =
∑λ

i=1 f(i) · g(i) and z =
∑λ

i=1 h(i), there exists i ∈ [λ] such
that f(i) · g(i) ̸= h(i). Thus, it is sufficient to test h = f · g.

When we work over a finite field or an extension ring, by the Schwartz–Zippel Lemma, it is sufficient
to test a random evaluation point r. Thus, all parties compute and verify ([[f(r)]], [[g(r)]], [[h(r)]]), which
is an inner-product triple of dimension d′/λ.

Adapting the above approach over Z2k+s . When we try to adapt the above approach over Z2k+s ,
we identify the following problems.

• First, over Z2k+s , we cannot do interpolation anymore. This makes the above reduction trick
unavailable over Z2k+s .

• Second, even if we can do interpolation, when checking the polynomial relation h = f · g, just
checking a random evaluation point is not sufficient anymore since the Schwartz–Zippel Lemma
no longer holds.

To address these two issues, we first ask the prover party Pj to compute zi,i′ = xi · yi′ for all
i, i′ ∈ [λ] and share those values to all parties using Finput. Then our idea is to check the following
inner-product relation of dimension d′/λ: (

∑λ
i=1 αi ·xi) · (

∑λ
i=1 βi ·yi) = z′, where αi, βi are random

coefficients over Z2k+s and z′ =
∑λ

i=1

∑λ
i′=1 αiβi′ · zi,i′ . Notice that, here, the prover is distributing

λ2 sharings instead of λ as in the standard approach using interpolation. In fact, we can view the
approach in [BBCG+19, BGIN19, BGIN20] as a special case where αi, βi are set to be proper Lagrange
coefficients, which in turn can be seen as encoding the vectors using a Reed-Solomon (RS) code, whose
product is again an RS code of twice the dimension. Later on, a symbol at a random index in these
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codewords will be sampled, and the low dimension of the square ensures that only a linear (in λ)
amount of extra elements are needed to reconstruct such symbol for the product. In contrast, we can
interpret our approach as using a “random code”, whose square code in general has squared dimension,
which is the source of the extra λ2 inputs required by the prover.

Let x′ =
∑λ

i=1 αi · xi and y′ =
∑λ

i=1 βi · yi. We want to argue that, if ([[x]]k+s, [[y]]k+s, [[z]]k+s) is
an incorrect inner-product triple, then after the dimension reduction, ([[x′]]k+s, [[y

′]]k+s, [[z
′]]k+s) is still

an incorrect inner-product triple.
Let ϵ := z − x · y, ϵi,i′ = zi,i′ − xi · yi′ for all i, i′ ∈ [λ], and ϵ′ = z′ − x′ · y′. Then we should have

(1) ϵ = ϵ1,1+ · · ·+ ϵλ,λ, and (2) ϵ′ =
∑λ

i=1

∑λ
i′=1 αiβi′ · ϵi,i′ =

∑λ
i′=1 βi′ · (

∑λ
i=1 αi · ϵi,i′). Now assume

that Po2(ϵ) < k + κ (Recall that this happens with probability 1 − 2−κ from the argument in Step
2). From the first condition, there exists i⋆ such that Po2(ϵi⋆,i⋆) < k + κ as well. From the second
condition, we may view that ϵ′ is computed by taking two random linear combinations:

• The first combination is to compute ϵ′i⋆ :=
∑λ

i=1 αiϵi,i⋆ .

• Let ϵ′i′ :=
∑λ

i=1 αiϵ
′
i,i′ for all i′ ̸= i⋆. Then the second combination is to compute ϵ′ =

∑λ
i′=1 βi′ ·

ϵ′i′ .

Following the same argument as that in Step 2, each random linear combination may increase the num-
ber of 2-factors in the additive error by less than κ with probability 1−2−κ. Thus, with overwhelming
probability, Po2(ϵ′i⋆) < Po2(ϵi⋆,i⋆) + κ < k + 2κ and Po2(ϵ′) < Po2(ϵ′i⋆) + κ < k + 3κ.

In summary, our approach of dimension reduction is as follows:

1. For all i, i′ ∈ [λ] and (i, i′) ̸= (1, 1), the prover Pj computes zi,i′ = xi · yi′ and shares zi,i′ to all
parties over Z2k+s . Then all parties compute [[z1,1]]k+s := [[z]]k+s −

∑λ
i=2 zi,i. This step is to

ensure the first condition holds, “by definition”.

2. All parties invoke Fcoin to randomly sample {αi}λi=1, {βi}λi=1 in Z2k+s .

3. All parties locally compute [[x′]]k+s =
∑λ

i=1 αi·[[xi]]k+s, [[y′]]k+s =
∑λ

i=1 βi·[[yi]]k+s and [[z′]]k+s =∑λ
i=1

∑λ
i′=1 αiβi′ · [[zi,i′ ]]k+s.

As we argued above, if the additive error ϵ of ([[x]]k+s, [[y]]k+s, [[z]]k+s) satisfies that Po2(ϵ) < k + κ,
then with overwhelming probability, the additive error ϵ′ of ([[x′]]k+s, [[y

′]]k+s, [[z]]
′
k+s) satisfies that

Po2(ϵ′) < k + 3κ. As we can see the number of 2-factors of the additive error in each iteration grows
by 2κ.

4.1.4 Step 4: Checking the Final Multiplication Triple.

By repeating Step 3 enough times, we finally end up checking a single multiplication triple. To simplify
the verification of the final multiplication triple, we borrow the idea from [BGIN20] by inserting a
random multiplication triple in the last iteration of the dimension reduction.

Concretely, in the last iteration, all parties hold an inner-product triple ([[x]]k+s, [[y]]k+s, [[z]]k+s)
of dimension λ. We first ask the prover Pj to share a random multiplication triple ([[x0]]k+s, [[y0]]k+s,
[[z0]]k+s) to all parties. This random triple will be used as a random mask so that the final multiplication
triple can be checked by directly reconstructing all three replicated secret sharings. To this end, we
modify the dimension reduction procedure as follows:

1. The prover party Pj randomly samples x0, y0 ∈ Z2k+s . Then Pj shares x0, y0 to all parties. These
are used to protect the privacy of Pj ’s secrets.

2. For all i, i′ ∈ {0, 1, . . . , λ} and (i, i′) ̸= (1, 1), Pj computes zi,i′ = xi · yi′ and shares zi,i′ to all
parties. All parties compute [[z1,1]]k+s by [[z1,1]]k+s := [[z]]k+s −

∑λ
i=2 zi,i. Note that Pj shares

z0,0 = x0 · y0 to all parties in this step.

13



3. All parties invoke Fcoin to randomly sample {αi}λi=1, {βi}λi=1 in Z2k+s . All parties set α0 = β0 = 1.

4. All parties locally compute [[x′]]k+s =
∑λ

i=0 αi ·[[xi]]k+s, [[y′]]k+s =
∑λ

i=0 βi ·[[yi]]k+s and [[z′]]k+s =∑λ
i=0

∑λ
i′=0 αiβi′ · [[zi,i′ ]]k+s.

5. All parties reconstruct [[x′]]k+s, [[y
′]]k+s, [[z

′]]k+s and check whether z′ ≡k+s x′ · y′. If not, all
parties abort.

Observe that when Pj is an honest party, x′, y′ are masked by x0, y0, and z′ = x′ · y′. Thus
([[x′]]k+s, [[y

′]]k+s, [[z
′]]k+s) is a random multiplication triple, which is safe to reconstruct. When Pj

is a corrupted party, following the same argument as that in Step 3, with overwhelming probability,
the number of 2-factors in the additive error of ([[x′]]k+s, [[y

′]]k+s, [[z
′]]k+s) grows by at most 2κ.

The full description of this protocol ΠVrfyIP is in Protocol 4.2.1.

4.2 Communication Cost
We analyze in detail the communication complexity of our protocol in Section E. This communication
depends quadratically in λ and logarithmically in the dimension of the inner products (but it is
independent of the amount of inner products), which results in sublinear communication in |C| in
the context of verifying MPC computations. Interestingly, the check in [BBCG+19, BGIN19] depends
linearly in λ, but it turns out we obtain better communication since we avoid large-degree Galois rings.
For κ = 40 and three parties, and taking λ = 4, verifying δ = 220 ≈ 1 million secret-shared products
with our protocol requires 142.7 kB, while using ring extensions this requires 636.1 kB, about 5× more
communication. For other parameter regimes of interest this factor tends to range between 3 and 5. We
remark that the main point of avoiding Galois rings is not saving in communication—which is mostly
a good side effect of our protocol—but reducing computation costs. As we will see in Section 6, our
improvement in communication fall short when compared to our advantages in terms of computation,
which are much more massive. Finally, we remark that we also measure communication experimentally
in Section 6.

5 Soundness Analysis of ΠVrfyIP and Optimizations
In this section, we give a tight soundness analysis of ΠVrfyIP and optimizations for general scenarios.
We give concrete optimizations that only work for 3-party computation in Section D.1 and discuss
other optimizations of postponing pair-wise consistency check, using PRG, and applying Fiat-Shamir
transformation in Section D.2.

5.1 Soundness Analysis of ΠVrfyIP

Recall that in ΠVrfyIP, when the prover party Pj is corrupted and at least one of the input inner-product
triples is incorrect, with overwhelming probability, the number of 2-factors in the additive error of the
inner-product triple obtained in Step 2 is bounded by k+κ. And in each iteration of Step 3 or Step 4,
the number of 2-factors in the additive error of the triple to be checked grows up by 2κ. Then to ensure
that the final additive error ϵ is not 0 when modulo 2k+s, we have to set k+s ≥ k+(2 logλ(p ·d)+1)κ,
indicating that s ≥ (2 logλ(p · d) + 1)κ. This is too large to be practical.

We note that our above analysis is very pessimistic: Each time of doing random linear combination,
we assume that the number of 2-factors of the additive error always grows up by κ (Note that each
dimension reduction step consists of doing two times of random linear combinations). To get a better
bound on s, we establish a connection between our protocol and the following game.
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PROTOCOL 4.2.1. (ΠVrfyIP -Verifying Inner-Product Triples with a Single Prover).

All parties hold {([[µi]]k, [[νi]]k, [[wi]]k)}
p
i=1 as input. The prover party Pj in addition learns the

whole sharings of {([[µi]]k, [[νi]]k, [[wi]]k)}
p
i=1. All parties agree on the parameters s and λ.

• Step 1: Lifting Inner-Product Triples to Z2k+s . For all i ∈ [p],

1. All parties view ([[µi]]k, [[νi]]k, [[wi]]k) as replicated secret sharings over Z2k+s :
([[µ′

i]]k+s, [[ν
′
i]]k+s, [[w

′
i]]k+s).

2. Pj computes hi ≡k+s µ′
i · ν ′

i − w′
i.

3. Pj calls Finput to distribute shares [[hi/2
k]]s. Then all parties locally multiply their

shares of [[hi/2
k]]s by 2k modulo 2k+s and obtain [[hi]]k+s.

4. All parties set [[w̃′
i]]k+s := [[w′

i]]k+s + [[hi]]k+s.

• Step 2: Merging into One Inner-Product Triple.

1. All parties invoke Fcoin to sample random coefficients θ1, . . . , θp ∈ Z2k+s .
2. All parties set [[x]]k+s = (θ1 · [[µ′

1]]k+s, . . . , θp · [[µ′
p]]k+s),

[[y]]k+s = ([[ν ′
1]]k+s, . . . , [[ν

′
p]]k+s), [[z]]k+s =

∑p
i=1 θi · [[w̃′

i]]k+s.

• Step 3: Reducing the Dimension of the Inner-Product Triple. All parties repeat
the following steps until the dimension of ([[x]]k+s, [[y]]k+s, [[z]]k+s) is at most λ.

1. For all i, i′ ∈ [λ] and (i, i′) ̸= (1, 1), the prover party Pj computes zi,i′ = xi · yi′ and
shares zi,i′ to all parties using Finput. Then all parties compute [[z1,1]]k+s by
[[z1,1]]k+s := [[z]]k+s −

∑λ
i=2 zi,i.

2. All parties invoke Fcoin to randomly sample {αi}λi=1, {βi}λi=1 in Z2k+s .
3. All parties locally set [[x′]]k+s =

∑λ
i=1 αi · [[xi]]k+s, [[y′]]k+s =

∑λ
i=1 βi · [[yi]]k+s and

[[z′]]k+s =
∑λ

i=1

∑λ
i′=1 αiβi′ · [[zi,i′ ]]k+s.

4. All parties redefine ([[x]]k+s, [[y]]k+s, [[z]]k+s) := ([[x′]]k+s, [[y
′]]k+s, [[z

′]]k+s).

• Step 4: Checking the Final Multiplication Triple. All parties hold
([[x]]k+s, [[y]]k+s, [[z]]k+s) of dimension at most λ.

1. The prover Pj randomly samples x0, y0 ∈ Z2k+s . Then Pj calls Finput to distribute
shares [[x0]]k+s, [[y0]]k+s to all parties.

2. For all i, i′ ∈ {0, 1, . . . , λ} and (i, i′) ̸= (1, 1), Pj computes zi,i′ = xi · yi′ and calls
Finput to distribute shares [[zi,i′ ]]k+s. Then all parties compute
[[z1,1]]k+s := [[z]]k+s −

∑λ
i=2 zi,i. Note that Pj shares z0,0 = x0 · y0 to all parties in this

step.
3. All parties invoke Fcoin to randomly sample {αi}λi=1, {βi}λi=1 in Z2k+s . All parties set

α0 = β0 = 1.
4. All parties locally set [[x′]]k+s =

∑λ
i=0 αi · [[xi]]k+s, [[y′]]k+s =

∑λ
i=0 βi · [[yi]]k+s and

[[z′]]k+s =
∑λ

i=0

∑λ
i′=0 αiβi′ · [[zi,i′ ]]k+s.

5. All parties recover [[x′]]k+s, [[y
′]]k+s, [[z

′]]k+s and check if z′ ≡k+s x′ · y′. If not, all
parties abort, otherwise output accept.
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Game(k, s, T ). Consider an interactive game between an adversary Ag and a challenger Cg. Recall
that for all x ∈ Z2k+s and x ̸= 0, we define Po2(x) to be the number of 2-factors in x, i.e., the largest
integer u s.t. 2u divides x, and Po2(x) := k + s if x = 0. Given the number of interactive rounds T ,
the game works as follows.

1. Ag, Cg initially have E0 = k − 1.

2. In each round i (1 ≤ i ≤ T ), Ag and Cg repeat the following:

(a) Ag chooses arbitrary ei, ci ∈ Z2k+s under the requirement that Po2(ei) ≤ Ei−1, and sends
the two values to Cg.

(b) Cg picks a uniformly random value ri ∈ Z2k+s and responds ri to Ag.
(c) Ag and Cg compute Ei = Po2(ri · ei + ci).

3. Ag wins if and only if in the last round T , ET = k + s.

We show that an adversary A of our protocol who has advantage p (of forcing honest parties accepting
incorrect inner-product triples) can be translated to some adversary Ag with the same advantage p
(of winning the above game) with T = 2 logλ(p · d) + 1. We give the explanation of the connection
between our protocol and the above game in Section G.1.

Main Lemma of Game(k, s, T ). The value of considering the game above is that, as it turns out,
we are able to bound its probability of success much more tightly. Towards this end, we obtain the
following lemma, which is proven in Section G.2. We note that Lemma 5.1.1 gives the tight upper
bound on the winning probability of Ag. See Section G.2 for Ag that matches this bound.

Lemma 5.1.1. Let k, s, T be positive integers. For any adversary Ag, the probability that Ag wins
Game(k, s, T ) is at most

∑T−1
j=0

(
s+j
s

)
· 1
2s+1+j .

In Section G.6.1, we show that when s = κ+ T (1/2 + log(5/2 + 3κ/T )) (assuming that T ≤ κ and
3T ≤ s), the winning probability of Ag is at most 2−κ. Thus, we have the following lemma. The proof
can be found in Section G.3.

Lemma 5.1.2. Let p, d, λ be positive integers and T = 2⌈logλ(p ·d)⌉+1. Assume that κ is the security
parameter and T ≤ κ. When s = max(3T, κ + T (1/2 + log(5/2 + 3κ/T ))), the protocol ΠVrfyIP
securely computes FVrfyIP with abort in the {Finput,Fcoin}-hybrid model against a malicious adversary
controlling t = n−1

2 corrupted parties and achieves soundness error 2−κ.

