AGILE, POST-QUANTUM SECURE CRYPTOGRAPHY IN AVIONICS

Karolin Varnertt, Wanja Zaeske**, Sven Friedrich*, Aaron Kaiser!, Alice Bowman*

* German Aerospace Center (DLR), Institute of Flight Systems, Department Safety Critical Systems & Systems
Engineering, Lilienthalplatz 7, Braunschweig, Germany
T Max Planck Institute for Security and Privacy, Universitatsstrae 140 44799 Bochum
! Rosenpass e. V. Postfach 3212, 30032 Hannover

Abstract

To introduce a post-quantum-secure encryption scheme specifically for use in flight-computers, we used avionics’
module-isolation methods to wrap a recent encryption standard (HPKE — Hybrid Public Key Encryption) within a
software partition. This solution proposes an upgrade to HPKE, using quantum-resistant ciphers (Kyber/ML-KEM
and Dilithium/ML-DSA) redundantly alongside well-established ciphers, to achieve post-quantum security.

Because cryptographic technology can suddenly become obsolete as attacks become more sophisticated, “crypto-
agility” -— the ability to swiftly replace ciphers — represents the key challenge to deployment of software like
ours. Partitioning is a crucial method for establishing such agility, as it enables the replacement of compromised
software without affecting software on other partitions, greatly simplifying the certification process necessary in
an avionics environment.

Our performance measurements (section 5) constitute initial evidence that both the memory and performance
characteristics of this approach are suitable for deployment in flight-computers currently in use. Prior to
optimisation, performance measurements show a modest memory requirement of under 400 KB of RAM, but
employ a more substantial stack usage of just under 200 KB. Our most advanced redundant post-quantum
cipher is five times slower than its non-redundant, pre-quantum counterpart.

Keywords
Avionics; Crypto-Agility; Post-Quantum Cryptography; Robust Combiners; HPKE; Kyber; Dilithium

1. INTRODUCTION ineffective security scan may allow a bad actor to board

Both airlocks and aircraft communication systems re-
quire careful maintenance. However, whilst a broken
airlock may be easily located in the course of a vi-
sual inspection, a broken security system for aircraft
communications will appear no different to an intact
one. Although the creation of either system requires
years of work from dedicated engineers to evaluate,
test, assess, and optimise each constituent part, the
fruit of that labour looks rather different. In place of
a material construction of plastic and aluminium, we
find ourselves presented with an abstract construction
of information theory: mathematical consideration pre-
sented in code.

Given the intangible nature of such communications
security systems, it is perhaps unsurprising that their
state-of-the-art manifestations are conspicuously ab-
sent from the broader effort to ensure the safety of
aircraft. Whereas the principles justifying the safety of
an airlock are bound by consistent laws of physics, the
threats posed by malicious software attacks remain
amorphous in their nature.

Irrespective of their ever-changing form, threats to se-
curity remain severe in both outcome and scope. An

a plane with a weapon, for example. An attack on Air-
craft Communications Addressing and Reporting Sys-
tem (ACARS), potentially from a hostile nation state,
could guide two aircraft into a collision. Breaking that
critical connection between ground control and pilot,
and especially inserting an undiscovered participant in
the middle of said connection, could allow for unspeak-
able tragedies should aeroplane pilots find themselves
unable to co-ordinate with neither the ground nor one
another.

A successful Denial of Service attack on communica-
tions systems could, in extreme cases, ground a signif-
icant amount of air traffic, causing economic wreckage
whilst undermining public trust in avionics as a whole.
Both aircraft voice radios and ACARS are both unen-
crypted and unauthenticated, despite the ready avail-
ability of the technologies developed by cryptographers
to secure them.

High public trust in avionics, and aviation in general, is
the result of of this sector’s insistence on developing
and improving the safety of its planes. Nonetheless, de-
spite the availability of encryption, only a small amount
of communication in avionics employs cryptography.

For example, Smith, Moser, Strohmeier, Lenders, and
Martinovic claim that 99% of ACARS data traffic is
sent in plain text [1], Schafer, Lenders, and Martinovic
elaborate on the widely used Automatic Dependent
Surveillance - Broadcast (ADS-B) which employs no

cryptography [2].

If we are to prevent the disastrous scenarios described
above, all aircraft communication should be encrypted.
We propose, that the most effective approach to achiev-
ing this is by fostering closer collaboration between
researchers in avionics and cryptographers. Moreover,
the techniques studied in cryptography are well-suited
for application to avionics’ unique challenges, such
as guarding redundant flight computers against even
extreme error cases.

There is good reason for the approach to the develop-
ment of avionic protocols to be one of conservative and
considered development. Very few technologies em-
ployed in avionics are subject to rapid obsolescence,
and many solutions of yesteryear work just as well as
ever. The scientific challenges faced by avionics engi-
neers are less capricious than that of the ever-evolving
threat environment faced by cryptographers, and tend
towards being solved reliably rather than absolutely,
with risk being managed as a percentage, rather than a
binary. The absolute security often favoured by cryptog-
raphers would see an encrypted message discarded
entirely, rather than see it accepted with minimal errors
such as bit flips.

When offered the choice between availability and
integrity, cryptographers will almost always choose
integrity. This is because they model the world as a
relationship between honest parties and attackers,
with technological constraints, random errors, and
bit flips conceptually belonging to this attacker and
to be thwarted in the same way as any other attack.
In encryption, this is realised by discarding any
messages containing errors, a sensible approach
when the message is a communication with a website
that can be easily re-transmitted. Of course, it lends
to more undesirable outcomes if, for example, the
data being transmitted is part of pilot-to-tower radio
communication during an emergency landing.

The deployment of cryptography within avionics poses
an additional challenge: development cycles in avion-
ics are slow, and thus upcoming standards must fore-
see and address the needs of avionics systems forty
years ahead, not only those of today. Quantum com-
puters, however, are threatening today’s cryptosystems
and, while cryptographers have been working hard to
establish cryptosystems to counter this threat, those
systems have only recently become standardised. Any
cryptography standard within avionics, in pursuit of
both reliability and safety, must maintain the tried-and-
true techniques of classical, that is “pre-quantum”, cryp-
tography. Fortunately, with this issue having arisen in
many fields, the well-researched techniques of hybrid

cryptography (redundant cryptosystems) and crypto-
agility (methods to quickly migrate between crypto-
graphic techniques) are readily applicable.

Cryptographic systems are a sequence of choices,
usually ones made under the assumption that the data
transmitted is so benign that a loss of connectivity is
inconsequential. In most applications, that assumption
is a sound one. Readdressing that balance, between
availability and integrity, is made more complex by the
catastrophic nature of any cryptographic failure.. Find-
ing the right compromise requires careful collaboration
between domain experts, who understand the needs
of their environment, and cryptographers, who can
communicate the implications of said compromise.

1.1. How to read this paper

This paper is split into editorial, background, and novel
results sections. The most concise version of our re-
sults is to be found in Our Contribution and Conclu-
sion.

As this work is the synthesis of contributions by avionics
researchers and cryptographers, this paper attempts
to ensure the results are accessible to researchers
from both disciplines by providing an extended section
for background information: “Avionics & Cryptogra-
phy” provides an overview of the techniques used in
both fields. Readers familiar with cryptography might
want to read subsections “Avionics Software Engineer-
ing” and “Comparing Avionics and Cryptography” only;
readers familiar with avionics but not cryptography may
skip those sections entirely.

Both the Introduction and Conclusion are written in an
editorial style, to include readers who would like to take
a broader, hollistic view on the subject.

“Our Contribution” provides an overview of the novel
results in this paper. Post-quantum security for HPKE
discusses the cryptographic aspect of our work in-
depth, and Integrating HPKE in an ARINC 653 partition
does the same for the avionics-engineering component.
In the section Evaluation: Performance and Memory
Overhead, we analyse the efficiency and performance
characteristics of our solution.

2. AVIONICS & CRYPTOGRAPHY

2.1. Avionics Software Engineering

Beginning in the 70’s, and following into the modern
day, ever increasing numbers of aircraft functions are,
at least partially, software-defined. As a response to
the growing risks posed by software failures, disparate
software safety regulations were standardised within

"There are cases of cryptographic constructions where even
seemingly minimal leakage of information can present as an open
door for attackers to fully recover the most important secret informa-
tion

the DO-178 in 1981. lts newest iteration takes a holis-
tic approach to the software lifecycle, including the
planning, development, and integral [3] processes.

Aviation agencies across the globe certify the safety,
and therefore air worthiness, of avionics software ac-
cording to the objectives set out in this standard. It is
able to distinguish between safety-critical components
and less important ones, evaluating the severity of their
fail-cases and centrality to the craft itself.

Integral to DO-178C'’s ability to separate software con-
cerns is its concept, and implementation, of partitioning.
That is, to break software into well-isolated pieces that
are easy to contain in the event of failure. As long as
a fault in one partition is contained to said partition, its
neighbouring software components are able to func-
tion as normal, despite running on the same hardware.
This achieves numerous safety goals, including the
concession to human frailty that, even with the most
rigorous testing available, software components may
contain uncaught flaws.

Another benefit of the partitioning concept lies within
the broader, and often onerous, certification process.
Firstly, by assigning varying safety levels to separate
partitions, less essential components can be subjected
to less rigorous testing [3], lowering the barriers to the
development of such inessential software [3, ch. 2.4.1].
Secondly, and crucially to this paper, a software com-
ponent can be designated, via the issue of a reusable
software component acceptance letter [4], practically
a “plug and play” component, thereby reducing the bur-
den of certification to its integration within a specific
system.

To facilitate a common platform, ARINC 653 describes
an Application Programming Interfaces (API) for parti-
tioning avionic hypervisors [5]. Many implementations
of this API exist, allowing for software to be written
independently of a specific hypervisor. However, AR-
INC 653 provisions for some degree of freedom in the
API. We developed a653rs 2, a Rust port of the AR-
INC 653 API that further exacts these. To enable fast
prototyping, we further developed a653rs-linux which
provides an ARINC 653 like environment on top of any
recent Linux based operating system [6].

2.2. Certification in Avionics

While DO-178C'’s objectives and guidelines are more
concerned with the broader development of avionics
software, DO-297 focuses said software’s integration
into the aircraft themselves. Modularity is a key prop-
erty in managing the complexity of building aircraft,
with the predominant design philosophy embracing In-
tegrated Module Avionics (IMA), a modular approach
towards avionics. However, a system integrating many
modules depends on the correct interactions between
said modules to function properly. Both the individual

2https://github.com/DLR-FT/a653rs
Shttps://github.com/DLR-FT/a653rs-linux

behaviour of modules, as well as their interplay, must
be accounted for.

To better separate the scope of various elements in the
system composition, we shall outline some terminology
below that allows us to be more specific regarding the
processes necessary for acceptance and certification.

Aircraft Function A capability that is pro-
vided by hardware and/or software on an
aircraft. For example flight control, autopi-
lot, fuel management, flight instruments
etc.

Application “Software and/or application-
specific hardware with a defined set of inter-
faces that, when integrated with a platform,
performs a function” [4]

Component “A self-contained hardware
part, software part, database, or combina-
tion thereof that is configuration controlled.
A component does not provide an aircraft
function by itself” [4]

Module One or multiple components
(hardware and/or software) that provide
resources to the IMA-hosted applications.

[4]

The actual certification process for an aircraft involves
four consecutive steps:

1) Module acceptance

2) Application acceptance
3) System acceptance

4) Aircraft integration

Two additional steps describe iteration on modules and
applications:

1) Change of modules or applications
2) Reuse of modules or applications

[4]

The first two steps (module and application accep-
tance) are focused more on individual elements in the
system. The concept of Reusable Software Compo-
nents (RSCs), introduced in AC 20-148, enables some
certification credit to be reused [7]. While limited to
software, this enables cost savings upon certification
when employing a proven software component into a
new type of aircraft. As RSC are not viable for the
system acceptance and aircraft integration tasks, the
certifiably correct integration of a RSC into the sys-
tem/aircraft context still remains open for future aircraft
type certifications.

https://github.com/DLR-FT/a653rs
https://github.com/DLR-FT/a653rs-linux

2.3. Cryptography

Cryptography, at its core, is the study of methods to
secure communications and information processing
operations using mathematics. Possession of a piece
of information, is the difference between a successful
attack and business as usual. The classic application
of cryptography is in encryption: securing a message
against modification, forgery, and surveillance.

While many think only of encryption when they hear
“cryptography”, encryption is but one tool in a cryptogra-
phers’ toolkit. Cryptography is also the study of essen-
tial techniques such as: performing computations on
secret data[8], mathematically certifying bureaucratic
processes[9], and introducing redundancy to computa-
tions to secure them against faults and tampering[10].

Often, the functional goal of the problem under study is
trivial: transmitting a message is not hard, one simply
hands it to the recipient. Counting a vote or calculating
statistics also do not present as difficult problems, at
least mathematically speaking: the methods used may
be intricate, but they have long since been examined
and are considered solved problems.

