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Abstract

We present two techniques to improve the computational and/or communication
costs of STARK proofs: packing and modular split-and-pack.

Packing allows to generate a single proof of the satisfiability of several constraints.
We achieve this by packing the evaluations of all relevant polynomials in the same
Merkle leaves, and combining all DEEP FRI functions into a single randomized validity
function. Our benchmarks show that packing reduces the verification time and proof size
compared to individually proving the satisfiability of each witness, while only increasing
the prover time moderately.

Modular split-and-pack is a proof acceleration technique where the prover divides
a witness into smaller sub-witnesses. It then uses packing to prove the simultaneous
satisfiability of each sub-witness. Compared to producing a proof of the original witness,
splitting improves the prover time and memory usage, while increasing the verifier time
and proof size. Ideas similar to modular split-and-pack seem to be used throughout
the industry, but 1) generally execution traces are split by choosing the first k rows,
then the next k rows, and so on; and 2) full recursion is used to prove the simultaneous
satisfiability of the sub-witnesses, usually combined with a final wrapper proof (typically
a Groth16 proof). We present a different way to split the witness that allows for an
efficient re-writing of Plonkish-type constraints. Based on our benchmarks, we believe
this approach (together with a wrapper proof) can improve upon existing splitting
methods, resulting in a faster prover at essentially no cost in proof size and verification
time.

Both techniques apply to popular FRI-based proof systems such as ethSTARK
[Sta21], Plonky2/3 [Tea22], RISC Zero [BGT23], Boojum [zkS23], and others.
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1 Introduction

STARKs are non-interactive proof systems known for their efficient prover and verifier char-
acteristics. These systems are now crucial in decentralized environments, especially regard-
ing blockchain scalability. Projects like StarkWare, Polygon, and RISC Zero use STARKs
to scale Ethereum. At the same time, these companies have created frameworks that can
be used to generate computational integrity proofs with multiple applications.

However, because these proof systems use Merkle tree commitments, they have not bene-
fited from the exciting breakthrough of folding schemes [KST21], which require homomorphic
commitments. Instead, STARKs have continued to rely on their sublinear verifier costs to
implement recursion. This recursive proof generation method serves both as an IVC/PCD
construction in the STARK setting, and as the preferred method for batch-proof generation.
Batch-proof generation is now becoming crucial in scaling L2 solutions. For instance SHARP
("SHARed Prover") is a fundamental part of the Starkware tech stack that allows for the
batch-generation and verification of multiple Cairo programs. This increases transaction
throughput and reduces both latency and gas fees on Starknet, Starkware’s decentralized
zk-rollup.

Another use case of recursion comes from a technique that seems to be used through-
out the industry: splitting long execution traces into smaller traces. When doing such a
"splitting", one needs to carefully express constraints that span across trace chunks, so as
to enforce the same exact constraints as before the splitting. Then, a proof is generated for
each chunk, and the prover produces a recursive proof of the correctness of all the generated
proofs. As we mentioned, this seems to be a widespread technique, and a concrete example
of this technique being used by RISC Zero can be found in a zkSummit talk [Gaf]. As far
as we are aware, this technique has not been formally analyzed yet, and further, it has not
been fully exploited. Indeed, the common way teams are splitting execution traces is by
selecting the first k rows, then the next k rows, and so on. We call this approach sequential
splitting. In this work, we present a more efficient variation of this idea.

Overall, this outlines two interesting research directions for optimizing STARK systems:
improving batch/recursive proof generation, and finding ways to improve the split-and-prove
method.

1.1 Our contribution

We present two ideas to improve STARK proof generation and/or verification: packing and
modular split-and-pack. We will describe the two techniques in the context of the Plonkish
relation and what we call the STARKish IOP.

In this work, by Plonkish relation we refer to a relation which consists of an AIR instance
[Sta21] with copy constraints [GWC19]. This relation is essentially the relation found in
Plonky2/3 [Tea22] (see also [BGK+23]). By STARKish IOP we refer to the Plonky2-based
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IOP as described in [BGK+23]. This is essentially the ethSTARK protocol [Sta21] with
added support for permuatiton arguments. The two techniques described in this paper still
apply in the simpler setting, where constraints are just AIRs, and the underlying IOP is the
ethSTARK IOP. Similarly, the techniques still apply when we add lookups to the Plonkish
relation and support for lookup arguments in the STARKish IOP.

At a high level, the two techniques utilize the fact that recent STARKs are constructed
from a "δ-correlated IOP" [BGK+23]. These are roughly IOPs in which the verifier’s final
decision procedure is as follows: 1) the verifier checks that a polynomial equation holds at
a single point (DEEP QUERY procedure), and 2) the verifier checks that certain functions
are polynomials of low degree by using FRI (DEEP FRI procedure).

1.1.1 Packing

Packing is a batch-proof generation method. With packing, a prover can create a proof for
the simultaneous satisfiability of witnesses to different Plonkish (or AIR, or RAP, and so
on) instances. These witnesses can be thought of as execution traces (matrices of dimension
n × r) representing the application of a certain program during n steps to r registers. The
correctness of the trace representing a certain program is enforced by using polynomial
constraints between its entries. As mentioned, one can reduce the integrity of a trace to
two checks: that a certain polynomial equation holds at a random point, and that certain
functions are low-degree polynomials. The second check is the most expensive of the two.
For our purposes, the batched-FRI proximity test is used to carry out this check, which
guarantees that a list of functions f1, . . . , fn : D → F are (close to) low degree polynomials1.
Here D is certain subset of a finite field F.

Batched-FRI simply works by applying the FRI low-degree test to a random linear com-
bination of the maps f1, . . . , fn. Hence if we need to test more functions we can simply
linearly combine them with the functions that we already combined. This allows us to
batch all functions to be tested for the low-degree property across different execution traces
(representing different programs), and apply a single batched-FRI test. Our second obser-
vation was already presented in [MAGABMMT23]. During the batched-FRI protocol, we
often have to reveal the evaluations of functions at the same point, and therefore when
using Merkle tree commitments we may batch all the evaluations at the same point in the
same Merkle leaf. We do this across different execution traces, while [MAGABMMT23]
was limited to the same execution trace. These two improvements theoretically reduce the
Prover work and the proof size, because the Prover performs essentially one FRI protocol
and computes less Merkle commitment roots. The Verifier has a bit more work to do to
hash Merkle leaves, but performs much less hash operations.

As we discuss later, we believe packing to be a technique that, in combination with
recursion, can improve the cost of proving (multiple) large and complex statements. Further,
packing is a used as a subroutine in the second technique we present in this paper, and which
we call modular-split-and-pack.

Asymptotic and concrete improvements of packing. The theoretical improvement
brought by packing is shown in Table 1.

The improvements concern mainly the communication complexity and the Verifier com-
plexity. More precisely, for the proof size we see that the Prover sends less Merkle commit-
ments to witness functions, as evaluations of witness functions are packed in the same leaves
across instances. Additionally, the Prover sends less Merkle commitments and decommit-
ment information during the FRI protocol, as it performs only one FRI protocol. The Prover
sends exactly the same amount of evaluations when packing proofs. On the Verifier side,
the improvement is contained in the hash operations it performs. When packing proofs, the

1In fact, batched-FRI shows the stronger property that the maps fi have correlated agreement in a
Reed-Solomon code
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Sequential, N instances Packed, N instances

Proof size (4 +
∑

i∈[N ] log(ni))N · µ bits (4 + log(n)) · µ bits
+
∑

i∈[N ](4ri + νi + si + ℓi + 1) · log(K) bits +
∑

i∈[N ](4ri + νi + si + ℓi + 1) · log(K) bits

+O
(
sFRI

∑∑∑
i∈[N ] log(ρ

−1ni) log(ni)
)
· µ bits +O

(
sFRI log(ρ

−1n) log(n)
)
· µ bits

Verifier work O
(∑

i∈[N ]

(
si + log(ni) +

∑
k∈|Pi| fops(Pi,k)

))
K O

(∑
i∈[N ]

(
si + log(ni) +

∑
k∈|Pi| fops(Pi,k)

))
K

+2sFRIH of size r1 log(K) +2sFRIH of size
∑

i∈[N ] ri log(K)

+2sFRIH of size s1 log(K) +2sFRIH of size
∑

i∈[N ] si log(K)

+2sFRIH of size ν1 log(K) +2sFRIH of size
∑

i∈[N ] νi log(K)
... +O(sFRI log(ρ

−1n) log(n))H
+2sFRIH of size rN log(K)
+2sFRIH of size sN log(K)
+2sFRIH of size νN log(K)

+O(sFRI
∑∑∑

i∈[N ] log(ρ
−1ni) log(ni))H

Table 1: Impact of packing N proofs of the satisfiability of Plonkish instances PLi = (Pi,Qi, σi,PIi, ri, r′i, ℓi, ni,F,K).
Here, ni and ri is the number of rows and columns in the execution trace, respectively; σi is the permutation
specifying the permutation constraints; r′i is the number of columns that are subject to permutation constraints; Pi

are the constraint polynomials; PI are the public inputs; Qi are “selector vectors” and ℓi = |Qi|.
On the left, we specify the proof size and verifier work associated to applying the STARKish IOP to each witness

separately, and on the right we apply the STARKPack IOP. We set n = maxi∈[N ](ni), and recall that ρ is the rate
used in the IOP (we may assume it is constant). The hash function is assumed to be a function {0, 1}∗ → {0, 1}µ.
In the table, for the verifier work, K represents the cost of a field operation over K, and H represents the cost of a
hash function application. Whenever we write "of size" for a hash computation, this means that the hash function is
applied to a bitstring of the corresponding size (e.g., r1 log(K)). If no size is mentioned, it is assumed that the hash is
applied to a bitstring of length µ. The quantity sFRI is the number of times the QUERY phase of FRI is repeated.
The FRI COMMIT phase is assumed to be carried out until polynomials are supposedly constant. The quantities
si, νi are the quantities appearing in the STARKish IOP (packed and not packed), see for example Section 3.1. The
quantity fops(Pi,k) represents the maximum number of K field operations necessary to evaluate the 2ri + ℓi-variate
polynomial Pi,k at any point in H2ri+ℓi

i (Hi is the evaluation domain).

Verifier hashes bigger leaves for witness functions Merkle trees, but there are less of these.
Finally when packing proofs, the Verifier only checks Merkle decommitment information
for one application of FRI. In the case of proving multiple instances of the same program,
more improvements are possible, e.g., we can make multiple proof instances share common
parameters such as public input parameter columns, fixed selector columns, or lookup tables.

Our benchmarks can be found in Section 3.3 and Appendices A.1, A.2 and A.3. We
use the Winterfell and RISC Zero libraries, and focus on proving execution traces of simple
programs. Precisely, for the Winterfell library, the program checks that xi+1 = x3i + 42
mod (p) for some prime p, for i ∈ [0, 216). The execution trace has 216 rows. For the RISC
Zero library, the program proves the knowledge of the prime factors of a number, yielding,
again a trace of 216 rows. The number of columns in RISC Zero is fixed to 275 (it cannot
be customized because it is determined by the r0vm circuit2). We tested different column
sizes in Winterfell.

For 9 traces of 275 columns, the packed RISC Zero verifier is around 2.2 times faster
than the unpacked RISC Zero verifier. Further, the packed Winterfell verifier is 2.4 times
faster than the unpacked Winterfell verifier. Both the unpacked RISC Zero and Winterfell
verifier checked each proof for the 9 traces sequentially.

The packed RISC Zero proof is around 2.5 times smaller than the proof produced by the
unpacked RISC Zero scheme, and the packed Winterfell proof is 1.4 times smaller than the
proof created by the unpacked Winterfell scheme3. We also note that as the number of traces
packed together increases, the improvements in both proof size, shown in Appendix A.3, and
verifier time, shown in Appendix A.2, become more significant as can be seen in Fig. 1 and
Fig. 2.