5.2 General Optimizations
Removing the Multiplicative Overhead of p in ΠVrfyIP. Recall that the input of ΠVrfyIP consists
of p inner-product triples {([[µi]]k, [[νi]]k, [[wi]]k)}

p
i=1 and each inner-product triple has dimension d.

Then in Step 2 of ΠVrfyIP, the merged inner-product triple ([[x]]k+s, [[y]]k+s, [[z]]k+s) has dimension
p · d. We show that the multiplicative overhead of p can be removed when considering how {([[µi]]k,
[[νi]]k, [[wi]]k)}

p
i=1 are obtained in ΠVrfySSIP.

Recall that ΠVrfyIP is invoked in ΠVrfySSIP to verify the correctness of each prover party Pj . In
particular,

• In ΠVrfySSIP, all parties transform {([[ai]]k, [[bi]]k, [[ci]]k)}mi=1 into κ inner-product triples {([[a′
i]]k,

[[b′i]]k, [[c
′
i]]k)}κi=1 by random subset sum.

• For each ([[a′
i]]k, [[b

′
i]]k, [[c

′
i]]k), all parties locally compute an additive sharing of ⟨c′i⟩k and each

party Pj shares his additive share c′
(j)
i using the replicated secret sharing scheme.
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• Each prover Pj needs to prove he correctly computes c′
(j)
i . Following Section A, this is trans-

formed to verifying κ inner-product triples where all the replicated secret sharings are known to
Pj . The verification task is handled by ΠVrfyIP.

Thus, we have p = κ and ([[µi]]k, [[νi]]k, [[wi]]k) is obtained from ([[a′
i]]k, [[b

′
i]]k, [[c

′
i]]k).

Note that in Step 2 of ΠVrfyIP, we compute a random linear combination of {([[µi]]k, [[νi]]k, [[wi]]k)}
p
i=1

after lifting to Z2k+s . Since

• µi·νi models the procedure of Pj computing his additive share of c′(j)i for triple ([[a′
i]]k, [[b

′
i]]k, [[c

′
i]]k),

• and ([[a′
i]]k, [[b

′
i]]k, [[c

′
i]]k) is a subset sum of {([[ai]]k,

[[bi]]k, [[ci]]k)}mi=1,

µi · νi corresponds to computing Pj ’s additive share of some subset sum of {ai · bi}mi=1. Thus, the
random linear combination of {µi · νi}κi=1 also corresponds to computing Pj ’s additive share of some
random linear combination of {ai · bi}mi=1. Thus, we may combine the like terms in Step 2 of ΠVrfyIP.
As a result, the dimension of the inner-product triple ([[x]]k+s, [[y]]k+s, [[z]]k+s) is reduced from κ ·d to d,
where d = δ·

(
n−1
t

)2 and δ is the amount of products (sum of the dimensions) of {([[ai]]k, [[bi]]k, [[ci]]k)}mi=1.

Further Boosting the Soundness of ΠVrfyIP. Although in Section 5.1, to achieve κ-bit security,
we have reduced the requirement on s from s = T · κ to s = κ + T (1/2 + log(5/2 + 3κ/T )), where
T = 2 logλ d+ 1 (considering the first optimization), this may still be too large to use in practice.

A natural idea is to repeat ΠVrfyIP by ℓ times so that we may choose to use a smaller s = κ/ℓ +
T (1/2 + log(5/2 + 3κ/(ℓ · T ))). However, this also means that the computation complexity grows up
by a factor of ℓ due to the repetition.

We note that the most computationally expensive steps in ΠVrfyIP are Step 1, Step 2, and Step 3.1
in the first iteration:

• In Step 1, the prover Pj computes hi for each triple. This step has computation complexity
O(p · d).

• In Step 2, all parties compute ([[x]]k+s, [[y]]k+s, [[z]]k+s) from p inner-product triple of dimension
d. This step has computation complexity O(p · d).

• In Step 3.1, the prover computes zi,i′ = xi · yi′ for all i, i′ ∈ [λ]. Since xi,yi′ have dimension
d/λ. This step has computation complexity O(λ2 · d/λ) = O(λ · d).

• The rest of steps have computation complexity O(d).

Thus, our idea is to keep the computationally expensive steps running once while repeating the rest of
the steps to boost the soundness. Concretely, we will repeat Step 3 and Step 4 in ΠVrfyIP by two times.
(Note that in the first iteration of Step 3, we only repeat the process of generating random challenges.
So Step 3.1 in the first iteration only runs once).

We denote the above optimized protocol by ΠOpt
VrfyIP. In Section G.6.2, we give the soundness

analysis of ΠOpt
VrfyIP, and additionally an estimation of s to achieve κ-bit security. When focusing on

the concrete case where κ = 40, it is sufficient to use s = 64 when T ≤ 21 (This is obtained by directly
computing the probability in Lemma G.5.1 rather than using the estimation in G.6.2). Note that
T = 21 means that logλ d can be as large as 10. When λ = 8, this allows us to check inner-product
triples of dimension d ≤ 810 = 230 in ΠVrfyIP.

Reusing Randomness in Different Batches. When the m inner-product triples we need to verify
in ΠVrfySSIP all have the same dimension. We may divide these m inner-product triples into batches of
size B. Then we check each batch of inner-product triples by using ΠVrfySSIP and run all invocations
of ΠVrfySSIP in parallel. In particular, we can use the same set of random values generated from Fcoin
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in all batches. Note that this will not make the soundness error worse because we may only focus
on the batch which is incorrect. So the soundness error remains the same as that when we check all
inner-product triples using one call of ΠVrfySSIP.

This optimization brings us two benefits. First, we can save the number of calls to Fcoin. Second,
in the second step of ΠVrfyIP where all parties compute ([[x]]k+s, [[y]]k+s, [[z]]k+s), we note that the
computation essentially computes coefficients that only depend on the random values generated in
Fcoin. By using the same set of random values, we only need to compute these coefficients once. On
the other hand, this optimization increases the communication complexity of the verification stage by
a factor of m/B. However, the overall communication complexity remains to be sub-linear in the input
size when B is large enough.

6 Experimental Results
Table 1: Comparison between the three-party passive protocol from [AFL+16] when compiled with
our approach, with BGIN19 [BGIN19], or without any compilation. We consider circuits of depth

10 with varying sizes.

Protocol # Mults 1 Thread 10 Threads Comm. (MB)LAN Time (s) WAN Time (s) LAN Time (s) WAN Time (s)

Ours

10K 0.0062 (×1) 1.13 (×1) 0.0064 (×1) 1.06 (×1) 0.28 (×1)
100K 0.029 (×1) 1.39 (×1) 0.014 (×1) 1.33 (×1) 2.75 (×1)
1M 0.26 (×1) 3.17 (×1) 0.093 (×1) 2.89 (×1) 27.44 (×1)
10M 2.82 (×1) 13.98 (×1) 0.95 (×1) 12.12 (×1) 244.05 (×1)

BGIN19

10K 0.11 (×17.7) 0.88 (×0.8) 0.11 (×17.2) 0.79 (×0.7) 0.33 (×1.18)
100K 1.09 (×37.6) 2.14 (×1.5) 0.45 (×32.1) 1.4 (×1.1) 3.34 (×1.21)
1M 11.29 (×43.4) 14.11 (×4.5) 4.35 (×46.8) 6.98 (×2.4) 33.42 (×1.22)
10M 121.16 (×43.0) 135.67 (×9.7) 42.26 (×44.5) 54.03 (×4.5) 251.43 (×1.03)

Passive

10K 0.0011 (×0.18) 0.45 (×0.40)

- -

0.24 (×0.85)
100K 0.0033 (×0.11) 0.67 (×0.48) 2.4 (×0.87)
1M 0.031 (×0.12) 2.16 (×0.68) 24 (×0.87)
10M 0.36 (×0.13) 11.87 (×0.85) 240 (×0.98)

We fully implement our verification protocol for the particular case of three-party computation,
which is the setting considered in [BGIN19], and in the protocols from [CCPS19, PS20, KPPS21] that
use [BGIN19] as a building block. We write our code as part of the MP-SPDZ framework [Kel20],
adding our verification protocol to the passive protocol from [AFL+16], which is available in MP-
SPDZ. For the purpose of comparison we also implement the verification protocol from [BGIN19],
and we use the NTL numerical library for the implementation of the Galois ring extensions needed
in this protocol. Although the verification protocol from [BGIN19] with Galois ring extensions has
been used in many previous works [CCPS19, PS20, KPPS21, KKPRG22, HKK+23], the only open
implementation we are aware is the one from [HKK+23], which is for the four-party setting. For
completeness, in Section H we test their implementation and verify experimentally that the running
time of our Galois ring implementation of [BGIN19] is consistent with theirs. Our code is available
online at an anonymous repository.9

For our comparisons we do not simply run our verification protocol against the one from [BGIN19],
but we do this in the context of compiling the passively secure three-party protocol from [AFL+16]
to active security using these verification checks. The motivation for this is two-fold. First, these
checks are typically not used in a standalone manner, but instead they are used at the end of an MPC
protocol to check its correctness; only comparing our verification against the one from [BGIN19] says

9https://github.com/AntCPLab/malicious_3pc_arithmetic
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Table 2: Comparison between the three-party passive protocol from [AFL+16] when compiled with
our approach, with BGIN19 [BGIN19], or without any compilation. We consider circuits of size

1M with varying depths.

Protocol Depth 1 Thread 10 Threads Comm. (MB)LAN Time (s) WAN Time (s) LAN Time (s) WAN Time (s)

Ours

1 0.39 (×1) 2.82 (×1) 0.22 (×1) 2.59 (×1)

27.44 (×1)10 0.26 (×1) 3.17 (×1) 0.093 (×1) 2.89 (×1)
100 0.26 (×1) 6.08 (×1) 0.095 (×1) 5.87 (×1)

1,000 0.32 (×1) 42.13 (×1) 0.15 (×1) 41.91 (×1)

BGIN19

1 9.49 (×24.3) 12.85 (×4.6) 4.14 (×18.8) 6.19 (×2.4)

33.42 (×1.22)10 11.29 (×43.4) 14.11 (×4.5) 4.35 (×46.8) 6.98 (×2.4)
100 11.49 (×44.2) 17.08 (×2.8) 4.40 (×46.3) 10.00 (×1.7)

1,000 11.54 (×36.1) 53.41 (×1.3) 4.39 (×29.3) 46.08 (×1.1)

Passive

1 0.16 (×0.41) 1.81 (×0.64)

- - 24.00 (×0.87)10 0.031 (×0.12) 2.16 (×0.68)
100 0.03 (×0.12) 5.05 (×0.83)

1,000 0.08 (×0.25) 40.95 (×0.97)

little about how much such improvements translate to the actual MPC context, since in that setting the
checks are only a component of a wider protocol. Second, the verification protocol in [BGIN19] is tied
to the specific 3PC protocol in [AFL+16], unlike ours which is protocol-independent and only requires
secret-shared inner products. Note that this plays against us: their verification exploits properties of
the 3PC protocol that is being verified, while ours is entirely black-box.

In what follows we experimentally compare three different three-party protocols: (1) the passive
protocol from [AFL+16], compiled to active security with our verification protocol, (2) the same passive
protocol but compiled with [BGIN19], which uses ring extensions, and (3) the plain passive protocol
from [AFL+16] without any verification steps, which is done in order to better understand the overhead
of obtaining active security with the different protocols above.

Experimental Setup. We deploy our three-party protocol on three Alibaba Cloud g7.8xlarge
instances running Ubuntu 20.04, each equipped with 32-core Intel(R) Xeon(R) Platinum 8369B CPU
@2.70 GHz and 128GB of RAM. 10 The machines are in a LAN with about 23Gbps bandwidth and
30µs (one-way) latency. As for WAN setting, we use the Linux tc command to set the bandwidth at
80Mbps and latency at 40ms, which simulates actual network conditions between two distant machines.

In the experiments we study the performance of the protocols above for two classes of circuits:

• We fix the depth to be 10 and vary the total number of multiplications, namely 10K, 100K,
1M and 10M multiplications. In these experiments, since the circuits have low depth, the final
distributed product check plays an important role in the resulting end-to-end runtimes, so these
results allow us to understand how well our verification scales with respect to the other protocols
as the number of multiplications increases. Results are reported in Tables 1 for LAN and WAN.

• We fix the total number of multiplications to 1M, and vary the depth as 1, 10, 100 and 1,000. As
the depth increases the effect of the final distributed product check on the end-to-end runtimes
is less and less noticeable, so these results reflect up to what extent our protocol—which only
improves this step—impacts total performance. Results are reported in Tables 2 for LAN and
WAN.

10All these Alibaba servers, like Amazon servers, can be rented by anyone: https://us.alibabacloud.com/en, making
our experiments easily reproducible for future research.
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For the ring we use k = 64, that is, we check triples modulo 264, and we use κ = 40 bits of statistical
security. We set the parameter s to be 64 (so our proof operates over Z2k+s = Z2128), and the extension
degree of the extension ring-based approach [BGIN19] to be 47 for achieving 40-bit security. Besides,
both our protocol and the extension ring-based protocol [BGIN19] take the compression parameter to
be λ = 8, and the batch size parameter B (refer to Section 5.2) to be B = 10, 000 for circuit size ≤ 1M ,
and B = 100, 000 for circuit size 10M , as they are experimentally shown to be the optimal choices for
the two protocols.

We first run each program with a single thread on a single CPU core. The results we report are the
average of ten runs, including both runtimes and communication. Additionally, to see the performance
of the programs running with multiple threads, we test them using 10 threads with 10 CPU cores in
the verification phase.

Experiments in the LAN setting. We now report the experimental results running with a single
thread in LAN and WAN respectively. First, we run the protocols in the LAN setting, where compu-
tation impacts more end-to-end runtimes than communication. In Table 1 we see the results of the
different protocols for depth-10 circuits of varying sizes 10K, 100K, 1M, 10M, and in Table 2 we fix
the number of multiplications to 1M, and vary depth 1, 10, 100 and 1,000. We make several inter-
esting observations about these results. First, we see that, when compared to [BGIN19], even though
communication in [BGIN19] is generally only slightly larger than ours, our protocol can be up to one
order of magnitude better in terms of runtimes. For example, for one million multiplication gates and
depth 10 and 100, our protocol is nearly 43.4× and 44.2× better than the one by [BGIN19]. This
is no surprise: when the depth is low, a big portion of the end-to-end runtimes is actually dictated
by the verification step, which uses large-degree ring extensions in [BGIN19], while we avoid them
entirely in our work. As the depth increases to 1,000, the impact of the distributed product check in
the end-to-end runtime is less noticeable but even there using our verification protocol leads to 36.1×
improvements with respect to using the check from [BGIN19]. In particular, ours is the first concretely
practical work that enables active security at essentially the same communication costs as semihonest,
over Z2k , while achieving concrete practical efficiency. Indeed, we see that when we compare with
the plain passive protocol from [AFL+16], our protocol is not considerably more expensive in terms
of runtimes: for depth ten thousand gates we are only 5.6 times more expensive, and for ten million
gates this factor is only 7.7; for larger depth this gap shrinks even more. Furthermore, in terms of
communication, we are much closer, and for ten million gates our actively secure protocol only incurs
an extra overhead of 2% = ( 1

0.98 − 1)% with respect to the passive protocol.

Experiments in the WAN setting. In the WAN case, there is more time available to perform
expensive computations, and hence the overheads of using Galois rings may be less harmful. As
shown in Table 1 and Table 2, indeed, our improvement factor over [BGIN19] is not as large as that
in the LAN case, but it is still considerable: for ten million gates and depth 10 we can get around
9.7× improvement in runtimes. As the depth increases, the improvement factor on the end-to-end
runtime goes down, which is due to the fact that for large depths the effect of the final verification
step on the total runtime is less noticeable. As the network becomes slower, so does the passively
secure protocol of [AFL+16], which means that the overhead of compiling to active security using our
sublinear distributed product checks is less appreciable, which is particularly true as the depth grows
since our verification check is constant-round. We see this reflected in our experimental results: for
circuits with 10M gates and depth 10 our protocol only adds 18% = ( 1

0.85−1)% overhead to the passive
runtimes, and for 1M gates and depth 1,000 this is only an extra 3% = ( 1

0.97 − 1)%. Thus, thanks
to our work, we can truly claim that, in several practical settings, active security comes at the same
concrete cost as semi-honest.

