
Quantum-Safe Account Recovery for WebAuthn
Douglas Stebila

University of Waterloo

Waterloo, Ontario, Canada

dstebila@uwaterloo.ca

Spencer Wilson

University of Waterloo

Waterloo, Ontario, Canada

spencer.wilson@uwaterloo.ca

ABSTRACT
WebAuthn is a passwordless authentication protocol which allows

users to authenticate to online services using public-key cryptog-

raphy. Users prove their identity by signing a challenge with a

private key, which is stored on a device such as a cell phone or a

USB security token. This approach avoids many of the common

security problems with password-based authentication.

WebAuthn’s reliance on proof-of-possession leads to a usability

issue, however: a user who loses access to their authenticator device

either loses access to their accounts or is required to fall back on a

weaker authentication mechanism. To solve this problem, Yubico

has proposed a protocol which allows a user to link two tokens

in such a way that one (the primary authenticator) can generate

public keys on behalf of the other (the backup authenticator). With

this solution, users authenticate with a single token, only relying

on their backup token if necessary for account recovery. However,

Yubico’s protocol relies on the hardness of the discrete logarithm

problem for its security and hence is vulnerable to an attacker with

a powerful enough quantum computer.

We present a WebAuthn recovery protocol which can be instan-

tiated with quantum-safe primitives. We also critique the security

model used in previous analysis of Yubico’s protocol and propose

a new framework which we use to evaluate the security of both

the group-based and the quantum-safe protocol. This leads us to

uncover a weakness in Yubico’s proposal which escaped detec-

tion in prior work but was revealed by our model. In our security

analysis, we require the cryptographic primitives underlying the

protocols to satisfy a number of novel security properties such as

KEM unlinkability, which we formalize. We prove that well-known

quantum-safe algorithms, including CRYSTALS-Kyber, satisfy the

properties required for analysis of our quantum-safe protocol.

CCS CONCEPTS
• Security and privacy→ Public key (asymmetric) techniques;
Authentication; Pseudonymity, anonymity and untraceability.

KEYWORDS
account recovery, FIDO2, post-quantum, quantum-safe, WebAuthn

ACM Reference Format:
Douglas Stebila and SpencerWilson. 2024. Quantum-Safe Account Recovery

for WebAuthn. In ACM Asia Conference on Computer and Communications
Security (ASIA CCS ’24), July 1–5, 2024, Singapore, Singapore. ACM, New

York, NY, USA, 19 pages. https://doi.org/10.1145/3634737.3661138

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in ACM Asia Conference
on Computer and Communications Security (ASIA CCS ’24), July 1–5, 2024, Singapore,
Singapore, https://doi.org/10.1145/3634737.3661138.

1 INTRODUCTION
1.1 Motivation
Passwords have provided the primary method of user authentica-

tion on the Internet for decades. Password-based authentication

is easy for users to understand, does not require significant sup-

porting infrastructure, and is resilient to device loss. However, the

apparent simplicity of password-based authentication masks seri-

ous security problems. Some of these arise from implementation

pitfalls. Safely storing and verifying passwords is a non-trivial task

prone to developer error. Moreover, password-based authentication

is, without additional tools such as password managers, inherently

user-unfriendly: strong, unique passwords are difficult to remember.

Passwordless authentication attempts to avoid problems with

password-based authentication by simply getting rid of passwords.

This approach has gained traction in recent years, driven by the

efforts of the FIDO Alliance, a consortium of organizational stake-

holders with a shared interest in secure user authentication. Among

the authentication solutions proposed by the FIDO Alliance is the

FIDO2 passwordless authentication protocol. FIDO2 is the com-

position of two subprotocols, WebAuthn and CTAP. WebAuthn

provides an API by which authenticators (for example, USB se-

curity keys) use public key credentials to authenticate to servers

(referred to as “relying parties”) via an intermediary client (typically

a web browser). Client–authenticator communication is specified

by CTAP. Both protocols have been subjected to academic security

analysis and are beginning to see widespread deployment.

WebAuthn introduces its own problems, however. One of these

centres on account recovery. An individual who loses the device

they use to authenticate has no built-in method for recovering

access to their accounts. This is a major obstacle preventing users

from embracing FIDO2 [18]. Current advice to users is to purchase

two tokens and register them both at each site: if one is lost, then the

other can be still be used to log in [13]. This, however, doubles the

amount of work that users are required to perform at registration.

Yubico, a manufacturer of security tokens, has proposed a solu-

tion whereby two tokens can be linked in such a way that one can

generate recovery credentials for the other. A user can link their

two tokens, store the backup in a safe place, and use the primary

authenticator for day-to-day logins. If the primary token is lost, the

user retrieves the backup and uses it to recover access to accounts.

The proposed protocol has undergone security analysis in [11].

The authors of [11] proposed an abstraction for its “cryptographic

core”, which they called Asynchronous Remote Key Generation,

and developed a security model for it, proving security of Yubico’s

proposal under this model. However, Yubico’s protocol relies heav-

ily on elliptic curve cryptography; in particular, its security depends

on the hardness of the Diffie–Hellman problem, which makes it

vulnerable to an adversary with access to a quantum computer.

https://orcid.org/0000-0001-9443-3170
https://orcid.org/0009-0004-4708-4237
https://doi.org/10.1145/3634737.3661138
https://doi.org/10.1145/3634737.3661138

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Douglas Stebila and Spencer Wilson

1.2 Contributions
In this work, we describe and analyze a quantum-safe recovery

protocol for WebAuthn based on key-blinding signature schemes.

We also highlight a number of weaknesses in the security analysis of

Yubico’s protocol. Notably, we describe a simple attackwhich allows

a malicious server to determine whether two accounts belong to

the same user, violating unlinkability. This attack escaped detection

under the model in [11]. To address these weaknesses, we propose

a novel session-based model which more accurately captures the

required security properties of a WebAuthn recovery solution. We

analyze the security of both Yubico’s protocol and our quantum-safe

protocol under this new model, with the simplifying assumption

that each user has a single primary token and a single backup

token. We leave analysis of multiple-backup functionality to future

work. Notably, our model makes no reference to specific details

of WebAuthn. This means that recovery protocols proven secure

under our model can be piggybacked on top of any authentication

protocol with a similar challenge-response structure.

In order to prove security of our protocol, we require the under-

lying cryptographic primitives to satisfy a number of non-standard

security properties. Most notably, we require KEM decapsulation to

be collision resistant and, in some proofs, pseudorandom. We pro-

vide formal definitions of these security properties and prove that

they are satisfied by CRYSTALS-Kyber. We additionally introduce

a new Diffie–Hellman-like assumption in order to establish the

security of Yubico’s existing quantum-unsafe protocol under our

new model; however, we are unable to reduce this new assumption

to any standard ones.

1.3 Related Work
Our contributions are adjacent to a number of recent efforts. Sev-

eral papers have examined the provable security of WebAuthn,

beginning with [3]. This work was expanded upon by [15], which

was the first to analyze the protocol’s privacy properties; [15] also

advances a protocol for revocation which is similar to Yubico’s

recovery proposal. Of particular relevance to our work is [4], which

proposed a provably secure quantum-safe version of WebAuthn.

Previous work on WebAuthn account recovery includes [1], which

proposes a solution based on group signatures, and [11], on which

our work builds directly.

Our work makes prominent use of signature schemes with key

blinding, which [10] and [9] define and discuss at length and [7]

presents as a class of signature schemes with randomizable keys.

We discuss a novel anonymity property of key encapsulation mech-

anisms; related analysis is done in [14], [22], and [19].

After our research was completed, we became aware of [5] and

[12], two recent efforts to solve the quantum-safe WebAuthn re-

covery problem. Our work was done independently from these and

takes a different approach. The key ideas of the three constructions

are based on different primitives: [12] on split KEMs, [5] on deter-

ministically generated keypairs, and ours on key-blinding signature

schemes. Additionally, all three constructions use different secu-

rity models: [12] follows the original model from [11], [5] keeps

this model with minor tweaks, and our work introduces a novel,

session-based model. Our model is the only one which detects the

attack on unlinkability mentioned above.

2 PRELIMINARIES
In this section, we lay out the cryptographic primitives on which

Yubico’s recovery protocol and our post-quantum version rely. We

omit standard definitions and instead focus on reintroducing spe-

cialized concepts on which we build and describing several novel

security properties. We reserve proofs of these novel properties—

when applicable—for Section 6.

2.1 Novel PRF Security Properties
2.1.1 Collision Resistance. In the security analysis of our post-

quantum recovery protocol, we will require a non-standard prop-

erty of a pseudo-random function (PRF): collision resistance, where

the key is included in the input. Although this property is not

strictly implied by the standard PRF security definition, it is in

practice a reasonable assumption, as we discuss in more detail in

Section 6.

2.1.2 Shifted Group PRF. To analyze the security of Yubico’s proto-
col under our model, we introduce a new security property for PRFs,

which we refer to as the “shifted group PRF” assumption, or sgPRF.

Given a finite groupG of order 𝑞, we say that a function 𝐹 : G→ Z𝑞
satisfies the sgPRF property if the function 𝐹 ′ : Z𝑞 × G \ {1} → Z𝑞
defined by 𝐹 ′ (𝑠, 𝐸) = 𝐹 (𝐸𝑠) + 𝑠 is a PRF, where 𝑠 is regarded as the

key and 𝐸 as the label. Readers will notice similarities between the

sgPRF problem and the PRF-ODH family of problems, introduced

in [16] and thoroughly summarized in [6]; however, we have been

unable to reduce sgPRF to any well-studied security assumption.

2.2 Novel KEM Security Properties
For analysis of our post-quantum protocol, we require two novel

security properties of KEMs. In Section 6, we show that these proper-

ties are satisfied by CRYSTALS-Kyber, which was recently selected

for standardization by NIST.

2.2.1 Collision Resistance. The first property we require is per-key
collision resistance: for a given random keypair, it should be difficult

for a CCA adversary to produce two ciphertexts which decapsulate

to the same value. We refer to this property as CR-CCA.

2.2.2 KEM Unlinkability. The second property is less straightfor-

ward.We require that an adversary without knowledge of the public

key should learn absolutely no information about the public key by

observing encapsulations and decapsulations. Concretely, it should

be infeasible to distinguish between encapsulations (respectively,

decapsulations) and random sampling from the ciphertext (respec-

tively, key) spaces. We refer to this property as KEM unlinkability.

The corresponding security experiment is described in Figure 1. We

define the adversary’s advantage to be

AdvKEM-UL

Π,A (_) =
����Pr[ExpKEM-UL

Π,A (_) = 1

]
− 1

2

����.
2.3 Key-Blinding Signature Scheme
As defined in [10], a key-blinding signature scheme Δ consists of

four algorithms defined as follows:

• KeyGen(1_): generates an identity or seed keypair (pk, sk)
from which blinded keys will be derived.

Quantum-Safe Account Recovery for WebAuthn ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

ExpKEM-UL

Π,A (_)
1 : (pk, sk) ←$ KeyGen(1_)
2 : L ← ∅
3 : 𝑏 ←$ {0, 1}

4 : 𝑏′ ←$ A𝑂𝐸
𝑏
,𝑂𝐷

𝑏 ()
5 : return J𝑏′ = 𝑏K

Oracle 𝑂𝐸
1
()

1 : 𝑐 ←$ C
2 : 𝑘 ←$ K
3 : L ← L ∪ (𝑐, 𝑘)
4 : return (𝑐, 𝑘)

Oracle 𝑂𝐷
1
(𝑐)

1 : if (𝑐, 𝑘 ′) ∈ L then return 𝑘 ′

2 : 𝑘 ←$ K
3 : L ← L ∪ (𝑐, 𝑘)
4 : return (𝑐, 𝑘)

Figure 1: The KEM-UL experiment for a KEM Π. The oracles
𝑂𝐸
0
and𝑂𝐷

0
are defined by Encaps(pk) andDecaps(sk, ·), respec-

tively.

• BlindPK(pk, 𝜏): deterministically computes a blinded public

key pk′.
• Sign(sk, 𝜏,𝑚): computes (possibly probabilistically) a signa-

ture 𝜎 on𝑚 for 𝜏 .

• Verify(pk′,𝑚, 𝜎): outputs 1 if 𝜎 is a valid signature on𝑚 for

a blinded public key pk′.

A key-blinding signature scheme is correct if signatures under 𝜏

always verify under the public key blinded with 𝜏 . Two security

properties are required. The first, existential unforgeability under
chosen message and epoch attack, or EUF-CMEA, stipulates that an

adversary with a key blinding oracle and a signing oracle should

not be able to produce a forgery for any (𝑚,𝜏) not queried to the

signing oracle.
1
“Epoch” refers to the blinding factor 𝜏 . The second,

unlinkability under chosen message and epoch attack, or UL-CMEA,

stipulates that an adversary with a key blinding oracle and a signing

oracle for a fixed keypair should not be able to distinguish between

fresh keypairs and blindings with the fixed keypair. We refer to

[10] for formalizations of these properties.

Key-blinding signature schemes are typically used in applications

such as the Tor network where users wish to retain a single public

key but also remain anonymous. Similar properties are desirable

for account recovery: users should not have to maintain a large

database of recovery keys and may wish their various accounts to

be unlinkable.

2.4 Asynchronous Remote Key Generation
Previous security analysis of Yubico’s WebAuthn recovery exten-

sion in [11] focused on the “cryptographic core” of the proposed

protocol: a means by which a primary authenticator can generate

public keys for which only the backup authenticator can produce

signatures that verify. This mechanism was dubbed asynchronous
remote key generation (ARKG). An ARKG scheme consists of five

algorithms:

1
The definition in [10] provides the adversary with a single oracle which, given (𝑚,𝜏) ,
outputs both BlindPK(pk, 𝜏) and Sign(sk, 𝜏,𝑚) ; however, it is easy to see that there

is no difference between this single-oracle formulation and one in which the adversary

receives two separate oracles.

• Setup(1_): deterministically outputs the parameters pp for

the scheme.

• KeyGen(pp): outputs a seed keypair (sk, pk).
• DerivePK(pp, pk, aux): probabilistically outputs a public key
pk′ and a corresponding credential cred bound to input aux.
• DeriveSK(pp, sk, cred): deterministically recovers the secret

key corresponding to the credential cred, returning ⊥ if the

credential is invalid.

• Check(pp, sk′, pk′): ouputs a bit indicating whether or not
the provided sk′ and pk′ form a valid derived keypair.

In Yubico’s protocol, the backup authenticator generates a seed

keypair and shares the public key with the primary authenticator.

The primary authenticator uploads derived public keys and the

corresponding recovery credentials to WebAuthn servers. To re-

cover an account at a server, the backup authenticator receives a

recovery credential from the server, derives the associated secret

key, and proves its identity by signing a challenge with this derived

key. This usage is depicted in Figure 2.