In all our Winterfell benchmarks, the prover time was improved slightly, but remained
2https://docs.rs/risc0-circuit-rv32im-sys/latest/risc0_circuit_rv32im_sys/
3Both the RISC Zero and Winterfell proofs are the proofs for the 9 traces generated one after the other.
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(a) Verification Time (b) Proof Sizes

Figure 1: Improvements for Winterfell with 275 columns

(a) Verification Time (b) Proof Sizes

Figure 2: Improvements for Risc Zero

comparable to the prover that individually proves the satisfiability of all witnesses. This was
especially true when the number of columns got larger (for 275 columns, the improvement
in prover time was around 5%). For our RISC Zero benchmark, the prover time was slightly
worse as can be seen in Appendix A.1.

1.1.2 Modular Split-and-pack

Informally, trace splitting is a proof acceleration method where the prover informally splits
the execution trace of size n × r into chunks of size n/k × r and then applies the origi-
nal constraints to the entries in the split witnesses. Since the chunks have less rows, we
can interpolate their columns with smaller degree polynomials over smaller domains. The
constraints for the entries in the chunks need to be translated into polynomial equations in-
volving the polynomials interpolating the new, smaller columns. The new constraints must
stay consistent with the previous constraints. The way to do this translation will depend on
the splitting, and in general it is hard to do efficiently.

As far as we understand, ideas similar to splitting are used throughout the industry. For
instance, from [Gaf] we see that companies like RISC Zero split long execution traces into
sequential chunks (with constraints that may overlap from one chunk to the other). This
means that if the execution trace is represented as a matrix of size n × r, they split it by
choosing the first k rows, then the next k rows, and so on. Recursion is usually used to
prove the simultaneous satisfiability of each chunk. Splittings other than sequential do not
seem to be explored or considered. We present a new type of splitting modulo k, where rows
are selected according to the residue of their index modulo k, where k divides n. We show
that for Plonkish-type constraints that involve consecutive rows, our modular-split-and-pack
technique allows to write k constraints for each original constraint (which is optimal). For
typical constraints, a sequential splitting requires more, essentially because constraints can
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(a) Modulus Labs benchmarks on Winterfell’s prover time repartition

(b) Modulus Labs benchmarks on Plonky2’s prover time repartition

Figure 3: Modulus Labs benchmarks on Prover time spread for the Winterfell (a) and
Plonky2 (b) libraries.

involve the last row from a chunk and the first from the next one.
It is not immediately clear that splitting traces in other ways could lead to improvements

in the number and degree of the resulting constraints. It just so happens that if constraints
have some structure, then there are splittings which are more efficient in the rewriting of
the constraints over the smaller chunks.

For instance, for Plonkish-type constraints (see Definition 2.1), we show that a splitting
"modulo k" leads to better performance than the sequential splitting. Splitting modulo k
splits rows in the execution trace according to the residue of their index modulo k. We show
in Example 4.4 that this allows the Plonkish-type constraints to be efficiently translated
into polynomial constraints. Once this splitting and constraint translation is done, the
Prover can use a technique similar to packing to prove the simultaneous satisfiability of each
chunk. This means that the evaluations of the witness polynomials at the same point in
the evaluation domain are batched in the same Merkle leaf. It also means that all functions
involved in all batched-FRI test are linearly combined into a single validity function.

We call the combination of the modular splitting with the packing technique modular
split-and-pack.

Asymptotic and concrete improvements of modular split-and-pack. In Table 2,
we see the impact of modular split-and-pack for a Plonkish instance. Precisely, the splitting
is done modulo k. The operation is used on a Plonkish instance with n rows.

We see that modular split-and-pack reduces the cost of number-theoretic transforms from
O(n log(n)) to O(n log(n/k)). The leaves of the Merkle trees corresponding to the witness
functions are around k times larger, but the Prover performs ∼ k times less hash operations.
Note the leaves of all other Merkle trees do not grow in size.

To understand the significance of these cost improvements, it is important to understand
the different profile costs of creating STARKish proofs. For this, we follow the benchmarks
(c.f. Fig. 3) run by the Modulus Labs team [Lab23]. We see that the NTTs and Merkle tree
commitments to witness functions represent a significant part of the total computation. For
the Winterfell library [KGL+20], these operations represent around 50% of the overall prov-
ing time. For Plonky2 [Tea22], they comprise around 70% of the proving cost. Therefore,

6



No splitting Split mod k

Prover work O((r +
⌈
r
u

⌉
)n log(n))F O((r +

⌈
r
u

⌉
)n log(n/k))F

+O((r+ r
u
+ 1)ρ−1n log(ρ−1n) +M ′ρ−1n)K +O((r+ r

u
+ 1)ρ−1n log(ρ−1n/k) +Mρ−1n/k)K

+O(ρ−1n
∑

j∈[|P|] fops(Pj))K +O(ρ−1n
∑

j∈[|P|] fops(Pj))K
+(ρ−1n)H of size r · log(K) +(ρ−1n/k)H of size kr · log(K)

+(ρ−1n)H of size (⌈r/u⌉+ 1) · log(K) +(ρ−1n/k)H of size (⌈kr/u⌉+ 1) · log(K)
+(ρ−1n)H of size ν · log(K) +(ρ−1n/k)H of size ν · log(K)

+O(ρ−1n)H +O(ρ−1n/k)H

Proof size (4 + log(n))µ bits (4 + log(n/k))µ bits
+M ′ · log(K) bits +M · log(K) bits

+O(log(ρ−1n) log(n))µ bits +O(log(ρ−1n/k) log(n/k))µ bits

Verifier work O(s+ log(n) +
∑

j∈[|P|] fops(Pj))K O(s+ log(n/k) + k ·
∑

j∈[|P|] fops(Pj))K
+2sFRIH of size r · log(K) +2sFRIH of size kr · log(K)

+2sFRIH of size (⌈r/u⌉+ 1) · log(K) +2sFRIH of size (⌈kr/u⌉+ 1) · log(K)
+2sFRIH of size ν · log(K) +2sFRIH of size ν · log(K)
+O(log(ρ−1n) log(n))H +O(log(ρ−1n/k) log(n/k))H

Table 2: Impact of modular split-and-pack for a Plonkish instance PL = (P,Q, σ,PI, r, r′, ℓ, n,F,K) "modulo k" (c.f.
Example 4.4) into a split Plonkish instance, when proving the satisfiability of witnesses to each instance Recall that
ρ is the rate used in the IOP (we may assume it is constant). The hash function is assumed to be a function
{0, 1}∗ → {0, 1}µ. In the table, for the prover and verifier work, K represents the cost of a field operation over K
(similarly for F), and H represents the cost of a hash function application. Whenever we write "of size" for a hash
computation, this means that the hash function is applied to a bitstring of the corresponding size (e.g., r log(K)). If no
size is mentioned, it is assumed that the hash is applied to a bitstring of length µ. The quantity sFRI is the number of
times the QUERY phase of FRI is repeated, we assume it is a small constant and remove it from asymptotic estimates
for simplicity. The FRI COMMIT phase is assumed to be carried out until polynomials are supposedly constant. The
quantities s, ν are the quantities appearing in the STARKish IOP (split and not split), see for example Section 4.
The quantity M is equal to (3k + 1)r + ⌈kr/u⌉+ kl + ν + 1, and M ′ is equal to 4r + ⌈r/u⌉+ ν + ℓ+ 1. The quantity
fops(Pj) represents the maximum number of K field operations necessary to evaluate the 2r+ ℓ-variate polynomial Pj

at any point in H2r+ℓ (H is the evaluation domain).

reducing the amount of prover computation in those operations is crucial to have an impact
on the overall proving time. This is adressed by the modular-split-and-pack technique.

However, this should be nuanced by saying that the prover needs to send around k times
more evaluations in the proof, and the verifier performs k times more field operations to
compute the FRI validity funtions. This dependency on k means that one should generally
split into a small number of chunks (see the benchmarks below), and use a wrapper proof
(with, say, Groth16 [Gro16]) to decrease the proof size and verification time. We believe
that modular-split-and pack could improve upon current methods for proving (multiple)
long execution traces. We believe it could lead to a technique that is faster for the prover,
while having a marginal impact on the proof size and verifier work.

Our benchmarks (cf. Section 4.3) compare modular split-and-pack to running a STARK
on the whole execution trace without splitting. They were run with the Winterfell library
[KGL+20] (which uses ethSTARK [Sta21]) for an execution trace representing the same
simple program we used for the packing benchmarks. In particular, there were no copy
constraints or lookups. For this program, and a trace of a typical dimensions (216 × 275)
the reduction in the Prover time was around 20% when splitting modulo 4 (into 4 chunks
of dimension 214 × 275). The Verifier was around 2.2 times slower, and the proof around 3
times larger. When splitting modulo 32, the prover time is reduced by around 40% , but
the proof is ∼ 11 times larger, and the verifier ∼ 6 times slower as can be seen in Fig. 15 and
Fig. 16. The prover’s performance exhibits an exponential improvement when the number of
splits is relatively low. However, as the number of splits increases, the prover’s improvement
quickly reaches an asymptotic limit. In contrast, the verifier time and proof size demonstrate
rapid improvements for a small number of splits, followed by a linear growth as the number
of splits continues to increase. This behavior suggests the existence of an optimal "sweet
spot" in the lower range of the number of splits, where the trade-off between the prover’s
performance and the verifier time and proof size is most favorable.
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1.2 Related work

Over the past few years there has been a rapid development of folding techniques [KST21]
[KS22][KS23][ZGGX23][BC23][EG23]. These methods build upon the idea of post-processing
for some predicates in SNARKs, which first appeared in [BGH19] and was formalized in
[BCMS20]. Most rely on additively homomorphic commitments, which STARKs do not use
(there is some recent work that explores IVC and PCD in the context of non-homomorphic
vector commitments [BMNW24]). The packing technique can be seen as an attempt to
transpose the idea of post-processing to the STARK setting, by batching FRI instances into
a single execution. Of course, the resulting technique is weaker, as the witness size increases
linearly in the number of packed instances. Furthermore, packing does not lead to primitives
like IVC (and PCD).

The idea of batching relevant evaluations of witness functions at the same point in the
same Merkle leaf was already present in [MAGABMMT23]. That work did not leverage the
full power of the batched FRI protocol to extend this Merkle commitment optimization to
multiple instances.

1.3 Structure of the paper

Section 2 will introduce all the necessary preliminary notions, such as the description of
the Plonkish arithmetization and permutation arguments. In Section 3, we introduce the
packing technique and the STARKPack IOP, and formally prove the security of the resulting
proof system. In Section 4, we introduce the splitting technique, and show how to construct
an IOP for a particular type of splitting "modulo k". The performance of both methods is
discussed in Sections 3 and 4, and detailed benchmarks are presented in Appendix A.

2 Preliminaries

2.1 Plonkish arithmetization

We first recall the definition of Plonkish arithmetization. We then see that witnesses for
the simultaneous satisfiability of Plonkish instances are equivalent to a witness for a packed
Plonkish relation, which we describe. We closely follow [BGK+23]4. For a vector x ∈ Fn, we
denote by xi its i-th entry. We can also write x[i] for the i-th entry, typically if the vector
already has an index in its notation.

Definition 2.1 (Plonkish relation). A Plonkish instance PL = (P,Q, σ,PI, r, r′, ℓ, n,F,K)
consists of:

• A list P of (2r + ℓ)-variate polynomials Pi(X1, . . . , Xr, Y1, . . . , Yr, S1, . . . , Sℓ) for all
i ∈ [|P|].

• A list Q of ℓ vectors (q1, . . . , qℓ) ∈ (Fn)ℓ. These are called selector vectors.

• r′ ≤ r. Intuitively, witnesses for Plonkish instances are traces of size n × r, and r′ is
the number of columns whose entries are subject to a permutation constraint.