Experiments running with multiple threads. We summarize our experimental results of running
the two protocols with 10 threads in the verification phase. In LAN, the two protocols show almost
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the same parallelization improvements on different circuits, and thus our protocol maintains similar
17.2 ∼ 46.8× speedup over [BGIN19] as in the single-thread setting. As for WAN where communication
plays a more important role, computational parallelization will have less effect on end-to-end runtimes,
and thus our advantage over [BGIN19] will decrease. However, the experimental results show that our
protocol still has up to 4.5× speedup over [BGIN19] for 10M multiplication gates with depth 10. Note
that as the circuit size decreases, the speedup factor of our protocol over [BGIN19] gets smaller. This
reflects from another perspective that our computational task is much lighter than [BGIN19] so that
paralleling computational tasks of our protocol makes less effect on end-to-end runtimes.
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A Properties of RSS
Pairwise Consistency. In the setting of n = 2t+ 1, each additive share is held by a subset of t+ 1
parties. For a replicated secret sharing [[x]], we say [[x]] is pairwise consistent if for every set T of size
t+ 1, all honest parties in T hold the same value xT . Note that a malicious dealer may distribute an
inconsistent [[x]] to all parties. As noted in [BGIN20], to check whether some sharings [[x]] are pairwise
consistent, every party Pi sends to every other party Pj with j > i a hash of the concatenated shares
(xT )Pi,Pj∈T , which Pj uses to compare against his/her local shares. This involves a communication of
n(n−1)/2 digests in total. Furthermore, multiple secrets can be checked with the same communication
by concatenating the respective shares in the hashes.

Linear Operations. The RSS scheme is linearly homomorphic, which means that, from sharings
[[x]] and [[y]], parties can locally compute sharings [[x± y]], and also [[x± c]] and [[c · x]] for any publicly
known value c ∈ Z2k . Finally, shares [[c]] can be locally generated as long as the value c is known by
one set T0 of size t + 1 by setting cT := c for T = T0, and cT = 0 for the other sets of size t + 1. In
particular, addition by a constant only requires this constant to be known by t+ 1 parties.

Local Multiplication. As observed in [BBY20], given a pair of replicated secret sharings [[x]], [[y]],
all parties can locally compute an additive sharing of the multiplication result ⟨z⟩ = ⟨x · y⟩. To be
more concrete, recall that a replicated secret sharing [[x]] is defined by x =

∑
T⊂P,|T |=t+1 xT where

each share xT is held by parties in T . Then we have x ·y =
(∑

T⊂P,|T |=t+1 xT

)
·
(∑

T⊂P,|T |=t+1 yT

)
=∑

T1,T2⊂P,|T1|=|T2|=t+1 xT1
· yT2

. Note that for all T1, T2 ⊂ P and |T1| = |T2| = t + 1, T1 ∩ T2 ̸= ∅,
implying that at least one party holds both the shares xT1

and yT2
. Thus, for all T1, T2 ⊂ P and

|T1| = |T2| = t+1, we assign the party Pi ∈ T1∩T2 with the smallest index to locally compute xT1
·yT2

.
Then each party Pi locally add up all the terms xT1 · yT2 he have computed and view the summation
as his additive share ⟨z⟩. In this way, all parties together hold an additive sharing ⟨z⟩. We denote the
above process by ⟨z⟩ = [[x]] · [[y]]. Note that each party computes an inner-product over their original
shares of [[x]], [[y]]. In particular, the dimension of the inner-product is bounded by

(
n−1
t

)2.
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Local Conversion. Given a sharing [[x]], the parties can locally obtain sharings [[xS ]] for every S ⊆ P
with |S| = t+1. To do this, for every set T ⊆ P with |T | = t+1, we define the corresponding additive
share of xS as xS,T := xS if T = S, and xS,T := 0 otherwise. The parties in the set T = S can define
their share xS,T = xS since, by definition of xS , they know this value.

Modulo Reduction. We describe a modulo reduction operation on RSS. For a secret sharing [[x]]k+s

where x ∈ Z2k+s where s is a positive integer, the parties can reduce the sharing [[x]]k+s from modulo
2k+s to 2k simply by taking [[x mod 2k]]k = [[x]]k+s mod 2k. That is, each party reduces their additive
share locally modulo 2k.

B Client-Server Model
In the client-server model, clients provide inputs to the functionality and receive outputs, and servers
can participate in the computation but do not have inputs or outputs. Each party may have different
roles in the computation. And if each party plays a single client and a single server, this corresponds
to a protocol in the standard MPC model.

In our construction, the clients only participate in the input phase and the output phase. The
main computation is conducted by the servers. We can use the set P = {P1, . . . , Pn} to denote the
n servers, and refer to the servers as parties. One benefit of the client-server model is the following
theorem from [GIP+14].

Theorem B.0.1 (Lemma 5.2 [GIP+14]). Let Π be a protocol computing a c-client circuit C using
n = 2t+ 1 parties. Then, if Π is secure against any adversary controlling exactly t parties, then Π is
secure against any adversary controlling at most t parties.

This theorem allows us to only consider the case where the adversary controls exactly t parties.

C Complete MPC Protocol
In this section we describe in detail a complete MPC protocol that makes use of our techniques for
efficient verification. Recall that we take n = 2t+1, and we use replicated secret sharing with threshold
t as defined in Section 2.3, which is denoted by [[x]]k for secrets x ∈ Z2k . Let C be an arithmetic circuit
over Z2k , given by input, addition, multiplication and output gates. The functionality we instantiate
is denoted by FMPC, which models secure computation of C, and it works as follows: for each input
gate owned by party Pi the functionality receives x from Pi; then it computes the circuit C on these
inputs, and sends the output to all the parties. All of our functionalities allow for abort, which means
that at any time of the interaction the adversary can instruct the functionality to abort, in which the
functionality sends a special signal to the honest parties, which causes them to halt and abort. The
adversary could instruct a specific set of honest parties to abort only, in which case we would be talking
about selective abort, or the adversary may be restricted to either cause all or none of the honest parties
to abort, which refers to unanimous abort. Selective abort can be compiled to unanimous abort by
using a broadcast channel [GL05].

The MPC protocol ΠMPC is described as Protocol C.0.1, and in Theorem C.0.1. In essence, the
parties proceed by letting the clients provide input using the Finput functionality, addition gates are
handled locally using the linearity of the underlying secret sharing scheme, and multiplications make
use Fmult, which is a multiplication protocol that is secure up to additive attacks. Then, output gates
involve reconstruction of the underlying secret towards the corresponding client, but prior to this a
verification step using FVrfySSIP is carried out in order to check the correctness of the multiplication
gates. Below, we discuss some details regarding the implementation of some of the functionalities used
in the protocol.
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PROTOCOL C.0.1. (ΠMPC – Protocol for Securely Computing an Arithmetic Circuit over
Z2k .).

Consider an arithmetic circuit over Z2k , given by input, addition, multiplication and output
gates.

• Input gates. For every input gate corresponding to a given client, this client calls the
Finput functionality on his/her input x ∈ Z2k , so that the parties obtain consistent sharings
[[x]]k.

• Addition gates. Given an addition gate with secret-shared inputs [[x]]k, [[y]]k, the parties
locally compute [[x+ y]]k = [[x]]k + [[y]]k.

• Multiplication gates. Given a multiplication gate with secret-shared inputs [[x]]k, [[y]]k,
the parties call Fmult to obtain [[z]]k, where z = x · y + ϵ for some additive error ϵ ∈ Z2k

chosen by the adversary.

• Verification phase. After all multiplication gates have been processed, obtaining m
secret-shared triples {([[ai]]k, [[bi]]k, [[ci]]k)}mi=1, the parties call FVrfySSIP on these
secret-shared values.

• Output gates. For every output gate corresponding to some client, and if the verification
phase did not result in abort, the parties call reconstruct([[x]]k, client)—where the
underlying shared value in the gate is [[x]]k—in order to reconstruct x towards client.

Theorem C.0.1. Protocol ΠMPC securely instantiates Functionality FMPC with abort in the (Finput,
Fmult,FVrfySSIP)-hybrid model, with perfect security.11

Proof. We define a simulator S that interacts with the adversary in the ideal world. For the input gates,
S emulates Finput by receiving input from each corrupt party, and distributing consistent sharings of
this input. It also emulates honest parties’ inputs by simply sending consistent sharings of some
dummy value. Since the adversary corrupts at most t parties, this is indistinguishable from the real
world where the sharings actually correspond to the real honest parties’ inputs. Notice that S knows
the input shares held by the corrupt parties. This invariant will be preserved through the computation
of the circuit.

Addition gates are handled locally, and for these S internally adds the shares of the corrupt parties
to preserve the invariant. Now, for each multiplication gate, S emulates Fmult by receiving the additive
error ϵ by the adversary, and sending back shares of a dummy value as the shares of the product,
which again, is indistinguishable from the real world since the adversary only gets t shares. For the
verification step, S emulates FVrfySSIP, which is called on input all the secret-shared inputs and outputs
of all computed multiplication gates. Recall that S holds the corrupt parties’ shares of these wires,
together with the additive error ϵi that the adversary introduced in the i-th gate, for i ∈ {1, . . . , |C|}.
The emulation of FVrfySSIP is done as follows: S sends ϵi to the adversary, and if there is one ϵi that
is not zero modulo 2k, then S sends an abort signal to FMPC.

Otherwise, S receives the output values of the circuit from FMPC. Recall that for each such output
wire S has the corrupt parties’ shares. S then samples honest parties’ sharings that are consistent with
the provided outputs, and then S emulates the honest parties’ behavior in the calls to reconstruct by
using these shares. This is indistinguishable from the real world since, due to the definition of FVrfySSIP,

11The instantiation of the functionality FVrfySSIP is the one that is computationally secure (due to the use of PRG),
but all the other components are perfectly secure.
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there is no abort in the real world if and only if all of the multiplication gates, and in particular the
whole circuit, has been computed correctly. As a result, the final shares the honest parties send in the
real world correspond to the correct output, as generated by S in the ideal world.

C.1 Details on Some Functionalities
C.1.1 On the Key Setup.

For replicated-secret-sharing-based protocols, it is common to assume a one-time setup where the
parties have some shared random keys, which are then used to boost the efficiency of several parts of
the protocol. We assume the following forms of setup:

• For each T ⊆ P with |T | = t + 1, parties in T all have a common uniformly random key
kT ∈ {0, 1}σ.

• For each j ∈ [n], and for each T ⊆ P with |T | = t+1, parties in T all have a common uniformly
random key kj,T ∈ {0, 1}σ, and party Pj has all the keys {kj,T }T⊆P,|T |=t+1.

C.1.2 Instantiating Frand.

Recall that Frand is a functionality that samples consistent shares [[r]]k, where r ∈ Z2k is uniformly
random. A common instantiation of Frand is the following:

• For each T ⊆ P with |T | = t+ 1, and for each Pi ∈ T , Pi sets rT = PRGkT
(next) ∈ Z2k .

• Output the sharings [[r]]k = {rT }T⊆P,|T |=t+1.

C.1.3 Instantiating Fcoin.

Recall that Fcoin samples a public random bitstring r ∈ {0, 1}σ. To achieve this, the parties can call
Frand to obtain [[r]]σ, followed by multiple calls to reconstruct where each party learns the value of r
(or abort). The cost of this approach is that of reconstructing one σ-bit secret, which is

(
n−1
t+1

)
· n · σ

bits.

C.1.4 Instantiating Finput.

Recall that Finput takes input x ∈ Z2k from a party or client, and distributes consistent sharings [[x]]k
to the parties. To instantiate this primitive, the parties execute the following two steps:

• Generate random mask.

– If input provider is a client, the parties call Frand to generate [[r]]k, and they reconstruct r
to the client.

– If input provider is a party Pj , define rT = PRGkj,T
(next) and let [[r]]k = {rT }T⊆P,|T |=t+1.

Since Pj knows the keys {kj,T }T⊆P,|T |=t+1, Pj can compute r =
∑

T⊆P,|T |=t+1 rT .12

• Send masked input. Let T0 be a fixed subset of parties of size t+ 1.

1. The input provider, having input x ∈ Z2k , and knowing r ∈ Z2k , sends x− r to the parties
in T0.

2. The parties define locally [[x − r]]k (remember it suffices that this value is known by t + 1
parties), and run a pairwise consistency check. Then the parties define [[x]]k = [[r]]k+[[x−r]]k.

12One can also use this approach for the case in which the input provider is a client, at the expense of requiring key
setup also with this client. This may be reasonable if the client’s input is very large.
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The cost of this is t messages over Z2k from the input provider to the parties in T0 (we can take
T0 such that the input provier belongs to this set), and the cost of the consistency check, which is
n(n−1)/2 digests, and is independent of the amount of inputs being shared (across all input providers).

We point out that functionality Finput, in the way we have defined it here, outputs pairwise consis-
tent sharings, which is guaranteed in its implementation via a pairwise consistency check. However, in
some cases, such as in our verification protocol ΠVrfyIP, such check, whose complexity is independent of
the amount of sharings, can be postponed to a later stage. This can be easily formalized by modifying
Finput so that it provides possibly inconsistent sharings, allowing the parties to query if this is the case
at a later point.

C.2 Passive Multiplication
First, we define Fmult as Functionality C.2.1. Recall that this functionality takes as input a pair of
sharings [[x]]k, [[y]]k, and returns shares [[z]]k, where z = x · y+ ϵ for an additive error ϵ ∈ Z2k chosen by
the adversary.

FUNCTIONALITY C.2.1. (Fmult – Passive multiplication with additive errors).

Let S be the ideal world adversary.

1. Fmult receives consistent shares of [[x]]k and [[y]]k from the honest parties. From this, Fmult
computes the secrets x, y. Fmult also computes the shares of the corrupt parties and sends
them to S.

2. Fmult waits for ϵ ∈ Z2k from S, and upon receiving this value Fmult computes z = x · y + ϵ.
Then, Fmult distributes shares of [[z]]k.

There are multiple ways of instantiating Fmult, and we consider two possible variants: BGW-like,
and DN07-like. Below, we assume the parties have sharings [[x]]k and [[y]]k, and the goal is for them to
obtain [[x · y]]k.

BGW-like.

1. Parties compute locally ⟨x · y⟩k = [[x]]k · [[y]]k, as described in Section A.

2. For each j ∈ [n], the parties call Finput with Pj as the input provider so that the parties obtain
[[z(j)]]k, where z(j) is Pj ’s additive share in ⟨x · y⟩k.

3. The parties define locally [[x · y]]k =
∑n

j=1[[z
(j)]]k.

The cost of this approach corresponds to n calls to Finput, which costs ntk = nk(n− 1)/2 bits per
multiplication, plus n(n− 1)/2 digests/elements, independently of the number of multiplications.

DN07-like.

1. Parties generate a pair ([[r]]k, ⟨r⟩k) as follows:

(a) Parties generate [[r1]]k, . . . , [[rn]]k, where each Pi knows ri, in the same way as the masks are
generated in the instantiation of Finput above.

(b) Parties define [[r]]k :=
∑n

i=1[[ri]]k, and ⟨r⟩k := (r1, . . . , rn).

2. The parties compute locally ⟨d⟩k = [[x]]k · [[y]]k − ⟨r⟩k, and send their additive shares to P1 for
reconstruction.
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3. P1 reconstructs this value, and sends d to a fixed subset T0 of size t+ 1.

4. The parties define locally [[d]]k, and run a pairwise consistency check.13 Then the parties define
[[x · y]]k = [[r]]k + [[d]]k.

The cost of this approach corresponds to (n−1)k bits sent to P1, plus t ·k bits from P1 to t parties,
so a total of k(n+ t− 1) = 3k(n− 1)/2. We must also add the cost of the pairwise consistency check,
but this is independent of the number of multiplications. Notice that this approach is linear in n,
unlike the BGW-like alternative from above. However, it requires two rounds (all parties to P1 and
then P1 to t parties), while BGW-like requires quadratic communication with only one round where
each party sends one message to t other parties.

C.3 Three-Party Case
For n = 3 (and t = 1), both the BGW-like and the DN07-like protocols lead to a communication
complexity of 3k bits per multiplication. However, BGW-like is preferable since it only involves one
round, and in fact, in this case this protocol coincides with the one proposed in [AFL+16].