Cryptographers instead focus on the attempt to con-
struct systems in which cheating, sabotage, and ma-
nipulation are impossible. In a secure voting system,
voters would collaborate to count the vote to ensure
a correct outcome, unless too many devices are com-
promised. In a secure joint scientific study, multiple
parties could use cryptography to calculate the aggre-
gate results, without having to disclose their own data
individually.

By modelling problems encountered in the real world
using mathematical terms, cryptographers seek to cre-
ate an appropriate, probabilistic definition of security,
develop new ciphers, and use mathematical proofs to
certify the security of their systems.

Practical cryptographers then work to apply these math-
ematical findings to real-world systems. They are
tasked with connecting abstract and simplified models,
combining the complexity of hardware with the psycho-
logical, sociological, and legal mechanisms governing
human behaviour.

Whereas a mathematical cryptographer may define
a model in which some information — a key — is kept
secret, practical cryptographers are tasked with de-
termining whether the system actually keeps that key
secret in real-world use.

Human ingenuity makes metal fly, and that same cre-
ative ingenuity is put to task subverting security sys-
tems. Over the decades, security analysts have found
various forms of information leakage, resembling the
sorts of stories typically found in a spy thriller: bags of
potato chips used as makeshift microphones[11], fin-
gerprints recreated from photographs, electrical traces
on a circuit board turned into antennas[12], and the
fluctuations of a computer’s power light used to extract
cryptographic keys[13].

Engaging in this arms race requires both a full-system
perspective and a cross-discipline approach. The sys-
tems deployed must be well understood, especially
their interactions, under even the most unlikely of cir-
cumstances. If a modulating power light can give away
a secret key, one cannot confine oneself to the study
of just the key alone. The perspective of experts in a
broad range of fields is necessary to keep the poten-
tial security implications of one, quietly blinking, LED
power light in mind.

It should be no surprise that open standards, open sci-
ence, open implementations, and open communication
form the most important tools in a discipline focused
on preserving secrets:

Cryptography is concerned with the creation of sys-
tems that remain secure, even in the presence of the
most well-informed, sophisticated, malicious attacker
possible. Cooperation, collaboration, and openness
are central to cryptography, because we need all the
help we can get to beat the most powerful attackers.

2.4. The basics of encryption

While the basic components of classical, i.e. pre-
quantum, encryption have not changed much in the
previous decades, the systems built from these com-
ponents have evolved drastically. Many of these im-
provements focused on improving usability, allowing
relatively inexperienced developers to deploy secure
cryptography within their applications.

Fundamentally, what is expected from encryption is
relatively clear. Interception of an encrypted message
should not reveal its content or allow an attacker to
modify the message (confidentiality and integrity). An
attacker should not be able to send a message in the
name of another (authenticity), and neither should an
attacker be able to prevent transmission of the mes-
sage in the first place (availability). Availability proves
hard to guarantee: There is no beating an attacker
trying to jam your signal if they have the bigger an-
tenna, so availability often takes a back seat to the
other properties.

Engineering a system to achieve these goals in a par-
ticular environment is much harder as understanding
which requirements to focus on demands a good un-
derstanding of the particular field. Cryptography is
not just a mathematical and technical discipline; on a
philosophical level, cryptographers have to determine
what constitutes security as a concept. This process is
often driven by researchers analysing attacks against a
system, and then working backwards to create the ap-
propriate security concepts that integrate the realities
of deployment.

In this section, we explore the questions in need of an-
swers before one can begin to develop an encryption
system. What type of communication should be sup-
ported? How many parties are participating? Are these
parties exchanging messages in a live session like a
chat or a conversation, or is the communication akin

to letters being exchanged? How safety-critical are the
messages? Is it more important not to lose messages,
or is it more important to prevent tampering?

Different types of requirements to inquire about before
engineering a cryptographic system.

« Interactive or Non-interactive?

- One-way or Bidirectional?

« One-to-one, One-to-many, or Many-to-many?

« Integrity or Availability focused?

« In sequence or Any Order?

 Authenticated or Arbitrary sender?

- Should it be possible to audit the communication
later?

« Is Anonymity required?

Other questions have been decisively answered by
past cryptographic research. Unfortunately, new sys-
tems making inadvisable choices are still commonly
being deployed. Whenever a new encryption system
is specified, the consortium should be aware of what
needs to be done to achieve practical security. The
following sections discuss some of these needs.

Even in settings where availability is more important
than integrity, some form of integrity protection should
be used. Some standards, such as the Project 25
radio standard[14], forgo integrity protection entirely,
rendering protocols vulnerable to a broad range of at-
tacks. Ciphers that strike a better balance between
integrity protection and availability are currently in de-
velopment[15].

Cryptographic systems generally feature a nonce, a
number used once, to ensure that exactly the same
message is never transmitted twice. Even if the plain-
text is the same, the nonce will be different. Nonces
are often transmitted as part of the ciphertext, adding
a few bytes of overhead. It can be tempting to try
and improve the efficiency of a cipher by shortening
the nonce, limiting the number of messages that can
be supported. Unless done with exceptional caution,
this is unsafe. The security of the underlying cipher
has a hard requirement on no key/nonce combination
ever being used twice and there are statistical effects,
such as the birthday problem[16], that complicate the
situation. Especially when symmetric keys are used
over a long period of time or by multiple computers,
a nonce of at least twenty-four bytes should be used.
AES-GCM[17], one of the most commonly used ci-
phers, only supports a twelve-byte nonce and a 64GiB
message size. It can be used securely, but meeting
engineering requirements presents its own challenge.

This is partially why asymmetric cryptography should
be used, whereby new symmetric keys are generated
for every interaction. This type of encryption separates
the keys into public keys and private keys; public keys
can be used to encrypt messages and validate signa-
tures, private keys can be used to decrypt messages

and generate signatures. Consider Alice, a journal-
ist, trying to allow a room full of potential sources to
contact her in secret. With symmetric cryptography,
each potential source would have to write a key into
an envelope and pass it to Alice whilst making sure,
in the process, that nobody can observe them writing
down their key. With public key cryptography, Alice can
simply write her key on a sign. Most modern encryption
technologies rely on asymmetric cryptography as sim-
plifying the key distribution process saves a massive
amount of money when compared with the additional
computational cost.

The ciphers used should be post-quantum secure, i.e.
they should be resistant to cryptographic attacks from
quantum computers.

There are also specific attacks that need to be guarded
against, such as side-channel attacks, the aforemen-
tioned information leakage. The established standard
is that systems should, at the very least, not leak any
information as a result of timing behaviour.

Finally, the deployment must provide cryptographic
agility. A breakthrough in cryptographic attacks can
quickly and violenty render systems vulnerable to at-
tacks. Upgrade-procedures must be developed, and
practised, to quickly recover security in such situations
High-security systems can also be designed with re-
dundancy in mind; using robust combiners[18] yields
ciphers that remain secure, even if one component
is broken, buying valuable time to perform necessary
software upgrades.

Some minimum features for practical, secure encryption
systems.

- Provide Integrity Protection.

« Support a Large Nonce.

« Provide Asymmetric Keys.

« Implement Timing-Side-Channel Resistance.
« Ensure Post-Quantum security.

« Practice Cryptographic Agility.

2.5. Engineering encryption systems: A checklist

There is no fixed set of techniques that can be used to
create a secure, cryptographic system. Nonetheless,
there is a set of best practices that can be followed to
avoid common pitfalls. Some of these concepts will be
introduced later in the paper.

Checklist of some steps that can be taken to improve
the security of encryption systems.

System architecture
» Use open standards
« Provide cryptographic agility
« Account for changing algorithms

Cryptographic algorithms

« Use public development processes and open sci-
ence

« Use standardised ciphers

« Require a proof of security

« Use well-established ciphers

- Additionally use post-quantum secure asymmetric
ciphers

Implementation
« Use open-source software
« Use libraries instead of new implementations
« Provide the ability to perform software updates
- Sign software-updates
Use memory-safe programming languages
« Erase secrets after use
« Check security against timing side-channels

2.6. Off-the-shelf encryption systems

When applying encryption to avionics, we should start
with an off-the-shelf system, thereby building on the
immense amount of research that has been invested
in the design of these solutions. While they have not
been purpose-built for use in aircraft, they are nonethe-
less well suited to jump-start the use of encryption in
this field. Once the most immediate needs are well ad-
dressed, cryptographers and avionics specialists can
collaborate to ensure avionics-specific needs are met
in future versions of the system.

Some state-of-the art, standardised encryption systems.
None of these provides post-quantum security by de-
fault.

HPKE[19] “Hybrid Public Key Encryption”
Minimal, decentralised, asynchronous encryption
standard. This could be built upon if none of the com-
plex standards is suitable. Providing post-quantum
security for HPKE is one result from this paper.

TLS 1.3[20] “Transport Layer Security”
Point-to-point, live communication over reliable and
unreliable channels; certificate-based key distribu-
tion.

MLS[21] “Messaging Layer Security”
Chat-like encryption of small and large data; asyn-
chronous, multiple participants; federated — servers
with good connectivity are required, but participants
can run their own server. It could be used for appli-
cations like sensor-networks with intermittent con-
nectivity.

TLS, Transport Layer Security[22], previously known
as SSL, Secure Socket Layer, is one of the longest-
standing encryption protocols. TLS provides support
for certificates[23] — identification documents issued
by a central authority for protocol participants. SSL

is plagued by a number of security issues. One egre-
gious issue is the fact that, even after an upgrade, de-
ployments may remain vulnerable due to downgrade
attacks[24, 25] as a result of its cipher suite negotiation
feature — the ability to switch to an older, less secure,
protocol version — for backwards compatibility. This
feature must be actively disabled when using TLS in a
secure system. An attacker can use this to lie to each
end, pretending that secure cipher-suites are not avail-
able.Transport Layer Security 1.3 is the first version of
SSL/TLS that was developed with provable security in
mind and removed some of these insecure features.
Deployment of post-quantum secure cryptography in
TLS[26-30] remains a work in progress.

The Noise Protocol Framework[31] is the result of a sci-
entific study investigating the variety of key-exchanges
that could be performed using the Elliptic Curve Diffie-
Hellman[32] operation and pre-shared keys. Its im-
plementations can serve as a simpler alternative to
SSL/TLS, as well as an asymmetric encryption device
similar to HPKE. Its simplicity is its advantage, as it
reduces effort for cryptanalysts in a manner similar
to how smaller applications are easier to certify. The
Noise Protocol cannot be migrated to the post-quantum
world without major modification. Thus, while it does
not represent the future of cryptography, it certainly
represents one of its key milestones.

The Signal protocol[33] is the protocol that underpins
the security of the Signal messenger. Not a standard,
but widely successful nonetheless. It found use in other
platforms, such as the WhatsApp messenger. Later ver-
sions of the protocol were among the first to introduce
advanced security features such as: group-messaging,
post-compromise-security, and anonymous communi-
cation. MLS[21] is a recent standard-protocol; it pur-
sues similar goals to the Signal protocol while being
developed as a standard. MLS does not currently sup-
port post-quantum security, but it was designed with a
simple migration-path in mind.

While the motivating use case for chat protocols is hu-
man conversation, the possibilities endowed by these
technologies are, in fact, broader. These protocols
feature multiple participants broadcasting messages,
including large multimedia files, to all participants in
a chatroom securely. The participants are sometimes
online, sometimes offline, and new chat rooms can be
created on demand. The ability to establish security on
sight helps ensure the security of future communica-
tion. This could be humans chatting. This could also
be a network of sensors.

Finally, Hybrid Public Key Encryption[19] is an encryp-
tion standard designed for single-recipient, optionally
authenticated encryption. In some ways, this protocol
is designed to provide a tiny, baseline specification
of asymmetric encryption-capabilities. This protocol
was also created with post-quantum security in mind,
though does not provide it in its initial variant.

2.7. Post-quantum cryptography

Quantum computing, while often hailed as the next
major breakthrough in general computation, merely
shows potential to accelerate the calculation of a select
few problems from computer science. Some of those
problems, whose inefficiency asymmetric cryptography
relies upon, could be solved by quantum computers
once they are built. Quantum computers differ funda-
mentally from the computers we are using today, as
they employ findings from theoretical physics to create
devices operating on a different type of information
with a different set of operations. As yet, quantum
computers have never been used in practice. While
their mode of operation has some advantages, they
pose many inefficiencies when compared to classical
computers[34]. Some problems are likely to remain
beyond the capabilities of both classical and quantum
computers.

That some problems are beyond the ability of quantum
computers to solve efficiently offers some genuine re-
prieve, as this has enabled cryptographers to research
and develop cryptosystems that remain immune to the
threat posed by quantum computers. This field is called
post-quantum cryptography. Avionics must migrate to
post-quantum cryptography as, once sufficiently large
quantum computers are built, they will be immediately
able to attack cryptosystems currently in use. Even
prior to that, quantum computing represents a threat to
the security of private and secret information, as attack-
ers can simply store any encrypted data they harvest
today, then wait until a quantum computer becomes
available to decrypt it. Due to the long development
times, certification delay and decades of operation, be-
ginning this migration is a particularly urgent need for
avionics.