The ARKG scheme defined in [11] based on Yubico’s proposal in

[17] is implemented using elliptic curve group arithmetic. Its details

are given in Figure 3. It is parameterized by a finite group G of

order 𝑞 with generator 𝑔, a signature scheme Σ, and key derivation

functions KDF1 and KDF2.
The security of an ARKG scheme as defined in [11] has two

components: public-key unlinkability and private-key security. The

former property requires that derived keypairs should not be link-

able to a seed public key. For a scheme to satisfy the latter, it should

be infeasible to create a valid credential and derived keypair for

a given seed keypair without knowledge of the seed private key.

These properties are desirable in the context of WebAuthn, where

private key proof-of-posession is used for authentication but user

credentials should not be correlatable.

2.4.1 Public-Key Unlinkability. An adversary for public-key un-

linkability is challenged to distinguish between a fixed distribution

D (in [11], the distribution of seed keypairs) and the distribution

of derived keypairs. The adversary is provided with the seed public

key and an oracle which outputs either derived keypairs or sam-

ples from the distribution D. This security experiment is defined

formally in Figure 4. The adversary’s advantage is defined to be

Advpku,DARKG,A (_) =
����Pr[Exppku,DARKG,A (_) = 1

]
− 1

2

����.
2.4.2 Private-Key Security. Private-key security has four strength

levels, categorized as either “honest” or “malicious” and either

“strong” or “weak”. The strongest of these is malicious strong key se-

curity, denoted msKS; it implies the other three security levels. An

msKS-adversary is provided with the seed public key, a DerivePK
oracle, and a DeriveSK oracle which can only be queried with cre-

dentials previously output by the DerivePK oracle. The adversary

wins if it can produce a valid public key-private key-credential tuple.

This security experiment is defined formally in Figure 5. The “weak”

security variants remove theDeriveSK oracle, and the “honest” vari-

ants require that the adversary output a credential obtained from

its DerivePK oracle. The adversary’s advantage for the malicious

strong key variant is defined to be the probability that the msKS

experiment returns 1.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Douglas Stebila and Spencer Wilson

Account Recovery with ARKG

Backup Primary Server

. Setup .

(sk, pk) ←$ KeyGen(pp) pk

. Register .

(pk′, cred) ←$ DerivePK(pp, pk, aux) pk′, cred

. Recover .

cred, ch
←−− generate ch

sk′ ← DeriveSK(pp, sk, cred)
𝜎 ←$ Sign(sk′, ch)

𝜎
−−→ Verify(pk′, ch, 𝜎)

Figure 2: Using an ARKG scheme for account recovery, as in Yubico’s WebAuthn extension. The aux data is the server ID. The
challenge string ch follows a format defined by WebAuthn and includes a random string.

Setup(1_)
return pp = ((G, 𝑔, 𝑞), Σ,KDF1,KDF2)

KeyGen(pp)
1 : 𝑥 ←$ Z𝑞

2 : return sk = 𝑥, pk = 𝑔𝑥

Check(pp, sk′ = 𝑥, pk′ = 𝑋)
return J𝑔𝑥 = 𝑋 K

DerivePK(pp, pk = 𝑆, aux)
1 : (𝑒, 𝐸) ←$ KeyGen(pp)
2 : ck← KDF1 (𝑆𝑒)
3 : mk← KDF2 (𝑆𝑒)

4 : 𝑃 ← 𝑔ck · 𝑆
5 : ` ← Σ.MAC(mk, (𝐸, aux))
6 : return pk′ = 𝑃, cred = (𝐸, aux, `)

DeriveSK(pp, sk = 𝑠, cred = (𝐸, aux, `))
1 : ck← KDF1 (𝐸𝑠)
2 : mk← KDF2 (𝐸𝑠)
3 : if Σ.Verify(mk, (𝐸, aux), `) then
4 : return ck + 𝑠
5 : else return ⊥

Figure 3: The group-based ARKG construction from [11], based on Yubico’s WebAuthn recovery extension [17]

Exppku,DARKG,A (_)
1 : pp← Setup(1_)
2 : (sk

0
, pk

0
) ←$ KeyGen(pp)

3 : 𝑏 ←$ {0, 1}

4 : 𝑏′ ←$ A𝑂𝑏
pk′ (pp, pk

0
)

5 : return J𝑏 = 𝑏′K

Oracle 𝑂0

pk′ (aux)

1 : (pk′, cred) ←$ DerivePK(pp, pk, aux)
2 : sk′ ← DeriveSK(pp, sk, cred)
3 : return (sk′, pk′)

Oracle 𝑂1

pk′ (aux)

1 : (sk′, pk′) ←$ D
2 : return (sk′, pk′)

Figure 4: The PK-unlinkability experiment for ARKG

3 PROTOCOL MODEL
3.1 Problems with the ARKG model
While the ARKG abstraction models the so-called “cryptographic

core” of Yubico’s proposed standard, we argue that it does not cap-

ture the practical security requirements of the protocol. Some of

this is due to focusing on the core and ignoring real-world details

like server and token policy—for instance, the unlinkability def-

inition considers only the adversary’s ability to distinguish two

distributions of keypairs, ignoring non-mathematical sources of

information. At times, however, even the cryptographic details of

the model seem out of step with real-world threats. In particular, the

ARKG adversary is given at once too much power and not enough.

Consider the msKS security model, presented in Figure 5. In

this experiment, the adversary can obtain derived secret keys corre-

sponding to public keys that have already been generated. In reality,

these keys never leave the backup token; an adversary who can

retrieve them has powers that would render WebAuthn insecure.

Of course, granting the adversary more power than is realistic does

not inherently constitute a weakness in analysis. However, this is

the only way in which the adversary can interact with the derived

secret keys. Notably, the adversary cannot obtain signatures made

Quantum-Safe Account Recovery for WebAuthn ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

ExpmsKS

ARKG,A (_)
1 : pp← Setup(1_)
2 : PKList← ∅
3 : SKList← ∅
4 : (sk, pk) ←$ KeyGen(pp)

5 : (sk∗, pk∗, cred∗) ←$ A𝑂pk′ ,𝑂sk′ (pp, pk)
6 : sk′ ← DeriveSK(pp, sk, cred∗)
7 : return Check(sk∗, pk∗) ∧ Check(sk′, pk∗) ∧ Jcred∗ ∉ SKListK

Oracle 𝑂pk′ (aux)
1 : (pk′, cred) ←$ DerivePK(pp, pk, aux)
2 : PKList← PKList ∪

{
(pk′, cred)

}
3 : return (pk′, cred)

Oracle 𝑂sk′ (cred)
1 : if (·, cred) ∉ PKList then return ⊥
2 : SKList← SKList ∪ {cred}
3 : return DeriveSK(pp, sk, cred)

Figure 5: The msKS experiment for ARKG

with the derived keys—which is a more natural interface available

in the real world.

The lack of a signature oracle could be explained by the com-

posability result obtained in [11]: an ARKG scheme which satis-

fies PK-unlinkability with some distribution (see Figure 4) can be

securely composed with protocols using keypairs distributed ac-

cording to this distribution. According to this result, using derived

keypairs to produce signatures in WebAuthn should not weaken

the protocol’s security. However, the process by which keypairs

are derived reveals more information to a potential attacker than is

given to the PK-unlinkability adversary. The adversary is limited to

observing freshly derived keypairs. In particular, it is not given the

ability to view the recovery credentials which enable the backup

token to derive these secret keys, nor may it interact with either

the primary token or the backup token in any other way.
2
The

recovery credentials are computed and sent to servers alongside

derived public keys; hence, a realistic security model must reveal

them to the adversary.

These points are all theoretical, but they have a practical impact.

The key-revealing power given to the adversary in PK-unlinkability

and msKS security precludes the use of cryptographic primitives

which do not guarantee security under such compromises, such

as all but one of the blinded signatures from [10], even though

such primitives may be secure for practical use in the recovery

2
There is some room for doubt about the PK-unlinkability security definition in [11].

The definition of the 𝑂𝑏
pk′ oracle indicates that it only returns a keypair and not a

credential; however, the proof of PK-unlinkability seems to include some steps which

attempt to prove the unlinkability of credentials. The oracle’s pseudocode is never

provided in full. We have chosen to take the interpretation that only a keypair is

returned, as this is compatible with the way the PK-unlinkability security definition

is used later, and to do otherwise would be to speculate about undefined security

properties.

extension. At the same time, the PK-unlinkability adversary is too

underpowered tomodel a real-world attacker. This can be illustrated

concretely: in Section 4 we highlight an attack on the unlinkability

of recovery credentials which the ARKG security model fails to

capture.

For these reasons, we argue that security analysis of the We-

bAuthn recovery extension under a new model more aligned with

real-world use is required before the protocol can be claimed to be

secure. We now attempt to provide such a security model.

3.2 Credential-based Recovery
We propose an abstraction which captures both the core crypto-

graphic details and the logistics of the associated protocol, which

we call credential-based recovery. To simplify security analysis, we

assume that each user has exactly one primary token and exactly

one backup token, and that these tokens are not shared among

users. In reality, Yubico’s protocol allows users not only to have

multiple backup tokens for a single primary token but also to link a

single backup token with multiple primary tokens. Our model does

not capture the full functionality of Yubico’s protocol; however, it

does provide guarantees for users who use only a single primary

token and a single backup token.

Our model considers client, human user, and authenticator token

to be a single entity, which we simply call a user. This amalgamation

assumes that the client and the token have a secure connection. In

the FIDO2 passwordless authentication protocol, of which WebAu-

thn is one component, this connection is provided by the Client

To Authenticator Protocol, or CTAP. Yubico’s proposed recovery

standard additionally specifies extensions to CTAP, which we do

not consider as part of this model. We additionally assume that

registration of recovery credentials occurs over an authenticated

channel. This is a reasonable assumption: the recovery protocol is

intended to back up a secure authentication protocol, which should

allow for such a transaction to take place. We make no assumptions

about channel security during the recovery process.

We formalize two security goals for credential-based recovery.

The first, which we call recovery authentication, stipulates that a
server only completes the recovery process for a registered user

if the user also completes the recovery process, and the two par-

ties agree on each other’s identities, which credential was used

for recovery, and information to be used for future authentication.

Additionally, this user should be the only user which satisfies these

requirements: that is, two different users should not both be au-

thenticated to the same server with the same session transcript.

Similarly, the same user should not repeat the same transcript at

the same server in two different sessions. The second security goal,

which we call unlinkability, stipulates broadly that an adversary

should be unable to differentiate users based on information ob-

tained via observing (and interfering with) protocol execution.

3.2.1 Protocol Abstraction. A credential-based recovery protocol

defines an interaction between a user 𝑈 and a server 𝑆 . The pro-

tocol has two components: an interface of stateless algorithms for

performing operations on credentials and keys, and a set of proto-

col actions which consume and manipulate state and which make

calls to the interface. We refer to an execution of the protocol at a

party (either a user or a server) as a session. Each party maintains

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Douglas Stebila and Spencer Wilson

some long-term state as well as short-term state associated with

individual sessions.

The stateless interface consists of the following algorithms:

• KeyGen(1_): outputs a seed keypair (pk, bk). The primary

key pkwill be used by the primary authenticator to generate

recovery credentials for the backup authenticator, which

retains the backup key bk.
• CredGen(pk, aux): inputs a primary key pk and some auxil-

iary information aux, outputs a recovery credential rc (bound
to aux) and its identifier rcid.
• Response(bk, rcid, aux, ch, nc): inputs a secret key bk, a re-
covery credential identifier rcid, auxiliary information aux,
a challenge ch, and a new credential nc; outputs a response
rsp.
• Verify(rc, aux, nc, ch, rsp): inputs a recovery credential rc,
auxiliary information aux, a new credential nc, a challenge
ch, and a response rsp; outputs a decision bit 𝑏.

We refer to keys as “backup” and “primary” instead of “private” and

“public” because Yubico’s specification indicates that the primary

(“public”) key should not be exposed to the server. Indeed, if this key

is made public the unlinkability of the scheme is severely weakened.

The protocol actions are listed below in the order in which they

are intended to be performed:

• Register: The user generates a recovery credential which the

server stores.

• UserBegin: The user requests to initiate the recovery process
by providing their username to the server.

• ServerBegin: The server initiates the recovery process by

returning recovery information to the user for identification

purposes. The server may also provide data to be used to

establish a new permanent credential.

• UserComplete: The user proves their identity using the pro-

vided recovery information. The user may also provide data

to be used to establish a new permanent credential.

• ServerComplete: The server verifies the user’s response. If
successful, the parties have established a new permanent

credential, restoring the user’s access to their account on the

server.

Each non-Register action consumes the party’s long-term state st
and the session state 𝜋 , both of which it may manipulate, and some

input data. The format of data is protocol-specific. The Register
action occurs over an authenticated channel; hence, we model it as

a joint action which consumes some input data and the long-term

state of each party.

Session state 𝜋 consists of the following variables, which are

common to all protocol actions:

• selfid: the identifier used by the session owner,

• peerid: the identifier used by the session peer,

• role: the role played by the session owner (either user or
server),
• status: the session status (either recover, accept, or reject),
• sid: the session identifier, and

• st: additional state for the session, to be used as defined by

specific protocols.

We place no restrictions on variables defined in long-term state, but

we do assume that all state is initialized to ⊥ or ∅.

3.2.2 Recovery Authentication. We model the recovery authentica-

tion security of a credential-based recovery protocol CBR with the

experiment ExprecCBR, formally defined in Figure 6. The adversary

can make calls to any of the following oracles, which we denote

collectively by O:
• NewUser: inputs a party𝑈 . Initializes𝑈 as a user.

• NewServer: inputs a party 𝑆 and a string serverID. Initializes
𝑆 as a server with the given ID, if no other server has the

same ID.

• ORegister: inputs a user𝑈 , a server 𝑆 , and a username uid.
Attempts to register𝑈 at 𝑆 with the given username, return-

ing the output of Register. If the registration is successful,

(𝑈 , 𝑆, uid) is added to a list of registered accounts.

• Action: inputs a party 𝑃 , an index 𝑖 , and data data. Proceeds
with the next action of the recovery process for session 𝜋𝑖

𝑃
with data as input, returning the output of whichever action
is called.

Similarly to security analyses of FIDO2 and WebAuthn in [3],

[15], and [4], we rely on the notion of matching sessions to define

security. Intuitively, two sessions match if they represent two dif-

ferent sides of the same protocol interaction. Formally, we say that

sessions 𝜋1 and 𝜋2 match if all of the following conditions hold:

• one of 𝜋1 .role and 𝜋2 .role is user and the other is server;
• 𝜋1 .status = accept = 𝜋2 .status;
• 𝜋1 .selfid = 𝜋2 .peerid and 𝜋2 .selfid = 𝜋2 .peerid; and
• 𝜋1 .sid = 𝜋2 .sid.