D Optimizations for 3PC and Discussions
D.1 Optimizations for 3PC
For 3-party computation, we have P = {P0, P1, P2} and there is exactly one corrupted party. A
replicated secret sharing [[x]] can be written as [[x]] = (x0, x1, x2) where Pi holds (xi−1, xi+1) (with
indices modulo 3). We propose the following optimizations for 3-party computation.

Avoiding Pairwise Consistency Check. In the setting of three-party computation, the instanti-
ation of Finput in Section C.1 can achieve the pairwise consistency for free when the dealer is one of
the party (i.e., not the client).

Recall that in the instantiation in Section C.1, all parties first locally prepare a random replicated
secret sharing [[r]] such that r is known to the dealer D. In particular, [[r]] satisfies the pairwise
consistency. Then the dealer D shares [[x − r]], where x is the value to be shared to all parties. In
particular, the dealer D only sends x− r to parties in a fixed set T0 of size t+1 and D ∈ T0 if D is one
of the three parties. When there are just 3 parties, it means that t = 1 and |T0| = 2. Thus, D only
sends x − r to one of the other two parties. Now we show that [[x − r]] always satisfies the pairwise
consistency. It is sufficient to focus on the share held by two honest parties. If the dealer is honest,
then the pairwise consistency always holds. If the dealer is corrupted, then the share held by the two
honest parties are 0 by default. Thus the pairwise consistency always holds as well. Therefore, the
replicated secret sharing [[x]] := [[x− r]] + [[r]] always satisfies the pairwise consistency.

Balanced Local Multiplication Procedure. For two vectors of replicated secret sharings of di-
mension d, [[x]] = (x0,x1,x2) and [[y]] = (y0,y1,y2), each party Pj can compute zj = xj−1 · yj+1 +
xj+1 · yj−1 + xj+1 · yj+1. Then ⟨z⟩ = (z0, z1, z2) is an additive sharing of x · y. Furthermore, since
both Pj and Pj−1 holds xj+1 · yj+1, we may view that all parties hold a replicated secret sharing of
xj+1 · yj+1. Thus, when verifying that Pj correctly computes zj , it is sufficient to ask Pj to share zj
using the replicated secret sharing scheme and verify that xj−1 ·yj+1+xj+1 ·yj−1 = zj −xj+1 ·yj+1,
which corresponds to an inner-product triple of dimension 2d. To be more concrete:

1. Pj shares zj .

2. All parties locally compute [[zj ]]− [[xj+1 · yj+1]].
13We note that these consistency checks do not need to be carried out immediately, and they can be aggregated together

at the end of the protocol before the output is revealed. See for example [DEK21].
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3. All parties check that Pj correctly computes zj by checking the correctness of the inner-product
triple (([[xj−1]], [[xj+1]]), ([[yj+1]], [[yj−1]]), [[zj − xj+1 · yj+1]]).

D.2 Discussions
Postponing the Pairwise Consistency Check in Finput. Our protocol ΠVrfyIP calls Finput mul-
tiple times in each round, and using our implementation of this functionality from Section C.1, this
would require the parties to run a pairwise consistency check in every round. However, it turns out
that such check can be postponed until the fourth item of Step 4, at the very end of the protocol.
One can model this into Finput and re-prove security in this case, but we avoid this for the sake of
simplicity.

About Using a PRG for Fcoin. In Step 2.1, Step 3.2, and Step 4.3 of ΠVrfyIP, we use Fcoin to
generate many random values in Z2k+s . A natural way of optimizing each of these steps is to use Fcoin
to generate a short PRG seed and then all parties locally expand the seed to obtain the random values
they need.

However, we note that generating a short PRG seed and expanding the seed is not a secure in-
stantiation of the functionality Fcoin since in the real world, the adversary always learns the random
seed and the output of the PRG corresponding to this seed while in the ideal world, the adversary
only receives random values from Fcoin and does not know the corresponding PRG seed (In fact, with
overwhelming probability, such a seed does not exist). Our security proof of Lemma 5.1.2 relies on
the reduction from an adversary A of ΠVrfyIP to an adversary Ag of Game(k, s, T ). In the reduction,
we require the property that the random values are generated by Fcoin rather than expanding from a
random seed.

We note that this issue is because we try to model Game(k, s, T ) in a general form, which does
not corresponds to the exact scenario of our protocol. In particular, the reduction works even if the
adversary A of ΠVrfyIP can choose a part of the random values by himself! We may fix this issue by
incorporating the analysis of the game together with the security proof of our protocol.

About Fiat-Shamir Transformation. We note that most of interactions in ΠVrfyIP involve gen-
erating random values in Z2k+s by using Fcoin. In the previous single-prover setting of [BGIN20],
the authors suggest the use of the Fiat-Shamir heuristic to compress the round complexity, which is
currently logarithmic on the length of the statement. However, as the authors of [BGIN19] admit (see
footnote 3 in that work): “there are still gaps in our understanding of the soundness of this heuristic
when analyzed in the random oracle model”. Indeed, the security of this approach is not well un-
derstood, and must be analyzed heuristically in a targeted manner for each case. To highlight this
difficulty, we point out for example to the work of [KZ20], which shows that certain 5-round interac-
tive proofs, when compiled with Fiat-Shamir, suffer from a massive soundness loss. This is done in
the context of post-quantum signatures based on MPC-in-the-head-based interactive proofs, and the
results in [KZ20] turned out to be devastating for some of the proposals in the NIST PQ competition,
leading them to modify their parameters in a way that ultimately led to larger signatures.

The authors in [BGIN20] do not dig deeper in the task of analyzing the security of the Fiat-
Shamir transform when applied to their protocol, which is a necessary task in order to understand the
concrete security of such approach. Here, we comment in a bit more depth about the security of this
approach in our protocol. The Fiat-Shamir techniques works as follows: each time all parties need to
prepare random values, they may compute a random seed by applying a random oracle on the common
transcript and then expand the seed to obtain the desired random values. As we have mentioned before,
this transformation is known to have some soundness loss in some cases like, for example, 5-round
protocols [KZ20]. In our case, we are able to exhibit an explicit attack when we compile our protocol
using Fiat-Shamir, that has to be considered when analyzing the resulting soundness.

The attack consists of a corrupted prover sampling random values repeatedly in each iteration, and
choosing the one that increases the advantage to the most extent. Translating to Game(k, s, T ), it
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means that Ag can ask Cg to repeatedly sample ri in each Round i, until Ag finds a challenge ri that
is more advantageous. Consider the following strategy of an adversary in Game(k, s, T ):

• In each iteration, Ag chooses ei = 2Ei−1 and ci = 0. Note that Po2(ei) = Ei−1.

• Ag asks Cg to repeatedly sample ri until ri is a multiple of 2c log κ for some constant c. Then
Ei = Po2(ei · ri + ci) ≥ Ei−1 + c log κ. Notice that, crucially, this succeeds in a polynomial
amount of attempts.

It means that Ag can always cause Ei ≥ Ei−1 + c log κ. In other words, Ag can cause Ei to increase
by c log κ for free! This increases s by cT log κ to achieve the same level of security as the one without
Fiat-Shamir transformation.

Notice that this attack is only possible because, in our Z2k+s setting, there is a fundamental
difference between a challenge that is only divisible by a small power of two, and a challenge with a
high power of two as a divisor: the latter turns out to be “easier” to reply to for a cheating prover.
This does not occur in the finite field case, where any non-zero challenge is as good as any other.14

E Detailed Communication Costs
Communication Cost of ΠVrfyIP. To analyze the communication complexity of ΠVrfyIP, let d
denote the dimension of each of the p inner-product triples to check. Then the inner-product triple
obtained in Step 2 has dimension d′ = p · d. As discussed in Section D.2, we may take the costs of the
calls to Fcoin, per round, to be the cost of reconstructing one σ-bit value, where σ is the computational
security parameter of some PRG. The cost of ΠVrfyIP is calculated below.

• Step 1 requires p calls to Finput over Z2s . Using the instantiation from Section C.1 (ignoring
pairwise consistency checks), this costs t · s · p bits.

• The dimension of the inner-products after Step 2 is p · d. Step 3 is repeated logλ(p · d)− 1 times.
Each of these consists of λ2 − 1 calls to Finput over Z2k+s . These are (λ2 − 1) · (logλ(p · d) − 1)
calls to Finput, each of which costs (k + s) · t bits.

• The first two items in Step 4 require (λ+ 1)2 − 1 calls to Finput over Z2k+s .

• The rest of step 4 requires reconstructing three elements over Z2k+s , which costs 3n(k+ s)
(
n−1
t+1

)
bits.

• Overall, Fcoin is called in logλ(p·d)+1 rounds, which has a cost of this many σ-bit reconstructions,
or (logλ(p · d) + 1) · n ·

(
n−1
t+1

)
· σ bits.

Communication Cost of ΠVrfySSIP. When ΠVrfyIP is used in the context of instantiating the multi-
prover functionality FVrfySSIP to check m inner-products which contain δ multiplications in total, this
protocol is called n times (once for each prover), with p = κ and d = δ

(
n−1
t

)2. Using the analysis for
ΠVrfyIP from above, and taking into account we must add an extra round of Fcoin from the reduction
to ΠVrfySSIP, together with the optimization from Section 5.2 that allows us to shrink the dimension
of the inner-product tuple from p · d to d, the cost in bits of ΠVrfySSIP is:

14To dispel any doubts, we point out that our attack is not fixed by simply requiring the challenges to be odd, for
example. In this case, the attacker simply chooses ei = 2Ei−1 and ci = 2Ei−1 , so that ei · ri + ci = 2Ei−1 (ri + 1). The
attack still works by looking for 2c·log κ | ri + 1.
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n ·
(

tsκ︸︷︷︸
Sharing
hi’s

+(λ2 − 1)(logλ(d)− 1)t(k + s)︸ ︷︷ ︸
Sharing zi,i′ in recursion

+((λ+ 1)2 − 1)t(k + s)︸ ︷︷ ︸
zi,i′ in final recursion

(2)

+( 3n(k + s)︸ ︷︷ ︸
Final

reconstructions

+(logλ(d) + 2)nσ︸ ︷︷ ︸
Calls to Fcoin

)

(
n− 1

t+ 1

))
(3)

+
(

nσ︸︷︷︸
Fcoin

+ κnk︸︷︷︸
Zero check

)
·
(
n− 1

t+ 1

)
. (4)

Finally, our costs are given in terms of s, which determines the final soundness level of our construc-
tion. By Lemma 5.1.1, to achieve a security level of 2−κ, it suffices to take s = κ+ T (1/2 + log(5/2 +
3κ/T )) = κ+O(T · log(κ/T )), where T = ⌈2 logλ(d) + 1⌉ (with our optimization from Section 5.2).

E.0.1 Comparison with [BGIN20, BBCG+19].

We also compare our concrete communication with that of the distributed check of [BBCG+19], which
we sketched in Section 4.1.3. The protocol is structurally similar to ours, and hence easy to analyze.
Let us denote by ℓ the degree of the Galois ring extension used in their protocol. When instantiating
ΠVrfyIP, the main difference (besides the larger ring) is that, in every recursion step, the prover only
need to provide (2λ− 2) extra inputs, instead of (λ2 − 1) as in our case.

• Recursion requires logλ(p · d) · (2λ− 2) calls to Finput over Zℓ
2k ,15 each of which costs k · ℓ · t bits.

• The final checking step requires reconstructing three elements over Zℓ
2k , which costs 3nkℓ

(
n−1
t+1

)
bits.

• Fcoin is called on logλ(p · d) rounds, which costs logλ(p · d) · n · σ
(
n−1
t+1

)
bits.

The relation between ℓ and the desired security parameter in this case is simple: ℓ can be taken to
be κ+ 1 + log2(1 + 2 log2(p · d)), and the resulting soundness will be 2−κ.

Cost of ΠVrfyIP Using Ring Extensions. When using the extension-based instantiation of FVrfyIP
to implement FVrfySSIP, there are only a few minor differences with respect to our approach: only one
linear combination is needed, which leads to a single inner-product. This means we take p = 1 and
d = δ

(
n−1
t

)2, where δ is the amount of multiplications across all inner-products to be checked by
FVrfySSIP. Furthermore, they do not need Step 1 where the prover inputs p extra “correcting” values.
Hence, the total communication in the multi-prover case becomes

n ·
(
2(λ− 1) logλ(d)kℓt+ (3nkℓ+ (logλ(d) + 1)nσ)

(
n− 1

t+ 1

))
+(nσ + nkℓ)

(
n− 1

t+ 1

)
.

Comparing this to the communication complexity of our instantiation, given in Eq. (2), we see
that the leading term that depends on d = δ

(
n−1
t

)2, namely logλ(d), is multiplied in our case by
(λ2 − 1)(k + s)t, while using ring extensions this factor is 2(λ − 1)kℓt. The ratio between these two
terms is roughly λ(k+κ)

kκ = λ( 1κ + 1
k ). The term λ is typically taken to be a constant (e.g. 2 or 8), so

this ratio decreases (i.e. our communication is better) as either κ or k increases.
15Note that a Galois ring extension of degree ℓ is equivalent to Zℓ

2k
for communication purposes.

33



To see more concretely what our improvement in terms of communication is, let us consider some
concrete parameters sets. For κ = 40 and three parties, and taking λ = 4, verifying δ = 220 ≈ 1 million
secret-shared products with our protocol requires 142.7 kB, while using ring extensions this requires
636.1 kB, about ×5 more communication. For other parameter regimes of interest this factor tends to
range between 3 and 5.

F Achieving Full Security
Applying the techniques used in [BGIN20] for achieving full security (i.e., guaranteed output delivery),
our distributed product check protocol can be adapted to construct a fully secure MPC protocol as
well. At a high level, the core idea of lifting security with abort to full security is cheating identification
– whenever some party outputs abort in the protocol, we can identify a so-called semi-corrupt pair of
parties where at least one of them is guaranteed to be corrupted; the two parties will be eliminated,
and the remaining active parties will restart the computation again (after a potential update of input
sharings). Pair elimination and recomputation will be repeated whenever there is an abort, until the
remaining parties successfully finish the computation, or eventually one honest party is identified and
then finishes the computation using the parties’ inputs.

F.1 Review of the Fully Secure Protocol in [BGIN20]
We now briefly review how previous work [BGIN20] achieves full security. It utilizes an authenticated
secret sharing scheme, and works as follows.

• At first, the parties secret-share their inputs using the RSS scheme; then for the parties in
each subset |T | of size t + 1, they compute an authentication tag of the additive shares of the
inputs belonging to this subset using random authentication keys that are secret-shared via an
authenticated secret sharing scheme.

• Next, the parties evaluate the circuit using the RSS-based semi-honest protocol, also compute
authentication tags for shares of output values, and then conduct the distributed verification
procedure to verify the semi-honest multiplication triples. As mentioned above, once abort is
detected in any previous step, cheating identification and pair elimination will be triggered and
the computation will be restarted.

• Finally, the parties reconstruct the output values, and reveal the authentication keys for the
parties to check the correctness of the received shares w.r.t. the previously computed tags. After
obtaining enough shares that pass the authentication check (which will always happen since
honest parties’ shares will always pass the authentication check), the parties can recover their
outputs correctly.

In the above fully secure protocol from [BGIN20], the verification of distributed multiplication
triples with cheating identification is captured by a functionality F full

vrfy, which is black-box used in this
protocol. Following this, we can also define a functionality F full

vrfy that verifies distributed inner-product
triples with the ability of cheating identification. By making a black-box use of this functionality, we
can obtain a fully secure protocol as in [BGIN20].

F.2 Instantiating F full
vrfy

We first give a formal definition of F full
vrfy in Functionality F.2.1.

Below we demonstrate how to instantiate F full
vrfy given the secure-with-abort verification protocol

ΠVrfySSIP. Observe that in ΠVrfySSIP, aborting only occurs in the following procedures: (1) functionality
FVrfyIP returns an abort, (2) reconstruction of oi for i ∈ [κ] fails due to inconsistency, and (3) there
exists some i ∈ [κ] s.t. oi ̸=k 0. We analyze the three cases in the following.
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FUNCTIONALITY F.2.1. (F full
vrfy - Verifying Secret-Shared Inner-Product Triples with Cheat-

ing Identification).