The process to migrate to these new cryptosystems
began in earnest a decade ago, and has met practical
use with the start of the NIST post-quantum cryptogra-
phy competition. In round four of the standardisation
process, suitable ciphers* were selected for use[35].
These can now be employed on classical computers
without major constraints. The authors of this papers’
decades-old laptops easily run these algorithms.

The McEliece cryptosystem was developed in 1978[36],
though its quantum-resistant properties were discov-
ered later. While widely believed to be secure, its mod-
ern incarnation, dubbed “Classic McEliece”[37], was
not selected by NIST for standardisation, likely due
to its large public-keys sizing in the hundreds of kilo-
bytes. Instead, NIST selected Kyber[38] as the first
post-quantum cipher to be standardised, along with the
post-quantum signature schemes Dilithium[39], FAL-
CON[40], and Sphincs+[41].

4Technically these asymmetric post-quantum schemes are not
ciphers; they transfer a randomly chosen key and are not suitable
for general encryption, but are purpose-built to construct general
encryption systems when used together with other components.
This paper subsumes these post-quantum key-transferral techniques
under the term cipher for readability.

Cryptography considers passive — eavesdropping —
attackers and active attackers: those who intercept
messages and try to manipulate them. Using Kyber
without an interactive protocol, provides passive post-
quantum security. Security against active attackers
requires either a combination of Kyber and a signa-
ture scheme or an interactive[26, 42] protocol. In this
mode, the sender proves their identity by decrypting a
challenge-ciphertext.

2.8. Migrating encryption protocols to post-
quantum security

As symmetric encryption is significantly faster than
asymmetric encryption, protocols tend to be separated
into both asymmetric components, that establish a
shared-key, and symmetric components using said
key to transmit the payload. Over time, cryptographers
have began to rely on standard-components when de-
signing cryptographic protocols. Generally speaking,
a cryptographic protocol is secure if its ingredients are
secure. Likewise, a protocol is post-quantum secure if
its components fit that description.

Engineering constraints, such as key-sizes and perfor-
mance budget, aside, the reliance on standard com-
ponents should allow for a straightforward migration
to post-quantum security. Simply migrate each com-
ponent to post-quantum security. Unfortunately, mi-
grating the most popular asymmetric components to
post-quantum security has proven elusive to cryptogra-
phers for some time now. This leaves cryptographers
little choice other than to painstakingly migrate each
protocol to use ingredients with a different interface.

AKEM KEM
7
@

1
Signature

NIKE

FIG 1. NIKE is the strongest asymmetric interface; a
NIKE can do anything a KEM or an AKEM can
do. The novel AKEMs are closer to NIKEs than
KEMs. An AKEM can be built from a NIKE or from
a KEM and a Signature scheme. “Implies” in this
context is a technical term from mathematics; you
can read “NIKE implies AKEM” as: “An AKEM can
be constructed by using just a NIKE.”

Recently, the HPKE standard proposed a new device
to aid cryptographers in their quest to migrate these
protocols. It was clear, to most cryptographers, that an
asymmetric key transferral (i.e. KEMs) could be well
combined with signatures. Essentially, KEMs would
provide secrecy, Signatures would provide authenticity,
and the symmetric portions would ensure integrity. Dur-
ing the development of HPKE, its authors concluded
that this mechanism could be used to create a primitive
more akin to the interface (Figure 1) used before the
post-quantum migration. The authenticated KEM was
born.

Authenticated KEMs ease protocol designers’ work, as
they are closer to the interface most commonly used
in the pre-quantum world.

Some of the ingredients of a cryptographic protocol.
Since NIKEs do not exist in the post-quantum world, the
cryptographic aspect of migrating a protocol to post-
quantum security is largely about replacing NIKEs with
KEMs, AKEMs and Signatures. See Appendix A for a
description of these interfaces.

AEAD “Authenticated Encryption w. Associated Data”
Post-quantum variants: v/
Standard symmetric encryption interface. Provides
secrecy, authenticity, integrity, and has the ability
to certify additional data from the communication
context that does not need to be transmitted, such
as the name of the sender.

NIKE “Non Interactive Key Exchange”
Post-Quantum variants: X
The current gold-standard interface for asymmet-
ric encryption — i.e. transferring a symmetric key —
in classical cryptography. This is considered “non-
interactive” as no data, in addition to the public keys,
has to be transmitted in order to exchange a symmet-
ric key and, because the process provides implicit
authenticity, requires no signatures. Both partici-
pants simply call the NIKE function with their own
private key and the other participant’s public key, re-
spectively. Both produce the same shared key in the
process.
The available implementations were highly efficient,
with small key-sizes. Thus, this primitive has been
widely used to construct cryptographic protocols.
Post-quantum migration is largely concerned with
replacing NIKEs with KEMs and Signatures.
The famous Diffie-Hellman[43] and Elliptic Curve
Diffie-Hellman[32] operations are NIKEs.

Signatures Post-Quantum variants: v’
Signatures can be used to show that someone has
placed their stamp of approval upon a particular
piece of data. This can be used as a sort of dig-
ital passport or watermark.

KEM “Key Encapsulation Method”
Post-Quantum variants: v’
This can be used to transfer a symmetric key to
another party. Since post-quantum KEMs exist, a
combination of KEMs and, in some cases, Signa-
tures are used to replace NIKEs when a protocol
must be upgraded to post-quantum security.

AKEM “Authenticated Key Encapsulation Method”
Post-Quantum variants: v/ (Introduced in this work)
This interface was introduced in the HPKE standard.
It has capabilities in between those of a KEM and
those of a NIKE. As with a KEM, a key not directly
derived from two key-pairs is transferred, so interac-
tion is required. Like a NIKE, AKEMs authenticate

the sender of a key, which is missing from KEMs
alone.

2.9. Comparing Avionics and Cryptography

Although the ultimate aims of cryptography and avion-
ics remain similar, the fundamental approaches, taken
by both fields, differ greatly. Whereas cryptography
concerns itself with security properties, avionics is
driven by the pursuit of safety. That divergence has cre-
ated a parallel series of novel concepts that, nonethe-
less, often remain comparable.

One such divergence is cryptography’s willingness to
sacrifice availability of a message, if necessary to pre-
serve confidentiality, integrity, and authenticity. On a
public WiFi, it is not possible to ensure perfect avail-
ability, yet cryptography has well protected integrity,
authenticity, and confidentiality in practice. After all, it
is significantly less bothersome to be forced to reload
a webpage than to have one’s bank details leaked to
all who may be interested.

In avionics, however, availability is everything. A loss of
connection at a crucial moment can represent the start
of an emergency situation, and safety regulations re-
quire critical control law algorithms to be available at all
times. Integrity must also not be compromised, given
the critical nature of communications. Authenticity and
confidentiality, however, are not prioritised in quite the
same way. Often, the physical separation of electrical
connections serve as the only major authenticity guard,
and most aviation radio frequency protocols currently
used do not feature effective measures to implement
confidentiality.

One tried-and-true method for ensuring availability is
redundancy: having multiple instances of a compo-
nent, combined with a fail-over, increases availability
in the event of faults. Unfortunately, systemic faults,
like software-bugs, still retain the potential to affect
availability, despite the use of redundancy. To address
this risk, dissimilar hardware and software is used; by
combining two separate implementations, systemic fail-
ure inherent to one implementation can be more easily
caught.

Redundancy is a concept that is also favoured in cryp-
tography: crypto-combiners that allow one to combine
two different cryptographic schemes for improved se-
curity. This results in a hybrid secure system whereby,
even if one of the schemes fails its security promise,
the other scheme maintains security.

Both fields put exceptional effort into verification and
validation, through certification, extensive testing, and
formal methods. While a strong emphasis on rigorous
testing is palpable in both fields, the priorities remain
different. Sound, cryptoanalysis is the basic marker of
decent work in cryptography, and certification through a
certification body is the absolute must-have in avionics.

In furtherance to this demonstration of similarities, non-
functional behaviours, such as timing and memory
usage, also receive special attention in both fields. De-
terministic timing behaviour is a must to build robust
real-time systems in avionics. If an algorithm suddenly
takes significantly longer with a given input, safety prop-
erties will be at risk. A related scenario threatens secu-
rity in cryptography: timing-based side channels where
differences in an algorithms execution time leak secret
information have been shown to cause many secu-
rity vulnerabilities. To ameliorate the risk of surprises
at runtime, and to keep secrets confidential, a deep
understanding of the underlying hardware, along with
ongoing and rigorous testing, is required.

The skillset required for successful avionics software
engineering overlaps with that required for successful
cryptography. In short, both require the ability to write
software with a high degree of assurance that said
software will meet the desired properties. The differ-
ences are found foremost in the means of reaching
the acceptance of an implementation, with avionics
relying on certification, and cryptography focusing on
mathematical proofs.

3. RELATED WORKS

Previously in section 2.9, we mentioned that the avion-
ics sector does not prioritise confidentiality. Despite
this, there have been multiple attempts to provide con-
fidentiality, and other security oriented properties, for
communication in avionics. This section introduces
some of those existing approaches, their benefits, and
their shortcomings.

3.1. ACARS

The majority of text based communication to and from
aircraft is transmitted using ACARS. First deployed
in 1978, the protocol became the de-facto standard
for short text messages between aircraft and the
ground. Bandwidth for ACARS is limited, reaching up
to 30 kbit/s for air to ground traffic, and up to 400 kbit/s
on satellite backed links. Messages are rather small,
with 228 B for uplink and 238 B for downlink messages.
Both downlink and uplink messages allow for a 210
character text which, however, is limited to the Baudot
character set. Two primary users of ACARS are Air
Traffic Control (ATC), to issue route clearances and
airlines, and for fleet management activities such as
distribution of flight plans. [1]

No cryptography is mandated or included in the original
standard [1]. That is despite its utilisation for safety
critical information (from ATC) and privacy sensitive
(airline reporting and maintenance) information. AR-
INC 823 specifies an encryption layer, ACARS Mes-
sage Security (AMS) [44]. While performing a cryp-
tographic analysis of AMS, Blanchet found problems
with it, which were communicated back to the industry
editor of ARINC 823 [44]. Still, since the publication
of [44] in august 2017, no new revision of ARINC 823

TAB 1. Size in bytes of pk, secret key (sk) and ct for
various cipher suites.

pk sk ct
SIKEp434 330 44 346
SIKEp751 564 80 596
Kyber512 800 1632 768
Kyber512-X25519 832 1664 800

has been released. Furthermore, AMS is seldom used,
in part due to cost, as AMS is charged extra on top
of ACARS service fees [1]. Instead, many operators
use a proprietary cipher for ACARS which relies on a
mono-alphabetic substitution cipher, which can only be
described as security theatre [1].

In summary, ACARS itself is not secure, AMS which
aims to address security in ACARS is not widely
adopted, and the alternative in wider use today only
creates a false sense of security. Performance wise,
ACARS leaves much to be desired, such as longer
messages comprising a broader selection of symbols.

3.2. LDACS

L-band Digital Aeronautical Communications System
(LDACS) is an air to ground communication link aiming
to address future communication needs in aviation. lts
design is similar to that of Long Term Evolution (LTE),
featuring a cell oriented architecture: multiple ground
stations each host a LDACS cell, and aircraft associate
with a near-by cell. One cell can host up to 512 aircraft,
over a range of approximately 100 km. [45-47]

One goal of LDACS is the establishment of security at
the link layer [47], and Maurer, Graupl, Schmitt, Ro-
dosek, and Reiser clearly identified the threat of quan-
tum computers to classic asymmetric cryptography,
therefore adding provisions for pre- and post-quantum
cryptography in the LDACS cell-attachment protocol
described in [45]. Due to concerns regarding the com-
munication overhead, SIKE was elected as the post-
guantum secure Key Encapsulation Mechanism (KEM),
as it features comparatively small cipher text (ct) and
public key (pk) sizes (see Table 1) [45]. Unfortunately,
Castryck and Decru published a critical vulnerability
in SIKE [48] approximately one year after the publica-
tion of the LDACS Cell Attachment paper [45]. The
attack, an effective key recovery algorithm, renders
SIKE unsuitable for any security related application.
This demonstrates how important crypto-agility is; even
when planing for future threats by utilisation of post-
quantum security, algorithms can become insecure.

Analysis of the proposed protocol, in combination with
the specific selection of available cipher suites, allowed
the author of [45] to asses and prove the feasibility of
LDACS given the constraints of the physical link (such
as bandwidth) as well as defining upper limits on timing.

As such, LDACS is the most promising contender for a
future-proof radio-communication protocol in the avion-
ics sector. While post-quantum security was aimed
for, due to SIKE being broken, it was not achieved.
Being air-to-ground based, LDACS is well equipped
to take over use-cases from ACARS, but the lack of
air-to-air communication leaves use-cases like ADS-B
unresolved.

3.3. AeroMACS

Similar to LDACS, Aeronautical Mobile Airport Com-
munication System (AeroMACS) aims to advance the
state of air to ground communication [49, 50]. The
predominant use-cases mentioned for AeroMACS are
air traffic control and airline operations communica-
tions, like ACARS. To implement secure communica-
tion, a classical Public Key Infrastructure (PKI) relying
on X.509 certificates is foreseen [45, 51]. As M&urer,
Graupl, Schmitt, Rodosek, and Reiser point out, Aero-
MACS “only supports one cipher suite option” [45],
which is therefore vulnerable to quantum computer at-
tacks. We could not find any publication indicating a
consideration of adding post-quantum cryptography to
AeroMACS.

