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Abstract

Policy-compliant signatures (PCS) are a recently introduced primitive by Badertscher et
al. [TCC 2021] in which a central authority distributes secret and public keys associated with
sets of attributes (e.g., nationality, affiliation with a specific department, or age) to its users.
The authority also enforces a policy determining which senders can sign messages for which
receivers based on a joint check of their attributes. For example, senders and receivers must
have the same nationality, or only senders that are at least 18 years old can send to members
of the computer science department. PCS further requires attribute-privacy – nothing about
the users’ attributes is revealed from their public keys and signatures apart from whether the
attributes satisfy the policy or not. The policy in a PCS scheme is fixed once and for all during
the setup. Therefore, a policy update requires a redistribution of all keys. This severely limits
the practicality of PCS. In this work, we introduce the notion of updatable policy-compliant
signatures (UPCS) extending PCS with a mechanism to efficiently update the policy without
redistributing keys to all participants.

We define the notion of UPCS and provide the corresponding security definitions. We then
provide a generic construction of UPCS based on digital signatures, a NIZK proof system,
and a so-called secret-key two-input partially-hiding predicate encryption (2-PHPE) scheme.
Unfortunately, the only known way to build the latter for general two-input predicates is using
indistinguishability obfuscation. We show that the reliance on the heavy tool of 2-PHPE is
inherent to build UPCS by proving that non-interactive UPCS implies 2-PHPE.

To circumvent the reliance on 2-PHPE, we consider interactive UPCS, which allows the
sender and receiver to interact during the message signing procedure. In this setting, we present
two schemes: the first one requires only a digital signature scheme, a NIZK proof system, and
secure two-party computation. This scheme works for arbitrary policies, but requires sender
and receiver to engage in a two-party computation protocol for each policy update. Our second
scheme additionally requires a (single-input) predicate-encryption scheme but, in turn, only
requires a single interaction between sender and receiver, independent of the updates. In contrast
to 2-PHPE, single-input predicate encryption for certain predicate classes is known to exist (e.g.,
from pairings) under more concrete and well-understood assumptions.

∗Work done at Ruhr University Bochum and MPI-SP, Germany, and also partially at TU Darmstadt, Germany.
†Work done partially while author was at Concordium, Switzerland.
‡Work done partially while author was at the Max Planck Institute for Security and Privacy, Germany.

1

https://orcid.org/0000-0002-1353-1922
https://orcid.org/0009-0000-3554-4794
https://orcid.org/0000-0001-5900-336X
https://orcid.org/0000-0002-9083-5794
mailto:christian.badertscher@iohk.io
mailto:monosij@cse.iitkgp.ac.in
mailto:christian@primev.xyz
mailto:hwaldner@umd.edu


Contents
1 Introduction 3

1.1 Updatable PCS Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 On Policy Updatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Challenges and Interactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 9
2.1 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Non-Interactive Zero Knowledge Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Predicate Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Two-Party Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 A Model for Interactive and Non-Interactive PCS with Updates 16
3.1 Model Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Correctness and Security for PCS with Updates . . . . . . . . . . . . . . . . . . . . . 18

4 Non-Interactive Updatable Policy-Compliant Signatures 19
4.1 Two-Input Partially Hiding (Predicate-Only) Predicate Encryption . . . . . . . . . . 19
4.2 Non-interactive UPCS Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Relationship between UPCS and 2-PHPE . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Interactive Updatable Policy-Compliant Signatures 37
5.1 Interactive UPCS using Two-Party Computation . . . . . . . . . . . . . . . . . . . . 37
5.2 Interactive UPCS using Predicate Encryption . . . . . . . . . . . . . . . . . . . . . . 46

2



1 Introduction
Policy-compliant signatures (PCS) [BMW21] are credential-based, enhanced signature schemes in
which a policy F governs signature generation: a party with attributes x (encoded in a privacy-
preserving way in their public-key) that wishes to sign a message m destined for a receiving
party with attributes y, is only ever able to produce a valid signature certifying this action if
and only if F (x, y) = 1. This notion extends attribute-based signatures [MPR11] and policy-
based signatures [BF14] (which allow for policies based solely on the sender’s attributes) and has
interesting applications in corporate environments and financial applications including payment
systems [BMW21, BSW23]. This is due to the fact that this type of signature scheme is able to
merge the act of signing (to unlock funds) with cryptographic compliance checks while still being
publicly verifiable. Basic examples include: enforcing that both parties are of a minimal legal age
and operate in jurisdictions between which no sanctions exist, or to ensure that certain tokens are
only spent in a prescribed context, such that between employees (e.g. of a state) and subsidized
facilities/services where they obtain discounts. The scheme ensures that nothing more than the
mere validity of the statement leaks, keeping the receiver’s attributes hidden from the sender/signer
at all times, meeting the promise to enforce compliance to a certain rule set in a privacy-preserving
way. The policy in such systems can either be defined by a certain legal system (and implemented by
an accredited credential issuer), or purely application-driven by a provider to govern the spending
rights of domain-specific tokens. On a technical level, in a PCS scheme, a (credential) authority
generates a master public and secret-key pair for a given policy, and then derives public and secret
keys for each user and their attributes from the master secret key. A major practical limitation
is that the policy is fixed at setup time (when generating the master keys) and, consequently, all
users need to receive new key pairs if the policy is changed, incurring a high communication cost.
In the above mentioned applications, regularly new rules are put in place, which demands PCS to
be more dynamic. Therefore, we introduce updatable policy-compliant signatures (UPCS) which
allow authorities to update policies more efficiently, i.e., without updating the users’ keys.