• σ : [r′n] → [r′n] is a permutation.

• PI ⊂ [rn] indicates, intuitively speaking, the location of the public inputs in the witness
traces.

An execution trace for a Plonkish instance is a vector w ∈ Fnr. It is helpful to consider
w as a matrix of size n× r whose entry (i, j) is given by w(i−1)·r+j . Such a trace is said to
satisfy PL if the following conditions hold:

4Here we refer to the “Oplonky” relation [BGK+23] as “Plonkish”
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1. (Circuit constraints satifaction). For all j ∈ [|P|] and all i ∈ [n− 1],

Pj(w(i−1)·r+1, . . . ,wi·r, . . . ,w(i+1)·r, q1[i], . . . , qℓ[i]) = 0

2. (Copy constraints satisfaction). For all i ∈ [r′n],

wi = wσ(i)

We denote by wPI the vector formed by the entries {wi | i ∈ PI}. We call this vector the
public part of w. The Plonkish relation is then defined as:

RPlonkish :=

(PL,x,w)

∣∣∣∣∣∣∣∣∣∣
PL = (P,Q, σ,PI, r, r′, ℓ, n,F,K),

x ∈ F|PI|,

x = w
PI,

w ∈ Fnr satisfies PL


Remark 2.2. The original Plonkish relation in [Tea22, BGK+23] inlcudes further a so-called
“repetition parameter”. This parameter controls the number certain checks are performed.
Repeating certain checks enables working over a small field, such as the Goldilocks field
[Tea22]. However, recent trends in industry seem to have departed from this approach.
Instead of repeating some checks, one simply samples challenges from a sufficiently large
extension field [BGT23]. In this work, for simplicity, we also assume there are no repeated
checks.

2.2 Grand product arguments

In the STARKish proof system, copy constraints and lookup checks are implemented by
using what is called "grand product" arguments [GWC19, GW20, Gab]. In our techniques
(splitting and modular-split-and-pack) these subprotocols are the ones that will undergo the
most significant changes. Because of these, we describe them in detail here.

Protocol: multiset check. In a multiset check, we want to check that two vectors a =
(a1, . . . , an), b = (b1, . . . , bn) ∈ Fn have the same elements counting repetition, possibly in
a different order. With high probability over γ ∈ F chosen uniformly at random, this is true
if and only if: ∏

i∈[n]

(ai + γ) =
∏
i∈[n]

(bi + γ)

This fact allows one to construct the following IOP for multiset check.
Assumption: There is D = ⟨g⟩ ⊂ F∗ such that |D| = n.
Inputs: Two vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Fn. We denote a, b the

polynomial interpolants of a and b, respectively, over the set D. That is, for all i ∈ [n],
a(gi) = ai, and similarly for b.

Protocol:

1. The verifier chooses γ ∈ F uniformly at random.

2. The prover gives oracle access to the verifier to the polynomial Z ∈ F<n[X] such that
Z(g) = 1, and for all i ∈ {2, . . . , n}, Z(gi) =

∏
1≤j<i(aj + γ)/(bj + γ).

3. The verifier checks that for all x ∈ D, L1(x) · (Z(x)− 1) = 0, and Z(x) · (a(x) + γ) =
(b(x) + γ) · Z(x · g).

9



Here L1 is the Lagrange polynomial for g, i.e. L1(g) = 1 and for all x ∈ D \ {g},
L1(x) = 0. Note in turn that the last two conditions can be expressed as polynomial
constraints: the multiset check holds if and only if the polynomials L1(X) · (Z(X)− 1) and
Z(X) · (a(X) + γ) − (b(X) + γ) · Z(X · g) are divisible by

∏
y∈D(X − y). The quantities

Z(gi) are the partial products that are included in the accumulator column.
The multiset check is usually used to perform a permutation check between polynomials

f, h ∈ F<n[X], meaning that for a permutation σ : [n] → [n], we want to check that
h(gi) = f(gσ(i)) for all i. The way this is done is by applying the multiset check to the
vectors

(f(g) + β, . . . , f(gn) + β · n), (h(g) + β · σ(1), . . . , h(gn) + β · σ(n))

for β ∈ F chosen uniformly at random. It can be extended further to a permutation
check for f1, . . . , fk, h1, . . . , hk ∈ F<n[X] given a permutation σ : [nk] → [nk]. This is done
by applying the permutation check to the vectors in Fnk constructed by setting

f(i−1)·k+j = fj(g
i)

(and similarly for h(i−1)·k+j). In this case, for j ∈ [k] one defines the polynomials

SIDj
(gi) = (i− 1) · k + j

Sσj (g
i) = σ((i− 1) · k + j)

Then the polynomials f ′
j(X) = fj(X)+βSIDj

(X) and h′j(X) = hj(X)+βSσj (X) correctly
interpolate the value of the vectors (fj(g) + βj, . . . , fj(g

n) + β((n− 1)k + j)) and (hj(g) +
βσ(j), . . . , hj(g

n) + βσ((n− 1)k + j)) respectively. Then one can apply the grand product
argument to f ′ =

∏
f ′
j and h′ =

∏
h′j .

Finally, these extended permutation checks can be applied to enforce copy constraints.
For a partition T = {T1, . . . , Ts} of [kn], a set of polynomials f1, . . . , fk ∈ F<n[X] is
said to copy-satisfy T if, for f(j−1)·n+i as defined above, we have fℓ = fℓ′ whenever ℓ, ℓ′

are in the same block Ti. This can be checked with an extended permutation check on
f1, . . . , fk, f1, . . . , fk (with polynomials repeated twice), by defining a permutation σ(T ) :
[kn] → [kn] whose cycle decomposition is given by the blocks Ti.

Protocol: plookup. Lookups are a powerful primitive which allows to verify that a certain
subset of witness values are contained in the values of predefined (lookup) tables. We present
and use plookup as it is the lookup argument used in STARKish, and it is also used in the
RISC Zero proof system.

Suppose for simplicity that we want to check that the values taken by f ∈ F<n[X] over
D = {g, . . . , gn = 1} ⊂ F∗ are included in the table t ∈ Fn (if the table is smaller, we pad it
by repeating its last element until it has length n). Let s be the concatenation (f, t), and
sort it by t (meaning that elements in s appear in the same order as they do in t). It is
shown in [GW20] that it now suffices to do a multiset check between s′ and ((1 + β)f, t′),
where:

• β ∈ F is chosen uniformly at random

• s′ ∈ F2n and t′ ∈ Fn are vectors defined by s′i = si + βsi+1 and t′i = ti + βti+1

This also extends to vector lookups and multiple tables, as seen in [GW20].

Remark 2.3. Note again that the multiset check can be translated into polynomial con-
straints involving the polynomials representing the vectors of values we are checking, and the
polynomial representing the partial product quantities. All permutation, copy constraint,
and lookup checks are multiset checks. This means that if the prover commits to the partial
product polynomials, all these checks can be translated into polynomial constraints involving
the witness polynomials.
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3 The packing technique

In this section we describe how the packing technique applies to the STARKish IOP. Recall
that the STARKish IOP is the Plonky2 IOP [Tea22, BGK+23], this is an IOP that can
prove the satisfiability of a witness for a Plonkish instance which is essentially an AIR with
copy constraints [GWC19]. In the literature, this arithmetization –with small variations in
their formulations– is also referred to as RAPs or TurboPlonk. When adding lookups to the
relation and support for lookup arguments in the IOP, it is also referred to as UltraPlonk.
The packing technique applied to the STARKish IOP results in an IOP, which we call
STARKPack, that can prove the simultaneous satisfiablity of witnesses for different Plonkish
instances. We then explain how to extend that argument to support plookup, which we still
call the STARKPack IOP, or STARKPack with lookups. Then, we provide soundness proofs
for the STARKPack IOP.

Definition 3.1 (Packed Plonkish relation). Informally, the packed Plonkish relation is a
conjunction of Plonkish relations (cf Definition 2.1). Formally, it is defined as:

RPPlonkish :=



(N,PL1, . . . ,PLN , x⃗, w⃗)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N is an integer ≥ 1,
PLi = (Pi,Qi, σi,PIi, ri, r

′
i, ℓi, ni,F,K)

is a Plonkish relation ∀i ∈ [N ],

x⃗ = (x1, . . . ,xN ) ∈
∏
i∈[N ]

(FPIi),

w⃗ = (w1, . . . ,wN ) ∈
∏
i∈[N ]

(Fniri),

For all i ∈ [N ], (wi)PIi = x
i,

For all i ∈ [N ], wi satisfies PLi


The STARKPack IOP is an IOP constructed from the STARKish IOP that can prove

the simultaneous satisfiability of Plonkish instances, or equivalently, the satisfiability of a
Packed Plonkish relation.

3.1 Description of the STARKPack IOP

The STARKPack IOP, denoted by ΠSTARKPack, mainly follows the STARKish protocol. We
fix an integer N ≥ 1, and a finite field extension K of F. We fix N Plonkish instances, for
each i ∈ [N ] their parameters will be denoted by PLi = (Pi,Qi, σi,PIi, ri, r

′
i, ℓi, ni,F,K). For

each i, we assume that there is a multiplicative subgroup Di = ⟨gi⟩ ⊂ F× of size ni. Its
vanishing polynomial is denoted by ZDi

(X) ∈ F<ni [X]. Further, we assume that if ni ≤ ni′ ,
then Di is a multiplicative subgroup of Di′ (in which case we necessarily have ni | ni′).

We also fix n = maxi ni. The integer n is the largest trace length among all instances.
It corresponds to a trace evaluation domain D = ⟨g⟩ ⊂ F× of size n. We fix an evaluation
domain H ⊂ K× which contains a non-trivial coset of D. When we say that the prover gives
oracle access to a function, we mean that the prover interpolates a vector with entries in F
over a certain subgroup of F× ; and then provides oracle access to this interpolant over H.
We fix a witness (or execution trace) w ∈

∏
i∈[N ](Fniri) and public part x for the Packed

Plonkish instance (N,PL1, . . . ,PLN ). Finally, we fix auxiliary parameters aux = (⃗t, s) for
the Batched-FRI protocol. The parameter t⃗ = (t1, . . . , tm) ∈ N indicates that we will use
ti-to-1 maps in the i-th COMMIT phase of FRI, and s is the number of repetitions of the
QUERY phase of FRI.

Preprocessing. The prover and verifier compute the selector polynomials as:

∀i ∈ [N ], ∀j ∈ [ℓi], qj
i(X) =

ni∑
k=1

qj
i[k] · Li

k(X)

11



where the Li
k are the Lagrange polynomials for the basis {gi, . . . , gnii = 1}. Additionally, for

all i ∈ [N ] and all j ∈ [r′i], the prover and verifier agree on the splitting parameter ui for the
permutation argument (see below), and compute the permutation polynomials SiIDj

, (Siσi
)j

described in Section 2.2.
Additionally, define the FRI degree correction terms ei := (n−1)−(ni−2) for all i ∈ [N ].

Round 1. The prover computes the wire polynomials as follows:

∀i ∈ [N ], ∀j ∈ [ri], aij(X) =

ni∑
k=1

w(j−1)·ni+k · Li
k(X)

The prover then gives oracle access to the wire polynomials aij : H → K to the verifier.
The verifier samples uniform randomness used in the permutation argument β, γ ∈ K. The
prover will use the same randomness for all copy constraint arguments and lookup arguments
(see next section for lookups) across instances.