The adversary wins the game if either of the following conditions

hold:

• Two distinct non-matching sessions have the same session

identifier. In practice, this means that the protocol is vulner-

able to a replay attack.

• A server session 𝜋 accepts without a matching session for a

user registered at 𝑆 under the username 𝜋.peerid. In practice,

this means that it is possible for someone (registered or

otherwise) to authenticate to a server by some means other

than following the protocol.

Note that two distinct sessions with the same role and the same

session identifier will not match; therefore, the adversary wins if

two distinct user sessions (or two distinct server sessions) have the

same session identifier. We define the advantage of an adversary to

be the probability that the rec experiment returns 1.

3.2.3 Single-Account Recovery Authentication. Unfortunately, Yu-
bico’s proposed standard does not satisfy recovery authentication

security, as we will show in Section 4. It does, however, satisfy a

slightly weaker version, in which a user may only have a single

account at each server. We refer to this notion as single-account
recovery authentication, or 1rec. The security experiment for 1rec

is identical to the one for rec except that the adversary fails if any

user is registered twice at any server.

3.2.4 Unlinkability. In the unlinkability security experiment, de-

noted ExpULCBR and depicted in Figure 7, the adversary is challenged

Quantum-Safe Account Recovery for WebAuthn ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

ExprecCBR,A (_)
1 : Luser, Lserver, LRegister ← ∅

2 : AO (1_)
3 : if ∃(𝑃1, 𝑖1) ≠ (𝑃2, 𝑖2) :

4 : 𝜋
𝑖1
𝑃1
.sid = 𝜋

𝑖2
𝑃2
.sid ≠ ⊥

5 : ∧Match(𝜋𝑖1
𝑃1
, 𝜋

𝑖2
𝑃2
) ≠ 1

6 : then return 1

7 : if ∃(𝑆, 𝑖) : 𝜋𝑖
𝑆 .role = server

8 : ∧ 𝜋𝑖
𝑆 .status = accept

9 : ∧ �(𝑈 , 𝑗) : Match(𝜋𝑖
𝑆 , 𝜋

𝑗

𝑈
) = 1

10 : ∧ (𝑈 , 𝑆, 𝜋𝑖
𝑆 .peerid) ∈ LRegister

11 : then return 1

12 : return 0

NewServer(𝑆, serverID)
1 : if 𝑆 ∈ Luser ∪ Lserver then return

2 : if ∃𝑆 ′ ∈ Lserver : st𝑆 ′ .id = serverID then

3 : return

4 : st𝑆 .id← serverID

5 : return

ORegister(𝑈 , 𝑆, uid)
1 : if 𝑈 ∉ Luser then return ⊥
2 : if 𝑆 ∉ Lserver then return ⊥
3 : ret←$ Register(uid, st𝑈 , st𝑆 , _)
4 : if ret ≠ ⊥ then

5 : LRegister ← LRegister ∪ { (𝑈 , 𝑆, uid) }
6 : return ret

Action(𝑃, 𝑖, data)
1 : ret← ⊥
2 : if 𝜋𝑖

𝑃 = ⊥ then

3 : if 𝑃 ∈ Luser then

4 : ret← UserBegin(𝜋𝑖
𝑃 , data, st𝑃)

5 : elseif 𝑃 ∈ Lserver then

6 : ret←$ ServerBegin(𝜋𝑖
𝑃 , data, st𝑃)

7 : elseif 𝜋𝑖
𝑃 .status = recover then

8 : if 𝜋𝑖
𝑃 .role = user then

9 : ret←$ UserComplete(𝜋𝑖
𝑃 , data, st𝑃)

10 : elseif 𝜋𝑖
𝑃 .role = server then

11 : ret← ServerComplete(𝜋𝑖
𝑃 , data, st𝑃)

12 : return ret

Figure 6: The rec experiment for CBR. The Match and NewUser functions are described in 3.2.2.

to distinguish between two users of their choice—that is, to de-

termine whether the two users have been switched or not. The

adversary is initially provided with the same set O of oracles as for

recovery authentication. Eventually, the adversary selects target

users𝑈0 and𝑈1. The challenger samples a random bit𝑏 and chooses

new identifiers𝑈 ∗
0
and𝑈 ∗

1
. The game continues with the adversary

receiving the set of oracles O𝑏 , consisting of NewUser, NewServer,
ORegister𝑏 , and Action𝑏 , with the latter two defined as follows:

• The oracle ORegister𝑏 is identical to ORegister, except that
on a query with 𝑈 = 𝑈 ∗

0
, it will use st𝑈𝑏

when calling

Register; on a query with𝑈 = 𝑈1
∗ , it will use st𝑈1−𝑏 .

• The oracle Action𝑏 is identical to Action, except that on a

query with 𝑃 = 𝑈 ∗
0
, it will use st𝑈𝑏

instead of st𝑈1

when

calling one of the protocol actions; on a query with 𝑃 = 𝑈 ∗
1

it will use st𝑈1−𝑏 .

The adversary is challenged to guess the value of 𝑏.

Of course, the adversary could trivially win the game by observ-

ing the behaviour of 𝑈 ∗
0
given a recovery credential generated by

𝑈0. Since the adversary has all the information available to a server,

it must be able to determine whether or not 𝑈 ∗
0
and 𝑈0 are the

same user based on the response to this query; if not, the recovery

protocol would be useless. We prevent this trivial winning strategy

by setting a bit fail if the adversary makes such a query and return-

ing a random bit in the event that fail is set. Since the experiment

is designed to be opaque with regards to input data for protocol

actions, we detect this condition via session variables, setting fail
if at any point one of𝑈 ∗

0
and𝑈 ∗

1
has a session corresponding to a

registration for 𝑈0 or 𝑈1, and vice versa. Our experiment creates

new identifiers for the challenge users 𝑈0 and𝑈1 for a similar rea-

son: it prevents the adversary from winning by attempting to begin

session 𝑖 with 𝑈 ∗
0
for a value 𝑖 which corresponds to a session for

𝑈0 but not for𝑈1.

We define the advantage of an adversary A to be

AdvULCBR,A (_) =
����Pr[ExpULCBR,A = 1

]
− 1

2

����.

3.2.5 Inter-Domain Unlinkability. Yubico’s proposed standard fails

to meet our definition of unlinkability due to the same weakness

that prevents it from satisfying our notion of recovery authentica-

tion, outlined in Section 4. It does, however, provide unlinkability

under the assumption that a user may have only a single account at

each server. We refer to this weaker notion as inter-domain unlink-
ability. We model inter-domain unlinkability with an experiment

which is identical to that for unlinkability except for two changes:

• The fail flag is set in ORegister and ORegister𝑏 if the given

user has already registered at the given server.

• The fail flag is set in ORegister if the adversary attempts to

register 𝑈 ∗
0
or 𝑈 ∗

1
(respectively 𝑈0 or 𝑈1) at a server where

𝑈0 or𝑈1 (respectively𝑈
∗
0
or𝑈 ∗

1
) already has an account.

We define advantage as in the UL experiment. Note that the I-UL

security experiment is identical to the UL security experiment ex-

cept for imposing additional failure conditions on the adversary.

Thus, inter-domain unlinkability is implied by unlinkability.

4 GROUP-BASED AND QUANTUM-SAFE
PROTOCOLS

Now that we have laid out the desired security properties for a

credential-based recovery protocol, we turn our hand to modelling

Yubico’s proposal in this framework, describing our novel quantum-

safe credential-based recovery protocol, and analyzing the security

of both. We will denote the group-based CBR protocol by gCBR
and the post-quantum protocol by pqCBR.

4.1 Protocol Descriptions
In Figure 8, we describe the credential-based recovery scheme de-

fined by Yubico’s standard. Readers will note the similarities with

the ARKG scheme described in [11]. Notably, our formulation in-

cludes a hash function H, a digital signature scheme Λ, and some

bookkeeping around the identity point of G, which are absent in

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Douglas Stebila and Spencer Wilson

ExpULCBR,A (_)
1 : Luser, Lserver, LRegister ← ∅
2 : fail← 0

3 : (𝑈0,𝑈1) ←$ AO (1_)
4 : 𝑈 ∗

0
← 𝑈 : 𝑈 ∉ Lserver ∪ Luser

5 : Luser ← Luser ∪
{
𝑈 ∗
0

}
6 : 𝑈 ∗

1
← 𝑈 : 𝑈 ∉ Lserver ∪ Luser

7 : Luser ← Luser ∪
{
𝑈 ∗
1

}
8 : 𝑏 ←$ {0, 1}

9 : 𝑏′ ←$ AO𝑏 (𝑈 ∗
0
,𝑈 ∗

1
)

10 : if fail then 𝑏′ ←$ {0, 1}
11 : return J𝑏 = 𝑏′K

ORegister𝑏 (𝑈 , 𝑆, uid)
1 : if 𝑈 ∉ Luser then return ⊥
2 : if 𝑆 ∉ Lserver then return ⊥
3 : if 𝑈 = 𝑈 ∗

0
then st← st𝑈𝑏

4 : elseif 𝑈 = 𝑈 ∗
1
then st← st𝑈

1−𝑏
5 : else st← st𝑈
6 : ret←$ Register(uid, st, st𝑆 , _)
7 : if ret ≠ ⊥ then

8 : LRegister ← LRegister ∪ { (𝑈 , 𝑆, uid) }
9 : return ret

CheckFail(𝑈 , 𝜋)
1 : if 𝑈 ∈ {𝑈0,𝑈1} then
2 : if ∃(𝑑, 𝑆) : st𝑆 .id = 𝜋.peerid

3 : ∧ (𝑈 , 𝑆, 𝜋 .selfid) ∉ LRegister

4 : ∧ (𝑈 ∗
𝑑
, 𝑆, 𝜋 .selfid) ∈ LRegister

5 : then return 1

6 : else return 0

7 : elseif 𝑈 ∈
{
𝑈 ∗
0
,𝑈 ∗

1

}
then

8 : if ∃(𝑑, 𝑆) : st𝑆 .id = 𝜋.peerid

9 : ∧ (𝑈 , 𝑆, 𝜋 .selfid) ∉ LRegister

10 : ∧ (𝑈𝑑 , 𝑆, 𝜋 .selfid) ∈ LRegister

11 : then return 1

12 : else return 0

13 : else return 0

ORegister𝑏 (𝑈 , 𝑆, uid)
1 : if 𝑈 ∉ Luser then return ⊥
2 : if 𝑆 ∉ Lserver then return ⊥
3 : if 𝑈 = 𝑈 ∗

0
then st← st𝑈𝑏

4 : elseif 𝑈 = 𝑈 ∗
1
then st← st𝑈

1−𝑏
5 : else st← st𝑈
6 : ret←$ Register(uid, st, st𝑆 , _)
7 : if ret ≠ ⊥ then

8 : LRegister ← LRegister ∪ { (𝑈 , 𝑆, uid) }
9 : return ret

Action𝑏 (𝑃, 𝑖, data)
1 : ret← ⊥
2 : if 𝑃 = 𝑈 ∗

0
then st← st𝑈𝑏

3 : elseif 𝑃 = 𝑈 ∗
1
then st← st𝑈

1−𝑏
4 : else st← st𝑃

5 : if 𝜋𝑖
𝑃 = ⊥ then

6 : if 𝑃 ∈ Luser then

7 : ret← UserBegin(𝜋𝑖
𝑃 , data, st)

8 : fail← fail ∨ CheckFail(𝑃, 𝜋𝑖
𝑃)

9 : elseif 𝑃 ∈ Lserver then

10 : ret←$ ServerBegin(𝜋𝑖
𝑃 , data, st)

11 : elseif 𝜋𝑖
𝑃 .status = recover then

12 : if 𝜋𝑖
𝑃 .role = user then

13 : ret←$ UserComplete(𝜋𝑖
𝑃 , data, st)

14 : elseif 𝜋𝑖
𝑃 .role = server then

15 : ret← ServerComplete(𝜋𝑖
𝑃 , data, st)

16 : return ret

Figure 7: The UL experiment for CBR. For a description of the oracles NewUser, NewServer, ORegister, and Action, see Figure 6.

the ARKG description; these elements are present in Yubico’s pro-

posal but omitted from the analysis in [11]. Our post-quantum

credential-based recovery scheme is described in Figure 9.

Both the group-based and the post-quantum protocols follow a

similar structure with regards to using the interface provided by the

credential-based recovery scheme. We describe a generic construc-

tion in Figure 10, with only one point of difference between the two:

the post-quantum version uses both server identifier and username

in the derivation of recovery credentials, whereas the group-based

version only uses the server identifier. This lack of binding recovery

credentials to usernames leads to a minor weakness in Yubico’s

protocol.

The recovery protocol is intended to be piggy-backed on top of

another authentication protocol: its purpose is to allow the user

and server to establish a new credential in the event of device loss.

Hence, we have attempted to make as few assumptions about the

underlying protocol as possible, in order for our results to be more

widely applicable. The following assumptions about the underlying

protocol are required:

• Users must retain knowledge of their usernames in the event

of device loss.

• A server must not repeat a challenge for the same user.

• A user must not generate the same new credential twice for

the same account.

Up to the latter two restrictions, we allow challenges and new

credentials to be provided by the adversary. This captures protocols

which generate random challenges (which repeat with low proba-

bility) as well as those which use a counter. Although we describe

the string ch as a challenge, it could also include any data that

the server wishes to provide to be agreed upon with the user, for

instance, to be used in credential generation. Similarly, although

we describe nc as a credential, it could also include any data that

the user wishes to agree upon with the server. Concretely, We-

bAuthn realizes these assumptions by having human-memorable

usernames, randomly generated challenges of sufficient length such

that a collision is highly unlikely, and a high-entropy public key

included in user-generated credentials.

4.2 Weaknesses in Yubico’s Protocol
As previously mentioned, Yubico’s protocol does not satisfy our

security requirements when users are allowed to have multiple

accounts at the same server. This is because recovery credentials

are generated independently of account usernames: they are bound

only to server identifiers. Hence, a user with multiple accounts

cannot determine which account a recovery credential belongs to.