A PKI approach is sensible, to a point where Maurer,
Graupl, Schmitt, Rodosek, and Reiser even propose
a joint PKI for LDACS and AeroMACS [45]. X.509
certificates are compatible with post-quantum cryptog-
raphy [52]. Apart from the PKIl infrastructure described
in AeroMACS, it however seems unsuitable for future
use due to its current lack of post-quantum security
and no roadmap leading towards it.

4. OUR CONTRIBUTION

First, we enhance Hybrid Public Key Encryp-
tion (HPKE) [19] with a post-quantum secure Authen-
ticated Key Encapsulation Mechanism (AKEM) for
hybrid security. Secondly, the now post-quantum-
secure HPKE variant is integrated into an ARINC
653 partition. This integration utilises a Remote
Procedure Call (RPC) API to enable any partition to
use the post-quantum-secure HPKE without linking,
nor directly depending upon, the cryptographic code.
A small benchmark evaluates the impact on memory
consumption and execution time, two key properties for
integration into dependable real-time systems. At this
point, we perform of demonstration of crypto-agility, by
swapping the cryptography in the demonstrator.

4.1. Post-quantum security for HPKE

We construct two new AKEMSs, that can be used in
the context of HPKE, to provide post-quantum secu-
rity. This is a hybrid construction, i.e. the construction
redundantly uses a well-established pre-quantum ci-
pher, together with post-quantum secure cryptography
in order to remain secure even if one component fails.

HPKE[19] is a fairly recent standard for asymmetric
encryption that provides both authenticity and secrecy

TAB 2. Security properties of our constructions com-
pared to the HPKE standard construction
X25519HkdfSha256. The first column shows
the standard construction, providing no post-
quantum security at all. The second column
shows the standard construction plus Kyber, pro-
viding additional, redundant post-quantum se-
crecy. The third column shows the HPKE stan-
dard construction plus both Kyber and Dilithium,
providing the full set of redundant post-quantum
security properties: Secrecy and authenticity.

HPKE +Kyber +Kyber
Standard +Dilithium

Secrecy

Classical v v v
Post-Quantum X v v
Authenticity

Classical v v v
Post-Quantum X X v

for asynchronous one way communication (section 2.6,
section 2.8). The standard uses KEMs “Key Encapsu-
lation Methods” and AKEMs — “Authenticated KEM”,
a type of KEM where the sender needs to authorise
themselves in order to be allowed to transmit any data.

Both constructions given in this paper use the SHA-
3[53] variant SHAKE256 as a key derivation function,
and they both start from X25519HkdfSha256. This is
a cipher developed as part of HPKE that provides pre-
quantum encryption and sender authentication. Com-
bining a pre-quantum cipher with a post-quantum ci-
pher in this manner serves to hedge our bets: Post-
quantum cryptography has been standardised very
recently and, while unlikely, there may be critical flaws
in its design. If this proves the case, our cipher is still
as secure as using X25519HkdfSha256 on its own. No
security is lost, only gained.

We do not provide any proofs of security at this time,
however we do provide a security argument in sec-
tion 6.

To build X25519Kyber768, we add Kyber[38] a key-
derivation-function[54] (“‘KDF”) based combiner, instan-
tiated with shake256[53] as a key derivation function.
That is, we use both key encapsulation methods to
transmit the key and then pass both keys to a KDF to
derive a combined key. For technical reasons, we also
include the X25519HkdfSha256 ciphertext in the key
derivation step® and as a measure of heuristic security,
we also include the X25519HkdfSha256 public keys.

5X25519HkdfSha256 does not provide ciphertext collision resis-
tance[55]; i.e. it is possible for an attacker who knows the recipient
secret key to generate two ciphertexts that decrypt to the same
shared key. The mathematical models used to analyse the security
of key encapsulation models contain a condition that leads to a theo-
retical attack under those circumstances[56]. It is likely that this quirk
has no impact on the practical security of KEM combiners, but not
accounting for this issue would force us to consider an alternative

This cipher provides sender authentication using
pre-quantum cryptography, but it also provides
post-quantum secrecy. It strikes a balance between
efficiency and post-quantum security: the message
can not be decrypted after transmission even if an
attacker gained access to a quantum computer,
but an adversary could impersonate the sender if
they had access to a quantum computer right now.
See Appendix B for a detailed description of the
X25519Kyber768 construction.

To also provide post-quantum authenticity — prevent
an attacker with a quantum computer from imperson-
ating the sender — we provide a separate variant that
makes use of the Dilithium3[39] signature scheme. The
result achieves both post-quantum secrecy and post-
quantum sender authentication. It retains all major
security properties, even if the classical cipher used is
completely broken.

This construction is not quite as straightforward as
the previous one as giving an attacker access to a
signature breaks anonymity[57]. To demonstrate this,
consider this scenario: An attacker has a list of poten-
tial sender public keys. They intercept a message and
would like to find out who the sender is. To achieve this,
the attacker can simply try to validate the signature un-
der each available public key. One of those keys will
mark the signature as valid, giving away the identity of
the sender.

To provide some measure of anonymity despite using
a signature scheme, the signature is encrypted: We
utilise further output from the Shake256 key derivation
function as a stream cipher. For technical reasons
(see section 6) we also add a second stage of key
derivation so we can also include the signature in the
output key. This ensures that an attacker cannot fig-
ure out the sender identity, even if they know a list of
sender public key candidates. An additional require-
ment is that the KEMs used (i. e. X25519HkdfSha256
and Kyber768) provide anonymity and secrecy; if one
component is giving away the sender identity, hiding a
different component cannot solve this. See Appendix C
for the full definition of the X25519Kyber768Dilithium
construction.

The variant X25519Kyber768 should be used in sce-
narios where data is exchanged now but has to remain
secret for many years, as X25519 provides authenti-
cation in the present and Kyber ensures the secrecy
of data even in the presence of an quantum computer.
The variant X25519Kyber768Dilithium should be used
once cryptographicaly relevant quantum computers
exist, as X25519 can no longer be used to ensure au-
thenticity of the data and therefore Dilithium is needed
to ensure the authenticity of the data in the presence
of a quantum computer.

Our construction is generic; i.e. it can be used to com-
bine any number of KEMs, AKEMs, and signatures

mathematical model of KEMs. Given the small impact of hashing 32
additional bytes of data, we prefer to stick to the established models.

using a key derivation function. We note though, that
researchers building other combiners based on our
construction need to be careful to check which of the
constituent ciphers provide ciphertext collision resis-
tance[55] and which of the signatures provide unique-
ness[58].

We conjecture — perform a well-reasoned mathematical
guess — that this construction provides secrecy as long
as at least one of the KEMs or AKEMs provide secrecy.
The combiner is hypothesised to provide authenticity
as long as the combiner provides secrecy and at least
one of the AKEMSs or Signatures provides authenticity
(see section 6).

The construction follows the recipes for encapsulation
and decapsulation listed in Table 3.

The various ingredients used in the construction of our
post-quantum secure encryption scheme. Our solution
is specific to HPKE, the standard we extend, in that all
other ingredients could be replaced with alternatives,
providing either more security or more performance.

HPKE[19] The encryption standard we extend
The HPKE standard still handles most aspects of
encryption scheme construction. We merely build
new post-quantum secure key-transferral techniques
(section 2.8) for use within HPKE.
See section 2.6 and section 2.8.

X25519HkdfSha256[19] The pre-quantum KEM

All constructions studied in the work combine two
AKEMs (section 2.8): one that is pre-quantum se-
cure, and one that is post-quantum secure.
X25519HkdfSha256 is part of the HPKE standard;
it is based on very well-studied cryptography and
provides a baseline of security, in case our post-
quantum secure AKEMs fail.

SHAKE256[53] The Key Derivation Function

As we combine multiple key-transferral schemes, we
thus must combine the resulting keys into a single
key. The key derivation function takes care of that.
We use the first output from the SHAKE256 function
as our output key. In the variant with post-quantum
authenticity, we use further output from the KDF to
encrypt the signature, hiding it from observers to
enable some measure of anonymity.

SHAKE256 is part of the standardized SHA-3 has
function.

Kyber768[38] The post-quantum KEM
Kyber is the standardized post-quantum secure key
transferral method. It comes in three variants, and
we chose the middle variant as a balance between
speed and security.
Kyber is what endows our constructions with post-
quantum secrecy.

Dilithium3[39] The post-quantum signature
Dilithium is one of the standardised post-quantum
signatures. Dilithium3 is the middle variant again:

not the fastest but not the highest security margin
either.

The post-quantum signature is used in our most
advanced solution, providing all the security that the
pre-quantum variant provides. It ensures that the
sender of a message cannot be impersonated.

4.2. Integrating HPKE in an ARINC 653 partition

As outlined in section 4, one of our primary goals is
to enhance crypto-agility. To achieve this, a modu-
lar approach is beneficial; if all the cryptography is a
black box module with a defined interface, replacing it
becomes simple. Thus, and in accordance with IMA
design paradigms, we implemented said module as a
generic crypto-partition. Available over sampling ports,
this partition can not only both encrypt and sign (seal),
but also decrypt and verify (open) messages for other
partitions. The crypto-partition can serve multiple other
partitions, so it is sufficient to embed only one crypto-
partition per hypervisor.

The interface available to other partitions does not
reveal the particular KEM in use. A swap of the crypto-
partition is, however, implicitly observable to normal
partitions over a change of the ct size for a given plain
text (pt) or just a differing pk size. The crypto-partition’s
interface (see LST 1) comprises the standard opera-
tions of HPKE but handling of the sk — sks never leave
the crypto partition. This keeps the scope of high assur-
ance code reasonably small; only the crypto-partition
is responsible for keeping sks secure.

LST 1. Minimum viable selection of cryptographic oper-
ations. “Open” verifies a message authenticity,
thus it is possilbe that only a pt is returned

setup () -> pk
seal (pk_peer,
open (pk_peer,

pt) -> ct
ct) -> pt?

When compared to simply linking cryptography code
wherever needed, a crypto-partition has a number of
benefits. Keeping track of the cryptography code is
simple because it resides in one place. Maintenance
tasks, such as updating the cryptographic primitives,
are simplified by the fact that only the crypto partition
is touched. Certification of the crypto-partition can
benefit from approval as RSC: once certified for one
aircraft type, a crypto-partition can be embedded into
another aircraft type with minimal effort on module ac-
ceptance. As its functionality is highly generic and not
connected to a specific aircraft functionality, we antic-
ipate that most of the previous certification evidence
can be re-used. When changing the crypto-partition
(for example to replace a vulnerable cipher suite), the
module/application acceptance of other partitions that
use the crypto-partition remain untouched. That is,
the code of other partitions does not change, thus evi-
dence regarding objectives related to that code stays
valid. Proper composition (system acceptance and

aircraft integration) do of course still need to be demon-
strated after every change of any partition, as outlined
in section 2.2.

Our demonstrator comprises three partitions, which
run in our a653rs-linux hypervisor. All three of them
are implemented in Rust, and can be ported to any
hypervisor with a653rs support. Two normal partitions,
sender and receiver, use HPKE operations offered
by the third one, crypto_part. Multiple instances of
the third one can be used, there is no reliance on using
a shared crypto-partition instance. Messages between
the partitions are exchanged via sampling ports, a
directed flavour of shared memory between partitions.

Figure 2 depicts an exemplary exchange of a secret
message between the sender and the receiver parti-
tion. The sender first requests a seal operation from a
crypto-partition, which transforms the pt into a ct. This
ct is then sent to the receiver partition which, using
the crypto-partition’s open, decrypts the ct. During de-
cryption, the crypto-partition ensures that the message
is indeed from the sender partition, so open assures
authenticity. Using this setup, we swapped in different
crypto-partition implementations with a variety of alter-
natives and the original form of HPKE. In all cases,
the message could be sent from the sender to the re-
ceiver partition without issues. As planned, no change
in the sender and the receiver partition’s code was nec-
essary — the specific cryptography provided by the
crypto-partition is opaque to the other partitions.

One notable gap remains: in this form, we assume that
both sender and receiver already know each other’s
pk. This is a non trivial requirement, and fulfilling this
for example through a PKI is a significant amount of
work that escapes the scope of this paper.

5. EVALUATION: PERFORMANCE AND MEMORY
OVERHEAD

To evaluate our proposed changes on HPKE, we mea-
sured both the memory and time consumption across
its various configurations. Both values are important in
an avionics context as partitions are allocated discrete
amounts of computation time, and memory allowance,

crypto-part 1) (sender) (receiver) (crypto-part2
[

_/seal ! pk_receiver, pt !