Round 2. The prover sends oracle access to all permutation and partial product polyno-
mials. Here the terminology does not concord with what we have presented in Section 2.1,
so we explain it. For simplicity fix i ∈ [N ]. The prover is supposed to provide oracle access
to a polynomial zi ∈ F<ni [X] such that:

zi(gX) · gi(X) = f i(X) · zi(X) (1)

where:

f i(X) =

[ri]∏
l=1

(ail(X) + β · SiIDl
(X) + γ) :=

[ri]∏
l=1

f i
l (β, γ,X)

gi(X) =

[ri]∏
l=1

(ail(X) + β · (Siσi
)l(X) + γ) :=

[ri]∏
l=1

gil(β, γ,X)

We have called zi the partial product polynomial before. However, if ri is large, then so
is the degree of the polynomial constraint in Eq. (1). To reduce its degree, it is split into
many polynomial constraints. For the integer ui determined in preprocessing, the prover
splits the products as follows. Define si = ⌈ri/ui⌉, then for each k ∈ [si]:

f i
k(β, γ,X) = f i

k(X) :=

ui·k∏
l=(ui−1)·k+1

f i
l (β, γ,X)

gik(β, γ,X) = gik(X) :=

ui·k∏
l=(ui−1)·k+1

gil(β, γ,X)

Now the prover will compute polynomials πi
1, . . . , π

i
si−1 ∈ F<ni [X] such that for all

m ∈ [ni]:

πi
1(g

m) = zi(gm)f i
1(g

m)gi1(g
m)−1

πi
k(g

m) = πi
k−1(g

m)f i
k(g

m)gik(g
m)−1, for k = 2, . . . , si − 1

These equalities can then be translated into polynomial constraints of the following form:

zi(X)f i
1(X)− πi

1(X)gi1(X) ≡ 0 mod ZDi
(X)

πi
k−1(X)f i

k(X)− πi
k(X)gik(X) ≡ 0 mod ZDi

(X), for k = 2, . . . , si − 1

πi
si−1(X)f i

si(X)− zi(gX)gisi(X) ≡ 0 mod ZDi
(X)

Li
1(X)(zi(X)− 1) ≡ 0 mod ZDi

(X)
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The πi
k will now be called the partial product polynomials, while the polynomial zi will be

called the permutation polynomial. The prover sends oracle access to the permutation and
partial product polynomials (zi)i∈[N ], (π

i
k)i∈[N ],k∈[si−1].

The verifier samples uniform randomness α ∈ K.

Round 3. The prover computes polynomials (ui, di, quoti)i∈[N ] as follows:

ui(X) := (zi(X)f i
1(X)− πi

1(X)gi1(X))α

+

si∑
k=2

(πi
k−1(X)f i

k(X)− πi
k(X)gik(X))αk

+ (πi
si−1(X)f i

si(X)− zi(gX)gisi(X))αsi+1

+ Li
1(X)(zi(X)− 1)αsi+2

di(X) :=
∑

k∈[|P|]

αk−1P i
k(a

i
1(X), . . . , airi(X), q1

i, . . . , qℓi
i)

+ α|P|ui(X)

quoti(X) := di(X)/ZDi
(X)

Then the prover splits each quoti(X) into degree ni polynomials quoti1, . . . , quot
i
ν such that

quoti(X) =
∑

l X
ni·(l−1)quotil(X).

The prover gives oracle access to the maps quoti1, . . . , quot
i
ν : H → K. The verifier

samples uniform randomness z ∈ K \ (H ∪ g−1H).

Round 4. The prover sends the evaluations

eval = (aij(z), a
i
j(gz), quot

i
l(z), π

i
m(z), zi(z), zi(gz), qc

i(z),SiIDj
(z), (Siσi

)j(z))

for all i ∈ [N ], j ∈ [ri], l ∈ [ν],m ∈ [si − 1], c ∈ [ℓi]. The verifier samples uniform FRI
randomness η ∈ K.

Batched-FRI. The prover and verifier engage in a Batched-FRI protocol with auxiliary
parameters aux to check proximity to the Reed-Solomon code RS(K,H, n) of the function
defined as follows. Consider the vector of functions defined as:(

aij(X)− aij(z)

X − z
,
aij(X)− aij(gz)

X − gz
,
quotil(X)− quotil(z)

X − z
, . . . ,

(Siσi
)j(X)− (Siσi

)j(z)

X − z

)
(2)

for all i ∈ [N ], j ∈ [ri], l ∈ [ν],m ∈ [si − 1], c ∈ [ℓi] (it contains all relevant quotients
of functions whose evaluations appear in eval). For simplicity, relabel this vector as F⃗ =
(F1(X), F2(X), . . . , FM (X)) (for some integer M). The function we apply FRI to is the
linear combination of the Fj ’s multiplied by the factors (ηj + ηj+2Xe(Fj)). Here e is defined
by the fact that if Fj is supposedly of degree at most ni−2, then e(Fj) = ei (the FRI degree
correction term defined in Preprocessing).

Decision.

1. Circuit and copy constraint check. The verifier uses eval to verify that for all
i ∈ [N ], di(z) = quoti(z)ZDi

(z). If this check fails, the verifier rejects.

2. Batched FRI check. If the prover fails the Batched-FRI protocol with auxiliary
parameters aux, the verifier rejects.

If all checks pass, the verifier accepts the proof.
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Commitments in the STARKPack IOP. When we instantiate this IOP protocol with
Merkle tree commitments, in Round 1 the prover needs to provide a commitment to the
evaluations of the wire polynomials aij : H → K coming from different instances. There is a
way to compactly pack leaves so that they contain the necessary evaluations of all relevant
functions. To do this, the prover performs an IFFT over Di, and then an FFT over H taking
O(ni log(ni) + |H| log(|H|)) field operations per function. Looking at Eq. (2), when querying
the Batched-FRI function at x0 ∈ H, we need to provide all the evaluations of the wire
polynomials at x0. Therefore, the prover can pack all the evaluations at a point x0 ∈ H
of all wire polynomials (from all Plonkish instances) into one leaf of the Merkle tree, and
compute one root for all functions.

The same holds for other functions computed by the prover during the protocol. This
idea was also presented in [MAGABMMT23].

3.2 Adding plookup to the STARKPack IOP

As we mentioned in Section 2.2, plookup allows one to verify that f ∈ Fn is included in
t ∈ Fd (meaning that {f} ⊂ {t}). Because we may pad t by repeating its last value, we may
assume d = n without loss of generality. The plookup protocol applies a multiset check to
s′, ((1 + β)f, t′) ∈ F2n for a uniformly randomly β ∈ F, where:

• s ∈ F2n is (f, t) sorted by t (elements in s appear in the same order as they do in t)

• s′i = si + βsi+1 and t′i = ti + βti+1

We make no difference in notation between the vectors and their polynomial interpolants
over the domain D = ⟨g⟩ ⊂ F× of size n, except that we denote by h1, h2 ∈ F<n[X] the
polynomials such that h1(g

i) = si and h2(g
i) = sn+i. For uniformly random β, γ ∈ F,

denote by Z ∈ F<n[X] the polynomial such that:

Z(g) = 1

Z(gi) =
(1 + β)i−1

∏
j<i(fj + γ) ·

∏
1≤j<i(γ(1 + β) + tj + βtj+1)∏

1≤j<i(γ(1 + β) + sj + βsj+1)(γ(1 + β) + sn+j + βsn+j+1)
, for 2 ≤ i < n

Z(gn) = 1

The relevant multiset check translates into the polynomial constraints:

Li(X)(Z(X)− 1) ≡ 0 mod ZD(X), for i = 1, n

Z(X) · (1 + β)(f(X) + γ)(γ(1 + β) + t(X) + βt(gX)) ≡
Z(gX) · (γ(1 + β) + h1(X) + βh1(gX))(γ(1 + β) + h2(X) + βh2(gX)) mod ZD(X)

This means that if the lookup table t is encoded as one of the wire polynomials, then the
verifier can us the same randomness sampled in Round 1 to implement plookup. The prover
will need to additionally commit to h1, h2, Z over the evaluation domain. If the degree of
the polynomial constraints gets too large, we can also split it into smaller degree constraints
exactly as for the permutation argument. Then the polynomial constraints will be included
in the d polynomials in Round 3. The rest of the protocol remains the same. We can modify
the Plonkish instances slightly to include lookup tables in the public data, we still refer to
these instances as Plonkish instances. By implementing plookup in the STARKPack IOP as
we described, we obtain an IOP to prove the simultaneous satisfiability of Plonkish instances
with lookups, still denoted by ΠSTARKPack.

3.3 Benchmarks

In this section we present benchmarks comparing the performance of STARKPack and the
protocol whereby each proof is created separately. For a detailed description of the costs of
STARKPack we refer to Table 1 in the introduction of the paper.
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In general, STARKPack optimizes both the computational and communication complex-
ities of STARK proof generation. For N programs, there is a single FRI proof. This reduces
the joint proof size and the verification time. All N proofs share a single Merkle commit-
ment and decommitment step, and rely on a single composition polynomial evaluation. This
also helps reduce both the proving and verification time, and shrinks the proof size. Fur-
thermore, the verifier samples the same randomness for all N instances, which reduces the
communication complexity.

We recall the simple programs used for benchmarks: for Winterfell, checking that xi+1 =
x3i +42 mod (p) for some prime p until the rows of the trace were 216 ; and for RISC Zero,
the program proved the knowledge of the prime factors of a number over a trace with 216

rows.

A note about the RISC Zero and Winterfell proof systems. The arithmetiza-
tion used in RISC Zero [BGT23] is a RAP. This is another way to formalize the STARK-
ish/TurboPlonk/UltraPlonk arithmetization. There are selector columns (which act as the
selector polynomials), and the prover and verifier engage in a randomized preprocessing
phase to compute the values of the relevant permutation/partial product polynomials in ad-
ditional trace columns called accumulator columns. Therefore, this arithmetization is also
amenable to permutation arguments and lookups. The IOP used in RISC Zero is similar to
ethSTARK [Sta21] with support for permutation and lookup arguments, and closely follows
the blueprint we described in Section 3.1 when the number of traces is N = 1. For this rea-
son, the same ideas that we applied to obtain the STARKPack IOP can be applied in this
setting. In this way, we obtain a proof system that can show the simultaneous satisfiability
of multiple RAP instances.

Winterfell uses ethSTARK for AIRs, and the ideas apply in the same way (AIRs are
RAPs without selector or accumulator columns).

Benchmarks. For our benchmarks, we applied the STARKPack ideas for the same pro-
gram run many times with different inputs. Fig. 1 shows the STARKPack performance
improvement when implemented in RISC Zero. The acceleration for the proving time has
been small, around 5% for the benchmarked instances: this is due to the large number of
columns. The Winterfell benchmarks presented below for traces with fewer columns show
how the proving time optimization depends on the number of columns (Fig. 5).

(a) Verification Time (b) Proof Sizes

Figure 4: RISC Zero STARKPack Implementation Performance

The diagrams below show the STARKPack performance improvement implemented in
Winterfell for AIR traces comprised of 10, 100 and 275 columns.

Remark 3.2. When we run our benchmarks on the same program with different inputs, fur-
ther optimizations are possible. For instance, all programs will use the same selector columns
and lookup tables. We can use these columns only once for all RAPs. In this extension, only
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(a) Verification Time (b) Proof Sizes

Figure 5: Winterfell STARKPack Implementation Performance for AIR traces of 10 columns

(a) Verification Time (b) Proof Sizes

Figure 6: Winterfell STARKPack Implementation Performance for AIR traces of 100
columns

(a) Verification Time (b) Proof Sizes

Figure 7: Winterfell STARKPack Implementation Performance for AIR traces of 275
columns

one RAP has selector and lookup columns, while all others only have accumulator columns.
Constraints can span across different RAPs to enforce the selector constraints across RAPs.