Quantum-Safe Account Recovery for WebAuthn ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

KeyGen(1_)
1 : 𝑠 ←$ Z𝑞

2 : 𝑆 ← 𝑔𝑠

3 : return (pk, bk) = (𝑆, 𝑠)

Verify(rc = 𝑃, aux, nc, ch, rsp)
1 : ℎ ← H(aux)
2 : return Λ.Verify(𝑃, (ch, ℎ, nc), rsp)

Response(bk = 𝑠, rcid = (𝐸, `), aux, ch, nc)
1 : if 𝐸 = 1 then return ⊥
2 : (ck,mk) ← KDF(𝐸𝑠)
3 : ℎ ← H(aux)
4 : if Σ.Verify(mk, (𝐸,ℎ), `) then
5 : 𝑝 ← ck + 𝑠
6 : return Λ.Sign(𝑝, (ch, ℎ, nc))
7 : else return ⊥

CredGen(pk = 𝑆, aux)
1 : 𝑒 ←$ Z𝑞 \ {0}
2 : 𝐸 ← 𝑔𝑒

3 : (ck,mk) ← KDF(𝑆𝑒)

4 : 𝑃 ← 𝑔ck · 𝑆
5 : ℎ ← H(aux)
6 : ` ← Σ.MAC(mk, (𝐸,ℎ))
7 : return rc = 𝑃, rcid = (𝐸, `)

Figure 8: Yubico’s credential-based recovery scheme

KeyGen(1_)
1 :

(
pkΔ, skΔ

)
←$ Δ.KeyGen()

2 :

(
pkΠ, skΠ

)
←$ Π.KeyGen()

3 : return pk = (pkΔ, pkΠ), bk = (skΔ, skΠ)

Response(bk = (skΔ, skΠ), rcid = 𝑐, aux, ch, nc)
1 : 𝑘 ← Π.Decaps(skΠ, 𝑐)
2 : 𝜏 ← PRF(𝑘, aux)
3 : return Δ.Sign(skΔ, 𝜏, (ch, nc))

CredGen(pk = (pkΔ, pkΠ), aux)
1 : (𝑐, 𝑘) ←$ Π.Encaps(pkΠ)
2 : 𝜏 ← PRF(𝑘, aux)
3 : rc← Δ.BlindPK(pkΔ, 𝜏)
4 : return rc, rcid = 𝑐

Figure 9: Our post-quantum credential-based recovery scheme. The Verify function is omitted as it simply calls Δ.Verify.

Register(uid, st𝑈 , st𝑆 , _)
1 : if st𝑆 .rc[uid] ≠ ⊥ then return ⊥
2 : if (st𝑈 .pk, st𝑈 .bk) = ⊥
3 : then (st𝑈 .pk, st𝑈 .bk) ←$ KeyGen(1_)
4 : aux← (st𝑆 .id, uid) // pqCBR

5 : aux← st𝑆 .id // gCBR

6 : (rc, rcid) ←$ CredGen(st𝑈 .pk, aux)
7 : st𝑈 .uid[st𝑆 .id] ← st𝑈 .uid[st𝑆 .id] ∪ {uid}
8 : st𝑆 .rc[uid] ← (rc, rcid)
9 : return rc, rcid

ServerBegin(𝜋𝑖
𝑆
, data = (uid, ch), st𝑆)

1 : if st𝑆 .rc[uid] = ⊥ then return

2 : if ch ∈ st𝑆 .ch[uid] then return

3 : 𝜋𝑖
𝑆 .selfid← st𝑆 .id

4 : 𝜋𝑖
𝑆 .peerid← uid

5 : 𝜋𝑖
𝑆 .role← server

6 : 𝜋𝑖
𝑆 .status← recover

7 : 𝜋𝑖
𝑆 .st← ch

8 : st𝑆 .ch[uid] ← st𝑆 .ch[uid] ∪ {ch}
9 : return

UserBegin(𝜋𝑖
𝑈
, data = (uid, serverID), st𝑈)

1 : 𝜋𝑖
𝑈 .selfid = uid

2 : 𝜋𝑖
𝑈 .peerid = serverID

3 : 𝜋𝑖
𝑈 .role = user

4 : if uid ∉ st𝑈 .uid[serverID]
5 : then 𝜋𝑖

𝑈 .status = reject

6 : else 𝜋𝑖
𝑈 .status = recover

7 : return

UserComplete(𝜋𝑖
𝑈
, data = (rcid, nc, ch), st𝑈)

1 : aux← (𝜋𝑖
𝑈 .peerid, 𝜋𝑖

𝑈 .selfid) // pqCBR

2 : aux← 𝜋𝑖
𝑈 .peerid // gCBR

3 : if nc ∈ st𝑈 .nc[aux] then return ⊥
4 : rsp←$ Response(st𝑈 .bk, rcid, aux, nc, ch)
5 : if rsp ≠ ⊥ then

6 : 𝜋𝑖
𝑈 .status← accept

7 : 𝜋𝑖
𝑈 .sid← (𝜋𝑖

𝑈 .peerid, 𝜋𝑖
𝑈 .selfid, ch, rcid, nc)

8 : st𝑈 .nc[aux] ← st𝑈 .nc[aux] ∪ {nc}
9 : else 𝜋𝑖

𝑈 .status← reject

10 : return rsp

Figure 10: A generic credential-based recovery protocol

Practically, this allows a server to determine if any two registered

accounts belong to the same user. During the recovery process for

one account, the server provides a recovery credential identifier for

another account. The user will respond with a valid signature for

the recovery public key associated with the other account if and

only if the two accounts both belong to the user. This breaks the

unlinkability of Yubico’s scheme. An identical approach leads to

an attack on recovery authentication in which a user can “recover”

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Douglas Stebila and Spencer Wilson

one of their accounts when actually attempting to recover the other.

Fortunately, both of these weaknesses are relatively minor, and

the protocol can be proven secure in our model (albeit under a

non-standard assumption) as long as users do not have multiple

accounts at the same server.

We have conveyed these concerns to the authors of Yubico’s

proposal. They brought our attention to the fact that WebAuthn

already admits a similar attack on unlinkability, so the recovery

protocol does not introduce a new attack vector. This weakness

in WebAuthn is discussed further in [15]. Regardless, the group-

based recovery protocol should be handled with care if used in

conjunction with a non-WebAuthn authentication protocol which

does not admit the same attack. Yubico’s draft specification has

been updated to reflect our work.

5 SECURITY ANALYSIS
Due to space limitations, we state the security bounds for gCBR and

pqCBR in the main body and refer readers who wish to examine

the details to Appendices B–E.

5.1 Recovery Authentication
Theorem 5.1 (gCBR satisfies single-account recovery au-

thentication). Let gCBR be the credential-based recovery protocol
described in Figures 10 and 8, instantiated with a group of order 𝑞.
For any efficient adversary A making at most 𝑛Register queries to
ORegister, there exist efficient algorithms B0, B1, B2, and B3 such
that

Adv1recgCBR,A (_) ≤ AdvcrH,B0 (_) +
(
𝑛Register

2

)
· 1

𝑞 − 1
+ 𝑛user · AdvsgPRFPRF,B1 (_)

+ 𝑛Register · AdvEUF-CMA

Λ,B2 (_)

+ 𝑛Register · AdvSUF-CMA

Σ,B3 (_).

Theorem 5.2 (pqCBR satisfies recovery authentication).

Let pqCBR be the credential-based recovery protocol described in
Figures 10 and 9. For any efficient adversaryA making at most 𝑛user
queries to NewUser, there exist efficient algorithms B0, B1, and B2
such that

AdvrecpqCBR,A (_) ≤ 𝑛user · Adv
cr

Π,B0 (_) + Adv
cr

PRF,B1 (_)

+ 𝑛user · AdvEUF-CMEA

Δ,B2 (_)

5.2 Unlinkability
Theorem 5.3 (gCBR satisfies inter-domain unlinkability).

Let gCBR be the credential-based recovery protocol described in Fig-
ures 8 and 10, instantiated with a group of order 𝑞. For any efficient
adversary A making at most 𝑛user queries to NewUser, 𝑛Register to-
tal queries to ORegister and ORegister𝑏 , and 𝑛Action total queries to
Action and Action𝑏 , there exist efficient algorithms B0, B1, B2, such

that

AdvI-ULgCBR,A (_) ≤
(
𝑛Register

2

)
· 1

𝑞 − 1 + Adv
cr

H,B0 (_)

+ 𝑛user · AdvsgPRFKDF,B1 (_)

+ (𝑛Register + 𝑛Action) · AdvSUF-CMA

Σ,B2 (_).

Theorem 5.4 (pqCBR satisfies unlinkability). Let pqCBR
be the credential-based recovery protocol described in Figures 9 and
10. For any efficient adversary A making at most 𝑛user queries to
NewUser and 𝑛𝑂 total queries to the oracles ORegister, ORegister𝑏 ,
OAction, and OAction𝑏 there exist efficient algorithms B0, B1, and
B2 such that

AdvULpqCBR,A (_) ≤
(
𝑛𝑂

2

)
· 2−_ + 𝑛userAdvKEM-UL

Π,B0 (_)

+ 𝑛𝑂 · Adv
prf

PRF,B1 (_)

+ 𝑛𝑂 · AdvUL-CMEA

Δ,B3 (_) .

6 INSTANTIATION
We now discuss the instantiation of the primitives used to construct

the post-quantum CBR protocol. In particular, we show that the

novel properties which we used to analyze the protocol’s security

are met by existing quantum-safe algorithms.

6.1 Pseudorandom Function
In the proof of Theorem 5.2, we relied on the PRF used in pqCBR
being globally collision resistant. The extendable-output functions

(XOFs) SHAKE-128 and SHAKE-256, often used as PRFs in post-

quantum algorithms, are designed to provide collision resistance [8].

Two other notable candidates, HMAC and HKDF, are constructed
from hash functions in such a way that a collision for the PRF is

also a collision for the underlying hash function.

6.2 Key Encapsulation Mechanism
We required two non-standard properties of the key encapsula-

tion mechanism in pqCBR: collision resistance and unlinkability,

defined in Sections 2.2.1 and 2.2.2 respectively. We focus our atten-

tion on proving that these properties are satisfied by CRYSTALS-

Kyber, which has been selected by NIST for standardization. For

a detailed description of the algorithm, see [2]. CRYSTALS-Kyber

encompasses both a public-key encryption scheme and a key en-

capsulation mechanism; we will denote the former by KyberPKE
and the latter by Kyber.

We will refer to the following CRYSTALS-Kyber parameters:

• 𝑞: the prime 3329.

• 𝑛: the bit-length of encapsulated keys. Equal to 256 for all

security levels.

• H: a hash function with digest bit-length 𝑛, instantiated with

SHA3-256,
• G: a hash function with digest bit-length 2𝑛, instantiated

with SHA3-512,
• 𝑅𝑞 : the ring Z𝑞 [𝑋]/(𝑋𝑛 + 1). In particular, 𝑅𝑞 has size 𝑞𝑛 .

• 𝑘 : the dimension of the public key matrix A. Equal to 2 for

NIST Level 1 security, 3 for NIST Level 3 security, and 4 for

NIST Level 5 security.

Quantum-Safe Account Recovery for WebAuthn ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Note that the collision resistance of Kyber is immediate: decap-

sulation outputs on input 𝑐 are of the form KDF(𝐾 ∥H(𝑐), 𝑛), where
KDF = SHAKE-256 and H = SHA3-256 and 𝐾 is a fixed-length

variable string. This gives the following result.

Theorem 6.1. For any efficient adversary A, there exists an effi-
cient algorithm B such that

AdvcrKyber,A (_) ≤ AdvcrSHA3-256 (_) + Adv
cr

SHAKE-256(·,𝑛),B (_).

The proof that Kyber satisfies unlinkability is more technical

and relies on the random oracle model, as do the proofs of security

in the Kyber specification [2]. It makes use of the strong pseudo-

randomness (SPR-CCA) property of Kyber (shown in in [19]) and

the pseudorandomness of KyberPKE as well as algorithmic details

such as implicit rejection. In the interest of space, we will state only

the security result, leaving the details for Appendix A.

Theorem 6.2. For any efficient adversary A making at most 𝑛𝐸
encapsulation queries and 𝑛𝐷 decapsulation queries, there exist effi-
cient algorithms B0, B1, and B2 such that

AdvKEM-UL
Kyber,A (_) ≤ 𝑛𝐸 · Adv

SPR-CCA
Kyber,B0 (_)

+ AdvprfSHAKE-256,B1 (_)

+ 𝑛𝐷𝑛H · AdvIND-CPAKyberPKE,B0 (_) +
𝑛𝐷𝑛G

2
𝑛

+ 𝑛𝐷 · Adv
pr

KyberPKE,B1 (_) +
𝑛𝐷

𝑞𝑛𝑘
.

Remark 6.3. The security bound given by Theorem 6.2 is unfortu-

nately non-tight. However, this is not likely to pose an issue in the

context of WebAuthn recovery. Encapsulations are only performed

when the user creates a new recovery credential, and decapsula-

tions are only performed when the user attempts to recover an

account. Hence, the values 𝑛𝐸 and 𝑛𝐷 are likely to be quite small in

practice. Although the value of 𝑛H could be significantly larger, the

proof of Theorem 6.2 shows that it is reduced exponentially by the

min-entropy of a Kyber public key in the security bound. Not only

are these public keys pseudorandom under the MLWE assumption,

they also contain a pseudorandom 256-bit suffix, obtained via a call

to SHAKE-256 on a truly random 256-bit value [2], meaning that

their min-entropy is likely at least 256 bits.

7 EVALUATION
In Table 1, we list the sizes of values which must be communicated

between parties in the recovery protocol. These numbers are based

on [17], [2], and [10]. In particular, they assume that ECDSA on

the P-256 curve and HMAC-SHA256 (with output truncated to 16

bytes) are used to instantiate gCBR, and the Level 3 parameter set

for Kyber is used to instantiate pqCBR. We do not include blPicnic
in the table, as it has not been implemented and detailed informa-

tion about signature size is not available. In Table 3, we provide the

time costs of blinding, signing, and verifying for blinded signature

schemes and compare them with analogous costs for the associ-

ated non-blinded signature schemes. This data is copied directly

from [10], whose implementations of the blinded signature schemes

are available at http://github.com/tedeaton/pq-key-blinding. Infor-

mation about the platform on which the runtimes were collected

was not available. The schemes blLegRoast and blCSI-FiSh were

implemented in C, while blDilithium-QROM was implemented in

Sage.

As is to be expected, the post-quantum protocol requires sig-

nificantly more communication and storage space than its group-

based counterpart. However, regardless of which blinded signature

scheme is used, these increases appear less drastic when compared

to an instantiation of WebAuthn using the base post-quantum sig-

nature scheme. A more noticeable efficiency loss is seen when

comparing the signing and verifying times of the blinded schemes

with their base schemes, as given in Table 3. However, blinding a

public key is always at least as fast as generating a fresh public key.

Registration and recovery additionally require an encapsulation and

a decapsulation, respectively, which will introduce an additional

overhead over WebAuthn ceremonies which do not involve recov-

ery credentials. We do not attempt to provide an estimate of the

total cost of registration and recovery, as this would require adding

the time of a KEM operation and the time of a blinded signature

scheme operation. The sum would not provide meaningful data,

Table 1: Credential, credential identifier, and response sizes
for gCBR and pqCBR

Protocol Instantiation |rc| |rcid| |rsp|
ECDSA-P256,HMAC-SHA256 64 B 80 B 64 B

Kyber, blCSI-FiSh 16 kB 1.06 kB 0.45 kB

Kyber, blDilithium-QROM 10 kB 1.06 kB 5.7 kB

Kyber, blLegRoast 0.5 kB 1.06 kB 11.22 kB

Table 2: Public key and signature sizes for post-quantum
blinded and non-blinded signature schemes, from [10]

Scheme |pk| |𝜎 |
CSI-FiSh 16 kB 0.45 kB

blCSI-FiSh 16 kB 0.45 kB

Dilithium-QROM 7.7 kB 5.7 kB

blDilithium-QROM 10 kB 5.7 kB

LegRoast 0.50 kB 7.94 kB

blLegRoast 0.50 kB 11.22 kB

Table 3: Performance of post-quantum blinded and non-
blinded signature schemes, from [10]

.