LR P

[
|
|
ct | |
|

|

|
| > |
T T : |
I L ct 5 I
| | T |
| | open)l pk_sender, ¢t
| | | pt |
| | < }

|

1
crypto-part 1] (sender) (receiver) (crypto-part2

FIG 2. Interaction between the three partition in the
demonstrator

TAB 3. The steps to construct a new KEM or AKEM with redundancy using our recipe. If no signature scheme is
used or if all the signature schemes used provide uniqueness[58], then the second key derivation step can
be omitted, and the intermediate key can be used in place of the output key. If two key derivation steps are
used, use dedicated domain separators to prevent oracle cloning attacks[59].

Encapsulation

Decapsulation

For each KEM/AKEM, call decap() with
one’s corresponding own secret key, the
peer’s public key, and the corresponding
ciphertext

Input a unique domain separator[59] and all the decapsulated secrets into the KDF.
Include the ciphertexts of any constituent KEMs that lack ciphertext collision resis-

1 KEM: For each KEM/AKEM, call encap() with
one’s corresponding own secret key and
the peer’s public key

2 KDF:
tance[55].

3 KDF

(intermediate key):

4 KDF (key commit.):

Extract a 32 byte output key — the intermediate shared secret — from the key derivation

function

Extract a 32 byte key commitment from the key derivation function

5 Signature XOR all signatures with further output from
decryption: the KDF
6 Signature: For each signature scheme, generate a For each signature scheme, validate the
signature. If the AKEM is used in sender- signature. If the AKEM is used in sender-
unauthenticated mode, set all the signa- unauthenticated mode, ignore the signa-
tures to zero. tures.
7 Signature XOR all signatures with further output from
encryption: the KDF
2 KDF: Input a unique domain separator[59] and the intermediate key. Include the signatures

of any constituent signature schemes that lack uniqueness[58].

3 KDF (output key):

Extract a 32 byte output key — the shared secret — from the key derivation function

8 Return:
each encrypted signature

The output key, each KEM ciphertext, and The output key

which cannot be exceeded. Our measurements were
conducted on an AMD EPYC 7542 processor, running
Linux 6.1.64, without an ARINC 653 execution environ-
ment. We omitted ARINC 653, when benchmarking,
as we found it had a negligible impact on memory and
runtime overhead. It also hindered the measurement
due to isolation and its static time-slicing scheduler.
The processor was chosen for its comparatively low
and stable base clock of 2.9 GHz. To determine the
memory consumption for the runtime performance eval-
uation citerion.rs®, the softlimit utility from the dae-
montools 7 were used. Using softlimit’s -a switch,
the minimum acceptable amount of memory for each
variant of HPKE to seal/open a message was deter-
mined. Similarly, using the -s switch we measured the
minimum acceptable stack size. We recognise that
both measurements heavily depend on the hardware,
especially the processor used, and operating system in
use. Despite this, we are able to use this setup to paint
a qualitative picture of whether or not post-quantum
adaption is infeasible as a result of runtime overhead.

Shttps://github.com/bheisler/criterion.rs
"http://cr.yp.to/daemontools.html

The results of the measurements on runtime
(Figure 3) suggest that there is only a moder-
ate increase from pre-quantum to post-quantum
hybrid HPKE (HKDF-Sha256+Kyber768) of approx-
imately 31%. Adding Dilithium affects the en-
cryption and signing (seal) significantly more at
approximately 242% percent increased runtime
compared to HKDF-Sha256+Kyber768. Decryption
and signature verification (open), however, is only
about 163% slower. The seal measurement for
HKDF-Sha256+Kyber768+Dilithium was the only
runtime measurement with notable deviation (hence it
is the only measurement with error bars). Comparing
the worst outliers, moving from pre-quantum to hybrid
post-quantum security in HPKE incurs a worst-case
performance penalty of roughly a factor of four, which
is acceptable for many use-cases.

Considering the minimum required amount of memory
(Figure 4 and Figure 5), the overhead seems even
more modest. The increase in total memory required
from HKDF-Sha256 t0 HKDF-Sha256+Kyber768 is ap-
proximately 7% relative or at most 68kB for both

https://github.com/bheisler/criterion.rs
http://cr.yp.to/daemontools.html

1 r T T T 7
000 @ Runtime (seal)
Runtime (open)
800 | N
g 600| :
[0
E
S 400 N
i
[]
200 |- ° N
0 [J -
| | | |
Empty X25519- +Kyber768 +Dilithium
HDKF-
Sha256

FIG 3. Run-time of HPKE’s main operations. Due to vari-
ance in the measurement for seal with Dilithium,
a 95% quantile error bar is included

seal and open. Adding Dilithium to HPKE bumps
the peak memory consumption by another 17 % or
182kB at most. Notable, however, is the minimum
allowable stack size, which rises measurably with
the addition of Kyber768 and Dilithium respectively.
Most importantly, compared to HKDF-Sha256 the
stack size has to be increased from 20kB to 188 kB
for HKDF-Sha256+Kyber768+Dilithium. For small
embedded systems, which only feature a couple
hundred kB of RAM, this may impede the adoption
of the post-quantum secure HPKE variant. However,
computers in IMA have been equipped with at least
dozens of MB of RAM since the early 2000s. We there-
fore conclude that utilisation of our fully post-quantum
secure HPKE variant in current avionics hardware is
neither prohibited by either the memory nor runtime
overhead.

6. EVALUATION: SECURITY

While we do not provide a formal proof of security for
our scheme, we did conduct a security analysis. In
this section we will outline the security argument of
our scheme; that is, we outline the starting point for
creating a formal proof.

First, let’s revisit the basic types of attacker we must
consider in our security argument: The passive, eaves-
dropping attacker and the active attacker who can
change the network transcript of our cryptographic pro-
tocol. We generally assume attackers are active in the
rest of this analysis.

The basic types of attackers used in the analysis of cryp-
tographic schemes. We consider active attackers.

Passive An attacker who can observe all messages
being transmitted on the network.

I RAM (seal)
Stack (seal)
@ 1000 |- RAM (open) N
= Il Stack (open)
S
a
S
5
@
s
& 500 N
=
<
o
0 - = = | I |
T T T T
Empty X25519- +Kyber768 +Dilithium
HDKF-
Sha256

FIG 4. Memory consumption of HPKE’s main operations.
RAM measures the total memory required (includ-
ing machine code, static sections, etc.), while
Stack only refers to the minimum allowable stack
size for execution

Active An attacker who can observe, change, drop,
retransmit, and insert entirely new messages. In
particular, an active attacker can perform a man in
the middle attack.

Recall that we are constructing two authenticated
KEMs with various levels of post quantum security.
The basic security properties provided by a KEM are
secrecy and authenticity.

Our security properties.

Secrecy
An attacker should be unable to learn any information
about the secret being transmitted.

Authenticity
An attacker should be unable to perform a key ex-
change with another party and pass off its secret
as somebody else’s. In particular, active attackers
should be unable to perform a man in the middle
attack.

Both X25519Kyber768 and X25519Kyber768Dilithium
are hybrid constructions: One is made up of a pre-
quantum authenticated KEM and a post-quantum
unauthenticated KEM, the other also includes a
post-quantum signature scheme. Since we wish to
show that our schemes provide redundant security,
i.e. retain some security even when some of its
components are considered insecure. To this end
we divide our constituent schemes into two groups:
Post-quantum schemes (Kyber and Dilithium) and
pre-quantum schemes (X25519HkdfSha256). To
show security in the pre-quantum setting we can not
rely on the security of Kyber and Dilithium; to show

= 30010 A RAM (sea1) 8

< A Stack (seal)

_5 A RAM (open)

g A Stack

g— 200 |- I A Stack (open) |

3

c

o]

(@]

=

o 100 f

©

c

8

=

RN | |]

T T T

X25519- +Kyber768 +Dilithium
HDKF-
Sha256

FIG 5. Memory consumption of HPKE’s main operations,
relative to Empty. RAM measures the additional
memory required (including machine code, static
sections, etc.), while Stack only refers to the in-
crease in minimum allowable stack size for ex-
ecution both compared to the empty case from
Figure 4

our scheme is secure in the post-quantum setting, we
cannot rely on X25519HkdfSha256.

The basic scenarios we must consider when analysing
our scheme.

X25519Kyber768, pre-quantum
The scheme should provide all security properties
(secrecy, authenticity, and identity hiding) against ac-
tive adversaries without relying on Kyber for security.

X25519Kyber768, post-quantum
The scheme should provide secrecy and identity
hiding, but not authenticity against active adversaries
without relying on X25519HkdfSha256.

X25519Kyber768Dilithium, pre-quantum
The scheme should provide all security properties
without relying on Kyber for security.

X25519Kyber768, post-quantum
The scheme should provide all security proper-
ties against active adversaries without relying on
X25519HkdfSha256.

Note that both our authenticated KEMs can be used in
an unauthenticated mode by not specifying any sender
keys. In this mode, neither scheme provides authentic-
ity.

We start by analysing X25519Kyber768 relative to the
security of X25519HkdfSha256. Since in this case
X25519HkdfSha256 is a secure authenticated KEM,
the adversary is not able to obtain the shared secret
generated by X25519HkdfSha256. As this shared se-
cret is used as an input to the key derivation function,

generating the final shared secret, the attacker is not
able to compute the final shared secret, so the scheme
provides secrecy.

To break authenticity, the adversary would have to
either generate its own X25519HkdfSha256 keypair
and generate a ciphertext under that key or use
reuse the X25519HkdfSha256 ciphertext from a
third party®. Then the adversary would have to tell
the recipient to decapsulate the ciphertext using
another sender key. By the authenticity property of
X25519HkdfSha256, this decapsulation step would fail,
detecting the substitution. Therefore, the authenticity
of X25519HkdfSha256 confers authenticity to our
composite scheme.

The security argument for secrecy in the post-quantum
is similar to the one in the pre-quantum case. Since
we assume the secrecy of Kyber, the adversary is
not able to obtain the shared secret generated by Ky-
ber and therefore cannot compute the shared secret
of the composite AKEM. In the post-quantum case,
X25519Kyber768 does not provide authenticity.

The security arguments for X25519Kyber768Dilithium
are similar to the arguments for X25519Kyber768.
Firstly, we have to take the two-stage key derivation
process into account, but this does not change any
of the previous arguments. Secondly, this scheme
also provides post-quantum authenticity by using a
Dilithium signature, used to sign a key commitment.
To break authenticity, the attacker would again need to
produce a ciphertext of its own (or get a third party to
produce a ciphertext). The attacker can successfully
generate a X25519HkdfSha256 ciphertext, because in
the pre-quantum scenario we assume the scheme to
be insecure. The attacker also succeeds at producing
a Kyber768 ciphertext because it just needs the
recipients public key for that purpose. The adversary
can then produce a valid shared key and a valid
key commitment, but it can not produce a Dilithium
signature using the identity it wishes to impersonate.
Since no valid signature could be produced, the
recipient detects this during decapsulation and aborts.
Thus, the security of the Dilithium signature scheme
confers authenticity to our composite scheme.

Finally, there is a last attack scenario that we have to
take into account to show that our scheme is secure.
Giacon, Heuer, and Poettering[56] figured out that the
IND-CCA?® security cannot be achieved without mix-
ing the components’ ciphertexts into the key derivation
step. The reasons for this are subtle, highly technical
and possibly irrelevant for real world attack scenarios,
but cryptographic analysis should generally stick to es-
tablished security notions, so this attack is nonetheless
relevant. This was refined during the construction of
the X-Wing KEM[55] with hybrid security where it was

8Possibly gained by eavesdropping on some legitimate key trans-
ferral session.

9This is the mathematical model used for the security of key
encapsulation methods. It spells: Indistinguishability under Chosen
Ciphertext Attack.

established that this rule can be sidestepped by using
KEMs with Ciphertext Collision Resistance: The attack
introduced by Giacon, Heuer, and Poettering relies on
finding some other ciphertext that decapsulates to the
same shared key; i.e. it works by showing that the ci-
phertext is malleable (can be modified by the attacker).
This is prohibited, because it was shown that malleable
encryption schemes cannot achieve the highest level
of IND-CCA security[60].

When a KEM ciphertext is just composed of multi-
ple KEM ciphertexts, each of the subschemes provid-
ing IND-CCA security themselves, finding a collision
should be impossible. Remember: The constituent
schemes provide IND-CCA security, so they are not
malleable, so the composite scheme should not be
malleable either.

Except that when building robust combiners[18], we al-
ways assume some of our schemes are insecure. The
attacker can gain access to their secret keys. Some
of the schemes do not provide IND-CCA security so
the mathematical imperative that previously led us to
believe that a collision cannot be found, is gone. Ci-
phertext collision resistance is about regaining that
imperative, even when IND-CCA security is gone and
when the secret keys of a scheme are available to the
attacker. Signature uniqueness is similar to ciphertext
collision resistance, but the property applies to signa-
ture schemes instead of KEMs.

Our task now is to show that for both our combined
AKEMSs, changing one ciphertext leads to a different
key, even if that ciphertext belongs to an assumed
broken scheme. Recall that the X25519Kyber768 ci-
phertext has two fields: The ciphertext belonging to
X25519HkdfSha256 and the one belonging to Kyber.
The X25519Kyber768Dilithium ciphertext has one ad-
ditional field, the encrypted dilithium signature.