3.4 Soundness Analysis

In [BGK+23, Sta21] it was proved that both the ethSTARK and the STARKish (called
OPlonky in [BGK+23]) IOPs are round-by-round knowledge sound, and, consequently, spe-
cial sound [BGTZ23]. These are strong soundness properties that imply knowledge sound-
ness after compiling the IOP via Merkle tree vector commitments and the Fiat-Shamir
transformation. As a consequence, the ethSTARK and Starkish protocols, in their final
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(a) Number of Columns = 10 (b) Number of Columns = 100

(c) Number of Columns = 275

Figure 8: Winterfell: Proving Time Optimizations for various AIR traces

non-interactive and succinct form, are knowledge sound.
We argue that the same properties hold for the STARKPack IOP ΠSTARKPack and its

Merkle-tree+Fiat-Shamir transformed final form. To show this, we first prove the following
result, which states, essentially, that an instance of the Packed Plonkish relation is equiv-
alent to an instance of the standard Plonkish relation. We use this fact to later derive the
knowledge soundness of the STARKpack IOP from the knowledge soundness of STARKish
IOP.

Lemma 3.3. Let N ≥ 1 and let

PACK = (N,PL1, . . . ,PLN ,x1, . . . ,xN ) (3)

be an instance of the Packed Plonkish relation RPPlonkish, with

PLi = (Pi,Qi, σi,PIi, ri, r
′
i, ℓi, ni,F,K)

for i ∈ [N ]. Then there exists a (deterministcally and polynomially computable) instance
(PLPACK,xPACK) for the Plonkish relation RPlonkish, with

PLPACK = (P,Q, σ,PI, r, r′, ℓ, n,F,K),

with the following properties: 1) r =
∑

i∈[N ] ri; 2) there is an efficient deterministic algorithm
that, given a a valid witness (w1, . . . ,wN ) ∈

∏
i∈[N ] Fniri for PACK, outputs a valid witness

w for PLPACK.

Proof. Assume first that r′i = ri for all i ∈ [N ] (i.e. there are no advice wires) and ni = nj
for all i, j ∈ [N ]. The idea in this case is that the Packed Plonkish instance is equivalent
to a Plonkish instance where N execution traces are “glued together horizontally”, and the
permutations in each of the Plonkish instances are combined into a single permutation of
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the glued trace. Formally, we define PLPACK = (P,Q, σ,PI, r, r′, ℓ, n,F,K) as follows. First,
for each i ∈ [N ], let

Xi := (Xi1, . . . , Xiri),Yi := (Yi1, . . . , Yiri),Si := (Si1, . . . , Siℓi)

be tuples of variables. Intuitively, Xi,Yi are variables reserved for the values of the "i-th
chunk” of ri columns of the glued execution trace, and Si are variables that will take the
values in the selector vectors Qi.

Next we let r =
∑

i∈[N ] ri, n = ni for all i (as we are assuming all ni are the same), r′ = r,
and ℓ :=

∑
i∈[N ] ℓi. Further, we define P to be the set of polynomials

P := {P (Xi,Yi,Si) | i ∈ [N ], P ∈ Pi} .

Formally, we view each of these as a polynomial on the 2r + ℓ variables

(X1, . . . ,XN ,Y1, . . . ,YN ,S1, . . . ,SN ).

We further let
Q := (Q1, . . . ,QN ).

To make the upcoming definitions clearer, we identify the sets [n]× [ri] and [nri] (i ∈ [N ])
via the bijection (j − 1) · n+ k 7→ (j, k + 1), for j ≥ 1 and 0 ≤ k < n. Further, we identify
[n]× [r] and [nr] via an analogous bijection. For the rest of the proof, we look at all sets [nri]
(and similarly for [nr]) as [n]× [ri], unless otherwise stated.

Now, we let
PI :=

(
PIr11 ,PI

r1,r2
2 , . . . ,PIr1,...,rNN

)
,

where PIr11 := PI and, for i > 1, PIr1,...,rii denotes PIi after translating the first component
of the indices in PIi by

∑
j<i rj . Further, we define the input x for PLPACK to be x =

(x1, . . . ,xN ).
Next, we define σ : [n] × [r] → [n] × [r] as the result of composing the permutations

σ1, . . . , σN in the following way:
σ := σExt

1 · · ·σExt
N (4)

where σExt
i : [n] × [r] → [n] × [r] is the permutation that acts as σi on the set [n] × {1 +∑

j<i rj , . . . ,
∑

j<(i+1) rj} (which is in bijective correspondence with [n]× [ri]), and fixes the
rest of the elements in [n]× [r]. In (4), concatenation stands for permutation composition.

Next, we describe how to, given a valid witness (w1, . . . ,wN ) for PACK, construct a
witness w for PLPACK. Following our previous convention, we look at each wi as a n × ri
matrix, and let w be the n× r matrix obtained by concatenating the matrices wi. Note that,
by construction, w satisfies the copy constraints of PLPACK. Further, since wPIi

i = xi for
all i ∈ [N ], we have wPI = x. Further, w satisfies the circuit constraints of PLPACK, since,
given i ∈ [N ] and

P = P (X,Y,Z) = P (Xi,Yi,Zi) = P (Xi1, . . . , Xiri;Yi1, . . . , Yiri;Si1, . . . , Siℓi) ∈ Pi,

we have that for all row index j ∈ [n] (below, we look at w again as a vector from Fnr, rather
than a matrix from Fn×r),

P (w(j−1)r+1, . . . ,w(j−1)r+r−1;wjr+1, . . . ,wjr+r−1; (q[j] | q ∈ Q))

=P (w(j−1)r+i+1, . . . ,w(j−1)r+ri−1;wjr+i+1, . . . ,wjr+ri+i−1; (q[j] | q ∈ Qi)).

This expression is zero by construction of w.
This completes the proof of the first part of the lemma under the assumption that

r′i = ri for all i ∈ [N ] and ni = nj for all i, j ∈ [N ]. Assume now that not all ni’s are the
same. The key claim we make in this scenario is that for any Plonkish instance of the form
PL = (P,Q, σ,PI, r, r′, ℓ, n,F,K), and any power of two ñ > n, there is a Plonkish instance
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of the form P̃L = (P, Q̃, σ̃,PI, r, r′, ℓ, ñ,F,K) an an efficient algorithm that transforms valid
witness for PL to valid witnesses for P̃L, and viceversa. Once this claim is proved, we can
assume without loss of generality that ni = maxj∈[N ] nj for all i ∈ [N ], by replacing PLi

with P̃Li for all i ∈ [N ] such that ni < maxj∈[N ] nj .
Finally, the case where r′i ̸= ri for some i ∈ [N ] can be dealt with with analogous

arguments as the ones given so far. In a bit more detail, the proof proceeds in the same way,
except that, formally speaking, we cannot have w just be the concatenation of the witness
matrices w1, . . . ,wN . This is because, again formally, the witness (or execution trace) of a
Plonkish relation has all its advice wires (i.e. columns) on the rightmost part of the trace.
Accordingly, in the presence of advice wires, we construct w by concatenating w1, . . . ,wN

and then moving the advice wires of each submatrix wi to the right-most columns of w.
Then, PI,x, σ,X,Y,Z need to be modified in order to accomoddate this rearrangement of
the columns in w.

Now Lemma 3.3 and [BGK+23, Sta21] yield:

Corollary 3.4. The STARKPack IOP ΠSTARKPack has knowledge soundness error, given an
instance PACK as in (3),

εks =
1

2η
√
ρ
·max

{(
3n(r′ + u)

|F|

)
,

(
|P|+ s+ 1

|F|

)
,
n ·max{u+ 1, dmax}

|K \ D|
, 2η

√
ρ · εFRI

}
,

where n = maxi∈[N ] ni, D is a subgroup of size n, r′ =
∑

i∈[N ] r
′
i, P = (P1, . . . ,PN ), dmax =

maxP∈P deg(P ), u is a parameter used during the permutation argument of the STARKish
IOP (analogous to the splitting parameters ui in Section 3.1), s = ⌈r′/u⌉ , ρ = (dmax+1)/n,
η is a parameter used in the batched FRI protocol (cf. [BGK+23]), and εFRI is the round-by-
round soundness error of the batched FRI protocol used at the end of the STARKish IOP.

Furthermore, the Succinct Non-interactive Argument of Knowledge obtained by compil-
ing the ΠSTARKPack IOP with Merkle tree commitments and the Fiat-Shamir transform is
knowledge sound with error

Q · εks +O(Q2/2κ),

where Q is the number of random oracle queries with κ-bits of output that an adversary is
capable of making.

Proof. Let P∗
PACK be a malicious prover for the StarkPack IOP (respectively, P∗

PACK is a
malicious prover for the SNARK compiled from the StarkPack IOP using Merkle trees
and the FS transform, which we call compiled StarkPack). We build a prover P∗

0 for the
STARKish IOP (resp. compiled STARKish) as follows. The prover P∗

0 only accepts Plonkish
instances of the form PLPACK. In its execution, it first recovers the packed instance PACK,
and then it runs an extractor ExtPACK for the Starkpack IOP (resp. compiled IOP) on the
instance PACK and the prover P∗

PACK. If the extractor outputs a valid witness (w1, . . . ,wN )
for the instance PACK, then P∗

0 uses Lemma 3.3 to efficiently construct a valid witness w for
PLPACK. This shows that the knowledge error of the StarkPack IOP (resp. compiled SNARK)
is at most the knowledge error of the STARKish IOP (resp. compiled IOP) for instances of
the form PLPACK. Now the corollary follows by applying the results from [BGK+23] in order
to bound the knowledge error of the STARKish IOP (resp. compiled IOP) for an instance
of the form PLPACK.

4 Modular split-and-pack

The idea of splitting is quite simple, in essence it is about breaking execution traces into
smaller pieces. We describe any type of splitting first, and then move on to modular split-
ting. When interpolating and evaluating the relevant polynomials, the prover performs more
number theoretic transforms but over smaller domains. As we will see this is cheaper overall.
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The cost of committing to these polynomials is amortized by batching the evaluations at
the same point in the same Merkle leaf. There will be less leaves for committing to witness
polynomials, but they will be bigger. Computing the combined constraint for the splitting
(the polynomial we have called quot) is comparable —if not cheaper— than when there is
no splitting. Finally, the cost of FRI will be asymptotically comparable (and even a bit
cheaper) to when there is no splitting. We expect that the splitting operation therefore
leads to an improvement in the proof time. The trade-off is at the level of the proof size
(as the Prover is forced to send more evaluations) and the Verifier time (as the Verifier now
needs to check more evaluations and hash bigger leaves).

Formalizing the splitting operation can be cumbersome in its full generality. In this pa-
per, we focus on a simpler and natural case where we split witnesses into chunks with
the same column size, by selecting entire rows out of the original witness. Let PL =
(P,Q, σ,PI, r, r′, ℓ, n,F,K) be a Plonkish instance. Choose a divisor k of n. instead of
considering a witness w ∈ Fnr for PL which we consider as a matrix whose (i, j)-th entry
is w[(i − 1)r + j], we split it into vectors w0, . . . ,wk−1 ∈ F(n/k)×r by selecting rows out of
w. We consider these vectors as matrices in the same way. It should hold that for any
(i, j) ∈ [n]× [r] there are unique (s, i′) ∈ {0, . . . , k − 1} × [n/k] such that:

w[(i− 1)r + j] = w
s[(i′ − 1)r + j] (5)

We should still ask that the constraints in P hold when evaluated at any of the corre-
sponding entries in the newly created vectors ws. More specifically, for any (i, j) ∈ [n]× [r],
let (s(i), i′(i)) be the indices such that (5) holds, emphasizing the dependence on i. The
condition:

∀P ∈ P, ∀i ∈ [n− 1], P (w[(i− 1)r + 1], . . . ,w[ir], . . . ,w[(i+ 1)r], q1[i], . . . , qℓ[i]) = 0

must translate into the condition:

∀P ∈ P, ∀i ∈ [n− 1], P (ws(i−1)[(i′(i− 1)r + 1], . . . ,ws(i−1)[i′(i− 1)r + r],

. . . ,ws(i)[i′(i)r + r], q1[i], . . . , qℓ[i]) = 0

And a similar condition must hold for copy constraints. The way this translates into polyno-
mial constraints is hard to systematize when the splitting is general. We will see that in some
special cases, like when splitting over cosets of a multiplicative subgroup, the constraints
can be expressed very naturally and efficiently. Note from the previous equation that the
constraints may now involve much more than two consecutive rows of the same ws, and may
even involve values from different vectors ws. For this reason, after we formally define what
a splitting of a Plonkish instance is, we need to define a new split Plonkish relation. We do
this next.