Scheme KeyGen / Sign Verify
BlindPK

CSI-FiSh 10800 ms 554 ms 553 ms

blCSI-FiSh 10600 ms 546 ms 540 ms

Dilithium-QROM 3810 ms 9360 ms 2890 ms

blDilithium-QROM 1650 ms 28300 ms 717 ms

LegRoast 0.9 ms 12.4 ms 11.7 ms

blLegRoast 0.9 ms 18.6 ms 17.8 ms

http://github.com/tedeaton/pq-key-blinding

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Douglas Stebila and Spencer Wilson

as the implementation of Kyber is highly optimized, while the im-

plementations of the blinded signature schemes are non-optimized

proofs of concept.

A notable difference between Dilithium-QROM and its blinded

counterpart involves the matrix A, which forms part of public keys.

In the base signature scheme, this matrix is freshly generated for

each public key. In the blinded version, the same A is used across

all public keys derived from the same seed keypair. In order to

provide unlinkability guarantees, the same A must be used by all

tokenswhich cannot otherwise be distinguished. In practice, relying

parties will require the backup authenticator’s attestation identifier

(AAGUID), which is shared among a large batch of tokens of the

same model [11]. Hence, it suffices to ensure that all tokens with

the same AAGUID also use the same A. The security analysis of

blDilithium-QROM in [10] required a new variant of the learning

with errors assumption, “static A module LWE”, in order to deal

with the same matrix being used by multiple public keys.

The blCSI-FiSh signature scheme is especially attractive due to

its small signature sizes. However, its security claim is contested,

and there is no clear path to increasing its security parameters due

to the intense class group computation required [20].

7.1 Stronger Security Notions
Although the definition of EUF-CMEA security given in [10] does

not provide the adversary with the identity public key, the security

proofs of both blDilithium-QROM and blCSI-FiSh show that they

are in fact secure against an adversary who is given this extra

information. This is because both are obtained via the Fiat–Shamir

transform from an identification protocol whose public key includes

the identity public key. This allows a stronger notion of recovery

authentication security, in which the adversary is also allowed

to obtain primary keys from lost primary tokens. Unlinkability,

however, still requires the public keys to be kept secret.

As a final note, pqCBR need not be instantiated with quantum-

safe primitives in order to be secure against a classical adversary.

Indeed, we believe that two features of the post-quantum protocol

could be incorporated into the group-based protocol with positive

results. Modifying Yubico’s protocol to use independent keypairs

for shared secret establishment and signing could eliminate, or

at least weaken, the required non-standard security assumption.

The one-time additional overhead required for the extra keypair

would be more than compensated for by the many-time reduction

in recovery credential size by removing the MAC and incorporating

the auxiliary data into the PRF label. We leave a detailed analysis

of these modifications to future work.

In this work, we proposed a quantum-safe protocol for account

recovery with passwordless authentication. In particular, our con-

struction gives a quantum-safe version of Yubico’s proposed We-

bAuthn recovery standard. We also devised a novel security model

for account recovery and analyzed both Yubico’s protocol and our

own under it, introducing several new security properties along

the way. This led us to discover a weakness in the former, which

we conveyed to the authors of the proposal. Finally, we provided

concrete instantiations (with proof) of primitives which meet the

novel properties required for the analysis of our post-quantum

protocol.

We are unable to prove the security of Yubico’s recovery exten-

sion without relying on a bespoke computational assumption. In

particular, we are unable to reduce its security to any well-studied

Diffie–Hellman-like problem, including PRF-ODH in its various

flavours. We recommend that the protocol be subjected to further

rigorous analysis and modified if necessary .

7.2 Limitations
Our security model does not account for users who have more

than one backup authenticator. This constitutes a significant gap in

our analysis of Yubico’s proposal for WebAuthn account recovery,

which places no such restriction on the user. Incorporating this

feature would increase the complexity of our security model . In

particular, it would make unlinkability more difficult to reason

about. Our model also allows us to consider recovery from a more

general point of view by abstracting away the CTAP subprotocol.

However, this means that our results are conditional on CTAP

providing secure communication.

7.3 Future Work
Our contributions could be extended or expanded on in several

interesting directions. Perhaps the most important future work is a

thorough evaluation of the novel security assumption on which we

based the security proof for Yubico’s protocol. A reduction of this

assumption to one which is well studied—or a security proof that

eliminates the need for a new assumption—would be highly desir-

able, given that the scheme is being proposed for standardization.

Our security analysis could also be hardened by using an automated

verification tool. Expanding our security model to account for users

with multiple backup tokens, as Yubico’s proposal allows, would

provide security guarantees for a wider range of practical use cases.

Another interesting approach could be to examine unlinkability

against a passive adversary with access to primary authenticators’

keys. With regards to protocol instantiation, an examination of

KEMs besides CRYSTALS-Kyber—both classical and quantum-safe—

would provide insight into how tightly bound our proposal is to

a single algorithm. Also of interest would be a comparison of our

approach with those taken by [5] and [12] with regards to security,

usability, and ease of implementation. This could involve evaluating

the other constructions under our security model and vice versa.

Another direction for future work would be to implement and

benchmark our protocol. This would involve implementing exten-

sions to the CTAP and WebAuthn APIs as well as crytographic

code to create and use recovery credentials. The API extensions

proposed by Yubico in [17] would suffice for our protocol. For

the cryptographic code, one could leverage the blinded signature

implementations from [10] and SandboxAQ’s implementation of

post-quantum FIDO2 using Firefox and a Nitrokey token [21]. A

single-threaded Python implementation would also be of interest

to compare with the existing proof-of-concept implementation of

Yubico’s group-based protocol [17].

ACKNOWLEDGMENTS
This work was supported by Natural Sciences and Engineering

Research Council of Canada (NSERC) Discovery grant RGPIN-2022-

03187 and NSERC Alliance grant ALLRP 578463-22.

Quantum-Safe Account Recovery for WebAuthn ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

REFERENCES
[1] Sunpreet S. Arora, Saikrishna Badrinarayanan, Srinivasan Raghuraman, Maliheh

Shirvanian, KimWagner, and GavenWatson. 2022. Avoiding Lock Outs: Proactive

FIDO Account Recovery using Managerless Group Signatures. Cryptology ePrint

Archive, Paper 2022/1555. https://eprint.iacr.org/2022/1555

[2] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-

shevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.

2021. CRYSTALS-Kyber: Algorithm Specifications and Supporting Documenta-

tion (version 3.02). https://pq-crystals.org/kyber/resources.shtml

[3] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi. 2021.

Provable Security Analysis of FIDO2. In CRYPTO 2021, Part III (LNCS, Vol. 12827),
Tal Malkin and Chris Peikert (Eds.). Springer, Heidelberg, Virtual Event, 125–156.

https://doi.org/10.1007/978-3-030-84252-9_5

[4] Nina Bindel, Cas Cremers, andMang Zhao. 2023. FIDO2, CTAP 2.1, andWebAuthn

2: Provable Security and Post-Quantum Instantiation. In 2023 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, 1471–1490. https://doi.

org/10.1109/SP46215.2023.10179454

[5] Jacqueline Brendel, Sebastian Clermont, and Marc Fischlin. 2023. Post-Quantum

Asynchronous Remote Key Generation for FIDO2 Account Recovery. Cryptology

ePrint Archive, Paper 2023/1275. https://eprint.iacr.org/2023/1275

[6] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. 2017.

PRF-ODH: Relations, Instantiations, and Impossibility Results. In CRYPTO 2017,
Part III (LNCS, Vol. 10403), Jonathan Katz and Hovav Shacham (Eds.). Springer,

Heidelberg, 651–681. https://doi.org/10.1007/978-3-319-63697-9_22

[7] Sofía Celi, Scott Griffy, Lucjan Hanzlik, Octavio Perez Kempner, and Daniel

Slamanig. 2023. SoK: Signatures With Randomizable Keys. Cryptology ePrint

Archive, Paper 2023/1524. https://eprint.iacr.org/2023/1524

[8] Morris Dworkin. 2015. SHA-3 Standard: Permutation-Based Hash and Extendable-

Output Functions. https://doi.org/10.6028/NIST.FIPS.202

[9] Edward Eaton, Tancrède Lepoint, and Christopher A. Wood. 2023. Security

Analysis of Signature Schemes with Key Blinding. Cryptology ePrint Archive,

Paper 2023/380. https://eprint.iacr.org/2023/380

[10] Edward Eaton, Douglas Stebila, and Roy Stracovsky. 2021. Post-quantum Key-

Blinding for Authentication in Anonymity Networks. In LATINCRYPT 2021 (LNCS,
Vol. 12912), Patrick Longa and Carla Ràfols (Eds.). Springer, Heidelberg, 67–87.

https://doi.org/10.1007/978-3-030-88238-9_4

[11] Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, MarkManulis,

and Dain Nilsson. 2020. Asynchronous Remote Key Generation: An Analysis of

Yubico’s Proposal for W3C WebAuthn. In ACM CCS 2020, Jay Ligatti, Xinming

Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press, 939–954. https:

//doi.org/10.1145/3372297.3417292

[12] Nick Frymann, Daniel Gardham, and Mark Manulis. 2023. Asynchronous Remote

Key Generation for Post-Quantum Cryptosystems from Lattices. In 2023 IEEE
8th European Symposium on Security and Privacy (EuroS&P). 928–941. https:

//doi.org/10.1109/EuroSP57164.2023.00059

[13] Hidehito Gomi, Bill Leddy, and Dean H. Saxe (Eds.). 2019. Recommended Account
Recovery Practices for FIDO Relying Parties. FIDO Alliance. https://fidoalliance.

org/recommended-account-recovery-practices

[14] Paul Grubbs, Varun Maram, and Kenneth G. Paterson. 2022. Anonymous, Ro-

bust Post-quantum Public Key Encryption. In EUROCRYPT 2022, Part III (LNCS,
Vol. 13277), Orr Dunkelman and Stefan Dziembowski (Eds.). Springer, Heidelberg,

402–432. https://doi.org/10.1007/978-3-031-07082-2_15

[15] Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. 2023. Token meets Wallet:

Formalizing Privacy and Revocation for FIDO2. In 2023 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press, 1491–1508. https://doi.org/

10.1109/SP46215.2023.10179373

[16] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. 2012. On the Security

of TLS-DHE in the Standard Model. In CRYPTO 2012 (LNCS, Vol. 7417), Reihaneh
Safavi-Naini and Ran Canetti (Eds.). Springer, Heidelberg, 273–293. https://doi.

org/10.1007/978-3-642-32009-5_17

[17] Emil Lundberg and Dain Nilsson. 2019. WebAuthn Recovery Extension. Yubico.
https://github.com/Yubico/webauthn-recovery-extension

[18] Sanam Ghorbani Lyastani, Michael Schilling, Michaela Neumayr, Michael Backes,

and Sven Bugiel. 2020. Is FIDO2 the Kingslayer of User Authentication? A

Comparative Usability Study of FIDO2 Passwordless Authentication. In 2020
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 268–285.

https://doi.org/10.1109/SP40000.2020.00047

[19] Varun Maram and Keita Xagawa. 2023. Post-quantum Anonymity of Kyber. In

PKC 2023, Part I (LNCS, Vol. 13940), Alexandra Boldyreva and Vladimir Kolesnikov

(Eds.). Springer, Heidelberg, 3–35. https://doi.org/10.1007/978-3-031-31368-4_1

[20] Chris Peikert. 2020. He Gives C-Sieves on the CSIDH. In EUROCRYPT 2020, Part II
(LNCS, Vol. 12106), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg,

463–492. https://doi.org/10.1007/978-3-030-45724-2_16

[21] SandboxAQ. 2024. PQC FIDO2. https://github.com/sandbox-quantum/pqc-

fido2-impl

[22] Keita Xagawa. 2022. Anonymity of NIST PQCRound 3 KEMs. In EUROCRYPT 2022,
Part III (LNCS, Vol. 13277), Orr Dunkelman and Stefan Dziembowski (Eds.).

ExpcguessKyberPKE,A
1 : (pk, sk) ←$ KeyGen(1_)
2 : ℎ ← H(pk)
3 : 𝑐∗ ← A()
4 : 𝑚∗ ← Dec(sk, 𝑐∗)
5 : 𝑟 ∗ ← G(𝑚∗, ℎ)
6 : return J𝑐∗ = Enc(pk,𝑚∗, 𝑟 ∗)K

Figure 11: The ciphertext guessing game for KyberPKE

Springer, Heidelberg, 551–581. https://doi.org/10.1007/978-3-031-07082-2_20

A PROOF OF THEOREM 6.2
To prove that Kyber satisfies KEM unlinkability, we begin by intro-

ducing a simpler problem, which we refer to as “ciphertext guess-

ing”, and showing that it is difficult for KyberPKE. We then reduce

breaking the unlinkability of Kyber to ciphertext guessing. The ci-

phertext guessing game challenges an adversary given no informa-

tion about the public key (not even encapsulation or decapsulation

oracles) to output a ciphertext 𝑐∗ which is not implicitly rejected

by Kyber decapsulation. This is described formally in Figure 11.

Although it might seem bizarre to keep a public key private, this

situation arises naturally in the context of unlinkability, where no

guarantees can be made against an active adversary with access to

the public key.

We make use of the fact that KyberPKE encryption with truly

random coins is pseudorandom under the Module-LWE assumption.

As in [2], we denote this pseudorandomness property by pr.

Lemma A.1. Suppose that H and G are random oracles. For any
efficient adversaryA making at most 𝑛H queries to H and 𝑛G queries
to G, there exist efficient algorithms B0 and B1 such that

AdvcguessKyberPKE,A (_) ≤ 𝑛H · Adv
IND-CPA

KyberPKE,B0 (_) +
𝑛G

2
𝑛

+ AdvprKyberPKE,B1 (_) +
1

𝑞𝑛𝑘
.

Proof. We proceed by a sequence of games.

Game 0. This game is precisely the cguess game for KyberPKE.
Therefore

AdvcguessKyberPKE,A (_) = AdvG0KyberPKE,A (_) .

Game 1. This game is identical to Game 0, except that the return

value is 1 if and only if the first component 𝑐∗
1
matches the first

component of Enc(pk,𝑚∗, 𝑟∗). Since this is a less restrictive winning
condition, it is clear that

AdvG0KyberPKE,A (_) ≤ AdvG1KyberPKE,A (_) .