X25519HkdfSha256 does not provide ciphertext colli-
sion resistance, but we mix its ciphertext into the first
key derivation step. By the collision resistance property
of our hash function, this field is covered.

Kyber provides ciphertext collision resistance, accord-
ing to the X-Wing analysis[55], so this field cannot lead
to a collision.

The Dilithium signature is slightly more complex.
Dilithium does not provide uniqueness[58], but we
encrypt the signature under key derived from both
X25519HkdfSha256 and Kyber ciphertexts (albeit
without authentication), so both in the pre-quantum
scenario and the post-quantum scenario, the signature
is encrypted. To cause a collision on Dilithium, the
attacker would need another, different signature for
the same key commitment. To replace the encrypted
signature, the attacker would have to compute the
original signature too and apply an exclusive-or
operation to the original encrypted signature. This
operation would produce the keystream that was
initially used by the sender to encrypt the signature, so

now the attacker could use the keystream to encrypt
its replacement signature.

This attack is not possible, because the adversary lacks
access to the intermediate key, derived during the first
round of key derivation, so the attacker cannot sign it.
Despite this attack vector being closed, we still cannot
exclude odd attacks such as an adversary’s ability to
derive a pattern of bit-flips that will not prevent the
signature from being verified with some non-negligible
probability'®. This attack might seem contrived, but
the security notion excluding it does not exist, so we
cannot use this assumption.

There are two ways to fix that issue: We could use
authenticated encryption, thereby rendering it impossi-
ble for the adversary to modify the signature without
knowing the key, or we could use a second round of
key derivation and mix the signature itself into the final
key.

We opt for the second option since this also imbues our
own combined scheme with ciphertext collision resis-
tance: Two of our cipertext fields are hashed into the
output key, the third is protected by Kyber’s ciphertext
collision resistance.

With this analysis we are confident that the proposed
AKEM combiner delivers on its security claims.

7. CONCLUSION

In this paper, we have demonstrated the integration of
a state-of-the-art cryptography solution in an avionics
environment, as well as the extension of this solution
to provide post-quantum security. To this end, we first
exposed an off-the-shelf rust-programming-language
software library that implements the HPKE (see sec-
tion 2.6) asymmetric encryption standard in an ARINC
653 partition (section 4.2).

In order to ensure that the solution provides post-
quantum security (see section 2.7), we devised two
quantum resistant authenticated key-transferral (see
section 2.8) schemes (section 4.1). One scheme uses
the standardised, quantum-resistant key-transferral
scheme Kyber to provide security against passive
attackers. The other scheme combines Kyber with
the standardised post-quantum signature scheme
Dilithium to provide security against active attackers.
(See section 2.7 on passive/active attackers). All of
our quantume-resistant ciphers integrate a pre-quantum
cipher to provide for cryptographic redundancy.

Performance measurements (section 5) provide initial
evidence that the memory-requirements and perfor-
mance characteristics may be suitable for deployment
in the flight-computers already being used. On our
strongest, post-quantum secure cipher, peak RAM us-
age was below 400KB, though stack usage was high

10“Negligible probability” is the mathematical jargon cryptogra-
phers use to describe events that are unlikely to the point of impos-
sibility in relation to some security level.

for some measurements at just below 200KB. Perfor-
mance measurements are hard to give in absolute num-
bers. Nonetheless, all operations finished in under a
millisecond on a modern CPU, yielding no evidence of
a prohibitive performance-issue.

As a control, the same performance measurements
were applied to a pre-quantum cipher. Transitioning
from pre-quantum secure ciphers to post-quantum al-
ternatives increased memory usage (factor 3.5), stack
size (factor 40) and runtime (factor 4.9). All factors
given here refer to the worst offender metric.

No effort was spent on performance-optimisation. This
leaves the significant potential to improve the efficiency
of our construction, particularly in regard to stack size.
A good place to begin would be deciding upon the most
performant variants of the quantum-resistant KEMs
and signatures.

8. OUTLOOK

During our preliminary research, we were disappointed
to find a meagre body of literature detailing the connec-
tions between avionics and cryptography. Indeed, the
works we did find were predominantly cryptoanalysis
papers with discouraging results, pinpointing severe
flaws in the protocols used in the day-to-day operation
of avionics systems. Thus, in the course of writing this
paper, we necessarily became better acquainted with
the areas, methods, and techniques in which avionics
and cryptography meet.

Nonetheless, one paper, on improving the security
of LDACS, does stand in contrast to those findings.
It employed a great number of excellent techniques,
even providing for a post-quantum secure solution.
Unfortunately, along with stopping short of providing
a fully-fledged proof of security, it employed a less-
conservative, albeit highly efficient, cipher that had an
attack published just one year after the paper’s publi-
cation.

Although replacement of that insecure cipher is a tech-
nically easy task, this story does showcase the need for
tighter integration between avionics and cryptographic
communities. It also demonstrates the aspect of cryp-
tographic work most unfamiliar to avionics specialists:
the need to move quickly, reacting to new results in the
field by deploying timely upgrades to meet new threats.
In other words: crypto-agility.

Cryptographic agility requires adapting standardisation
processes, certification procedures, software-upgrade
infrastructures, and the technology itself to enable the
most efficient possible turnaround time.

Making headway on that particular problem necessarily
involves the evaluation of the gap between avionics exe-
cution environments and bleeding-edge cryptographic
software. Standardisation bodies, engineers, and cer-
tification agencies need to know whether entirely new
infrastructure must be built, or whether the flight com-
puters in use today are suitable for the task. Similarly,

software developers within avionics must be able to
estimate just how deeply avionics software should be
integrated into their existing code bases, multiplying
the efforts needed to upgrade and re-certify their code.

We began with the conviction that today’s planes are
capable of running state-of-the-art cryptographic soft-
ware and also that post-quantum secure cryptographer
should be employed from the start. As for achieving
crypto-agility, we stand to benefit from the body of
avionics research that has already gone into improving
the separation between various software components
in the name of improving turnaround times.

A demonstrator of this approach was devised: some-
thing small, with a minimal set of features, and broad
applicability. Its cryptographic solution should be stan-
dardised, and it should provide for a simple interface
to improve the component’s usability. Serendipitously,
the HPKE standard for one-way encryption and de-
cryption has been recently published. It features two
simple operations, seal and open, which can be used
for secret, trusted message transmission in a broad
range of applications.

To showcase the viability of this standard within avion-
ics, we wrapped a standard implementation of this
interface into a partition, following the standard isola-
tion scheme used across avionics. Rather than de-
vise a wholly new interface, we simply exposed the
HPKE operations; keeping feature sets small to accel-
erate certification. This setup facilitates crypto-agility
as the cipher can be exchanged by replacing the cryp-
tographic partition.

Post-quantum security was regarded as a hard require-
ment for our demonstrator. Therefore, we proposed
updated variants of the ciphers underlying HPKE, with
the first employing state-of-the-art classical cryptog-
raphy via the cipher developed as part of the HPKE
standard itself. The other two variants then combine
this standard cipher with post-quantum-secure ciphers
to achieve either secrecy or both secrecy and authen-
ticity.

All variants were deployed within the hypervisor, and
exchanging those variants posed no particular chal-
lenge. To aid integrators in gauging the performance
and memory requirements of these solutions, we col-
lected a series of initial performance measurements.
We found that, in comparison to the dummy-cipher,
our most advanced solution requires below 400KB
of additional RAM, but does come with a large stack
size requirement of just under 200KB. Stack size is a
prevailing issue with post-quantum ciphers, with our
strongest post-quantum variant having a forty times
higher stack size requirement than the pre-quantum
variant. Reducing the stack size should a focus of
future research.

Although we cannot provide absolute measurements
for performance, as this will vary greatly between plat-
forms, we found that on our modern hardware, all op-
erations finish in less than a millisecond. Our most

advanced post-quantum secure cipher was less than
five times slower than the standard cipher it was com-
pared against. There remains a lot of headroom for
efficiency gains in our setup, too. For instance, other
variants of our post-quantum ciphers boast a smaller
security margin but a higher memory-efficiency and
thus better performance. Flight computers built in the
2000s possess only dozens of megabytes of RAM, and
yet our solution certainly does not cross that boundary.

As usual, more research is required and, in the case of
our demonstrator, we would recommend looking at its
performance on computer models matching those used
in real aeroplanes. We would also suggest a closer
look at the problem of key distribution, for instance via
the integration of a key signing infrastructure, such as
the TLS certificates used broadly on consumer web
browsers.

Contact address:

wanja.zaeske@dlir.de

Attribution:

Karolin Varner Cryptography; post-quantum encryp-
tion design, project lead, writing lead on Introduction,
Cryptography, The basics of encryption, Engineering
encryption systems: A checklist, Off-the-shelf encryp-
tion systems, Post-quantum cryptography, Migrating
encryption protocols to post-quantum security, Our
Contribution, Post-quantum security for HPKE, Evalu-
ation: Security, Outlook, Conclusion.

Wanja Zaeske Avionics; partition system design, writ-
ing lead on Avionics Software Engineering, Certifica-
tion in Avionics, Comparing Avionics and Cryptography,
Related works, Our Contribution, Integrating HPKE in
an ARINC 653 partition.

Sven Friedrich Performance evaluation; writing lead
on Evaluation: Performance and Memory Overhead.

Aaron Kaiser Analysis of security; accounting for at-
tacks based on ciphertext collision.

Alice Bowman Lead editor.

Lisa Schmidt Graphical design (poster at DLRK con-
ference).

References

[1] Matthew Smith, Daniel Moser, Martin Strohmeier,
Vincent Lenders, and lvan Martinovic. Economy
class crypto: Exploring weak cipher usage in
avionic communications via acars. In. Apr. 2017.

[2] Matthias Schéfer, Vincent Lenders, and Ivan
Martinovic. Experimental analysis of attacks
on next generation air traffic communication.
In Applied Cryptography and Network Security.
Ed. by Michael Jacobson, Michael Locasto,
Payman Mohassel, and Reihaneh Safavi-Naini.
Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 253—-271. 1sBN: 978-3-642-38980-1.

[3] RTCA. Do-178c software considerations in air-
borne systems and equipment certification. Stan-
dard. RTCA, 2011.

[4] RTCA. Do-297 integrated modular avionics (ima)
development guidance and certification consider-
ations. Standard. RTCA, 2005.

[5] ARINC. Avionics Application Software Standard
Interface part 0 overview of arinc 653. Standard.
Bowie, MD, USA: Aeronautical Radio Incorpo-
rated, Aug. 2019.

[6] Sven Friedrich, Emil Engler, Tim Schubert, Wanja
Zaeske, and Umut Durak. Assuring apex with a
versatile rust api. In embedded world 2023 Confer-
ence Proceedings. WEKA FACHMEDIEN GmbH,
Mar. 2023, pp. 298-305. 1sBN: 978-3-645-50197-
2.

[7]1 Susan J.M. Cabler. The transport layer security
(tls) protocol version 1.3. AC 20-148. Dec. 2004.
https://www.faa.gov/documentLibrary/media/
Advisory_Circular/AC_20-148.pdf.

[8] Craig Gentry. A fully homomorphic encryption
scheme. Stanford university, 2009.

[9] Stefanie Falkner, Peter Kieseberg, Dimitris E
Simos, Christina Traxler, and Edgar Weippl.
E-voting authentication with gr-codes. In Human
Aspects of Information Security, Privacy, and
Trust: Second International Conference, HAS
2014, Held as Part of HCI International 2014,
Heraklion, Crete, Greece, June 22-27, 2014.
Proceedings 2. Springer. 2014, pp. 149-159.

[10] Oded Goldreich. Secure multi-party computation.
Manuscript. Preliminary version 78.110 (1998).

[11] Abe Davis, Michael Rubinstein, Neal Wadhwa,
Gautham J Mysore, Fredo Durand, and William T
Freeman. The visual microphone: Passive recov-
ery of sound from video (2014).

[12] Politician’s fingerprint reproduced using photos of
her hands. https://arstechnica.com/information-
technology / 2014 / 12 / politicians - fingerprint -
reproduced - using - photos - of - her - hands/.
Archived: https : / / web . archive . org / web /
20230904163754 / https : / / arstechnica . com /
information - technology / 2014 / 12/ politicians -
fingerprint - reproduced - using - photos - of - her-
hands/.

Ben Nassi, Etay lluz, Or Cohen, Ofek Vayner,
Dudi Nassi, Boris Zadov, and Yuval Elovici. Video-
based cryptanalysis: Extracting cryptographic
keys from video footage of a device’s power led.
Cryptology ePrint Archive (2023).