4.1 The split Plonkish relation

We can think informally of the ws as buckets in which we place rows of the original witness
w successively without replacement. Once we have chosen n/k rows of each ws, we are done.
A natural way to formalize this is by using a permutation S : {0, . . . , n−1} → {0, . . . , n−1}.
The first5 row of w0 will be the row with index S−1(0) in w, and so on. We formalize this
next.

Definition 4.1 (Splitting of a Plonkish instance). Let PL = (P,Q, σ,PI, r, r′, ℓ, n,F,K) be a
Plonkish instance. A splitting of PL is the additional data of a strict divisor k of n, together
with a permutation S : {0, . . . , n− 1} → {0, . . . , n− 1}.

5Note that the entries in the first row of w, that is, entries with the form (1, j) are given by w[j]. This
means that rows are indexed from 0.
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We also define the following auxiliary functions T : {0, . . . , n− 1} → {0, . . . , k − 1} and
γ : {0, . . . , n− 1} → {0, . . . , n/k − 1} by the following relations:

T(i) =

⌊
kS(i)

n

⌋
γ(i) = S(i)− T(i)

n

k

Informally, T(i) tells us the s such that row i in w will be sent to ws, and γ(i) tells us
the index that row will have in ws.

We now define the split Plonkish relation.

Definition 4.2 (Split Plonkish Relation). A split Plonkish instance

PLsplit = (P,Q, σ,PI, r, r′, ℓ, n, k,S,F,K)

is a Plonkish instance with the additional data of a splitting. Recall from Definition 4.1 that
this is given by a strict divisor k of n and a permutation S : {0, . . . , n− 1} → {0, . . . , n− 1}.

A set of execution traces for PLsplit is a set of k vectorsw0, . . . ,wk−1 ∈ F(n/k)×r. It will be
helpful to consider these as matrices whose entry (i, j) ∈ [n/k]× [r] is given by ws[(i−1)r+j]
for s = 0, . . . , k − 1. Such a set of traces is said to satisfy PLsplit if the following conditions
hold:

1. (Circuit constraint satisfaction). For all P ∈ P, and all i ∈ [n− 1],

P (wT(i−1)[γ(i−1)r+1], . . . ,wT(i−1)[γ(i−1)r+r], . . . ,wT(i)[γ(i)r+r], q1[i], . . . , qℓ[i]) = 0

where T and γ are defined as in Definition 4.1.

2. (Copy constraint satisfaction). Let S ⊂ [r] be the subset of column indices subject to
a copy constraint. By definition |S| = r′. For all (i, j) ∈ [n]× S, let (ζ(i, j), ξ(i, j)) ∈
[n]×S be such that σ((i− 1)r+ j) = (ζ(i, j)− 1)r+ ξ(i, j). Then the following should
hold for all (i, j) ∈ [n]× S:

w
T(i−1)[(i− 1)r + j] = w

T(ζ(i,j)−1)[(ζ(i, j)− 1)r + ξ(i, j)]

We denote by (w0, . . . ,wk−1)PI the vector formed by the entries {wT(i−1)[γ(i− 1)r+ j] |
(i − 1)r + j ∈ PI}. We call this vector the public part of w0, . . . ,wk−1. The split Plonkish
relation is then defined as:

RSPlonkish :=

(PLsplit,x,w
0, . . . ,wk−1)

∣∣∣∣∣∣∣∣∣∣

PLsplit = (P,Q, σ,PI, r, r′, ℓ, n, k,S,F,K),

x ∈ F|PI|,

x = (w0, . . . ,wk−1)PI,

w
0, . . . ,wk−1 ∈ F(n/k)×r satisfy PLsplit


Remark 4.3. We have explained what a witness for the split Plonkish relation is, and how
it satisfies a split instance. However, we have not explained how to turn the conditions in
Point 1 and 2 in Definition 4.2 into polynomial constraints. As we mentioned, for circuit
constraint satisfaction this might depend on the particular splitting. There are cases in which
it translates seamlessly into polynomial constraints (see the next Example 4.4). However,
for copy constraints there is a natural way to express the permutation argument, which we
explain next.

For simplicity, assume that all wires are routable (i.e. r = r′). We first want to find a
permutation σ̃ : {0, . . . , k−1}×{0, . . . , n/k−1}× [r] → {0, . . . , k−1}×{0, . . . , n/k−1}× [r]
that expresses the action of σ on the ws[(i′ − 1)r+ j′]. Let us temporarily use the notation
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E = {0, . . . , k − 1} × {0, . . . , n/k − 1} × [r] and F = {0, . . . , n − 1} × [r]. The permutation
σ̃ is given by the composition of the following three maps:

E −→ F
(s, i′, j′) 7−→ (S−1(i′ + snk ), j

′)

F
σ−→ F

(i, j) 7−→ (ζ(i+ 1, j)− 1, ξ(i+ 1, j))

F −→ E
(i, j) 7−→ (τ(i), γ(i), j)

where ζ, ξ are defined as in Definition 4.2. All in all, this means that for all (s, i′, j′) ∈ E:

σ̃(s, i′, j′) = (τ(ζ(S−1(i′+s
n

k
)+1, j′)−1), γ(ζ(S−1(i′+s

n

k
)+1, j′)−1), ξ(S−1(i′+s

n

k
)+1, j′))

Define a vector W ∈ Fnr by setting, for all (s, i, j) ∈ {0, . . . , k − 1} × [n/k]× [r]:

W [(k(i− 1) + s)r + j] = w
s[(i− 1)r + j]

The vector W is constructed by putting the matrices ws side-by-side. We can make the
permutation σ̃ act on [nr] in the same way we can make the permutation σ act on [nr]. For
all (s, i, j) ∈ {0, . . . , k − 1} × [n/k]× [r], if (s̄, ī, j̄) = σ̃(s, i− 1, j), then

σ̃((k(i− 1) + s)r + j) = (kī+ s̄)r + j̄

One checks that with these definitions, Point 2 in in Definition 4.2 corresponds precisely
to the requirement that for all i ∈ [nr]:

Wσ̃(i) = Wi

So now define the polynomials SsIDj
and (Ssσ̃)j for all s ∈ {0, . . . , k − 1} and j ∈ [r] by

the following:

∀i ∈ {0, . . . , n/k − 1}, SsIDj
((gk)i) := (k(i− 1) + s)r + j

(Ssσ̃)j((g
k)i) := σ̃((k(i− 1) + s)r + j)

If we set asj to be the polynomial such that for all i ∈ {0, . . . , n/k − 1}, asj((g
k)i) =

w
s[(i − 1)r + j], then in order to check that copy constraints hold it suffices to exhibit a

polynomial z(X) ∈ F<n/k[X] such that:

z(gkX) · f(X) = g(X) · z(X)

where:

f(X) :=

k−1∏
s=0

r∏
j=1

(asj(X) + δ · SsIDj
(X) + η)

g(X) :=
k−1∏
s=0

r∏
j=1

(asj(X) + δ · (Ssσ̃)j(X) + η)

and δ, η are randomly chosen by the verifier. This can also be split into constraints of
smaller degree as we have seen previously. Note that the degree in the variable X of the
polynomials f and g is smaller or equal to r(n − k) (a product of rk polynomials of degree
smaller or equal to n/k−1). However, the degree in δ and η (considered as formal variables)
increases with respect to the permutation argument without splitting, which results in a
small soundness loss.

The computation of σ̃ and the polynomials SsIDj
, (Ssσ̃)j will be done in the preprocessing

phase.
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Example 4.4 (Splitting along cosets modulo k). We can perform a splitting by selecting
rows depending on the residue of their index modulo k. Choose k a strict divisor of n, and
set S(i) = ⌊i/k⌋+ n/k · (i mod k). One checks that S is a permutation, and that:

T(i) :=

⌊
kS(i)

n

⌋
= (i mod k)

γ(i) := S(i)− T(i)
n

k
= ⌊i/k⌋

Here, the circuit constraints can be translated easily to polynomial constraints. Let
((P,Q, σ,PI, r, r′, ℓ, n, k,S,F,K),x) be a split Plonkish instance where S is given by the
permutation we defined above, and let w0, . . . ,wk−1 be a set of execution traces for it. For
simplicity focus on one circuit constraint P . We ask that for all i ∈ [n− 1],

P (wi−1 [k][⌊(i− 1)/k⌋r + 1], . . . ,wi [k][⌊i/k⌋r + r], q1[i], . . . , qℓ[i]) = 0

where we have used the notation i [k] = (i mod k). We notice that the constraints always
involve ws and ws+1, unless s = k − 1 in which case it involves wk−1 and w0. Further, the
constraints always involve the same rows of ws and ws+1 if (i− 1) [k] = s < k − 1, namely
the row with index ⌊(i−1)/k⌋ = ⌊i/k⌋. And if (i−1) [k] = s = k−1, the constraint involves
row ⌊(i − 1)/k⌋ of wk−1 and row ⌊i/k⌋ = ⌊(i − 1)/k⌋ + 1 of w0. This means that we can
translate the circuit constraint into:

∀s ∈ {0, . . ., k − 2}, ∀i ∈ {0, . . . , n/k − 1},
P (ws[ir + 1], . . . ,ws+1[ir + r], q1[S

−1(i+ n(s+ 1)/k)], . . . , qℓ[S
−1(i+ n(s+ 1)/k)]) = 0

∀i ∈ {0, . . ., n/k − 2},
P (wk−1[ir + 1], . . . ,w0[(i+ 1)r + r], q1[S

−1(i+ 1)], . . . , qℓ[S
−1(i+ 1)]) = 0

Set asj to be the polynomials such that asj((g
k)i) = w

s[(i − 1)r + j] for all (s, i, j) ∈
{0, . . . , k − 1} × {0, . . . , n/k − 1} × [r]. For 0 ≤ s < k − 1 and 1 ≤ l ≤ ℓ set qsl to be the
polynomial such that qsl ((g

k)i) = ql[S
−1(i+n(s+1)/k)], and set qk−1

l ((gk)i) = ql[S
−1(i+1)].

Then in order to check the circuit constraint satisfaction, we may check that all polynomials:

P (a01(X), . . . , a0r (X), . . . , a1r (X), q01(X), . . . , q0ℓ (X))

...

P (ak−1
1 (X), . . . , ak−1

r (X), . . . , a0r (g
kX), qk−1

1 (X), . . . , qk−1
ℓ (X))

are divisible by the vanishing polynomial of Dk = ⟨gk⟩. Note that the degree of these
polynomial constraints is less than ndeg(P )/k−n/k. This is k times less than the degree of
the circuit constraints had we not performed the splitting. This may look like it increases
the soundness of the protocol, but the fact that we now have k times more constraints will
balance out the gain from having smaller degree constraints. The newly created selector
polynomials should also be computed during preprocessing.

It is clear that a similar phenomenon happens for any splitting which has the property
that the circuit constraint involves the same pair of rows of the same k pairs of traces
w0, . . . , wk−1. The splitting modulo k happens to be a splitting with this property.