Game 2. This game is identical to Game 1, except that the game

aborts if the adversary queries pk to the random oracle H. Since
the adversary receives no information about pk, the probability

that it guesses pk correctly in a single query is bounded by 2
−ℎpk

,

where ℎpk is the min-entropy of the public key. We note, as in

https://eprint.iacr.org/2022/1555
https://pq-crystals.org/kyber/resources.shtml
https://doi.org/10.1007/978-3-030-84252-9_5
https://doi.org/10.1109/SP46215.2023.10179454
https://doi.org/10.1109/SP46215.2023.10179454
https://eprint.iacr.org/2023/1275
https://doi.org/10.1007/978-3-319-63697-9_22
https://eprint.iacr.org/2023/1524
https://doi.org/10.6028/NIST.FIPS.202
https://eprint.iacr.org/2023/380
https://doi.org/10.1007/978-3-030-88238-9_4
https://doi.org/10.1145/3372297.3417292
https://doi.org/10.1145/3372297.3417292
https://doi.org/10.1109/EuroSP57164.2023.00059
https://doi.org/10.1109/EuroSP57164.2023.00059
https://fidoalliance.org/recommended-account-recovery-practices
https://fidoalliance.org/recommended-account-recovery-practices
https://doi.org/10.1007/978-3-031-07082-2_15
https://doi.org/10.1109/SP46215.2023.10179373
https://doi.org/10.1109/SP46215.2023.10179373
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://github.com/Yubico/webauthn-recovery-extension
https://doi.org/10.1109/SP40000.2020.00047
https://doi.org/10.1007/978-3-031-31368-4_1
https://doi.org/10.1007/978-3-030-45724-2_16
https://github.com/sandbox-quantum/pqc-fido2-impl
https://github.com/sandbox-quantum/pqc-fido2-impl
https://doi.org/10.1007/978-3-031-07082-2_20

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Douglas Stebila and Spencer Wilson

Corollary 1 of [10], that this quantity is bounded by the advantage

AdvIND-CPAKyberPKE,B0 (_). Therefore

AdvG1KyberPKE,A (_) ≤ 𝑛H · Adv
IND-CPA

KyberPKE,B0 (_)

+ AdvG2KyberPKE,A (_).

Game 3. This game is identical to Game 2, except that ℎ is

sampled uniformly at random instead of being computed as H(pk).
Since the adversary does not query pk to theH random oracle, there

is no change in advantage:

AdvG2KyberPKE,A (_) = AdvG3KyberPKE,A (_) .

Game 4. This game is identical to Game 3, except that the game

aborts if the adversary queries (𝑚∗,H) to the random oracle. Since

the adversary must correctly guess the randomly sampled value H
in order to make such a query,

AdvG3KyberPKE,A (_) ≤
𝑛G

2
𝑛
+ AdvG4KyberPKE,A (_) .

Game 5. This game is identical to Game 4, except that 𝑟∗ is sam-

pled uniformly at random instead of being computed as G(𝑚∗, ℎ).
Since the adversary does not query (𝑚∗, ℎ) to the H random oracle,

there is no change in advantage:

AdvG4KyberPKE,A (_) = AdvG5KyberPKE,A (_) .

Game 6. This game is identical to Game 5, except that the

winning condition is changed to 𝑐∗
1

= Enc(pk,𝑚′, 𝑟∗)1, where
𝑚′ is a randomly sampled message. Since the first component of

Enc(pk,𝑚∗, 𝑟∗) depends only on pk and 𝑟∗, there is no change in

advantage:

AdvG5KyberPKE,A (_) = AdvG6KyberPKE,A (_) .

Game 7. This game is identical to Game 6, except that the value

Enc(pk, ·, 𝑟∗) is replaced by a random sample from the ciphertext

space. In particular, the first component is a random sample from

𝑅𝑘𝑞 . The loss in advantage is bounded by the advantage of an adver-

sary B1 in distinguishing a random Kyber ciphertext from random

samples from the ciphertext space. It follows that

AdvG6KyberPKE,A (_) ≤ AdvprKyberPKE,B1 (_)

+ AdvG7KyberPKE,A (_).

In order to win this game, the adversary must correctly guess a

uniformly sampled value from 𝑅𝑘𝑞 . Since
��𝑅𝑞 �� = 𝑞𝑛 ,

AdvG7KyberPKE,A (_) =
1

𝑞𝑛𝑘
.

The desired security statement follows from combining these

bounds. □

We now reduce the KEM-UL experiment for Kyber to cipher-

text guessing, proving Theorem 6.2. We additionally rely on the

SPR-CCA security of Kyber, as evaluated in [19], and the pseudo-

randomness of SHAKE-256.

Proof of Theorem 6.2. We proceed by a sequence of games.

Game 0. This game is identical to the experiment ExpKEM-UL

Kyber,A .
Therefore

AdvKEM-UL

Kyber,A (_) = AdvG0Kyber,A (_) .

Game 1. This game is identical to Game 0, except that the encap-

sulation oracle is replaced by an oracle which samples and outputs

a uniformly random ciphertext and a uniformly random key, and

the decapsulation oracle responds consistently with these outputs.

This game can be viewed as the final game in a sequence of hybrid

games H𝑖 , defined such that H𝑖 is identical to G0 except that en-
capsulation queries 1 through 𝑖 are answered with such a pair of

random samples. At each step, the loss of advantage is bounded

by the SPR-CCA security of Kyber: an SPR-CCA adversary B𝑖 who
substitutes its challenge ciphertext-key pair for the 𝑖th encapsula-

tion response playsH𝑖−1 if the pair was honestly output andH𝑖 if

the pair was uniformly sampled. Hence,

AdvG0Kyber,A (_) ≤ 𝑛𝐸 · Adv
SPR-CCA

Kyber,B0 (_)

+ AdvG1Kyber,A (_),

where B0 is the most successful of the adversaries B𝑖s.
Game 2. This game is identical to Game 1, except that all implicit

rejection outputs SHAKE-256(𝑧,H(𝑐)) are replaced by random sam-

ples (up to consistency, so that the same value is output for 𝑐 if

queried multiple times). The loss in advantage is bounded by the

PRF-security of SHAKE-256, where we regard the random prefix 𝑧

as the key and H(𝑐) as the label. Therefore

AdvG1Kyber,A (_) ≤ AdvprfSHAKE-256,B1 (_)

+ AdvG2Kyber,A (_) .

Game 3. This game is identical to Game 2, except that the game

aborts (returning a random bit) if A queries a value 𝑐∗ to the de-

capsulation oracle which is not implicitly rejected.

We show that ifA triggers the abort condition, then we can con-

struct a winning adversary B2 for the cguess game for KyberPKE.
The adversary B2 randomly chooses some index 1 ≤ 𝑖 ≤ 𝑛𝐷 . It
challenges A to Game 3, answering A’s first 𝑖 − 1 decapsulation
queries by returning random keys (up to consistency if the same

value is queried). Upon receiving the 𝑖th decapsulation query 𝑐∗, it
halts and returns 𝑐∗ to its challenger. (If 𝑖 = 𝑛𝐷 + 1, then B submits

A’s return value.) Note that B wins the cguess game whenever

whenever it guesses correctly the index where A first submits a

non-rejecting query. It follows that

AdvG2Kyber,A (_) ≤ 𝑛𝐷 · Adv
cguess

KyberPKE,B2 (_)

+ AdvG3Kyber,A (_).

Since implicitly rejected decapsulation queries simply return a

random key, the adversaryA’s oracles are now independent of the

value of 𝑏. Therefore

AdvG3Kyber,A (_) = 0.

The desired security statement follows from combining these

bounds. □

Quantum-Safe Account Recovery for WebAuthn ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

B PROOF OF THEOREM 5.1
Proof of Theorem 5.1. We begin by arguing that the first win-

ning condition, on line 3 of the recovery authentication experi-

ment in Figure 6, is never met. Suppose that (𝑃1, 𝑖1) ≠ (𝑃2, 𝑖2) and
𝜋
𝑖1
𝑃1
.sid = 𝜋

𝑖2
𝑃2
.sid ≠ ⊥. Since the session identifier is only set to a

non-⊥ value when a session accepts, and a session in the accept
state cannot be modified, 𝜋

𝑖1
𝑃1
.status = accept = 𝜋𝑖2

𝑃2
. Session iden-

tifiers are also only set on sessions with set roles, so both 𝜋
𝑖1
𝑃1

and

𝜋
𝑖2
𝑃2

have set roles.

If 𝜋
𝑖1
𝑃1
.role = server = 𝜋

𝑖2
𝑃2
, then 𝜋

𝑖1
𝑃1
.selfid = 𝜋

𝑖2
𝑃2
.selfid and

𝜋
𝑖1
𝑃1
.peerid = 𝜋

𝑖2
𝑃2
.peerid by session identifier equality. Since server

identifiers are unique, 𝑃1 = 𝑃2. But servers never issue the same ch
value for the same username in two different sessions, so the ch
portions of the two session identifiers must differ. Since the session

identifiers are the same, it follows that at least one of 𝜋
𝑖1
𝑃1

and 𝜋
𝑖2
𝑃2

is a user session. Since users never issue the same nc value for the
same server identifier in two different sessions, a similar argument

shows that at least one of 𝜋
𝑖1
𝑃1

and 𝜋
𝑖2
𝑃2

is a server session. Therefore

𝜋
𝑖1
𝑃1
.role ≠ 𝜋𝑖2

𝑃2
.role. It follows by equality of session identifiers that

𝜋
𝑖1
𝑃1
.selfid = 𝜋

𝑖2
𝑃2
.peerid and 𝜋

𝑖1
𝑃1
.peerid = 𝜋

𝑖2
𝑃2
.selfid. This shows

that 𝜋
𝑖1
𝑃1

and 𝜋
𝑖2
𝑃2

do in fact match.

We now bound the adversary’s advantage in triggering the sec-

ond winning condition, proceeding by a sequence of games.

Game 0. This game is identical to the security experiment

Exp1recgCBR,A . Therefore

Adv1recgCBR,A (_) = AdvG0gCBR,A (_).

Game 1. This game is identical to Game 0 except that the game

aborts if the challenger observes a collision for H. With B0 defined
to be the adversary which challenges A and returns this observed

collision,

AdvG0gCBR,A (_) ≤ AdvcrH,B0 (_) + Adv
G1
gCBR,A (_) .

Game 2. This game is identical to Game 1 except that the game

aborts if two 𝐸-values generated by calls to CredGen collide. Since

CredGen is only called by ORegister, the number of 𝐸-values gen-

erated is at most 𝑛Register. Since these values are sampled uniformly

from a set of size 𝑞−1, the probability of a pair colliding is 1/(𝑞−1).
It follows that the probability of a collision is bounded above by(

𝑛Register

2

)
· 1

𝑞 − 1 ,

whence

AdvG1gCBR,A (_) ≤
(
𝑛Register

2

)
· 1

𝑞 − 1 + Adv
G2
gCBR,A (_) .

Game 3. This game is identical to Game 2 except for the follow-

ing changes:

• The derived value mk in Response and CredGen is replaced

by randomly sampling a key for Σ.
• The derived value 𝑝 in Response is replaced by randomly

sampling an element of Z𝑞 .
• The computation of 𝑃 in CredGen is replaced by randomly

sampling 𝑝 ←$ Z𝑞 and setting 𝑃 ← 𝑔𝑝 .

This sampling is done consistently, so that the same mk- and 𝑝-
values are used if the input 𝐸𝑠 to KDF is repeated.

This game can be viewed as the terminal game in a sequence

of hybrid games H𝑖 , where H0 = G2 and H𝑖 incorporates these

changes for users 1 through 𝑖 . At each step, the increase in advan-

tage is bounded by the sgPRF security of KDF; hence,

AdvG2gCBR,A (_) ≤ 𝑛user · Adv
sgPRF

KDF,B1 (_) + Adv
G3
gCBR,A (_).

Game 4. This game is identical to Game 3 except that the game

aborts if the adversary wins in any way except by a mismatched

MAC tag `. Formally, the game aborts if there exists (𝑆, 𝑖) such
that 𝜋𝑖

𝑆
.role = server, 𝜋𝑖

𝑆
.status = accept and for which there is

no (𝑈 , 𝑗) such that 𝜋
𝑗

𝑈
matches with 𝜋𝑖

𝑆
except for the `-portion

of the session identifier. We show that this abort condition is only

triggered if A forges a signature.

Let B2 be an EUF-CMA adversary for Λ. From its challenger, B2
receives a public key 𝑃∗ and a signing oracle for the corresponding

private key. Then B2 acts as the challenger for Game 2 with A,

choosing some call to ORegister and inserting its public key 𝑃∗

in place of the freshly generated 𝑃 . Let the 𝐸-value for this call

to ORegister be 𝐸∗; note that by the previous abort condition this

uniquely determines the call to ORegister. Whenever B2 needs to
produce a signature for the corresponding private key, it uses its

signing oracle.

IfA wins Game 4, then the abort condition has not triggered and

there exists some (𝑆∗, 𝑖) which satisfies the winning condition on

line 7 of the recovery authentication experiment. Hence, the session

𝜋𝑖
𝑆∗ must have successfully completed on some input (nc∗, rsp∗)

with previously generated values rc∗ and ch∗. The value rc∗ must

have been generated by a call toORegister. If this call used the value
𝐸∗, then rc∗ = 𝑃∗. In that case, B2 submits𝑚∗ = (ch∗, ℎ∗, nc∗) and
𝜎∗ = rsp∗ to its EUF-CMA challenger. If B2 uses its oracle for the
correct user, then 𝜎∗ is clearly a valid signature on𝑚∗ under 𝑃∗. It
remains to show only that𝑚∗ was not previously queried to the

signing oracle.

Assume that B2 uses its oracle for the correct user 𝑈 ∗, and
suppose that𝑚∗ was previously queried to the signing oracle. This

can only occur via a call to UserComplete for (𝑈 ∗, 𝑗), which calls

Response to produce a signature. The signing oracle is only used if

𝐸∗ is input to Response, so 𝐸∗ must have been provided as input to

UserComplete for (𝑈 ∗, 𝑗).
Note that 𝜋𝑖

𝑆∗ .sid is equal to the concatenation of

(1) the identifer of 𝑆∗,
(2) the username under which 𝑈 ∗ registered rc∗ at 𝑆∗,
(3) the identifier rcid∗ = (𝐸∗, `∗) which𝑈 ∗ registered alongside

rc∗,
(4) ch∗, and
(5) nc∗.