Let S be the ideal world adversary.

1. F full
vrfy receives m from all parties. Then for all i ∈ [m], F full

vrfy receives honest parties’ shares
of ([[ai]]k, [[bi]]k, [[ci]]k). For each replicated secret sharing, F full

vrfy reconstructs the whole
sharings ([[ai]]k, [[bi]]k, [[ci]]k) for all i ∈ [m], and sends the shares of corrupted parties to S.
In addition, F full

vrfy computes ϵi ≡k ci − ai · bi and sends ϵi to S.

2. F full
vrfy checks if the equation ci ≡k ai · bi holds for all i ∈ [m].

• If it holds for all i ∈ [m], F full
vrfy sends accept to S and receives a command

out ∈ {accept, abort} from S. If out = abort, then S is required to send a pair of
indices (j1, j2) to F full

vrfy with at least one of them being a corrupted party, then F full
vrfy

hands (j1, j2) to all honest parties.
• Otherwise, F full

vrfy sends abort to S. Then S chooses one of the following two options:

– S sends a pair of indices (j1, j2) to F full
vrfy with at least one of them being a

corrupted party, then F full
vrfy hands (j1, j2) to all honest parties.

– S asks F full
vrfy to find a pair of conflicting parties in the î⋆-th inner-product triple

for some î⋆ ∈ [m]. Then, F full
vrfy commands the honest parties to send their inputs,

randomnesses as well as views in the execution to compute the î⋆-th triple and
the messages that should have been sent by each corrupted party. Then F full

vrfy
finds a pair of parties (Pj1 , Pj2) where Pj2 received an incorrect message from Pj1 ,
and hands (j1, j2) to all honest parties and S.

• Case (1): In this case, we require that whenever FVrfyIP returns an abort, it also outputs a pair
of conflicting parties, and then F full

vrfy just takes this pair of conflicting parties as the semi-corrupt
pair. We augment FVrfyIP with the cheating identification ability, which is captured by the
functionality FCheatIdntfy

VrfyIP (and will be elaborated later).

• Case (2): Utilizing the “replicated” property of the RSS scheme, the parties are able to identify
two inconsistent parties with ease.

• Case (3): This case implies that, each additive share c
′(j)
i is honestly computed using claimed

[[a′
i]]k and [[b′i]]k and shared by each party Pj (except with negligible probability), but c′i recon-

structed from the additive shares {c′(j)i }j∈[n] is inconsistent with the one reconstructed from
the RSS sharings [[c′i]]k, which further implies that there exists some incorrect RSS-shared inner-
product triple in the semi-honest phase. To locate such an incorrect triple, the parties apply
the binary search method as in [BGIN20]. Specifically, they first divide the triples into two
halves, and then perform the distributed product check procedure on the halved triples; if the
current check is not passed, then they apply the binary search method on the current half of the
triples, otherwise they turn to the other half and apply the process, until finally obtaining an
incorrect triple. After obtaining this incorrect triple, the parties can check the computation of
this triple and find a pair of conflicting parties, which is captured by the functionality FminiMPC
as in [BGIN20].

In this way, we can securely instantiate functionality F full
vrfy in the (FCheatIdntfy

VrfyIP ,FminiMPC)-hybrid
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model. Note that we can directly apply the previous instantiation of FminiMPC as in [BGIN20]. In the
following we mainly elaborate on how to instantiate FCheatIdntfy

VrfyIP atop our secure-with-abort protocol
ΠVrfyIP.

F.3 Instantiating FCheatIdntfy
VrfyIP

Functionality F.3.1 gives the formal definition of FCheatIdntfy
VrfyIP , which verifies distributed inner-product

triples known by a single prover with the ability of cheating identification.

FUNCTIONALITY F.3.1. (FCheatIdntfy
VrfyIP - Verifying Secret-Shared Inner-Product Triples

Known by A Single Party with Cheating Identification).

Let S be the ideal world adversary.

1. FVrfyIP receives the prover’s identity j, a parameter p, and honest parties’ shares of
{([[µi]]k, [[νi]]k, [[wi]]k)}

p
i=1. For each replicated secret sharing, FVrfyIP reconstructs the

whole sharings ([[µi]]k, [[νi]]k, [[wi]]k) for all i ∈ [p], and sends the identity j and the shares of
corrupted parties to S. In addition, if Pj is corrupted, FVrfyIP also sends the whole
sharings {([[µi]]k, [[νi]]k, [[wi]]k)}

p
i=1 to S.

2. FVrfyIP checks if the equation wi ≡k µi · νi holds for all i ∈ [p]. If it doesn’t hold for some
i ∈ [p], FVrfyIP sends abort to all honest parties and S. Otherwise, FVrfyIP receives a
command out ∈ {accept, abort} from S, and sends out to all honest parties.

3. If the command sent to the honest parties is abort, then:

• If Pj is corrupted, then S sends an index j′ ∈ [n] to FCheatIdntfy
VrfyIP ; if Pj is honest, then

S sends an index j′ where Pj′ is corrupted to FCheatIdntfy
VrfyIP .

• S sends the pair of indices (j, j′) to the honest parties.

Recall that in the protocol ΠVrfyIP, the single prover knows in clear the inner-product triples to
be checked as well as the sharings of triples held by the verifiers. Taking advantage of this fact,
we can instantiate FCheatIdntfy

VrfyIP by augmenting ΠVrfyIP with the cheating identification ability easily.
Specifically, we let the prover “accuse” one verifier who may cause abort, and output the prover and
the accused verifier as a semi-corrput pair. Consider the following two cases:

• Case (1): The prover is corrupted. In this case, no matter which verifier the prover chooses, the
output semi-corrupt pair always contains the malicious prover.

• Case (2): The prover is honest. In this case, the honest prover needs to accurately find a
malicious verifier that causes abort. To this end, we utilize the “recomputable verification”
property of ΠVrfyIP as in [BGIN20] – the prover itself can recompute the expected messages
of the verifiers. To see this, note that each message sent by each verifier can be represented
as a deterministic function of 1) its inputs to the protocol, 2) the messages received from the
functionalities Finput,Fcoin, as well as 3) the messages received from the prover. For 1), note that
each verifier’s inputs (i.e., shares of the triples) are known by the prover at the beginning of the
protocol. For 2), the prover can deduce the verifier’s messages (i.e. shares of the prover’s secrets)
received from Finput (using the secrets it sends to Finput and the shares received back from
Finput); the prover also knows the randomnesses generated by Fcoin since all the randomnesses
are public. For 3), they are already known to the prover. Therefore, the prover can individually
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compute each message that should be sent by the verifiers, which enables it to find exactly which
verifier is malicious and further output a correct semi-corrupt pair.

G Security Analysis and Proofs
G.1 Reduction from A in our Protocol to Ag in Game(k, s, T ).
We now briefly show the reduction from the adversaryA of our protocol toAg in the game Game(k, s, T ).
Assume that the prover party Pj is corrupted and at least one of the input inner-product triples is
incorrect. Intuitively, we use Ei to denote an upper bound on the smallest number of 2-factors of the
additive errors in Round i. This holds for Round 0 since at least one of the inner-product triples is
incorrect, indicating that the additive error of that triple has number of 2-factors no more than k − 1.

Round 1: Suppose the additive errors of the inner-product triples after lifting to Z2k+s in Step
1 are denoted by ϵ1, . . . , ϵκ. Then one of the inner-product triples, say the i⋆-th inner-product triple,
has additive error ϵi⋆ such that Po2(ϵi⋆) ≤ E0 = k − 1. We set Ag to pick e1 = ϵi⋆ in the first round
of the game. In Step 2, we merge all inner-product triples into a single inner-product triple. Then the
additive error of the new inner-product triple can be computed by ϵ =

∑κ
i=1 θi ·ϵi = θi⋆ ·ϵi⋆+

∑
i ̸=i⋆ θi ·ϵi.

Thus, Ag picks c1 =
∑

i ̸=i⋆ θi · ϵi in the first round of game. Since θi⋆ is uniform, we interpret the
challenge r1 by Cg as r1 = θi⋆ , and thus E1 = Po2(r1 · e1 + c1) = Po2(ϵ).

Round 2 and Round 3: Now we proceed to Step 3 of our protocol.
In Step 3.1, we may define ϵi,i′ = zi,i′ − xi · yi′ . In particular, we have

∑λ
i=1 ϵi,i = z − x · y = ϵ,

which satisfies that Po2(
∑λ

i=1 ϵi,i) ≤ E1. Thus, there exists an index i⋆ such that Po2(ϵi⋆,i⋆) ≤ E1.
We let Ag pick e2 = ϵi⋆,i⋆ in the second round of the game.

In Step 3.3, the additive error ϵ′ = z′ − x′ · y′ can be computed as ϵ′ =
∑λ

i′=1 βi′ · (
∑λ

i=1 αi · ϵi,i′).
Let ϵ′i′ =

∑λ
i=1 αi · ϵi,i′ . Then ϵ′ =

∑λ
i′=1 βi′ · ϵ′i′ .

Observe that ϵ′i⋆ =
∑λ

i=1 αi · ϵi,i⋆ = αi⋆ · ϵi⋆,i⋆ +
∑

i ̸=i⋆ αi · ϵi,i⋆ . We let Ag pick c2 =
∑

i ̸=i⋆ αi · ϵi,i⋆
in the second round of the game. Since αi⋆ is uniform, we interpret the second challenge Cg samples,
r2, as r2 = αi⋆ , and thus E2 = Po2(r2 · e2 + c2) = Po2(ϵ′i⋆).

We let Ag pick e3 = ϵ′i⋆ in the third round of the game. Observe that ϵ′ =
∑λ

i′=1 βi′ · ϵ′i′ =
βi⋆ · ϵ′i⋆ +

∑
i′ ̸=i⋆ βi′ · ϵ′i′ . Ag picks c3 =

∑
i′ ̸=i⋆ βi′ · ϵ′i′ and we interpret the third challenge by Cg as

r3 = βi⋆ . Thus, E3 = Po2(r3 · e3 + c3) = Po2(ϵ′). The similar reduction from the strategy of Pj to Ag

works for the subsequent repetitions of Step 3 and Step 4.
Last Round: From the above, the additive error of the final multiplication triple has a number

of 2-factors no more than E2 logλ(p·d)+1. In particular, if all parties accept the check of the final
multiplication triple, it implies that the additive error of the final multiplication triple is 0. Then
E2 logλ(p·d)+1 = k + s, indicating that Ag wins the above game.

G.2 Proof of Lemma 5.1.1
Proof. Consider a fixed adversary Ag. We start by analyzing the probability of the event Ei ≥ q for
any round i ∈ [T ] and any positive integer q ≤ k + s. We first have the following proposition.

Proposition G.2.1. For any positive integer q where q ≤ k + s,

Pr[E1 ≥ q | E0 = k − 1] ≤ 1

2q−k+1
. (5)

For any 2 ≤ i ≤ T and positive integer p ≤ q,

Pr[Ei ≥ q | Ei−1 = p,E0 = k − 1] ≤ 1

2q−p
. (6)
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Proof. Consider the first round where i = 1. Note that when q < k − 1, the inequality always holds.
We only consider the case where q ≥ k − 1. Assume e1 = 2u · v where v is an odder integer. Under
the requirement that E0 = k − 1 and Po2(e1) ≤ E0, we have u ≤ k − 1 ≤ q. Let Φ1 ≡k+s r1 · e1 + c1.
It follows that r1 · 2u · v ≡k+s Φ1 − c1. And the event E1 ≥ q (i.e., Po2(Φ1) ≥ q) implies that
r1 ≡q−u

(Φ1−c1)
2u · v−1. Since q − u ≤ k + s, this further implies determining the lowest q − u bits of

r1. As r1 is uniformly random over Z2k+s , the probability of this event is bounded by 1
2q−u . Since

u ≤ k − 1, the probability is at most 1
2q−k+1 .

Now consider the following rounds where 2 ≤ i ≤ T . We now assume ei = 2u · v where v is an
odder integer. In this case, conditioned on Ei−1 = p, we have u = Po2(ei) ≤ Ei−1 = p ≤ q. Let
Φi ≡k+s ri · ei+ ci. Similarly, the event Ei ≥ q implies that ri ≡q−u

(Φi−ci)
2u · v−1. which happens with

probability bounded by 1
2q−u . As u ≤ p, this probability is at most 1

2q−p .

Given Proposition G.2.1, we now have the following induction inequality:

Proposition G.2.2. For any positive integer q ≤ k + s and 2 ≤ i ≤ T ,

Pr[Ei ≥ q | E0 = k − 1] ≤ 1

2q
+

q∑
p=1

1

2q−p+1
Pr[Ei−1 ≥ p | E0 = k − 1]. (7)

Proof. By applying the law of total probability over all possible values of Ei−1, we have

Pr[Ei ≥ q | E0 = k − 1]

=

k+s∑
p=0

Pr[Ei ≥ q | Ei−1 = p,E0 = k − 1] · Pr[Ei−1 = p | E0 = k − 1]

≤
q−1∑
p=0

Pr[Ei ≥ q | Ei−1 = p,E0 = k − 1] · Pr[Ei−1 = p | E0 = k − 1]

+

k+s∑
p=q

Pr[Ei−1 = p | E0 = k − 1]

=

q−1∑
p=0

Pr[Ei ≥ q | Ei−1 = p,E0 = k − 1] · Pr[Ei−1 = p | E0 = k − 1]

+ Pr[Ei−1 ≥ q | E0 = k − 1].
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From Proposition G.2.1, we can obtain

Pr[Ei ≥ q | E0 = k − 1]

≤
q−1∑
p=0

1

2q−p
· Pr[Ei−1 = p | E0 = k − 1] + Pr[Ei−1 ≥ q | E0 = k − 1]

=

q−1∑
p=0

1

2q−p
· (Pr[Ei−1 ≥ p | E0 = k − 1]

− Pr[Ei−1 ≥ p+ 1 | E0 = k − 1]) + Pr[Ei−1 ≥ q | E0 = k − 1]

=
1

2q
· Pr[Ei−1 ≥ 0 | E0 = k − 1]

+

q−1∑
p=1

(
1

2q−p
− 1

2q−(p−1)
) · Pr[Ei−1 ≥ p | E0 = k − 1]

− 1

2
Pr[Ei−1 ≥ q | E0 = k − 1] + Pr[Ei−1 ≥ q | E0 = k − 1]

=
1

2q
· Pr[Ei−1 ≥ 0 | E0 = k − 1]

+

q∑
p=1

1

2q−p+1
Pr[Ei−1 ≥ p | E0 = k − 1].

As 0 ≤ Ei−1 ≤ k + s, we have Pr[Ei−1 ≥ 0 | E0 = k − 1] = 1, and thus

Pr[Ei ≥ q | E0 = k − 1] ≤ 1

2q
+

q∑
p=1

1

2q−p+1
Pr[Ei−1 ≥ p | E0 = k − 1]. (8)

We now claim that Proposition G.2.2 implies the following inequality for any i ∈ [T ] and q ∈
[k, k + s].

Pr[Ei ≥ q | E0 = k − 1] ≤
i−1∑
j=0

(
q − k + j

q − k

)
· 1

2q−k+1+j
. (9)

Below we prove the correctness of this inequality.

• Consider the first round where i = 1. It’s clear to see that in this case the above inequality is
consistent with Proposition G.2.1. Specifically, in the case of i = 1, Inequality 9 becomes

Pr[E1 ≥ q | E0 = k − 1] ≤
(
q − k

q − k

)
· 1

2q−k+1
=

1

2q−k+1
. (10)

which is consistent with Inequality 5 claimed in Proposition G.2.1.

• Now we assume that Inequality 9 holds in any (i − 1)-th round where 2 ≤ i ≤ T , and prove
that under this assumption, the inequality still holds in the i-th round. Starting from Proposi-
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tion G.2.2, we have

Pr[Ei ≥ q | E0 = k − 1]

≤ 1

2q
+

q∑
p=1

1

2q−p+1
Pr[Ei−1 ≥ p | E0 = k − 1]

≤ 1

2q
+

k−1∑
p=1

1

2q−p+1
+

q∑
p=k

1

2q−p+1
Pr[Ei−1 ≥ p | E0 = k − 1]

≤ 1

2q−k+1
+

q∑
p=k

1

2q−p+1
Pr[Ei−1 ≥ p | E0 = k − 1].