4.2 An IOP for split-and-pack modulo k

In the previous section, we have seen that copy constraints over the trace evaluation domain
D can always be expressed as a polynomial permutation argument over the domain Dk,
provided that we perform the computation of the induced permutation σ̃ and the polynomials
Ss
IDj

, (Ss
σ̃)j correctly (see Remark 4.3). We have also seen that when splitting along cosets
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modulo k (see Example 4.4), circuit constraints over the trace evaluation domain D can
be expressed efficiently as k polynomial constraints over the domain Dk, provided that we
perform the computation of the selectors qs1, . . . , q

s
ℓ correctly. In this section, we present an

IOP for proving the satisfiability of a witness to a split Plonkish instance where the splitting
is along cosets modulo k, which we denote by Πk

split. Of course, one can extrapolate the ideas
to more general splittings.

We fix a split Plonkish instance (P,Q, σ,PI, r, r′, ℓ, n, k,S,F,K), where S(i) = ⌊i/k⌋ +
n/k · (i mod k). For simplicity, we assume that r = r′ (all wires are routable). The trace
evaluation domain is denoted by D = ⟨g⟩, and the subgroup generated by gk := gk is denoted
by Dk. Its vanishing polynomial is denoted by Zk(X) :=

∏
x∈Dk(X − x) =

∏n/k−1
i=0 (X − gik).

We fix an evaluation domain H ⊂ K×, a multiplicative subgroup containing a non-trivial
coset of Dk. When we say that the prover gives oracle access to a function, we mean that
the prover interpolates a vector with entries in F over Dk ; and then provides oracle access to
this interpolant over H. We fix a set of execution traces w0, . . . ,wk−1 ∈ F(n/k)r and public
part x for the split Plonkish instance. Finally, we fix auxiliary parameters aux = (⃗t, s) for
the Batched-FRI protocol. The parameter t⃗ = (t1, . . . , tm) ∈ N indicates that we will use
ti-to-1 maps in the i-th COMMIT phase of FRI, and s is the number of repetitions of the
QUERY phase of FRI.

Preprocessing. The prover and verifier compute the induced permutation σ̃ : [nr] → [nr]
as explained in Remark 4.3. They compute the polynomials Ss

IDj
, (Ss

σ̃)j ∈ F<n/k[X] for all
s ∈ {0, . . . , k − 1} and j ∈ [r] as:

∀i ∈ {0, . . . , n/k − 1}, SsIDj
(gik) := (k(i− 1) + s)r + j

(Ssσ̃)j(g
i
k) := σ̃((k(i− 1) + s)r + j)

They also compute the selectors qs1, . . . , q
s
ℓ ∈ F<n/k[X] for all s ∈ {0, . . . , k − 1} as:

∀i ∈ {0, . . . , n/k − 1}, qsl (g
i
k) := ql[S

−1(i+ n(s+ 1)/k)]

qk−1
l (gik) := ql[S

−1(i+ 1)]

Finally, they agree on the splitting parameter u for the permutation argument.

Round 1. The prover computes the polynomials asj ∈ F<n/k[X] such that asj(g
i
k) = w

s[(i−
1)r+ j] for all (s, i, j) ∈ {0, . . . , k−1}×{0, . . . , n/k−1}× [r]. The prover gives oracle access
to the wire polynomials asj : H → K to the verifier. The verifier samples uniform randomness
δ, η ∈ K to be used in the permutation argument.

Round 2. The prover sends oracle access to the permutation and partial product polyno-
mials z, (πl)l∈[s−1] ∈ F<n/k[X], where s = ⌈kr/u⌉. We recall their definition quickly. First
recall the definition of the f and g polynomials:

f(X) :=

k−1∏
s=0

r∏
j=1

(asj(X) + δ · Ss
IDj

(X) + η)

g(X) :=

k−1∏
s=0

r∏
j=1

(asj(X) + δ · (Ss
σ̃)j(X) + η)

Then z(gk) = 1, and for all i ∈ {2, . . . , n/k}:

z(gik) :=
∏

1≤j<i

f(gjk)/g(g
j
k)
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We can arrange each of the kr factors appearing in the definition of f and g above in
lexicographic order with respect to the indices (s, j) ∈ {0, . . . , k − 1} × [r]. For each l ∈ [s],
one defines the polynomials fl(δ, η,X) = fl(X) (resp. gl(δ, η,X) = gl(X)) as the product
of the factors indexed from (u− 1)l+1 to min(ul, kr) appearing in the definition of f (resp.
g), according to that lexicographic order. Then for all i ∈ [n/k]:

π1(g
i
k) := z(gik)f1(g

i
k)g1(g

i
k)

−1

πl(g
i
k) := πl−1(g

i
k)fl(g

i
k)gl(g

i
k)

−1, for l = 2, . . . , s− 1

The verifier samples uniform randomness α ∈ K.

Round 3. The prover computes the polynomials u, d, quot as follows:

u(X) := (z(X)f1(X)− π1(X)g1(X))α

+
s∑

l=2

(πl−1(X)fl(X)− πl(X)gl(X))αl

+ (πs−1(X)fs(X)− z(gkX)gs(X))αs+1

+ L1(X)(z(X)− 1)αs+2

d(X) :=
∑

j∈[|P|]

k−2∑
l=0

α(j−1)k+lPj(a
l
1(X), . . . , al+1

r (X), ql1(X), . . . , qlℓ(X))

+
∑

j∈[|P|]

α(j−1)k+k−1Pj(a
k−1
1 (X), . . . , a0r (gkX), qk−1

1 (X), . . . , qk−1
ℓ (X))

+ α(|P|k−1)u(X)

quot(X) := d(X)/Zk(X)

where L1 is the first Lagrange basis polynomial with respect to the set {gk, . . . , g
n/k
k }.

Then the prover splits each quot(X) into degree n/k polynomials quot1, . . . , quotν such that
quot(X) =

∑
l X

n·(l−1)/kquotl(X). The prover gives oracle access to the maps quot1, . . . , quotν :
H → K. The verifier samples uniform randomness z ∈ K \ (H ∪ g−1H).

Round 4. The prover sends the evaluations

eval = (asj(z), a
0
j (gkz), quotl(z), πm(z), z(z), z(gkz), q

s
c(z),S

s
IDj

(z), (Ssσ̃)j(z))

for all s ∈ {0, . . . , k − 1}, j ∈ [r], l ∈ [ν],m ∈ [s − 1], c ∈ [ℓ]. The verifier samples uniform
FRI randomness ξ ∈ K.

Batched-FRI. The prover and verifier engage in a Batched-FRI protocol with auxiliary
parameters aux to check proximity to the Reed-Solomon code RS(K,H, n) of the function
defined as follows. Consider the vector of functions defined as:(

asj(X)− asj(z)

X − z
,
a0j (X)− a0j (gkz)

X − gkz
,
quotl(X)− quotl(z)

X − z
, . . . ,

(Ssσ̃)j(X)− (Ssσ̃)j(z)

X − z

)
(6)

for all s ∈ {0, . . . , k − 1}, j ∈ [r], l ∈ [ν],m ∈ [s − 1], c ∈ [ℓ] (it contains all relevant
quotients of functions whose evaluations appear in eval). For simplicity, relabel this vector
as F⃗ = (F1(X), F2(X), . . . , FM (X)) (for some integer M). The function we apply FRI to is
the function

∑M
i=1 ξ

i−1Fi(X).
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Decision.

1. Circuit and copy constraint check. The verifier uses eval to verify that d(z) =
quot(z)Zk(z). If this check fails, the verifier rejects.

2. Batched FRI check. If the prover fails the Batched-FRI protocol with auxiliary
parameters aux, the verifier rejects.

If all checks pass, the verifier accepts the proof.

Remark 4.5. Our remark about Merkle commitments still applies in this case, where we
can pack the evaluations of all relevant polynomials at the same evaluation point at each
commitment step.

Remark 4.6 (Adding plookup support for splitting). For the kind of splittings we have
been considering, i.e., those where we split the execution trace by selecting entire rows, one
can see that a lookup argument involving a column of the execution trace can be expressed
equivalently as k lookup arguments involving the same column of a set of execution traces
for a splitting. This is due to the fact that if f, t ∈ Fn, and f0, . . . , fk−1 is a partition of f ,
then {f} ⊂ {t} ⇔ ({f0} ⊂ {t}) ∧ · · · ∧ ({fk−1} ⊂ {t}).

This translates into polynomial constraints that we include in the d polynomial in Round
3. of the IOP. Even though there are k times as much polynomial constraints, their degree
is divided at least by k (because all of the polynomials involved are of smaller degree except
the t polynomial, but the vanishing polynomials Z of Dk are now of degree n/k).

This still holds for more general splittings, however in this case we might be forced to
perform more than k permutation arguments.

4.3 Performance

Benchmarks. To evaluate the performance implications of splitting, we conducted bench-
marks on the Winterfell library. Our analysis focuses on the effects of splitting the trace
into more columns and fewer rows via the modk approach. Figures 9-16 illustrate the per-
formance trends observed for a trace with an increasing number of columns. Both Prover
time and RAM peak usage decrease upon applying splitting techniques. However, the proof
size and Verifier time exhibit initial reductions before increasing linearly as the number of
splits grows.

Figure 9: Prover time and Peak RAM splitting performance for 1 column

These findings suggest that splitting offers substantial gains in Prover time and RAM
peak usage, particularly for scenarios involving a limited number of columns and a reasonable
number of splittings. The improvement is less sharp whenever any of these two parameters
is large.

The proof sizes and Verifier times are asymptotically linear in the number of chunks
the original trace is split into. The Verifier time is still less than a few hundred ms at
worst, however the proof gets large. This is especially true as the number of columns and
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Figure 10: Proof size and Verifying time splitting performance for 1 column

split chunks gets large (the proof is around 10000kB for 275 columns and 64 chunks). This
means that one should limit the splitting into a small number of chunks before the proof gets
prohibitively large. However, because the Prover time decreases so sharply before attaining
a sort of plateau, it means that we can get significant Prover time improvements without
making the proof too large, or the verifier too slow.

Figure 11: Prover time and Peak RAM splitting performance for 10 column

Figure 12: Verifier time and Proof size splitting performance for 10 columns

4.4 Security analysis

In this section we obtain knowledge soundness results for the IOP Πk
split. Following a strategy

we employed when proving knowledge soundness of the STARKPack IOP, we show that
witnesses to a splitting of a Plonkish instance are in 1-to-1 correspondende with witnesses
to the Plonkish instance. Because of this general correspondence, we have no doubt that
these ideas extend to IOPs for more general splittings.
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Figure 13: Prover time and Peak RAM splitting performance

Figure 14: Verifier time and Proof size splitting performance for 100 columns

Figure 15: Prover time and Peak RAM splitting performance

Figure 16: Verifier time and Proof size splitting performance for 275 columns

Lemma 4.7. Let PLsplit = (P,Q, σ,PI, r, r′, ℓ, n, k,S,F,K) be a split Plonkish instance. Let
PL = (P,Q, σ,PI, r, r′, ℓ, n,F,K) be the corresponding Plonkish instance. Then there is a
bijective (polynomially computable) correspondence between satisfying execution traces w ∈
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Fnr for PL, and satisfying sets of execution traces w0, . . . ,wk−1 ∈ F(n/k)r for PLsplit.