We have just argued that the session identifiers for (𝑆∗, 𝑖) and
(𝑈 ∗, 𝑗) must agree on 𝐸∗. Since the message (ch∗, ℎ∗, nc∗), where
ℎ∗ is the hash of the identifier of 𝑆∗, was input to the signing oracle,
it follows that they must also agree on the first component and

the last two components. Finally, they must agree on the username

because 𝑈 ∗ has only one account, and hence only one username,

at 𝑆∗. It follows that the sessions (𝑆∗, 𝑖) and (𝑈 ∗, 𝑗) match except

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Douglas Stebila and Spencer Wilson

for the MAC tag `. But this means that the abort condition was

triggered; hence,𝑚∗ was never queried to the signing oracle.

This shows that B2 wins its EUF-CMA game as long as it cor-

rectly guesses the call to ORegister and A wins Game 4, implying

that

AdvG3gCBR,A (_) ≤ 𝑛Register · Adv
EUF-CMA

Λ,B2 (_)

+ AdvG4gCBR,A (_) .

Finally, we reduce Game 4 to the SUF-CMA security of Σ. Let B3
be an SUF-CMA challenger for Σ. From its challenger, B3 receives
a tag oracle and a verification oracle. The B3 acts as the challenger
for Game 4 with A, choosing some call to ORegister and using its

tag oracle to produce the value `∗ for this registration. As before,
let the 𝐸-value for this registration be 𝐸∗. If B3 needs to perform

a verification in some call to UserComplete with 𝐸∗ as input, it
uses its verification oracle. Note, however, that since 𝐸∗ values are
unique for each call to ORegister, the tag oracle is used only once.

The adversary A only wins Game 4 if there is some accepting

server session 𝜋𝑖
𝑆
for which there is no matching user session (𝑈 , 𝑗).

Furthermore, the only possible mismatch can be on the tag ` in the

session identifier. The adversary can pick any almost-matching user

session and submit its differing `-value as a forged tag on the value

(𝐸∗, ℎ∗), the unique message tagged by its oracle. Since the user

session successfully completed and must have verified its `-value

for (𝐸∗, ℎ∗), and the tag oracle is used only once, this indeed a valid
forgery. Hence,

AdvG4gCBR,A (_) ≤ 𝑛Register · Adv
SUF-CMA

Σ,B3 (_).

The desired security statement is given by combining these

bounds. □

C PROOF OF THEOREM 5.2
Proof of Theorem 5.2. An identical argument to that given in

the proof of Theorem 5.1 shows that the winning condition on line 3

of the recovery authentication experiment in Figure 6 is never met.

Hence, we similarly bound the adversary’s advantage in triggering

the second winning condition, proceeding by a sequence of games.

Game 0. This game is identical to the security experiment

ExprecpqCBR,A . Therefore

AdvrecpqCBR,A (_) = AdvG0pqCBR,A (_) .

Game 1. This game is identical to Game 0 except that the game

aborts if there are two calls to Response with the same skΠ-value
and different rcid-values which result in the same 𝑘-value being

used on line 2. This abort condition is only triggered if the distinct

rcid-values result in a collision for Π.Decaps(skΠ, ·). Since there
are 𝑛user distinct KEM keys skΠ in the game, it follows that

AdvG0pqCBR,A (_) ≤ 𝑛user · Adv
cr

Π,B0 (_) + Adv
G1
pqCBR,A (_).

Game 2. This game is identical to Game 1 except that the game

aborts if there are two calls to Response with the same skΠ-value
and different rcid-values which result in the same 𝜏-value being

used on line 3. The previous abort condition ensures that different

rcid-values result in different 𝑘-values being input to PRF; hence,
this condition is only triggered if the challenger observes a collision

for PRF. With B1 defined to be the adversary which challenges A
and returns this collision, it follows that

AdvG1pqCBR,A (_) ≤ AdvcrPRF,B1 (_) + Adv
G2
pqCBR,A (_) .

We now reduce winning Game 2 to producing a forgery for

Δ. Let B2 be a EUF-CMEA adversary for Δ. From the EUF-CMEA

challenger, B2 receives an oracle which produces signatures and

public keys for any blinding factor 𝜏 ; the adversaryB2 is challenged
to produce (𝑚∗, 𝜎∗, 𝜏∗) such that 𝜎∗ verifies on𝑚∗ under the public
key produced by the blinding factor 𝜏∗. Now,B2 faithfully simulates

Game 2 with A, choosing a user at random and using its oracle to

answer BlindPK and Sign queries for that user’s Δ-keypair.
If A wins Game 2, then the abort conditions have not triggered

and there exists some (𝑆∗, 𝑖) which satisfies the winning condi-

tion on line 7 of the recovery authentication experiment. Hence,

the session 𝜋𝑖
𝑆∗ must have successfully completed on some input

(nc∗, rsp∗) with previously generated values rc∗ and ch∗. The value
rc∗ must have been generated during the registration process with

some blinding factor 𝜏∗, which can be determined by B2. If rc∗
was generated via B2’s oracle, then B2 submits𝑚∗ = (ch∗, nc∗),
𝜎∗ = rsp∗, and 𝜏∗ to its EUF-CMEA challenger. If B2 uses its oracle
for the correct user, then 𝜎∗ is clearly a valid signature on𝑚∗ under
rc∗, the public key produced by the blinding factor 𝜏∗. It remains to

show only that (𝑚∗, 𝜏∗) was not previously queried to the signing

oracle.

Assume that B2 uses its oracle for the correct user𝑈 ∗, and sup-

pose that (𝑚∗, 𝜏∗) were previously queried to the signing oracle.

This can only occur via a call to UserComplete for (𝑈 ∗, 𝑗), which
calls Response to produce a signature. By the second abort condi-

tion, 𝜏∗ is only produced in Response if the input rcid- and aux-
values are the same as the ones input when rc∗ was registered. This
implies that 𝜋

𝑗

𝑈 ∗ .peerid must be the identifier of the server 𝑆∗. Sim-

ilarly, 𝜋
𝑗

𝑈 ∗ .selfid must be the username under which 𝑈 ∗ registered
at 𝑆∗.

Note that 𝜋𝑖
𝑆∗ .sid is equal to the concatenation of

(1) the identifer of 𝑆∗,
(2) the username under which 𝑈 ∗ registered rc∗ at 𝑆∗,
(3) the identifier rcid∗ which𝑈 ∗ registered alongside rc∗,
(4) ch∗, and
(5) nc∗.

We have just argued that the first three components must match

with 𝜋
𝑗

𝑈 ∗ .sid. Since the message (ch∗, nc∗) is signed for (𝑈 ∗, 𝑗),
𝜋
𝑗

𝑈 ∗ .sid also agrees with 𝜋
𝑖
𝑆∗ .sid on the final two components. There-

fore 𝜋
𝑗

𝑈 ∗ .sid = 𝜋𝑖
𝑆∗ .sid. This implies that 𝜋𝑖

𝑆∗ and 𝜋
𝑗

𝑈 ∗ match. More-

over, because 𝜋𝑖
𝑆
.peerid is the username under which𝑈 ∗ registered

rc∗ at 𝑆∗, it follows that (𝑈 ∗, 𝑆∗, 𝜋𝑖
𝑆∗ .peerid) ∈ LRegister. Hence, A

does not win Game 2 via (𝑆∗, 𝑖), which is a contradiction. It follows

that

AdvG2pqCBR,A (_) ≤ 𝑛user · Adv
EUF-CMEA

Δ,B2 (_) .

The desired security statement is given by combining these

bounds. □

Quantum-Safe Account Recovery for WebAuthn ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

D PROOF OF THEOREM 5.3
Proof of Theorem 5.3. First, note that since the fail bit is set

based on information available to the adversary, the adversary

“knows” when it will trigger the failing conditions. Hence, for every

adversary A which triggers the failing conditions, there exists an-

other adversary with exactly the same advantage and running time

which never triggers the failing conditions; it behaves identically

to A except that when A would issue a failure-triggering query, it

returns a random bit. Hence, we may assume that A never causes

fail to be set to 1.

We proceed by a sequence of games.

Game 0. This game is identical to the original security experi-

ment ExpI-ULgCBR,A , so

AdvI-ULgCBR,A (_) = AdvG0gCBR,A (_).

Game 1. This game is identical to Game 0, except that the game

aborts if the challenger observes a collision for H or between 𝐸-

values at registration. By a similar argument to the proof of Theo-

rem 5.1,

AdvG0gCBR,A (_) ≤
(
𝑛Register

2

)
· 1

𝑞 − 1 + Adv
cr

H,B0 (_)

+ AdvG1gCBR,A (_)

Game 2. This game is identical to Game 1 except for the follow-

ing changes:

• In CredGen, the computation (ck,mk) ← KDF(𝐸𝑠); 𝑃 ←
𝑔ck · 𝑆 is replaced by 𝑝 ←$ Z𝑞 ;mk←$ {0, 1}_ ; 𝑃 ← 𝑔𝑝 .

• In Response, the computation (ck,mk) ← KDF(𝐸𝑠);𝑝 ←
ck + 𝑠 is replaced by 𝑝 ←$ Z𝑞 ;mk←$ {0, 1}_ .
• A map 𝐸 ↦→ (𝑝,mk) is maintained in st𝑈 for each user 𝑈 .

On a call to CredGen or Response via one of Register(𝑈 , ·),
Register𝑏 (𝑈 , ·), Action𝑏 (𝑈 , ·), or Action(𝑈 , ·), this map is

consulted before sampling to ensure that responses are con-

sistent.

This game can be viewed as the terminal game in a sequence of hy-

brid gamesH𝑖 , whereH0 = G1 andH𝑖 incorporates these changes

for users 1 through 𝑖 . At each step, the increase in advantage is

bounded by the sgPRF security of KDF; hence,

AdvG1gCBR,A (_) ≤ 𝑛user · Adv
sgPRF

KDF,B1 (_) + Adv
G2
gCBR,A (_)

Game 3. This game is identical to Game 2 except that the game

aborts, with a random bit being returned, if there is some (𝑈 , 𝑖)
for which (𝜋𝑖

𝑈
.peerid, 𝜋𝑖

𝑈
.selfid, 𝜋𝑖

𝑈
.sid.rcid) does not correspond

to some call to ORegister for either

• 𝑈 , if𝑈 ∉
{
𝑈0,𝑈1,𝑈

∗
0
,𝑈 ∗

1

}
;

• 𝑈 ,𝑈 ∗
0
, or𝑈 ∗

1
, if𝑈 ∈ {𝑈0,𝑈1}; or

• 𝑈 ,𝑈0, or𝑈1, if𝑈 ∈
{
𝑈 ∗
0
,𝑈 ∗

1

}
.

That is, 𝜋𝑖
𝑈
.sid.rcid must have been returned by a call to ORegister

which registered𝑈 (or another other user in the special cases) at

the server with identifier 𝜋𝑖
𝑈
.peerid under the username 𝜋𝑖

𝑈
.selfid.

We claim that the abort condition only occurs if A has forged a

MAC tag. Consider an adversary B2 for the SUF-CMA security of Σ.
This adversary acts as the challenger for Game 3, randomly choos-

ing some call to either Register or UserComplete which samples

a fresh MAC key mk. Instead of using the fresh key, B2 answers

the query, and subsequent queries using the same 𝐸-value, using

itsMAC and Verify oracles. If the abort condition is triggered for

(𝑈 , 𝑖), B2 submits (𝐸,H(𝜋𝑖
𝑈
.peerid)), ` to its SUF-CMA challenger,

where (𝐸, `) = 𝜋𝑖
𝑈
.sid.rcid. Since the session identifier was set,

the tag ` must have verified on (𝐸,H(𝜋𝑖
𝑈
.peerid)); hence, if B2

chooses the correct call to Register or UserComplete in which to

insert its MAC oracle, this will be a valid tag for the key used in the

SUF-CMA game. Since the MAC oracle is used only in registration,

and 𝐸-values for registrations do not collide, the MAC oracle is

queried at most once; the abort condition ensures that it was not

queried on the message-tag pair submitted by B2. It follows that
B2 wins its game whenever the abort condition is triggered and

it guesses the correct call to Register or UserComplete. It follows
that

AdvG2gCBR,A (_) ≤ (𝑛Register + 𝑛Action) · Adv
SUF-CMA

Σ,B2 (_)

+ AdvG3gCBR,A (_) .

The adversary’s advantage in Game 3 is already 0, as we will

show. The rest of the proof is devoted to showing that the behaviour

of oracle calls for 𝑈0 (and 𝑈1) is independent of the behaviour

of oracle calls for 𝑈 ∗
𝑏
(and 𝑈 ∗

1−𝑏), despite their shared state. Our

goal is to eventually partition the shared state such that the non-

starred user only accesses values in one partition and the starred

user only access values in the other. At that point, we can provide

the starred users with fresh state variables, making them truly

indistinguishable. The following games achieve this with some

careful bookkeeping around the adversary’s failure conditions.

Game 4. This game is identical to Game 3 except that the game

additionally aborts if there is some 𝑖 such that the tuple of identifiers

(𝜋𝑖
𝑈 ∗
0

.peerid, 𝜋𝑖
𝑈 ∗
0

.selfid, 𝜋𝑖
𝑈 ∗
0

.sid.rcid) does not correspond to some

call to ORegister for𝑈 ∗
0
.

We claim that this abort condition is never triggered. By the

abort condition from the previous game, this can only occur if the

tuple (𝜋𝑖
𝑈 ∗
0

.peerid, 𝜋𝑖
𝑈 ∗
0

.selfid, 𝜋𝑖
𝑈 ∗
0

.sid.rcid) corresponds to a call to

ORegister for either 𝑈0 or 𝑈1; without loss of generality, say 𝑈0.

It follows that (𝑈0, 𝑆, 𝜋𝑈 ∗
0

.selfid) ∈ LRegister, where 𝑆 is the server

identified by 𝜋𝑖
𝑈 ∗
0

.peerid. Since servers do not register the same

username to different accounts, it follows that (𝑈 ∗
0
, 𝑆, 𝜋𝑈 ∗

0

.selfid) ∉
LRegister. It follows that the failing condition on line 3 of CheckFail
is triggered, which contradicts our assumption that A never trig-

gers a failing condition. Therefore

AdvG3gCBR,A (_) = AdvG4gCBR,A (_).

Game 5. This game is identical to Game 4 except that the game

additionally aborts if there is some 𝑖 such that either

• (𝜋𝑖
𝑈 ∗
1

.peerid, 𝜋𝑖
𝑈 ∗
1

.selfid, 𝜋𝑖
𝑈 ∗
1

.sid.rcid) does not correspond to
some call to ORegister for𝑈 ∗

1
,

• (𝜋𝑖
𝑈0

.peerid, 𝜋𝑖
𝑈0

.selfid, 𝜋𝑖
𝑈0

.sid.rcid) does not correspond to

some call to ORegister for𝑈0, or

• (𝜋𝑖
𝑈1

.peerid, 𝜋𝑖
𝑈1

.selfid, 𝜋𝑖
𝑈1

.sid.rcid) does not correspond to

some call to ORegister for𝑈1.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Douglas Stebila and Spencer Wilson

A similar argument to the one given for the previous game shows

that these abort conditions are never met, giving

AdvG4gCBR,A (_) = AdvG5gCBR,A (_).