By the assumption that Inequality 9 holds in the (i− 1)-th round, we have

Pr[Ei−1 ≥ p | E0 = k − 1] ≤
i−2∑
j=0

(
p− k + j

p− k

)
· 1

2p−k+1+j
.

And thus we obtain

Pr[Ei ≥ q | E0 = k − 1]

≤ 1

2q−k+1
+

q∑
p=k

1

2q−p+1

i−2∑
j=0

(
p− k + j

p− k

)
· 1

2p−k+1+j

=
1

2q−k+1
+

q∑
p=k

i−2∑
j=0

1

2q−k+2+j

(
p− k + j

p− k

)

=
1

2q−k+1
+

i−2∑
j=0

1

2q−k+2+j

q∑
p=k

(
p− k + j

p− k

)
.

Due to the fact that
q∑

p=k

(
p− k + j

p− k

)
=

(
q − k + 1 + j

q − k

)
,

we have

Pr[Ei ≥ q | E0 = k − 1]

≤ 1

2q−k+1
+

i−2∑
j=0

1

2q−k+2+j

(
q − k + 1 + j

q − k

)

=
1

2q−k+1
+

i−1∑
j=1

1

2q−k+1+j

(
q − k + j

q − k

)

=

(
q − k + 0

q − k

)
· 1

2q−k+1
+

i−1∑
j=1

1

2q−k+1+j

(
q − k + j

q − k

)

=

i−1∑
j=0

1

2q−k+1+j

(
q − k + j

q − k

)
.

This indicates that Inequality 9 holds for any round i ∈ [T ].
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Note that Ag wins Game(k, s, T ) if and only if in the last round T , ET = k+ s. Given Inequality 9,
we set q = k + s, i = T , and get

Pr[ET ≥ k + s | E0 = k − 1] ≤
T−1∑
j=0

(
s+ j

s

)
· 1

2s+1+j
. (11)

By definition, we have 0 ≤ ET ≤ k+s, and thus Pr[ET ≥ k+s | E0 = k−1] = Pr[ET = k+s | E0 = k−1].
Therefore we obtain

Pr[ET = k + s | E0 = k − 1] ≤
T−1∑
j=0

(
s+ j

s

)
· 1

2s+1+j
, (12)

which is exactly the upper bound of the winning probability of Ag claimed in Lemma 5.1.1.

Tightness of Lemma 5.1.1. We note that the bound we obtained in Lemma 5.1.1 can be met by the
following adversary Ag: In the i-th iteration, Ag sets ei = 2Ei−1 which satisfies that Po2(ei) ≤ Ei−1,
and sets ci = 0. One can verify that such an adversary indeed matches the bound in Lemma 5.1.1.

G.3 Proof of Lemma 5.1.2
Proof. Let S be the ideal world adversary and A the real world adversary controlling t = n−1

2 corrupted
parties. S is invoked by receiving the prover’s identity j from FVrfyIP. We consider the following two
cases.

Case 1: the prover Pj is corrupted. In this case, S also receives the shares of the corrupted
parties and the whole sharings {([[µi]]k, [[νi]]k, [[wi]]k)}

p
i=1 of the corrupted prover from FVrfyIP. S

works as follows.

1. S emulates Finput and receives the shares of hi/2
k the honest parties should hold from the

corrupted prover Pj for each i ∈ [p]. S locally multiplies the shares by 2k over Z2k+s and obtains
[[hi]]k+s held by the honest parties.

2. S plays the role of Fcoin by sampling and handing random θ1, · · · , θp ∈ Z2k+s to A.

3. As S is given the corrupted parties’ shares and the whole sharings {([[µi]]k, [[νi]]k, [[wi]]k)}
p
i=1 of

the prover, it computes the honest parties’ shares of these input triples. Then it deduces the
sharings ([[x]]k+s, [[y]]k+s, [[z]]k+s) held by the honest parties using the randomness θi as described
in the protocol.

4. S repeats the following procedure. It emulates Finput and receives the shares of zi,i′ the honest
parties should have from A for all i, i′ ∈ [λ] and (i, i′) ̸= (1, 1) from A. Then it simulates Fcoin by
sending random {αi}λi=1, {βi}λi=1 in Z2k+s to A, and computes ([[x′]]k+s, [[y

′]]k+s, [[z
′]]k+s) using

the randomness αi, βi to update the sharings ([[x]]k+s, [[y]]k+s, [[z]]k+s) held by the honest parties.
S then goes to the next iteration until the dimension of the vectors is at most λ.

5. In the final check step, S emulates Finput and receives the shares of x0, y0 and then the shares of
zi,i′ for all i, i′ ∈ [λ] and (i, i′) ̸= (1, 1) the honest parties should hold from A. Then it simulates
Fcoin by handing random {αi}λi=1, {βi}λi=1 in Z2k+s to A.

6. S computes the sharings of the final multiplication triple ([[x′]]k+s, [[y
′]]k+s, [[z

′]]k+s) held by the
honest parties, and then reconstruct the triple (x′, y′, z′) from the computed shares. Then S
simulates the reconstruct procedure by handing the honest parties’ shares of the multiplication
triple to each corrupted party controlled by A.

41



7. If FVrfyIP doesn’t send abort to S, then S sends accept to FVrfyIP if ([[x′]]k+s, [[y
′]]k+s, [[z

′]]k+s) is a
correct multiplication triple, and sends abort otherwise. Otherwise if S receives abort from FVrfyIP
and the final multiplication triple is incorrect, i.e., x′ · y′ ̸=k+s z′, then S outputs whatever A
outputs. Otherwise, if it receives abort from FVrfyIP but the final multiplication triple is correct,
then S outputs fail and halts.

Observe that S knows exactly the honest parties’ shares in this case, and thus the above simulation is
perfect. The only difference between the simulation and the real execution is the event that S outputs
fail, where FVrfyIP outputs abort to the honest parties but the honest parties in the real execution
output accept. Note that this happens only when there exists some incorrect triple ci ̸=k ai · bi for
some i ∈ [m] but the final multiplication triple is correct, i.e., x′ · y′ ≡k+s z′. We now show the
probability of this event is negligible in κ given s = max(3T, κ + T (1/2 + log(5/2 + 3κ/T ))) where
T = 2⌈logλ(p · d)⌉+ 1 under the assumption that T ≤ κ and 3T < s.

Given Game(k, s, T ) in Section 5.1, we first have the following claim.

Claim G.3.1. If A can cause S to output fail with probability q, then S can win the game with the
same probability q.

Proof. We use the definitions and notations in Section 5.1. Particularly, we denote the additive errors of
the inner-product triples after lifting to Z2k+s by ϵ1, . . . , ϵp. Recall that the event A causes S to output
fail implies at least of one of the input inner-product triples is incorrect but the final multiplication
triple is correct. Thus here we can assume that there exists an index i⋆ ∈ [p] s.t. the i⋆-th inner-
product triple has an non-zero additive error ϵi⋆ over Z2k , i.e., Po2(ϵi⋆) ≤ E0 = k − 1. We let S work
as follows.

• S initially has E0 = k − 1.

• S works as we described above until simulating Fcoin in Step 2. It now picks p − 1 random
coefficients θi for i ∈ [p], i ̸= i⋆, sets e1 = ϵi⋆ , c1 =

∑
i∈[p],i ̸=i⋆ θi · ϵi, and sends (e1, c1) to Cg in

the first round of the game. Then it receives a random r1 ∈ Z2k+s from Cg and defines θi⋆ = r1.
Now S simulates Fcoin sending these p random values {θi}i∈[p] to the adversaryA. Additionally, S
defines and computes ϵ = r1 ·e1+c1. Clearly ϵ = θi⋆ ·ϵi⋆+

∑
i∈[p],i ̸=i⋆ θi ·ϵi =

∑
i∈[p] θi ·ϵi = z−x·y,

which is exactly the additive error on z. Then S calculates E1 = Po2(ϵ).

• S proceeds as described above until simulating Fcoin in the first iteration of the repetition in
Step 4. It now works as follows.

– S defines and computes each ϵi,i′ = zi,i′ − xi · yi′ for i, i′ ∈ [p] (as it knows the honest
parties’ shares of xi,yi, zi,i′ and can reconstruct them). Now we have ϵ =

∑p
i=1 ϵi,i, and

it follows that there exists an index i⋆ s.t. Po2(ϵi⋆,i⋆) ≤ Po2(ϵ) = E1. S now picks p − 1
randomnesses αi for i ∈ [p], i ̸= i⋆, sets e2 = ϵi⋆,i⋆ , c2 =

∑
i∈[p],i ̸=i⋆ αiϵi,i⋆ and sends (e2, c2)

to Cg in the second round of the game. After S receives a random r2 from Cg, it defines
αi⋆ = r2.

– At this point, S defines and computes ϵ′i′ =
∑

i∈[p] αi · ϵi,i′ for each i ∈ [p]. Then S picks
another p − 1 randomnesses βi for i ∈ [p], i ̸= i⋆, sets e3 = ϵ′i⋆ , c3 =

∑
i′∈[p],i′ ̸=i⋆ βi′ · ϵ′i′

and sends (e3, c3) to Cg in the third round of the game. S defines the received randomness
r3 as βi⋆ , now simulates Fcoin handing these random values {αi}pi=1, {βi}pi=1 to A. Now S
defines ϵ′ = r3 · e3 + c3. Clearly we have ϵ′ = βi⋆ · ϵ′i⋆ +

∑
i′∈[p],i′ ̸=i⋆ βi′ · ϵ′i′) =

∑
i′∈[p] βi′ ·

(
∑λ

i=1 αi · ϵi,i′) = z′ − x′ · y. And then S computes E3 = Po2(ϵ′).

S goes on simulating the honest parties as we described previously. In each iteration of the
repetition in Step 4, it simulates Fcoin in the same way above.
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• In the final check step, the number of iterations v reaches v = ⌈logλ(p · d)⌉. S simulates Fcoin
by picking random values {αi}i∈[p],i ̸=i⋆ , {βi}i∈[p],i ̸=i⋆ , sending (e2v, c2v),(e2v+1, c2v+1) (defined in
a similar way to that in the previous iterations) to Cg in two rounds, and taking the received
randomnesses r2v, r2v+1 as αi⋆ , βi⋆ . Note that now the number of interaction rounds in this game
is T = 2v + 1 = 2⌈logλ(p · d)⌉ + 1. S additionally defines α0 = β0 = 1, and computes the final
additive error ϵ′ = r2v+1 ·e2v+1+c2v+1 =

∑
i′∈[0,p] βi′ ·(

∑
i′∈[0,p] αi ·ϵi,i′) = z′−x′ ·y′. S proceeds

to simulate the following as described above until the simulation ends.
As we analyzed in Section 5.1, in each round the value ri for i ∈ [T ] received from Cg is uniformly
random, and thus the simulation of Fcoin is perfect. Observe that at the end of the simulation, we
have ET = Po2(r2v+1 · e2v+1 + c2v+1) = Po2(ϵ′). The event that A causes S to output fail indicates
that z′ − x′ · y′ ≡k+s 0, i.e., Po2(ϵ′) = k + s, which further means that ET = k + s and S now wins
the game. Therefore, if A can make S fail with probability q, then with the same probability, S can
win the game Game(k, s, T ).

According to Lemma 5.1.1, we know that the probability for an adversary Ag winning the game
Game(k, s, T ) is at most

∑T−1
j=0

(
s+j
s

)
· 1
2s+1+j . In our case, T = 2⌈logλ(p · d)⌉ + 1. Then based on

our analysis in Section G.6.1, when we set s = κ + T (1/2 + log(5/2 + 3κ/T )) (assuming that T ≤ κ
and 3T ≤ s) the winning probability of Ag is at most 2−κ. Given Claim G.3.1, we deduce that the
probability of S outputting fail is also bounded by 2−κ, which is exactly the soundness error claimed
in this lemma.

Case 2: the prover Pj is honest. In this case, S receives the corrupted parties’ shares {([[µi]]k, [[νi]]k,
[[wi]]k)}

p
i=1. It works as follows.

1. S simulates Finput and receives the shares of [[hi/2
k]]s of corrupted parties.

2. S plays the role of Fcoin by handing random θ1, · · · , θp ∈ Z2k+s to A.

3. S repeats the following procedure. S simulates Finput and receives the shares of [[zi,i′ ]]k+s of
corrupted parties for each i, i′ ∈ [λ] and (i, i′) ̸= (1, 1). Then it computes the shares of [[z1,1]]k+s

that corrupted parties should hold. Next it simulates Fcoin sending random {αi}λi=1, {βi}λi=1 to A.
Finally, S follows the protocol and computes the shares ([[x]]k+s, [[y]]k+s, [[z]]k+s that corrupted
parties should hold. S goes to the next iteration until the dimension of the vectors is at most λ.

4. S simulates Finput and receives corrupted parties’ shares of [[x0]]k+s, [[y0]]k+s and [[zi,i′ ]]k+s for
all i, i′ ∈ [0, λ] and (i, i′) ̸= (1, 1). Then it computes the shares of [[z1,1]]k+s that corrupted
parties should hold. S simulates Fcoin handing random {αi}λi=1, {βi}λi=1 to A. Now S follows
the protocol and computes the shares of ([[x′]]k+s, [[y

′]]k+s, [[z
′]]k+s) that corrupted parties should

hold. Then S picks a random triple (x′, y′, z′) over Z2k+s s.t. x′ · y′ ≡k+s z′. Since there are
exactly t = (n − 1)/2 corrupted parties, the shares of honest parties are fully determined by
the secret and the shares of corrupted parties. Thus, S calculates the honest parties’ shares of
([[x′]]k+s, [[y

′]]k+s, [[z
′]]k+s). Finally, it simulates the reconstruct procedure by sending the honest

parties’ shares to the corrupted parties honestly. Also, it receives the corrupted parties’ shares
of ([[x′]]k+s, [[y

′]]k+s, [[z
′]]k+s) from A.

S follows the rest of the protocol to check the triple ([[x′]]k+s, [[y
′]]k+s, [[z

′]]k+s). If the received
shares are inconsistent, it sends abort to FVrfyIP; otherwise it sends accept to FVrfyIP. Then S
outputs whatever A outputs.

Observe that the adversary’s view consists of (1) shares of [[hi/2
k]]s for i ∈ [p], shares of [[zi,i′ ]]k+s

for i, i′ ∈ [λ] (or [0, λ]) but (i, i′) ̸= (1, 1), shares of [[x0]]k+s, [[y0]]k+s from the prover, (2) the revealed
triple (x′, y′, z′). Due to the secrecy of the RSS scheme, view (1) is the same in the simulation and
the real execution. And as the prover is honest, the final triple in view (2) is always a random triple
under the condition that x′ · y′ ≡k+s z′, and thus view (2) is also the same in both executions. This
concludes our proof.
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G.4 Proof of Lemma 3.3.1
Proof. Let S be the ideal world adversary and A the real world adversary controlling t = n−1

2 corrupted
parties. Let C denote the set of corrupted parties, and H denotes the set of honest parties.

Construction of the Ideal World Adversary S. In the beginning, S receives from FVrfySSIP
the shares of ([[ai]]k, [[bi]]k, [[ci]]k) of the corrupted parties and the additive errors ϵi ≡k ci − ai · bi for
i ∈ [m]. Then S simulates the behaviors of honest parties and interacts with the real world adversary
A as follows.

1. In Step 2, S faithfully emulates the role of Fcoin by choosing a random seed of size σ and handing
the seed to all parties. S expands the seed to obtain random binary coefficients γ1, · · · ,γκ ∈
{0, 1}m. Then S follows the protocol in Step 3 and computes the shares of ([[a′

i]]k, [[b
′
i]]k, [[c

′
i]]k) of

corrupted parties for all i ∈ [κ].

2. In Step 4, S emulates Finput as follows.

• For each corrupted party Pj , S receives the input c′(j)i and the whole sharing [[c′
(j)
i ]]k for all

i ∈ [κ].

• For each honest party Pj , S receives the shares of [[c′(j)i ]]k of corrupted parties for all i ∈ [κ].