Proof. This is almost by construction. Given a satisfying execution trace w ∈ Fnr for PL,
set for all (i, j) ∈ {0, . . . , n− 1} × [r]:

w[ir + j] = w
T(i)[γ(i)r + j]

Recall the definition of T, γ from Definition 4.1. This gives us k vectors w0, . . . ,wk−1 ∈
F(n/k)r. The assumption that w is satisfying means that:

∀i ∈ [n− 1], ∀P ∈ P, P (w[(i− 1)r + 1], . . . ,w[ir + r], q1[i], . . . , qℓ[i]) = 0

and for all i ∈ [nr], wi = wσ(i). The former condition translates to:

∀i ∈ [n− 1], ∀P ∈ P, P (wT(i−1)[γ(i− 1)r + 1], . . . ,wT(i)[γ(i)r + r], q1[i], . . . , qℓ[i]) = 0

We set again (ζ(i, j), ξ(i, j)) ∈ [n]×S to be such that σ((i−1)r+j) = (ζ(i, j)−1)r+ξ(i, j)
for all (i, j) ∈ [n]× [r]. The latter condition becomes w[(i−1)r+j] = w[(ζ(i, j)−1)r+ξ(i, j)]
for all i, j. In turn, this becomes:

∀(i, j) ∈ [n]× [r], wT(i−1)[γ(i− 1)r + j] = w
T(ζ(i,j)−1)[γ(ζ(i, j)− 1)r + ξ(i, j)]

So that w0, . . . ,wk−1 are satisfying for PLsplit.
Conversely, letw0, . . . ,wk−1 ∈ F(n/k)r be satisfying for PLsplit. For all (s, i, j) ∈ {0, . . . , k−

1} × {0, . . . , n/k − 1} × [r], let

w
s[ir + j] = w[S−1(i+ sn/k)r + j]

This gives a vector w ∈ Fnr. The relation γ(i) = S(i)−nT(i)/k implies that S−1(γ(i)+
nT(i)/k) = i. Therefore, the circuit constraint satisfaction conditions

∀i ∈ [n− 1], ∀P ∈ P, P (wT(i−1)[γ(i− 1)r + 1], . . . ,wT(i)[γ(i)r + r], q1[i], . . . , qℓ[i]) = 0

immediately give:

∀i ∈ [n− 1], ∀P ∈ P, P (w[(i− 1)r + 1], . . . ,w[ir + r], q1[i], . . . , qℓ[i]) = 0

It is clear by construction that the copy constraints on w0, . . . ,wk−1 are equivalent to
the condition that wi = wσ(i), for all i ∈ [nr].

Corollary 4.8. The IOP for split-and-pack modulo k from Section 4.2 has knowledge sound-
ness error, given an instance RSPlonkish = (P,Q, σ,PI, r, r′, ℓ, n, k,S,F,K),

εks =
1

2η
√
ρ
·max

{(
3n(r′ + u)

|F|

)
,

(
|P|+ s+ 1

|F|

)
,
n ·max{u+ 1, dmax}

|K \ D|
, 2η

√
ρ · εFRI

}
,

where D is a subgroup of size n, u is a parameter used during the permutation argument of
the STARKish IOP (analogous to the splitting parameters ui in Section 3.1), s = ⌈r′/u⌉ ,
ρ = (dmax + 1)/n, η is a parameter used in the batched FRI protocol (cf. [BGK+23]), and
εFRI is the round-by-round soundness error of the batched FRI protocol used at the end of
the STARKish IOP.

Furthermore, the Succinct Non-interactive Argument of Knowledge obtained by compiling
the IOP with Merkle tree commitments and the Fiat-Shamir transform is knowledge sound
with error

Q · εks +O(Q2/2κ),

where Q is the number of random oracle queries with κ-bits of output that an adversary is
capable of making.

Proof. The proof is analogous to that of Corollary 3.4, using Lemma 4.7 instead of Lemma 3.3.
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A Detailed benchmarks

A.1 Packed prover times

Table 3: Comparison of Packed and Non-packed(Winterfell) Prover Times with 10 columns
traces

Number of Traces Packed Prover Time (s) Non-packed Prover Time (s) Prover Time Ratio

1 1.0173 1.0173 1
2 1.6527 2.0346 1.23107642
3 2.3065 3.0519 1.32317364
4 2.9295 4.0692 1.389042499
5 3.5535 5.0865 1.431405656
6 4.2125 6.1038 1.448973294
7 4.8912 7.1211 1.455900393
8 5.5078 8.1384 1.477613566
9 6.1971 9.1557 1.477416856
10 6.7718 10.173 1.50225937

Table 4: Comparison of Packed and Non-packed(Winterfell) Prover Times with 100 columns
traces

Number of Traces Packed Prover Time (s) Non-packed Prover Time (s) Prover Time Ratio

1 5.0106 5.0106 1
2 9.1251 10.0212 1.098201664
3 13.141 15.0318 1.143885549
4 17.242 20.0424 1.162417353
5 21.843 25.053 1.146957835
6 25.453 30.0636 1.181141712
7 29.344 35.0742 1.195276718
8 33.329 40.0848 1.202700351
9 37.469 45.0954 1.203538926
10 42.099 50.106 1.190194541

Table 5: Comparison of Packed and Non-packed(Winterfell) Prover Times with 275 columns
traces

Number of Traces Packed Prover Time (s) Non-packed Prover Time (s) Prover Time Ratio

1 11.568 11.568 1
2 22.292 23.136 1.037861116
3 33.271 34.704 1.043070542
4 44.044 46.272 1.050585778
5 54.995 57.84 1.051731976
6 66.506 69.408 1.043635161
7 76.914 80.976 1.052812232
8 88.239 92.544 1.048787951
9 99.898 104.112 1.042183027
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Table 6: Comparison of Packed and Non-packed(RISC Zero) Prover Times

Number of Traces Packed Prover Time (s) Non-packed Prover Time (s) Prover Time Ratio

1 4.0001 4.0001 1
2 8.2615 8.0002 0.9683713611
3 12.404 12.0003 0.9674540471
4 16.621 16.0004 0.962661693
5 21.523 20.0005 0.92926172
6 25.012 24.0006 0.9595634096
7 29.996 28.0007 0.9334811308
8 34.47 32.0008 0.9283666957
9 39.646 36.0009 0.9080588206
10 44.005 40.001 0.9090103397

A.2 Packed verifier times

Table 7: Comparison of Packed and Non-packed(Winterfell) Verifier Times(ms) with 10
columns traces

No. Traces Packed Verifier Time Non-packed Verifier Time Verifier Time Ratio

1 0.37661 0.37661 1
2 0.40327 0.75322 1.867780891
3 0.43987 1.12983 2.568554346
4 0.4445 1.50644 3.389066367
5 0.4449 1.88305 4.232524163
6 0.45203 2.25966 4.998916001
7 0.46565 2.63627 5.661483947
8 0.48044 3.01288 6.271084839
9 0.49884 3.38949 6.794743806
10 0.52587 3.7661 7.161655923

Table 8: Comparison of Packed and Non-packed(Winterfell) Verifier Times(ms) with 100
columns traces

Number of Traces Packed Verifier Time Non-packed Verifier Time Verifier Time Ratio

1 0.46116 0.46116 1
2 0.54923 0.92232 1.67929647
3 0.60912 1.38348 2.271276596
4 0.68608 1.84464 2.688666045
5 0.7959 2.3058 2.897097625
6 0.84213 2.76696 3.285668483
7 0.92047 3.22812 3.50703445
8 0.98587 3.68928 3.742156674
9 1.0649 4.15044 3.897492722
10 1.154 4.6116 3.996187175
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Table 9: Comparison of Packed and Non-packed(Winterfell) Verifier Times(ms) with 275
columns traces

Number of Traces Packed Verifier Time Non-packed Verifier Time Verifier Time Ratio

1 0.5633 0.5633 1
2 0.75701 1.1266 1.488223405
3 0.95869 1.6899 1.762717875
4 1.145 2.2532 1.967860262
5 1.3456 2.8165 2.093118312
6 1.5293 3.3798 2.210030733
7 1.7129 3.9431 2.302002452
8 1.896 4.5064 2.376793249
9 2.0925 5.0697 2.422795699

Table 10: Comparison of Packed and Non-packed(RISC Zero) Verifier Times(ms)

Number of Traces Packed Verifier Time Non-packed Verifier Time Verifier Time Ratio

1 1.8774 1.8774 1
2 2.6476 3.7548 1.418190059
3 3.3735 5.6322 1.669542019
4 4.1306 7.5096 1.818040963
5 4.8293 9.387 1.943759965
6 5.5719 11.2644 2.021644322
7 6.3896 13.1418 2.056748466
8 7.2754 15.0192 2.06438134
9 8.0432 16.8966 2.100731052
10 8.6492 18.774 2.170605374

A.3 Packed proof size

Table 11: Comparison of Packed and Non-packed(Winterfell) Proof Sizes in KB for 10
columns traces

Number of Traces Packed Proof Size Non-packed Proof Size Proof Size Ratio

1 76 76 1
2 81.9 152 1.855921856
3 87.9 228 2.593856655
4 94.3 304 3.223753977
5 99.6 380 3.815261044
6 103.9 456 4.388835419
7 108.3 532 4.912280702
8 114.5 608 5.310043668
9 120.6 684 5.671641791
10 126.4 760 6.012658228
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Table 12: Comparison of Packed and Non-packed(Winterfell) Proof Sizes in KB for 100
columns traces

Number of Traces Packed Proof Size Non-packed Proof Size Proof Size Ratio

1 124.5 124.5 1
2 179 249 1.391061453
3 230.5 373.5 1.620390456
4 285.8 498 1.742477257
5 340.2 622.5 1.829805996
6 392.3 747 1.904154983
7 445 871.5 1.958426966
8 496.8 996 2.004830918
9 552.1 1120.5 2.029523637
10 604.6 1245 2.059212703

Table 13: Comparison of Packed and Non-packed(Winterfell) Proof Sizes in KB for 275
columns traces

Number of Traces Packed Proof Size Non-packed Proof Size Proof Size Ratio

1 217 217 1
2 362.5 434 1.197241379
3 510.5 651 1.275220372
4 658.6 868 1.317947161
5 804.6 1085 1.348496147
6 947.4 1302 1.374287524
7 1095.8 1519 1.386201862
8 1242 1736 1.397745572
9 1387.9 1953 1.407161899

Table 14: Comparison of Packed and Non-packed(RISC Zero) Proof Sizes in KB

Number of Traces Packed Proof Size Non-packed Proof Size Proof Size Ratio

1 210.223 210.223 1
2 278.941 420.445 1.507
3 347.660 630.668 1.814
4 416.378 840.891 2.020
5 485.098 1051.113 2.167
6 553.816 1261.336 2.278
7 622.535 1471.559 2.364
8 691.254 1681.781 2.433
9 759.973 1892.004 2.490
10 828.691 2102.227 2.537
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A.4 Splitting in Winterfell

Table 15: Splitting benchmarks for a trace of 216 rows with 1 column.

Number of Splits Prover Time (ms) Proof Size (KB) Verification Time (ms)

1 6147 68.3 3.7
2 3219 61.6 3.6
4 1823 54.6 3
8 1160 51.5 2.8
16 919 49.8 2.7
32 780 51.3 2.3
64 717 63.3 2.3
128 665 92.4 2.6

Table 16: Splitting benchmarks for a trace of 216 rows with 10 columns.

Number of Splits Prover Time (ms) Proof Size (KB) Verification Time (ms)

1 8618 72.8 3.7
2 5514 71.1 3.5
4 3981 73.3 3.3
8 3320 89.1 3.2
16 2896 156.6 3.6
32 2612 203.9 3.9
64 2440 368.4 5.9
128 2247 704.8 9.4

Table 17: Splitting benchmarks for a trace of 216 rows with 100 columns.

Number of Splits Prover Time (ms) Proof Size (KB) Verification Time (ms)

1 34605 118.5 4.3
2 29766 166 4.6
4 26906 264.3 5.3
8 24738 471.5 7.4
16 22816 891.6 12.1
32 21337 1773.3 21.4
64 20055 3427.3 41.6
128 18451 6825 80.4

Table 18: Splitting benchmarks for a trace of 216 rows with 275 columns.

Number of Splits Prover Time (ms) Proof Size (KB) Verification Time (ms)

1 84143 212.2 5.4
2 76286 353.2 6.6
4 71546 636.2 9.3
8 65711 1215.1 15.6
16 60372 2378.6 28.4
32 56712 4708.8 54.3
64 52987 9379.5 109.7
128 48255 18724.3 210.8
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