Since abort conditions from Games 3, 4, and 5 are triggered based

on public information, we may assume thatA never makes a query

that would trigger one of them; whenA would make such a query,

it simply returns a random bit.

Game 6. This game is identical to Game 5, except that the user

ID st𝑈 .uid is no longer updated or accessed. Instead, the proto-

col action UserBegin(𝜋𝑖
𝑈
, uid, serverID, st𝑈) rejects if (𝑈 , 𝑆, uid) ∉

LRegister, where 𝑆 is the server with identifier serverID. The previ-
ous abort condition ensures that there is no difference in behaviour

from Game 5, so

AdvG5gCBR,A (_) = AdvG6gCBR,A (_).

Game 7. This game is identical to Game 6 except for the follow-

ing changes:

• Data stored in long-term state in calls to ORegister(𝑈0, ·),
Register𝑏 (𝑈0, ·), Action(𝑈0, ·), or Action𝑏 (𝑈0, ·) is flagged.
• The game aborts if a call toORegister(𝑈 ∗

0
, ·),Register𝑏 (𝑈 ∗0 , ·),

Action(𝑈 ∗
0
, ·), or Action𝑏 (𝑈 ∗0 , ·) accesses flagged data.

• The game aborts if a call toORegister(𝑈0, ·), Register𝑏 (𝑈0, ·),
Action(𝑈0, ·), or Action𝑏 (𝑈0, ·) accesses non-flagged data.

We claim that these abort conditions are never triggered. Long-

term state st𝑈 contains two types of data:

• a mapping 𝐸 ↦→ (𝑝,mk) for values of 𝐸 which are either

generated in Register or queried to UserComplete for𝑈 ,

• a mapping serverID ↦→ {nc}, the set of nc-values previously
issued for serverID.

We begin by showing that access of flagged data for𝑈 ∗
0
never occurs.

Both mappings are accessed only in UserComplete.
If 𝐸 is provided as input to UserComplete for 𝑈 ∗

0
, then by the

previous abort conditions, it must have been generated in some call

to ORegister for 𝑈 ∗
0
. Since 𝐸-values do not collide at registration,

it cannot have been generated in some call to ORegister for 𝑈0.

Hence, it also cannot have been queried to UserComplete for 𝑈0.

Therefore 𝐸 is not flagged. similarly, if st𝑈 .nc[serverID] is looked
up inUserComplete for𝑈 ∗

0
, then𝑈 ∗

0
must be registered at the server

with identifier serverID. Since 𝑈 ∗
0
and 𝑈0 are never registered at

the same server, this value also cannot be flagged.

An identical argument shows that𝑈0 never accesses non-flagged

data. Therefore

AdvG6gCBR,A (_) = AdvG7gCBR,A (_).

Game 8. This game is identical to Game 7 except for the follow-

ing changes:

• Data stored in long-term state in calls to ORegister(𝑈1, ·),
Register𝑏 (𝑈1, ·),Action(𝑈1, ·), orAction(𝑈1, ·) is also flagged.
• The game aborts if a call toORegister(𝑈 ∗

𝑑
, ·),Register𝑏 (𝑈 ∗𝑑 , ·),

Action(𝑈 ∗
𝑑
, ·), or Action(𝑈 ∗

𝑑
, ·) for 𝑑 ∈ {0, 1} accesses flagged

data.

• The game aborts if a call toORegister(𝑈𝑑 , ·),Register𝑏 (𝑈𝑑 , ·),
Action(𝑈𝑑 , ·), or Action(𝑈𝑑 , ·) for 𝑑 ∈ {0, 1} accesses non-
flagged data.

A similar argument to the previous game shows that

AdvG7gCBR,A (_) = AdvG8gCBR,A (_).

Game 9. This game is identical to Game 8 except that fresh

long-term state variables are used for 𝑈 ∗
0
and 𝑈 ∗

1
instead of st𝑈𝑏

and st𝑈1−𝑏 . Since only flagged data are stored in st𝑈𝑏
and st𝑈1−𝑏

and only non-flagged data is stored in st𝑈 ∗
0

and st𝑈 ∗
1

, there is no

detectable difference between Games 8 and Games 9. Therefore

AdvG8gCBR,A (_) = AdvG9gCBR,A (_).

Moreover, the behaviour of ORegister𝑏 and Action𝑏 is independent

of the value of 𝑏, so

AdvG9gCBR,A (_) = 0.

The desired security statement follows from combining these

bounds. □

E PROOF OF THEOREM 5.4
Proof of Theorem 5.4. As in Theorem 5.3, it suffices to bound

the advantage of an adversary which never triggers the failing

conditions. We proceed by a sequence of games.

Game 0. This game is identical to the original security experi-

ment ExpULpqCBR,A , so

AdvULpqCBR,A (_) = AdvG0pqCBR,A (_) .

Game 1. This game is identical to Game 0 except for the follow-

ing changes:

• Users do not generate or store Π keypairs.

• All calls to Π.Encaps are replaced by randomly sampling a

ciphertext 𝑐 and a key 𝑘 from the message space and key

space of Π, respectively. A mapping 𝑐 ↦→ 𝑘 is maintained in

the long-term state from which the public key would have

been retrieved.

• All calls to Π.Decaps are replaced by first looking up the

provided 𝑐-value in the mapping in the long-term state from

which the private key would have been retrieved. If no match

is found, a random key 𝑘 is sampled and returned, and the

value (𝑐, 𝑘) is stored in the list.

This game can be viewed as the final game in a sequence of hybrid

games H𝑖 , with H0 and in which H𝑖 uses its oracles to answer

encapsulation and decapsulation queries for public key 𝑖 . The loss

of advantage at each step is bounded by the KEM-UL security of Π.
Thus

AdvG0pqCBR,A (_) ≤ 𝑛user · Adv
KEM-UL

Π,B0 (_) + AdvG1pqCBR,A (_) .

Game 2. This game is identical to Game 1 except for the follow-

ing changes:

• All calls to 𝜏 ← PRF(𝑘, aux) where 𝑘 was freshly sampled

for a “ciphertext” 𝑐 are replaced by sampling 𝜏 at random. A

mapping (𝑐, aux) ↦→ 𝜏 is maintained in long-term state, as

in the previous game.

• All calls to 𝜏 ← PRF(𝑘, aux) where 𝑘 was retrieved from

long-term state for a “ciphertext” 𝑐 are replaced by

– looking up the value of 𝜏 , if (𝑐, aux) ↦→ 𝜏 is in long-term

state, or

Quantum-Safe Account Recovery for WebAuthn ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

– randomly sampling 𝜏 and updating the mapping other-

wise.

This game can be viewed as the final game in a sequence of hy-

brid gamesH ′
𝑖
, withH ′

0
= G1 and in which calls to PRF(𝑘, ·) are

successively replaced by random sampling. The loss of advantage

at each step is bounded by Advprf
PRF,B𝑖 (_), where B𝑖 uses its PRF

oracle to answer queries for the 𝑖th sample of 𝑘 . Since the number

of samples of 𝑘 is bounded by 𝑛𝑂 , it follows that

AdvG1pqCBR,A (_) ≤ 𝑛𝑂 · Adv
prf

PRF,B1 (_) + Adv
G2
pqCBR,A (_),

where B1 is the most successful of the adversaries B𝑖 .
Game 3. This game is identical to Game 2 except that the game

aborts if two samples of 𝜏 collide. Since PRF outputs binary strings

of length at least _, it follows by a similar argument to the proof of

Theorem 5.1 that

AdvG2pqCBR,A (_) ≤
(
𝑛𝑂

2

)
· 2−_ + AdvG3pqCBR,A (_).

Game 4. This game is identical to Game 3 except for the follow-

ing changes:

• All calls to Δ.BlindPK(pkΔ, 𝜏) or Δ.Sign(skΔ, 𝜏, ·) where 𝜏
was freshly sampled for (𝑐, aux) are replaced by calling the

Δ.KeyGen routine and using the resulting fresh keypair to

perform the operation. A mapping (𝑐, aux) ↦→ (pkΔ, skΔ) is
maintained in long-term state, as in the previous game.

• All calls to Δ.BlindPK(pkΔ, 𝜏) or Δ.Sign(skΔ, 𝜏, ·) where 𝜏
was retrieved from long-term state for (𝑐, aux) are replaced
by looking up the corresponding Δ-keypair and using that

keypair to perform the operation.

This game can be viewed as the final game in a sequence of hy-

brid games H 𝑗
𝑖
, with H0 = G3 and where H 𝑗

𝑖
replaces the Δ-

keypair used to perform operations for the 𝑖th user’s 𝑗th 𝜏-value

with a freshly sampled keypair. The loss of advantage at each step is

bounded by AdvUL-CMEA

B,D 𝑗

𝑖

(_), where B 𝑗
𝑖
uses its BlindPK and Sign

oracles to answer queries for the 𝑖th user, issuing its challenge for

the 𝑗th 𝜏-value. Since the total number of Δ-operations is bounded
by 𝑛𝑂 , it follows that

AdvG3pqCBR,A (_) ≤ 𝑛𝑂 · Adv
UL-CMEA

Δ,B2 (_) + AdvG4pqCBR,A (_),

where B2 is the most successful of the adversaries B 𝑗
𝑖
.

As in the proof of Theorem 5.3, the adversary’s advantage at this

point is already 0. We proceed in a similar fashion, partitioning the

starred and non-starred users’ shared state so that we can eventually

provide the starred users with fresh state variables.

Game 5. This game is identical to Game 4, except that the user

ID st𝑈 .uid is no longer updated or accessed. Instead, the proto-

col action UserBegin(𝜋𝑖
𝑈
, uid, serverID, st𝑈) rejects if (𝑈 , 𝑆, uid) ∉

LRegister, where 𝑆 is the server with identifier serverID.
For users other than𝑈𝑑 or𝑈 ∗

𝑑
for𝑑 ∈ {0, 1}, there is no difference

in behaviour. Note, however, that UserBegin for𝑈0 will accept on

a username-server identifier pair which corresponds to an account

for 𝑈 ∗
0
(similarly for 𝑈1, 𝑈

∗
0
, and 𝑈 ∗

1
). This would result in the fail

bit being set to 1, however. Hence, no such query to UserBegin is

made, and there is no detectable difference in behaviour. Then

AdvG4pqCBR,A (_) = AdvG5pqCBR,A (_) .

Game 6. This game is identical to Game 5 except for the follow-

ing changes:

• Data stored in long-term state in calls to ORegister(𝑈0, ·),
Register𝑏 (𝑈0, ·), Action(𝑈0, ·), or Action(𝑈0, ·) is flagged.
• The game aborts if a call toORegister(𝑈 ∗

0
, ·),Register𝑏 (𝑈 ∗0 , ·),

Action(𝑈 ∗
0
, ·), or Action(𝑈 ∗

0
, ·) accesses flagged data.

• The game aborts if a call toORegister(𝑈0, ·), Register𝑏 (𝑈0, ·),
Action(𝑈0, ·), or Action(𝑈0, ·) accesses non-flagged data.

We claim that these abort conditions are never triggered. Long-

term state st𝑈 contains two types of data:

• a mapping (𝑐, aux) ↦→ (pkΔ, skΔ) for values of 𝑐 generated
in Register or queried to UserComplete for𝑈 ,

• a mapping aux ↦→ {nc}, the set of nc-values previously

issued for serverID.
We begin by showing that access of flagged data for𝑈 ∗

0
never occurs.

Both mappings are accessed only in UserComplete.
If (𝑐, aux) is looked up in the mapping in UserComplete for 𝑈 ∗

0
,

then aux = (serverID, uid), where 𝑈 ∗
0
is registered at the server

with identifier serverID under the username uid. Since𝑈0 and𝑈
∗
0

are never registered at the same server under the same username,

(𝑐, aux) must not be flagged in the first mapping. Similarly, aux
cannot be flagged in the second mapping.

An identical argument shows that𝑈0 never accesses non-flagged

data. Therefore

AdvG5pqCBR,A (_) = AdvG6pqCBR,A (_) .

Game 7. This game is identical to Game 6 except for the follow-

ing changes:

• Data stored in long-term state in calls to ORegister(𝑈1, ·),
Register𝑏 (𝑈1, ·),Action(𝑈1, ·), orAction(𝑈1, ·) is also flagged.
• The game aborts if a call toORegister(𝑈 ∗

𝑑
, ·),Register𝑏 (𝑈 ∗𝑑 , ·),

Action(𝑈 ∗
𝑑
, ·), or Action(𝑈 ∗

𝑑
, ·) for 𝑑 ∈ {0, 1} accesses flagged

data.

• The game aborts if a call toORegister(𝑈𝑑 , ·),Register𝑏 (𝑈𝑑 , ·),
Action(𝑈𝑑 , ·), or Action(𝑈𝑑 , ·) for 𝑑 ∈ {0, 1} accesses non-
flagged data.

A similar argument to the previous game shows that

AdvG6pqCBR,A (_) = AdvG7pqCBR,A (_) .

Game 8. This game is identical to Game 8 except that fresh

long-term state variables are used for 𝑈 ∗
0
and 𝑈 ∗

1
instead of st𝑈𝑏

and st𝑈1−𝑏 . Since only flagged data are stored in st𝑈𝑏
and st𝑈1−𝑏

and only non-flagged data is stored in st𝑈 ∗
0

and st𝑈 ∗
1

, there is no

detectable difference between Games 8 and Games 9. Therefore

AdvG7pqCBR,A (_) = AdvG8pqCBR,A (_) .

Moreover, the behaviour of ORegister𝑏 and Action𝑏 is independent

of the value of 𝑏, so

AdvG8pqCBR,A (_) = 0.

The desired security statement follows from combining these

bounds. □

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Related Work

	2 Preliminaries
	2.1 Novel PRF Security Properties
	2.2 Novel KEM Security Properties
	2.3 Key-Blinding Signature Scheme
	2.4 Asynchronous Remote Key Generation

	3 Protocol Model
	3.1 Problems with the ARKG model
	3.2 Credential-based Recovery

	4 Group-Based and Quantum-Safe Protocols
	4.1 Protocol Descriptions
	4.2 Weaknesses in Yubico's Protocol

	5 Security Analysis
	5.1 Recovery Authentication
	5.2 Unlinkability

	6 Instantiation
	6.1 Pseudorandom Function
	6.2 Key Encapsulation Mechanism

	7 Evaluation
	7.1 Stronger Security Notions
	7.2 Limitations
	7.3 Future Work

	Acknowledgments
	References
	A Proof of Theorem 6.2
	B Proof of Theorem 5.1
	C Proof of Theorem 5.2
	D Proof of Theorem 5.3
	E Proof of Theorem 5.4