3. In Step 5, S emulates FVrfyIP as follows. For each corrupted party Pj , since S learns the shares
of ([[a′

i]]k, [[b
′
i]]k, [[c

′
i]]k) Pj should hold and the whole sharing [[c′

(j)
i ]]k for all i ∈ [κ], S follows this

step and computes the whole sharings ([[µ
(j)
i ]]k, [[ν

(j)
i ]]k, [[c

′(j)
i ]]k) for all i ∈ [κ]. Then S sends the

whole sharings to the ideal adversary of FVrfyIP and honestly emulates the Step 3 in FVrfyIP.

For each honest party Pj , since S learns the shares of ([[a′
i]]k, [[b′i]]k, [[c

′
i]]k) and [[c′

(j)
i ]]k that

corrupted parties should hold for all i ∈ [κ], S follows this step and computes the shares of
([[µ

(j)
i ]]k, [[ν

(j)
i ]]k, [[c

′(j)
i ]]k) of corrupted parties for all i ∈ [κ]. Then S sends these shares to the

ideal adversary of FVrfyIP. In Step 3 of FVrfyIP, S assumes c
′(j)
i ≡k µ

(j)
i · ν

(j)
i for all i ∈ [κ] and

follows the rest of this step.

4. In Step 6, for all i ∈ [κ] S computes c′
(j)
i for each corrupted party j by using the shares of

[[a′
i]]k, [[b

′
i]]k that Pj should hold. Let c̃

(j)
i denote the secret S received when emulating Finput

in Step 4. Then S computes oi = γi,1 · ϵ1 + . . . + γi,m · ϵm +
∑

j∈C(c
′(j)
i − c̃

(j)
i ). Note that

γi,1 · ϵ1+ . . .+γi,m · ϵm is the additive error if all corrupted parties share {c′(j)i }j∈C correctly, and∑
j∈C(c

′(j)
i − c̃

(j)
i ) is the additive error due to the possibly incorrect {c̃(j)i }j∈C .

Then, S computes the shares of each [[oi]]k that corrupted parties should hold. From oi and the
shares of corrupted parties, S computes the shares of honest parties. Finally, S honestly follows
the rest of this step.

5. In Step 7, if S receives accept from FVrfySSIP,

• If FVrfyIP returns reject or there exists some oi ≡k 0, S aborts on behalf of honest parties
and sends reject to FVrfySSIP.

• Otherwise, S sends accept to FVrfySSIP.

Otherwise, S aborts on behalf of honest parties no matter the result of FVrfyIP or whether oi ≡k 0
for some i.
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Hybrid Arguments. Consider the following hybrids.
Hybrid0: In this hybrid, S uses honest parties input and honestly emulates honest parties. This

corresponds to the real world.
Hybrid1: In this hybrid, S computes the shares of corrupted parties and the sharings dealt by

corrupted parties as described above. Then S emulates FVrfyIP in Step 5 as described above. Note
that the shares computed by S are always consistent with the shares held by honest parties. Thus, the
distribution of Hybrid1 is identically to the distribution of Hybrid0.

Hybrid2: In this hybrid, S simulates Step 2 as described above. Then S simulates the last step as
described above. The only difference between Hybrid2 and Hybrid1 is that S will abort on behalf
of honest parties if receiving reject from FVrfySSIP even if FVrfyIP returns accept and oi ≡k 0 for all
i ∈ [κ]. We argue that this happens with negligible probability in κ and σ assuming that G is a PRG.

First note that, when γi ∈ {0, 1}m are sampled from uniform distribution, and there exists j ∈ [m]
s.t. cj ̸=k aj · bj , then with probability 1/2, c′i ̸= a′

i · b′i. Thus, when γ1, · · · ,γκ are all sampled from
uniform distribution, with all but negligible probability in κ, there exists i ∈ [κ] s.t. c′i ̸= a′

i · b′i. Then
either FVrfyIP returns reject in case some corrupted party Pj does not share correct c′

(j)
i , or oi ̸= 0

in case all corrupted parties share correct {c′(j)i }j∈C . Thus, the event that FVrfySSIP returns reject

but FVrfyIP returns accept and oi ≡k 0 for all i ∈ [κ] happens with negligible probability in κ.
Now consider the scenario where γ1, · · · ,γκ are expanded by G from a uniform seed. Since G is

a PRG, the output distribution is computationally indistinguishable from the case where γ1, · · · ,γκ

are sampled from uniform distribution (Otherwise, we may use the above procedure to detect whether
γ1, · · · ,γκ is from uniform distribution or generated by G).

Thus, the output of Hybrid2 is computationally indistinguishable from Hybrid1.
Hybrid3: In this hybrid, S computes oi by using {ϵj}mj=1 as described in Step 6 above and then

computes and uses the shares of [[oi]]k of honest parties as described in Step 6. Note that we may write

oi = γi,1 · c1 + . . .+ γi,m · cm −
n∑

j=1

c̃
(j)
i

= γi,1 · (c1 − a1 · b1) + . . .+ γi,m · (cm − am · bm)

+

n∑
j=1

c′
(j)
i −

n∑
j=1

c̃
(j)
i ,

where we use c′
(j)
i to denote the correct share Pj should compute from the j-th shares of [[a′

i]]k, [[b
′
i]]k

and c̃
(j)
i to denote the share Pj shares in Step 4. Note that we always have

∑n
j=1 c

′(j)
i = a′

i · b′i =

γi,1 · a1 · b1 + . . .+ γi,m · am · bm. And for each honest party Pj , c′(j)i = c̃
(j)
i . Thus

oi = γi,1 · ϵ1 + · · ·+ γi,m · ϵm +
∑
j∈C

(c′
(j)
i − c̃

(j)
i ),

which is exactly the one computed above.
Therefore, oi computed in Step 6 is identical to that in Hybrid2, which means that oi is consistent

with the shares of [[oi]]k held by honest parties, and the shares of [[oi]]k that corrupted parties should
hold. Note that when there are exactly t = (n − 1)/2 corrupted parties, the shares of honest parties
are fully determined by the shares of corrupted parties and the secret. Thus, the output distribution
of Hybrid3 is identical to that of Hybrid2.

Hybrid4: In this hybrid, S simulates Finput as described above. The distribution remains the same
as Hybrid3. Note that in this hybrid, S does not need to use the shares of honest parties, but only
the values received from FVrfySSIP. Thus Hybrid4 corresponds to the ideal world. And we conclude
that ΠVrfySSIP securely computes FVrfySSIP with negligible error in κ and σ.
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G.5 Soundness Analysis of the Optimized Protocol ΠOpt
VrfyIP

Following a similar argument to Lemma 5.1.2, the soundness of the optimized protocol ΠOpt
VrfyIP is the

same as the winning probability of the following game Game′(k, s, T ).
1. Ag, Cg initially have E0 = k − 1.

2. In the first round,

(a) Ag chooses arbitrary e1, c1 ∈ Z2k+s under the requirement that Po2(e1) ≤ E0, and sends
the two values to Cg.

(b) Cg picks a uniformly random value r1 ∈ Z2k+s and responds r1 to Ag.
(c) Ag and Cg compute E1 = Po2(r1 · e1 + c1) and set E′

1 = E1.

3. In Round i where 2 ≤ i ≤ T , Ag and Cg repeat the following:

(a) Ag chooses arbitrary ei, ci ∈ Z2k+s under the requirement that Po2(ei) ≤ Ei−1 and chooses
arbitrary e′i, c

′
i ∈ Z2k+s under the requirement that Po2(e′i) ≤ E′

i−1. Then Ag sends (ei, ci)
and (e′i, c

′
i) to Cg.

(b) Cg picks uniformly random values ri, r
′
i ∈ Z2k+s and responds ri, r

′
i to Ag.

(c) Ag and Cg compute Ei = Po2(ri · ei + ci) and E′
i = Po2(r′i · e′i + c′i).

4. Ag wins if and only if in the last round T , ET = E′
T = k + s.

We show the following lemma about Game′(k, s, T ).
Lemma G.5.1. Let k, s, T be positive integers. For any adversary Ag, the probability that Ag wins
Game′(k, s, T ) is at most

s∑
i=0

1

2i+1

T−2∑
j=0

(
s− i+ j

s− i

)
· 1

2s−i+1+j

2

+
1

2s+1
.

We now give the proof of Lemma G.5.1.

Proof. Consider a fixed adversary Ag with a fixed random tape. We first have the following claim.

Proposition G.5.1. For a fixed adversary Ag with a fixed random tape and for all u, the variables
Ei|E1=u and E′

i|E1=u are independent for all i ∈ [2, T ].

Proof. Recall that at the end of the first round of Game′(k, s, T ), we have E1 = E′
1. Starting from

the second round, in each round i ∈ [2, T ] the adversary Ag chooses two pairs of values (ei, ci) and
(e′i, c

′
i) under the requirements Po2(ei) ≤ Ei−1 and Po2(e′i) ≤ E′

i−1 respectively, and sends them
to the challenger Cg. Then Cg replies two random values ri, r

′
i chosen independently. Finally Ei =

Po2(ei · ri + ci) and E′
i = Po2(e′i · r′i + ci).

As we can see, given the adversary Ag, its random tape, and given E1 = E′
1 = u, the random

variable Ei only depends on the randomness r2, . . . , ri, and the random variable E′
i only depends on

the randomness r′2, . . . , r
′
i. Thus, Ei|E1=u and E′

i|E1=u are independent for all i ∈ [2, T ].

Following Inequality 9, we have the following claim.

Proposition G.5.2. For any positive integer u ≤ k + s− 1,

Pr[ET ≥ k + s | E1 = u,E0 = k − 1]

=Pr[E′
T ≥ k + s | E1 = u,E0 = k − 1]

≤
T−2∑
j=0

(
k + s− u+ j − 1

k + s− u− 1

)
· 1

2k+s−u+j
.
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The proof is similar with that of Inequality 9.
Let Ω be the event that Ag wins Game′(k, s, T ). Applying the law of total probability over all

possible values of E1 and according to Proposition G.5.1, we have

Pr[Ω] =
k+s∑
u=0

Pr[ET = k + s,E′
T = k + s | E1 = u,E0 = k − 1]

· Pr[E1 = u | E0 = k − 1]

=

k+s∑
u=0

Pr[ET = k + s | E1 = u,E0 = k − 1]

· Pr[E′
T = k + s | E1 = u,E0 = k − 1]

· Pr[E1 = u | E0 = k − 1].

As 0 ≤ E1 ≤ k + s, the event E1 ≥ k + s is equivalent to E1 = k + s. Thus we have

Pr[Ω] =
k+s∑
u=0

Pr[ET ≥ k + s | E1 = u,E0 = k − 1]

· Pr[E′
T ≥ k + s | E1 = u,E0 = k − 1]

· Pr[E1 = u | E0 = k − 1]

=

k+s−1∑
u=0

Pr2[ET ≥ k + s | E1 = u,E0 = k − 1]

· (Pr[E1 ≥ u | E0 = k − 1]− Pr[E1 ≥ u+ 1 | E0 = k − 1])

+ Pr2[ET ≥ k + s | E1 = k + s,E0 = k − 1]

· Pr[E1 ≥ k + s | E0 = k − 1].

For all T ≥ 2, let

p(k + s, u, T ) =

T−2∑
j=0

(
k + s− u+ j − 1

k + s− u− 1

)
· 1

2k+s−u+j

for all u ∈ [0, k + s− 1] and let p(k + s, k + s, T ) = 1. By Proposition G.5.2 and by the fact that any
probability is upper-bounded by 1, we have

Pr2[ET ≥ k + s | E1 = u,E0 = k − 1] ≤ p2(k + s, u, T )

for all u ∈ [0, k + s]. Then

Pr[Ω] ≤
k+s−1∑
u=0

p2(k + s, u, T ) · (Pr[E1 ≥ u | E0 = k − 1]

− Pr[E1 ≥ u+ 1 | E0 = k − 1])

+ p2(k + s, k + s, T ) · Pr[E1 ≥ k + s | E0 = k − 1]

=Pr[E1 ≥ 0| E0 = k − 1] · p2(k + s, 0, T )

+

k+s∑
u=1

Pr[E1 ≥ u | E0 = k − 1]

· (p2(k + s, u, T )− p2(k + s, u− 1, T )).

We show that p(k + s, u, T ) is increasing in u for all T ≥ 2.
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Proposition G.5.3. For all positive integers k, s, u s.t. u ≤ k+ s, and for all T ≥ 2, p(k+ s, u, T ) ≥
p(k + s, u− 1, T ).

Proof. We first show that the statement is true when T = 2. In this case

p(k + s, u, T ) =
1

2k+s−u
,

which is increasing in u.
Now assume that the statement is true for T = T ′ − 1 where T ′ ≥ 3, we show that when T = T ′,

p(k + s, u, T ) ≥ p(k + s, u − 1, T ) for all positive integers k, s, u s.t. u ≤ k + s. To this end, we show
the following relation:

p(k + s, u− 1, T ) =
1

2
(p(k + s, u, T ) + p(k + s, u− 1, T − 1)).

By the fact that (
m+ 1

n

)
=

(
m

n

)
+

(
m

n− 1

)
,

we have

p(k + s, u− 1, T )− 1

2
p(k + s, u, T )

=

T−2∑
j=0

((
k + s− u+ j

k + s− u

)
· 1

2k+s−u+j+1

−
(
k + s− u+ j − 1

k + s− u− 1

)
· 1

2k+s−u+j+1

)
=

T−2∑
j=1

((
k + s− u+ j − 1

k + s− u

)
· 1

2k+s−u+j+1

)

=

T−3∑
j=0

((
k + s− u+ j

k + s− u

)
· 1

2k+s−u+j+2

)
=
1

2
p(k + s, u− 1, T − 1).

Now we use induction to show that p(k + s, u, T ) ≥ p(k + s, u− 1, T ).
• When u = k + s, we have p(k + s, k + s, T ) = 1 and

p(k + s, k + s− 1, T ) =
1

2
(p(k + s, k + s, T ) + p(k + s, k + s− 1, T − 1)).

According to the induction hypothesis for T − 1, we have p(k+ s, k+ s− 1, T − 1) ≤ p(k+ s, k+
s, T − 1) = 1. Thus p(k + s, k + s− 1, T ) ≤ 1 = p(k + s, k + s, T ).

• Now assume that when u = u′ + 1 where u′ < k + s, p(k + s, u − 1, T ) ≤ p(k + s, u, T ). When
u = u′, we have

p(k + s, u− 1, T )− p(k + s, u, T )

=
1

2
(p(k + s, u, T ) + p(k + s, u− 1, T − 1))

−1

2
(p(k + s, u+ 1, T ) + p(k + s, u, T − 1))

=
1

2
(p(k + s, u, T )− p(k + s, u+ 1, T ))

+
1

2
(p(k + s, u− 1, T − 1)− p(k + s, u, T − 1)).
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By induction hypothesis for T − 1, we have p(k + s, u − 1, T − 1) − p(k + s, u, T − 1) ≤ 0. By
induction hypothesis for u = u′ + 1, we have p(k + s, u, T ) − p(k + s, u + 1, T ) ≤ 0. Thus
p(k + s, u− 1, T )− p(k + s, u, T ) ≤ 0.

• By induction, p(k + s, u, T ) ≥ p(k + s, u− 1, T ).
Thus, p(k + s, u, T ) is increasing for T = T ′. By induction, the statement holds.

From Proposition G.2.1, we can obtain

Pr[E1 ≥ u | E0 = k − 1] ≤ 1

2u−k+1
.

On the other hand when u ≤ k − 1, we have Pr[E1 ≥ u | E0 = k − 1] ≤ 1. Then according to
Proposition G.5.3,

Pr[Ω] ≤ Pr[E1 ≥ 0| E0 = k − 1] · p2(k + s, 0, T )

+

k+s∑
u=1

Pr[E1 ≥ u | E0 = k − 1] · (p2(k + s, u, T )

−p2(k + s, u− 1, T ))

≤ p2(k + s, 0, T ) +

k−1∑
u=1

(p2(k + s, u, T )− p2(k + s, u− 1, T ))

+

k+s∑
u=k

1

2u−k+1
· (p2(k + s, u, T )− p2(k + s, u− 1, T ))

=

k+s∑
u=k

1

2u−k+1
p2(k + s, u− 1, T ) +

1

2s+1
p2(k + s, k + s, T )

=

s∑
i=0

1

2i+1

T−2∑
j=0

(
s− i+ j

s− i

)
· 1

2s−i+1+j

2

+
1

2s+1
.