[13]

[14] Sandy Clark, Travis Goodspeed, Perry Metzger,
Zachary Wasserman, Kevin Xu, and Matt Blaze.
Why (special agent) johnny (still) can’t encrypt: A
security analysis of the apco project 25 two-way
radio system. In USENIX Security Symposium.
Vol. 2011. 2011, pp. 8—-12.

mailto:wanja.zaeske@dlr.de
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_20-148.pdf
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_20-148.pdf
https://arstechnica.com/information-technology/2014/12/politicians-fingerprint-reproduced-using-photos-of-her-hands/
https://arstechnica.com/information-technology/2014/12/politicians-fingerprint-reproduced-using-photos-of-her-hands/
https://arstechnica.com/information-technology/2014/12/politicians-fingerprint-reproduced-using-photos-of-her-hands/
https://web.archive.org/web/20230904163754/https://arstechnica.com/information-technology/2014/12/politicians-fingerprint-reproduced-using-photos-of-her-hands/
https://web.archive.org/web/20230904163754/https://arstechnica.com/information-technology/2014/12/politicians-fingerprint-reproduced-using-photos-of-her-hands/
https://web.archive.org/web/20230904163754/https://arstechnica.com/information-technology/2014/12/politicians-fingerprint-reproduced-using-photos-of-her-hands/
https://web.archive.org/web/20230904163754/https://arstechnica.com/information-technology/2014/12/politicians-fingerprint-reproduced-using-photos-of-her-hands/
https://web.archive.org/web/20230904163754/https://arstechnica.com/information-technology/2014/12/politicians-fingerprint-reproduced-using-photos-of-her-hands/

[15] Karolin Varner. Decryption despite errors. https:
//github.com/koraa/decryption-despite-errors/
blob/main/paper/decryption-despite-errors.pdf.

[16] Richard Von Mises. Uber aufteilungs-und beset-
zungswahrscheinlichkeiten. na, 1939.

[17] Joseph A. Salowey, David McGrew, and Abhijit
Choudhury. Aes galois counter mode (gcm) ci-
pher suites for tls. RFC 5288. Aug. 2008. por:
10.17487/RFC5288. https://www.rfc-editor.org/
info/rfc5288.

Danny Harnik, Joe Kilian, Moni Naor, Omer Rein-
gold, and Alon Rosen. On robust combiners for
oblivious transfer and other primitives. In Annual
International Conference on the Theory and Ap-
plications of Cryptographic Techniques. Springer.
2005, pp. 96-113.

Richard Barnes, Karthikeyan Bhargavan, Ben-
jamin Lipp, and Christopher A. Wood. Hybrid pub-
lic key encryption. RFC 9180. Feb. 2022. pou:
10.17487/RFC9180. https://www.rfc - editor.
org/info/rfc9180.

Eric Rescorla. The transport layer security (tls)
protocol version 1.3. RFC 8446. Aug. 2018. pot:
10.17487/RFC8446. https://www.rfc-editor.org/
info/rfc8446.

Richard Barnes, Benjamin Beurdouche, Raphael
Robert, Jon Millican, Emad Omara, and Katriel
Cohn-Gordon. The messaging layer security (mls)
protocol. RFC 9420. July 2023. poi: 10.17487/
RFC9420. https://www.rfc-editor.org/info/rfc9420.

[22] Alan O. Freier, Philip Karlton, and Paul C. Kocher.
The secure sockets layer (ssl) protocol version 3.0.
RFC 6101. Aug. 2011. poi: 10.17487/RFC6101.
https://www.rfc-editor.org/info/rfc6101.

[18]

[19]

[20]

[21]

[23] Sharon Boeyen, Stefan Santesson, Tim Polk,
Russ Housley, Stephen Farrell, and David Cooper.
Internet x.509 public key infrastructure certificate
and certificate revocation list (crl) profile. RFC
5280. May 2008. por: 10. 17487 / RFC5280.
https://www.rfc-editor.org/info/rfc5280.

[24] Karthikeyan Bhargavan, Christina Brzuska, Cé-
dric Fournet, Matthew Green, Markulf Kohlweiss,
and Santiago Zanella-Béguelin. Downgrade re-
silience in key-exchange protocols. In 2016 IEEE
Symposium on Security and Privacy (SP). 2016,

pp. 506-525. por: 10.1109/SP.2016.37.

Eman Salem Alashwali and Kasper Rasmussen.
What's in a downgrade? a taxonomy of down-
grade attacks in the tls protocol and application
protocols using tls. In Security and Privacy in Com-
munication Networks: 14th International Confer-
ence, SecureComm 2018, Singapore, Singapore,
August 8-10, 2018, Proceedings, Part Il. Springer.
2018, pp. 468—487.

[25]

[26] Peter Schwabe, Douglas Stebila, and Thom
Wiggers. Post-quantum TLS without handshake
signatures. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Com-
munications Security. CCS ’20. Virtual Event,
USA: Association for Computing Machinery,
2020, pp. 1461-1480. 1sBN: 9781450370899.
pol: 10.1145/3372297.3423350. https://kemtls.
org/publication/kemtls/.

Karthikeyan Bhargavan, Cédric Fournet, Markulf
Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and
Santiago Zanella-Béguelin. Proving the tls hand-
shake secure (as itis). In Advances in Cryptology—
CRYPTO 2014: 34th Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part Il 34. Springer. 2014,
pp. 235-255.

[28] Christian Paquin, Douglas Stebila, and Goutam
Tamvada. Benchmarking post-quantum cryp-
tography in tls. In Post-Quantum Cryptography:
11th International Conference, PQCrypto 2020,
Paris, France, April 15—17, 2020, Proceedings 11.
Springer. 2020, pp. 72-91.

Dimitrios Sikeridis, Panos Kampanakis, and
Michael Devetsikiotis. Post-quantum authentica-
tion in tls 1.3: A performance study. Cryptology
ePrint Archive (2020).

Ruben Gonzalez and Thom Wiggers. Kemtls vs.
post-quantum tls: Performance on embedded sys-
tems. In International Conference on Security,
Privacy, and Applied Cryptography Engineering.
Springer. 2022, pp. 99-117.

[31] Trevor Perrin. The noise protocol framework, 2016.
http://noiseprotocol.org/noise.pdf.

[32] Neal Koblitz, Alfred Menezes, and Scott Vanstone.
The state of elliptic curve cryptography. Designs,
codes and cryptography 19 (2000), pp. 173—193.

[33] Moxie Marlinspike and Trevor Perrin. The x3dh
key agreement protocol. Open Whisper Systems
283 (2016), p. 10.

[34] Noson S Yanofsky and Mirco A Mannucci.
Quantum computing for computer scientists.
Cambridge University Press, 2008.

(27]

(29]

(30]

[35] https://www.nist.gov/news-events/news/2022/
07/nist-announces-first-four-quantum-resistant-
cryptographic-algorithms.

[36] Robert J McEliece. A public-key cryptosystem
based on algebraic. Coding Thv 4244 (1978),
pp. 114—116.

[37] Daniel J Bernstein, Tung Chou, Tanja Lange,
Ingo von Maurich, Rafael Misoczki, Ruben
Niederhagen, Edoardo Persichetti, Christiane
Peters, Peter Schwabe, Nicolas Sendrier, et al.
Classic mceliece (2017).

https://github.com/koraa/decryption-despite-errors/blob/main/paper/decryption-despite-errors.pdf
https://github.com/koraa/decryption-despite-errors/blob/main/paper/decryption-despite-errors.pdf
https://github.com/koraa/decryption-despite-errors/blob/main/paper/decryption-despite-errors.pdf
https://doi.org/10.17487/RFC5288
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5288
https://doi.org/10.17487/RFC9180
https://www.rfc-editor.org/info/rfc9180
https://www.rfc-editor.org/info/rfc9180
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9420
https://www.rfc-editor.org/info/rfc9420
https://doi.org/10.17487/RFC6101
https://www.rfc-editor.org/info/rfc6101
https://doi.org/10.17487/RFC5280
https://www.rfc-editor.org/info/rfc5280
https://doi.org/10.1109/SP.2016.37
https://doi.org/10.1145/3372297.3423350
https://kemtls.org/publication/kemtls/
https://kemtls.org/publication/kemtls/
http://noiseprotocol.org/noise.pdf
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms

[38] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede
Lepoint, Vadim Lyubashevsky, John M Schanck,
Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Crystals-kyber: A cca-secure module-
lattice-based kem. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P).
IEEE. 2018, pp. 353-367.

Léo Ducas, Eike Kiltiz, Tancrede Lepoint,
Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. Crystals-dilithium:
A lattice-based digital signature scheme. IACR
Transactions on Cryptographic Hardware and
Embedded Systems (2018), pp. 238-268.

[40] Thomas Prest, Pierre-Alain Fouque, Jeffrey
Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Ricosset, Gregor Seiler,
William Whyte, and Zhenfei Zhang. Falcon.
Post-Quantum Cryptography Project of NIST
(2020).

Daniel J Bernstein, Andreas Hiilsing, Stefan Kélbl,
Ruben Niederhagen, Joost Rijneveld, and Peter
Schwabe. The sphincs+ signature framework. In
Proceedings of the 2019 ACM SIGSAC confer-
ence on computer and communications security.
2019, pp. 2129-2146.

[42] Andreas Huilsing, Kai-Chun Ning, Peter Schwabe,
Florian Weber, and Philip R Zimmermann. Post-
quantum wireguard. In 2021 IEEE Symposium on
Security and Privacy (SP). |IEEE. 2021, pp. 304—
321.

[43] W. Diffie and M. Hellman. New directions in cryp-
tography. IEEE Transactions on Information The-
ory 22.6 (1976), pp. 644—654. poi: 10.1109/TIT.
1976.1055638.

Bruno Blanchet. Symbolic and computational
mechanized verification of the arinc823 avionic
protocols. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF). 2017, pp. 68-82.
pol: 10.1109/CSF.2017.7.

[45] Nils Maurer, Thomas Graupl, Corinna Schmitt,
Gabi Dreo Rodosek, and Helmut Reiser. Advanc-
ing the security of Idacs. IEEE Transactions on
Network and Service Management 19.4 (2022),
pp. 5237-5251. pori: 10.1109/ TNSM . 2022 ..
3189736.

Deutsches Zentrum fuer Luft- und Raumfahrt
e. V. LDACS implementation and validation. 2023.
https://www.ldacs.com/Idacs1 - development/
Idacs-implementation-and-validation/ (visited on
07/26/2023).

[47] Thomas Boegl, Mathias Rautenberg, Bernhard
Haindl, Christoph Rihacek, Josef Meser, Pierluigi
Fantappie, Noppadol Pringvanich, John Micallef,
Klauspeter Hauf, John MacBride, Philippe Sacre,
Bart van den Einden, Thomas Graupl, and
Michael Schnell. LDACS white paper — a roll-out
scenario. WORKING PAPER. ICAO, Oct. 2019.

[39]

[41]

[44]

[46]

[48] Wouter Castryck and Thomas Decru. An efficient
key recovery attack on sidh. 2022. https://eprint.
iacr.org/2022/975.

[49] EUROCONTROL. Aeronautical mobile air-
port communications system datalink. 2023.
https://www.eurocontrol.int/system/aeronautical-
mobile-airport-communications-system-datalink
(visited on 07/27/2023).

[50] WIMAX Forum. Aeromacs. 2023. https : / /
wimaxforum . org/Page/ AeroMACS (visited on
07/27/2023).

[51] WIMAX Forum. Wimax forum security. 2023.
https://wimaxforum.org/Page/Security (visited on
07/27/2023).

[52] The Open Quantum Safe Project. X.509 | open
quantum safe. 2023. https://openquantumsafe.
org / applications / x509 . html (visited on
09/11/2023).

[53] Morris J Dworkin. Sha-3 standard: Permutation-
based hash and extendable-output functions
(2015).

[54] Hugo Krawczyk. Cryptographic extraction and key
derivation: The hkdf scheme. In Annual Cryptol-
ogy Conference. Springer. 2010, pp. 631-648.

Manuel Barbosa, Deirdre Connolly, Jodo Diogo
Duarte, Aaron Kaiser, Peter Schwabe, Karolin
Varner, and Bas Westerbaan. X-wing: The hybrid
kem you’ve been looking for. Cryptology ePrint
Archive, Paper 2024/039. https://eprint.iacr.org/
2024/039. 2024. https://eprint.iacr.org/2024/039.

Federico Giacon, Felix Heuer, and Bertram
Poettering. Kem combiners. In Public-Key Cryp-
tography — PKC 2018. Ed. by Michel Abdalla
and Ricardo Dahab. Cham: Springer Interna-
tional Publishing, 2018, pp. 190-218. IsBN:
978-3-319-76578-5.

[57] Shafi Goldwasser and Mihir Bellare. Lecture
notes on cryptography. Summer course “Cryp-
tography and computer security” at MIT 1999
(1996), p. 1999.

[58] Andrew Morgan and Rafael Pass. On the security
loss of unique signatures. In Theory of Cryptog-
raphy Conference. Springer. 2018, pp. 507-536.

Mihir Bellare, Hannah Davis, and Felix Glnther.
Separate your domains: Nist pgc kems, oracle
cloning and read-only indifferentiability. In Ad-
vances in Cryptology—EUROCRYPT 2020: 39th
Annual International Conference on the Theory
and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10—-14, 2020, Proceedings,
Part Il 30. Springer. 2020, pp. 3-32.

Mihir Bellare, Anand Desai, David Pointcheval,
and Phillip Rogaway. Relations among notions
of security for public-key encryption schemes. In
Advances in Cryptology—CRYPTQO’98: 18th An-
nual International Cryptology Conference Santa
Barbara, California, USA August 23-27, 1998 Pro-
ceedings 18. Springer. 1998, pp. 26—45.

[55]

[56]

[59]

[60]

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/CSF.2017.7
https://doi.org/10.1109/TNSM.2022.3189736
https://doi.org/10.1109/TNSM.2022.3189736
https://www.ldacs.com/ldacs1-development/ldacs-implementation-and-validation/
https://www.ldacs.com/ldacs1-development/ldacs-implementation-and-validation/
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://www.eurocontrol.int/system/aeronautical-mobile-airport-communications-system-datalink
https://www.eurocontrol.int/system/aeronautical-mobile-airport-communications-system-datalink
https://wimaxforum.org/Page/AeroMACS
https://wimaxforum.org/Page/AeroMACS
https://wimaxforum.org/Page/Security
https://openquantumsafe.org/applications/x509.html
https://openquantumsafe.org/applications/x509.html
https://eprint.iacr.org/2024/039
https://eprint.iacr.org/2024/039
https://eprint.iacr.org/2024/039

A. PRIMITIVES FOR PROTOCOL CONSTRUCTION

A.1. AEAD

AEAD stands for “Authenticated Encryption with Additional Data”. AEADs are the interface used for symmetric
encryption; since no asymmetric cryptography is used most existing AEADs are post-quantum secure.

key “k” — The cryptographic key

nonce “n” — Nonce. A Number used once. This can either be a counter or a random number if the number is at
least 192 bytes long.

payload (“pt” for “plain text” or “ct” for “cipher text”) — The actual data being transmitted.

additional data “ad” — Extra data that both participants should agree on, such as the name of the sender and

the receiver so a mismatch can be detected.

AEAD.encrypt(k, n, pt, ad) -> ct
AEAD.decrypt(k, n, ct, ad) -> pt or null
Rule:
AEAD.decrypt(k, n, ct, ad) =
if AEAD.encrypt(k, n, pt, ad) = ct
then return pt
else return null

Null is returned if there is any mismatch in the k, n, ct, or ad parameters. That is, AEADs provide authenticity
and integrity.

A.2. NIKE

NIKE stands for “Non Interactive Key Exchange”. NIKEs provide the most powerful features for cryptographic
protocol design, but attempts to provide a post-quantum secure variant have failed.

The challenge of migrating to post-quantum security is mostly about replacing NIKEs with KEMs.

NIKE.keygen() -> (sk, pk)
NIKE(sk, pk) -> k
Rule:
NIKE.nike(sk1, pk2) = NIKE(sk2, pkil)
if both (skl, pkl) and (sk2, pk2) where each properly generated using NIKE.keygen() .

A.3. Signatures

Signature algorithms were always available in pre-quantum systems. Pre-quantum and post-quantum variants
exist.

Signature.keygen() -> (sk, pk)
Signature.sign(sk, pt) -> sig
Signature.validate(pk, sig, pt) -> boolean
Rule:
Signature.validate(sk, pk) = true
if sig was generated using Signature.sign() and (sk, pk) was generated using
— Signature.keygen().

A.4. KEMs

KEM stands for “Key Encapsulation Method”. They can be used to transfer a symmetric key from one party to
another; KEMs where introduced as a replacement for NIKEs which are unavailable in the post-quantum setting.
Pre-quantum NIKEs and post-quantum NIKEs exist.

KEM.keygen() -> (sk, pk)

KEM.encaps(pk) -> (k, ct)

KEM.decaps(sk, ct) -> k or null

Rule:

KEM.decaps(sk, ct) = k

if ct was generated using KEM.encaps(pk) and (sk, pk) where generated using
— KEM.keygen(),
otherwise null is returned.

A.4.1. Authenticated KEMs

AKEMSs are a variant of KEMs which provide sender authentication. The interface was introduced in the HPKE
standard; pre-quantum variants exist, a post-quantum variant is devised in this paper.

AKEM.keygen() -> (sk, pk)

AKEM.encaps(skl, pk2) -> (k, ct)

AKEM.decaps(sk2, pkl, ct) -> k or null

Rule:

KEM.decaps(skl, pk2, ct) =k

if ct was generated using AKEM.encaps(sk2, pkl) and (skl, pkl) as well as (sk2, pk2)
— where generated using KEM.keygen(),
otherwise null is returned.

B. X25519KYBER768
Abstract description of the X25519Kyber768 cipher in rust-like pseudocode.

const DOMAIN_SEPARATOR_NOAUTH : &str = "Karolin Varner, Wanja Zaeske, Aaron Kaiser, Sven
— Friedrich, Alice Bowman, August 2023; From paper: Agile post quantum cryptography in
< avionics; AKEM combiner built from AKEM:HPKE/X25519HkdfSha256 + KEM:Kyber768 +

— KDF:shake256: no authentication";

const DOMAIN_SEPARATOR_AUTH : &str = "Karolin Varner, Wanja Zaeske, Aaron Kaiser, Sven
— Friedrich, Alice Bowman, August 2023; From paper: Agile post quantum cryptography in
— avionics; AKEM combiner built from AKEM:HPKE/X25519HkdfSha256 + KEM:Kyber768 +

< KDF:shake256: authenticated";

fn X25519Kyber768: :encap(sk_mine: Optional<X25519Kyber768::SecretKey>, pk_theirs:
— X25519Kyber768: :PublicKey) {
// Access the tindividual subkeys
let (sksl, sks2) = sk_mine.unwrap_or((None, None)); // Secret key, sender, 1/2
let (pksl, pks2) = sk_mine.public_key() .unwrap_or((None, None)); // Public key, sender,
- 1/2
let (pkrl, pkr2) = pk_theirs; // Public key, recipient, 1/2

// Perform encapsulation using kem 1

let (k1, ctl) = X25519HkdfSha256: :encap(sksl, pkrl);
// Perform encapsulation using kem 2

let (k2, ct2) = Kyber768::encap(pkr2) ;

// Perform key derivation using a domain separator and both generated keys
// and concatenate both cipertexts
let ko = if sk_mine.is_some() {
Shake256 (DOMAIN_SEPARATOR_AUTH || k1 || k2 || ctl || pksl || pkrl)[0:256];
} else {
Shake256 (DOMAIN_SEPARATOR_NOAUTH || k1 || k2 || ctl || pkrl) [0:256];
s
let cto = ctl || ct2;
return (ko, cto);

fn X25519Kyber768: :decap(sk_mine: X25519Kyber768::SecretKey, pk_theirs:
— Optional<X25519Kyber768: :PublicKey>, ct: X25519Kyber768::Ciphertext) {
// Access the individual subkeys and ciphertezts
let (skrl, skr2) = sk_mine; // Secret key, recipient, 1/2
let (pkrl, pkr2) = sk_mine.public_key(); // Public key, recipient, 1/2
let (pksl, pks2) pk_theirs.unwrap_or((None, None)); // Public key, sender, 1/2

// Decapsulate the individual ciphertexts
let k1 = X25519HkdfSha256: :decap(skrl, pksl, ctl);
let k2 = Kyber768::decap(skr2, ct2);

// Reconstruct the shared secret by applying the same
// key derivation step as in the encap function
let ko = if pk_theirs.is_some() {
Shake256 (DOMAIN_SEPARATOR_AUTH || k1 || k2 || ctl || pksl || pkr1) [0:256];
} else {
Shake256 (DOMAIN_SEPARATOR_NOAUTH || ki1 || k2 || ctl || pkrl) [0:256];
I

return ko;

C. X25519KYBER768DILITHIUM
Abstract description of the X25519Kyber768Dilithium cipher in rust-like pseudocode.

const DOMAIN_SEPARATOR_NO_AUTH : &str = "Karolin Varner, Wanja Zaeske, Aaron Kaiser, Sven
— Friedrich, Alice Bowman, August 2023; From paper: Agile post quantum cryptography in
— avionics; AKEM combiner built from AKEM:HPKE/X25519HkdfSha256 + KEM:Kyber768 +

— Sig:Dilithium3 + KDF:shake256: no authentication";

const DOMAIN_SEPARATOR_AUTH : &str = "Karolin Varner, Wanja Zaeske, Aaron Kaiser, Sven

— Friedrich, Alice Bowman, August 2023; From paper: Agile post quantum cryptography in
< avionics; AKEM combiner built from AKEM:HPKE/X25519HkdfSha256 + KEM:Kyber768 +

— Sig:Dilithium3 + KDF:shake256: authenticated";

fn X25519Kyber768Dilithium: :encap(sk_mine: Optional<X25519Kyber768Dilithium::SecretKey>,
— pk_theirs: X25519Kyber768Dilithium: :PublicKey) {
// Access the individual subkeys
let (sksl, sks2, sks3) = sk_mine.unwrap_or((None, None, None)); // Secret key, sender,
- 1/2/3
let (pksl, pks2, pks3) = sk_mine.public_key().unwrap_or((None, None, None)); // Public
- key, sender, 1/2/3
let (pkrl, pkr2, pkr3) = pk_theirs; // Public key, recipient, 1/2/3

// Perform encapsulation using kem 1

let (k1, ctl) = X25519HkdfSha256: :encap(sksl, pkrl);
// Perform encapsulation using kem 2

let (k2, ct2) = Kyber768::encap(pkr2);

let domain_separator = if sk_mine.is_some() {
DOMAIN_SEPARATOR_AUTH

} else {

DOMAIN_SEPARATOR_NOAUTH

};

// Perform key derivation using a domain separator and both generated keys;
// generate an output key and a key-commitment that can be signed by our Signature.
let okm = if sk_mine.is_some() {

Shake256 (domain_separator || k1 || k2 || ctl || pksl || pkrl)[0:256];

}

} else {

Shake256 (domain_separator || k1 || k2 || ctl || pkr1l) [0:256];

};

let (ki, kc) = (okm[0:256], okm[256:512]);

// If no signature key is given, return an empty - zero - signature
// Else sign the key commitment
let sig = if sks3 == None {

[Ou8; Dilithium3::SIGNATURE_LENGTH]

} else {

Dilithium3::sign(sks3, kc)

};

// Encrypt the signature using further output from the key derivation function;
// this XORs random output from shake256 with the signature
sig_ct "= okm[512 : 512 + Dilithium3::SIGNATURE_LENGTH] ;

// Second stage of key derivation so we can include the signature in the output key
let ko = Shake256(domain_separator || "\xO01" || ki || sig_ct) [0:256];

// Concatenate both (A)KEM ciphertezts and the signature
let cto = ctl || ct2 || sig_ct;

return (ko, cto);

fn X25519Kyber768: :decap(sk_mine: X25519Kyber768::SecretKey, pk_theirs:
Optional<X25519Kyber768: :PublicKey>, ct: X25519Kyber768: :Ciphertext) {
// Access the individual

—

let (skrl, skr2, skr3)
let (pkrl, pkr2, pkr3)
let (pksl, pks2, pks3)
o 1/2/3

let (ctl, ct2, sig_ct)

subkeys and ciphertexts

sk_mine; // Secret key, recipient, 1/2/3

sk_mine.public_key(); // Public key, reciptent, 1/2/3
pk_theirs.unwrap_or((None, None, None)); // Public key, sender,

ct;

// Decapsulate the individual ciphertexts
let k1 = X25519HkdfSha256: :decap(skrl, pksl, ctl);
let k2 = Kyber768::decap(skr2, ct2);

let domain_separator =
DOMAIN_SEPARATOR_AUTH
} else {

s

if sk_mine.is_some() {

DOMAIN_SEPARATOR_NOAUTH

// Reconstruct the shared secret, key commitment, and signature
// encryption material by applying the same

// key derivation step as in the encap function

let okm = if sk_mine.is_some() {

Shake256 (domain_separator || "\x00" || k1 || k2 || ctl || pksl || pkrl)[0:256];
} else {

Shake256 (domain_separator || "\x00" || k1 || k2 || ctl || pkrl)[0:256];
};

let (ki, kc) = (okm[0:256], okm[256:512]);

// Decrypt the signature
let sig = sig_ct ~ okm[512 : 512 + Dilithium3::SIGNATURE_LENGTH] ;

// If a signature key is given, wvalidate the signature

if skr3 !'= None {

Dilithium3::verify(pks3, sig, kc)

let ko = Shake256(domain_separator || "\xO01" || ki || sig_ct) [0:256];

return ko;

}

	Introduction
	How to read this paper

	Avionics & Cryptography
	Avionics Software Engineering
	Certification in Avionics
	Cryptography
	The basics of encryption
	Engineering encryption systems: A checklist
	Off-the-shelf encryption systems
	Post-quantum cryptography
	Migrating encryption protocols to post-quantum security
	Comparing Avionics and Cryptography

	Related works
	ACARS
	LDACS
	AeroMACS

	Our Contribution
	Post-quantum security for HPKE
	Integrating HPKE in an ARINC 653 partition

	Evaluation: Performance and Memory Overhead
	Evaluation: Security
	Conclusion
	Outlook
	Primitives for protocol construction
	AEAD
	NIKE
	Signatures
	KEMs
	Authenticated KEMs

	X25519Kyber768
	X25519Kyber768Dilithium