G.6 Analysis of Winning Probability in Lemma 5.1.1 and Lemma G.5.1
G.6.1 Analysis of Winning Probability in Lemma 5.1.1

In this section, we analyse the winning probability in Lemma 5.1.1.
Recall that for positive integers k, s, T , the winning probability of Ag is bounded by

∑T−1
j=0

(
s+j
s

)
·

1
2s+1+j . We discuss three cases depending on the relation between s and T .

Case 1: s < T . In this case, we note that the winning probability is bounded by 1.
Case 2: T ≤ s < 3T . In this case, we note that for all j ∈ {0, . . . , T − 1},(

s+ j

s

)
· 1

2s+1+j
=

(s+ j)!

s! · j!
· 1

2s+1+j

=
1

2s+1
·

j∏
i=1

s+ i

2i

≤ 1

2s+1
·

T∏
i=1

s+ i

2i

=

(
s+ T

s

)
· 1

2s+1+T
.
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Thus,
∑T−1

j=0

(
s+j
s

)
· 1
2s+1+j ≤ T ·

(
s+T
s

)
· 1
2s+1+T .

Now we apply the Stirling’s approximation to estimate
(
s+T
s

)
. Recall the Stirling’s approximation:

n! ∼
√
2πn(n/e)n

Thus (
s+ T

s

)
=

(s+ T )!

s! · T !
≈ exp ((s+ T ) ln(s+ T )− s ln s− T lnT )

· exp ((ln(s+ T )− ln s− lnT − ln(2π))/2)

= exp (s ln(1 + T/s) + T ln(1 + s/T ))

· exp ((ln(s+ T )− ln(2s)− lnT − lnπ)/2)

≤ exp (T (1 + ln(1 + s/T ))− (lnT )/2) .

Therefore

T ·
(
s+ T

s

)
· 1

2s+1+T

≈ exp (lnT − (s+ 1 + T ) ln 2 + T (1 + ln(1 + s/T ))− (lnT )/2)

≤ exp (−s ln 2 + T (1− ln 2 + ln(1 + s/T )) + (lnT )/2) .

Case 3: s ≥ 3T . In this case, we note that for all j ∈ {0, . . . , T − 1},(
s+ j

s

)
· 1

2s+1+j
=

(s+ j)!

s! · j!
· 1

2s+1+j

=
1

2s+1
·

j∏
i=1

s+ i

2i

≤ 1

2s+1
·

j∏
i=1

s+ i

2i

T∏
i=j+1

s+ i

4i

=
1

2T−j
·
(
s+ T

s

)
· 1

2s+1+T
.

Thus,
∑T−1

j=0

(
s+j
s

)
· 1
2s+1+j ≤

(
s+T
s

)
· 1
2s+1+T .

Following a similar analysis, we have(
s+ T

s

)
· 1

2s+1+T

≈ exp (−(s+ 1 + T ) ln 2 + T (1 + ln(1 + s/T ))− (lnT )/2)

≤ exp (−s ln 2 + T (1− ln 2 + ln(1 + s/T ))) .

Approximating s to Achieve κ-bit Security. In general, we assume that T < κ and 3T ≤ s.
Thus, we focus on the third case. To achieve κ-bit security, it is sufficient to set s s.t.

exp (−s ln 2 + T (1− ln 2 + ln(1 + s/T ))) ≤ 2−κ.

For simplicity, we use log(·) to denote log2(·). Then it is equivalent to −s+T (1/ ln 2−1+log(1+s/T )) ≤
−κ, or

s ≥ κ+ T (1/ ln 2− 1 + log(1 + s/T )). (13)
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We note that when s ≥ 3T , T log(1+s/T ) = s · (Ts log(1+ s
T )) ≤ 2s/3. Also note that 1/ ln 2−1 ≤ 1/2.

Thus, when s ≥ 3κ+ 3T/2, we have
s = s/3 + 2s/3 ≥ κ+ T/2 + 2s/3 ≥ κ+ T (1/ ln 2− 1 + log(1 + s/T )).

Now we show that when s ≥ κ+T (1/2+log(5/2+3κ/T )), the Equation 13 always holds. Consider
the following two cases:

• If s ≥ 3κ+ 3T/2, by the above analysis, Equation 13 always holds.

• If s < 3κ+ 3T/2, then
s ≥ κ+ T (1/2 + log(5/2 + 3κ/T ))

≥ κ+ T (1/ ln 2− 1 + log(1 + (3κ+ 3T/2)/T ))

> κ+ T (1/ ln 2− 1 + log(1 + s/T )).

Thus, it is sufficient to set
s = κ+ T (1/2 + log(5/2 + 3κ/T )) = κ+O(T · log(κ/T )).

G.6.2 Analysis of Winning Probability in Lemma G.5.1

In this section, we analyse the winning probability in Lemma G.5.1.
Recall that for positive integers k, s, T , the winning probability of Ag is bounded by

s∑
i=0

1

2i+1

T−2∑
j=0

(
s− i+ j

s− i

)
· 1

2s−i+1+j

2

+
1

2s+1
.

Following a similar analysis to Section G.6.1,
• When s− i ≤ T ,

∑T−2
j=0

(
s−i+j
s−i

)
· 1
2s−i+1+j ≤ 1.

• When s− i ≥ T ,
T−2∑
j=0

(
s− i+ j

s− i

)
· 1

2s−i+1+j

≤ T

(
s− i+ T

s− i

)
· 1

2s−i+1+T

≤ exp (−(s− i) ln 2 + T (1− ln 2+

ln(1 + (s− i)/T )) + (lnT )/2) .

Thus,

s∑
i=0

1

2i+1

T−2∑
j=0

(
s− i+ j

s− i

)
· 1

2s−i+1+j

2

+
1

2s+1

≤
s−T∑
i=0

1

2i+1
· exp (−2(s− i) ln 2 + 2T (1− ln 2

+ ln(1 + (s− i)/T )) + lnT ) +

s∑
i=s−T+1

1

2i+1
+

1

2s+1

=

s−T∑
i=0

exp (−(2s− i+ 1) ln 2 + 2T (1− ln 2

+ ln(1 + (s− i)/T )) + lnT ) +
1

2s−T+1
.
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We view i as an variable and consider the function f(x) = −(2s−x+1) ln 2+2T (1− ln 2+ ln(1+ (s−
x)/T )) + lnT . Then f ′(x) = ln 2 − 2/(1 + (s − x)/T ). When x ≤ s − T , f ′(x) is decreasing, and the
solution of f ′(x) = 0 is x = s− T (2/ ln 2− 1). Thus,

max
x≤s−T

f(x) = −(s+ 1) ln 2− T (2− ln 2)

+2T (1− ln 2 + ln(2/ ln 2)) + lnT

= −(s+ 1) ln 2 + T (ln 2− 2 ln ln 2) + lnT.

We have

s∑
i=0

1

2i+1

T−2∑
j=0

(
s− i+ j

s− i

)
· 1

2s−i+1+j

2

≤
s−T∑
i=0

exp (−(2s− i+ 1) ln 2 + 2T (1− ln 2

+ ln(1 + (s− i)/T )) + (lnT )) +
1

2s−T+1

≤ s · exp
(

max
x≤s−T

f(x)

)
+

1

2s−T+1

≤ exp (ln s− (s+ 1) ln 2 + T (ln 2− 2 ln ln 2) + lnT ) +
1

2s−T+1
.

Approximating s to Achieve κ-bit Security. To achieve κ-bit security, it is sufficient to set s s.t.

exp (ln s− (s+ 1) ln 2 + T (ln 2− 2 ln ln 2) + lnT ) ≤ 2−κ−1

1

2s−T+1
≤ 2−κ−1

The first condition is equivalent to s ≥ κ+ T (1− 2 log ln 2) + log T + log s and the second condition is
equivalent to s ≥ κ+ T (which is implied by the first condition).

We note that when s ≥ 4, we always have log s ≤ s/2. Thus, if s ≥ 2(κ+ T (1− 2 log ln 2) + log T ),
then

s = s/2 + s/2 ≥ κ+ T (1− 2 log ln 2) + log T + log s.

Now we show that when s ≥ κ+T (1− 2 log ln 2)+ log T +1+ log(κ+T (1− 2 log ln 2)+ log T ), the
first condition always holds. Consider the following two cases:

• If s ≥ 2(κ+ T (1− 2 log ln 2) + log T ), by the above analysis, the first condition always holds.

• If s < 2(κ+ T (1− 2 log ln 2) + log T ), then

s ≥ κ+ T (1− 2 log ln 2) + log T + 1

+ log(κ+ T (1− 2 log ln 2) + log T )

= κ+ T (1− 2 log ln 2) + log T

+ log 2(κ+ T (1− 2 log ln 2) + log T )

> κ+ T (1− 2 log ln 2) + log T + log s.

Thus, it is sufficient to set

s =κ+ T (1− 2 log ln 2) + log T + 1

+ log(κ+ T (1− 2 log ln 2) + log T )

=κ+O(T + log κ).
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H Related Works
We survey some relevant related works, specifically setting in the honest majority scenario, with active
security and security with abort.

Protocols Using Shamir Secret Sharing over Fields. In the setting of the standard honest
majority setting (t < n/2), the DN07 protocol [DN07] is the first protocol for honest majority with
linear communication complexity, but in its most basic version it is not actively secure. Many works
build on top of this protocol to achieve active security, all incurring in different costs. The work of
[CGH+18b] adds an overhead of 2× in communication, and the works of [GSZ20, BGIN20, BBCG+19]
use sublinear distributed product checks and show that one can achieve active security at essentially the
same communication of semi-honest DN07. On the other hand, the recent work [GLO+21] improves
the communication complexity of the semi-honest DN07 protocol by 33%, and shows how to use the
techniques in [GSZ20, BGIN20, BBCG+19] to achieve malicious security with the same communication
complexity as the semi-honest protocol.

In the setting of t < n/3 (which is necessary for perfect security), a line of works focus on improving
the communication complexity of perfectly secure MPC [BTH08, ALR11, GLS19, AAY22, AAPP23].
We point out that all these works focus on general n-party computation.

Protocols Using Shamir Secret Sharing over Z2k . There are only a few protocols that use
Shamir secret sharing over Z2k , which requires Galois ring extensions. The first is the work of
[ACD+19], which made the observation that this was in fact possible, and is mostly of theoretical
interest since it builds on older, less efficient protocols. The next work that explored the use of Shamir
secret sharing is [ADEN21], which compiled the basic passive protocol from [ACD+19] to active secu-
rity by extending the ideas from [CGH+18b] to the ring case, with the help of the SPDZ2k trick from
[CDE+18].

The work of [BBCG+19] presents a generic way of compiling passive protocols into actively secure
protocols, using sublinear distributed product checks, which, as they show, can be made to work over
Z2k by using ring extensions. One can obtain an actively secure protocol over rings using Shamir secret
sharing, with better complexity than [ADEN21] by compiling the passive protocol from [ACD+19] using
the ideas from [BBCG+19] ([BGIN20] also provides results based on sublinear distributed product
checks and Shamir secret sharing, which can be adapted as well).

It may be worth pointing out that Shamir secret sharing can be used over much more general rings,
even non-commutative ones, and MPC protocols over these can be designed using this primitive. This
was explored in [ESV21].

Protocols Using Replicated Secret Sharing. The share size in replicated secret sharing scaled
exponentially with the number of parties, and hence it is not appropriate for use in settings with a
large number of parties. In spite of this, a few works have considered this primitive since, on one hand,
it satisfies certain useful properties that Shamir SS lacks, and on the other hand, for a constant number
of parties, a careful design and implementation can lead to better performance than using Shamir’s.

The work of [BGIN20] uses replicated secret sharing in conjunction to sublinear distribute product
proofs to obtain active security with guaranteed output delivery. This is set in the context of finite
fields and also Z2k , but it uses large Galois ring extensions in the latter case. Finally, the work of
[DEN22], which is not honest majority but t < n/3, also considers replicated secret sharing for an
arbitrary number of parties. This work shows that replicated secret sharing is useful for working over
an arbitrary, possibly non-commutative rings (in particular, Z2k), and it also shows experimentally
that such scheme can be used practically for number of parties that range in the order of dozens.

Other works like [KPRS22, CRS20] have explored using (variants of) replicated secret sharing in
the four-party setting, but they are in two-thirds honest majority where t < n/3, and they do not
require sublinear distributed product checks.
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Three-party Computation Protocols. It is common to use replicated secret sharing specifically
for the case of three-party computation, since in this setting it can be particularly efficient. There
are multiple works that study this setting. The work of [AFL+16] presents a passively secure 3PC
protocol using replicated secret sharing, and their multiplication protocol only requires each party to
send one ring element to another party. This protocol works for any ring, and as we will discuss next,
it underlies many of the subsequent 3PC constructions. The works of [FLNW17] and [ABF+17] extend
the protocol above by adding active security using techniques based on cut-and-choose, specifically for
the binary case (i.e. the ring is Z2). However, these works do not extend to Z2k for k > 1.

The work of [CGH+18b] shows how to compile any passive protocol over fields, and in particular,
how to use the passive three-party protocol from [AFL+16] in conjunction with their framework to
obtain an active version of it. The work of [ADEN21] generalizes the 3PC protocol in [CGH+18b] from
fields to Z2k , which can be seen as adding MACs to the passive protocol from [AFL+16]. The resulting
communication complexity per multiplication gate per party, is 2(k + κ) bits, where κ is roughly a
statistical security parameter.

The ABY3 protocol [MR18] builds on top of the multiplication approach over Z2k in [AFL+16], and
extends it with a set of primitives useful for machine learning computations.16 Secure NN [WGC19]
is also set in the Z2k setting, but relies on additive secret sharing between two of the parties (instead
of replicated secret sharing), and multiplication triples generated by the third party for the products.

An important work that changed the paradigm to achieve active security is that of [BGIN19]. That
work also starts from the passive protocol in [AFL+16], but it adds active security not by using MACs
as in [ADEN21], but by employing sublinear distributed product checks, introduced in [BBCG+19].
Using these techniques, the actively secure protocol over Z2k in [BGIN19] achieved a communication
complexity that remained the same as the passive counterpart, namely, k bits per party. Given this
appealing feature, the subsequent works of [CCPS19, PS20, KPPS21], which also consider 3PC for Z2k

and active security, used the protocol by [BGIN19] in a black-box way to implement their underlying
primitives. Focusing on SWIFT [KPPS21], which is the state-of-the-art among these three protocols,
their multiplication protocol requires 2 elements in Z2k per party, distributed half and half in the
offline and online phases, which is twice the cost of [BGIN19].

It is worth mentioning the 3PC protocol over Z2k of [EKO+20], which is similar to the one
in [ADEN21] in the use of MACs, but achieves a worse communication complexity of 3(k+ ℓ) bits per
party per multiplication, and is indeed shown in [ADEN21] to perform worse in practice.

Relevant Mention. The compiler in [DE21] works for arbitrary secret-sharing-based passively se-
cure protocols over an arbitrary ring to achieve actively security with abort. It aims at optimizing
the online phase, for which the authors preprocess function-dependent multiplication triples which are
then used online. Furthermore, it needs to perform a correctness check, for which the author propose
either sacrificing-based techniques or sublinear distributed product checks. Using sacrificing requires
two triples per multiplication gate, which makes the total cost at least four times that of the semi-
honest protocol (not counting the cost of sacrificing itself), which is worse than [ADEN21]. On the
other hand, using sublinear distributed product checks, the cost in the function-independent offline
phase alone will be at least the cost from [BGIN19].

Finally, we mention the protocols of [HKK+23, KKPRG22] over Z2k . Both works are based on
replicated secret sharing and achieve fairness and G.O.D., but focus on different settings. The work
of [HKK+23] is set in the four-party setting in the FaF (Friends and Foes) model, while the work
of [KKPRG22] is set in the five-party scenario with two corruptions, which puts it in the standard
honest majority context. Both works employ distributed product checks as in [BGIN20, BGIN19]
to check the correctness of the computation, which requires them to use large degree Galois ring
extensions. Our sublinear distributed product checks can potentially be used to improve the concrete
efficiency of [HKK+23, KKPRG22].

16ABY3 claims active security using, for the product, the approach from [FLNW17]. However, it is not clear how
this would work since the latter protocol uses cut-and-choose and triple sacrificing over Z2, and even though it can be
generalized to Fp, it cannot be made to work over Z2k .
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