1.1 Updatable PCS Description

Like a regular PCS scheme, a UPCS scheme consists of a Setup algorithm that an authority can
use to generate a master public and secret key for an initial policy F0. For a set of attributes x,
the authority can then use the master secret key to generate a key pair corresponding to these
attributes using KeyGen. An updatable PCS scheme has an additional procedure PolUpd that takes
the master secret key and a new policy F ′ as an input and outputs a so-called update token tokF ′ .
Using the current update token, the secret key of the sender, and the public key of the receiver,
the sender can sign a message by executing Sign. Everyone can then verify the signature using the
master public key, the current update token and the public keys of the sender and receiver with the
Verify procedure. The signature is valid if the signature and message have not been modified, and if
the attributes of the sender and receiver satisfy the current policy associated with the update token
tokF ′ .

Security requirements. As for regular policy-compliant signatures, UPCS security consists of two
parts: unforgeability and privacy. Unforgeability captures what one can expect from any signature
scheme, i.e., that no valid signature for a new message can be produced without knowledge of the
secret key, even given access to a signing oracle for arbitrary messages. Additionally, unforgeability
for (updatable) policy-compliant signatures prevents an adversary from creating a signature that
verifies for a pair of public keys for a sender and a receiver with attributes not satisfying the policy.
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For updatable PCS, we require these properties to hold even if the adversary can adaptively update
the policies. Furthermore, we require that an adversary is not able to generate a valid update token
on its own. In particular, an adversary is prevented from producing a valid signature for an update
token of an old policy, or an update token generated on its own, and attributes that do not satisfy
it, even if these attributes satisfy a newer policy.

Privacy in this context refers to hiding the attributes of sender and receiver. This means an
adversary, seeing signatures for a sender and receiver for different policies, should not learn anything
about their attributes except for which of the considered policies they satisfy and what can be
deduced from that. This must still hold if one of the two parties is corrupted, i.e., the attributes of
the receiver are protected from a malicious sender and vice versa. We refer to this privacy property
as attribute-hiding.

Below, we motivate and provide some contextualization on policy updatability and then dive
into the challenges and overview of our contributions.

1.2 On Policy Updatability

We start by discussing the importance of updates in the context of PCS [BMW21] for its practical
usage in more detail. UPCS improves the applicability of PCS and covers a blind spot in some
novel applications of digital signatures. Badertscher et al. [BMW21] laid the foundations for PCS
and discussed such applications in detail, and Badertscher et al. [BSW23] provide the first estimates
on its practicality. Our motivation for UPCS is to present it in an enriched model (e.g., with
interactivity) which is necessary to unleash its potential in many more applications. We believe
that policy-updatability is a critical stepping stone to push PCS further towards practice.

From the UPCS description above, we note that it is indeed necessary that the signer and the
verifier need to be aware of the current update token. It is not the case though that all the parties
in the system have to do some work with respect to the update token and there is no key update
that needs to be executed. The only work that is needed in this step is done by the authority,
which is the generation of the update token. The complexity of the signing and the verification
procedure remains the same for any update token. To minimize communication cost and make
every user in the system aware of the current update token, the authority can post this token, for
example, on a public bulletin-board. Or, when using a blockchain, which is one area where (U)PCS
could be applied to secure transactions [BMW21], the most recent update token can be simply
published inside the current block. This ensures that all parties in the system are aware of the same
token. Further, our UPCS model does not enforce any specific requirements on the policy-update
procedure, it is a standard probabilistic algorithm that can, in principle, produce the same update
token multiple times. Hence, our definitions (and constructions) also allow for the reusability of
update tokens.

We also note that UPCS can capture certain basic forms of revocation mechanisms by design –
an updated policy may embed checks for revoked sender/receiver’s attributes that never satisfy the
new policy jointly with that of other parties in the system. In contrast, verifier-local revocation
[ISE+18,LLNW14,BS04] requires verifiers to possess updated revocation lists. As UPCS signatures
are valid, subject to policies being satisfied jointly by sender and receiver’s attributes, such revocation
lists can vary across different verifiers and thus could get cumbersome to maintain. Similarly, server-
aided revocation [CM21,LNWZ19,CDLQ16,NWZ16] is also inefficient as it additionally requires an
(untrusted) server, whereas the authority is supposed to update revocation lists periodically.

Finally, we do not consider delegation for UPCS in this paper. That is, we require all the
updates to be executed by the authority. Nevertheless, one could imagine that the authority desires
to delegate certain updates, i.e., allowing another party to generate update tokens for a subclass of
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the functionality. We leave investigating such delegation capabilities as future work.

1.3 Challenges and Interactivity

Non-interactive constructions. Policy-compliant signatures, as introduced in [BMW21], are
non-interactive in the sense that after receiving all relevant keys from the authority, parties can
locally sign messages for arbitrary receivers and the resulting signatures can be verified by all other
parties given only the pre-distributed public keys. In this work, we provide an updatable PCS
scheme fitting this narrative. Our non-interactive construction relies on a regular signature scheme,
a non-interactive zero-knowledge proof system, and a secret-key two-input partially hiding predicate
encryption (2-PHPE) scheme. The latter is introduced in this work and corresponds to a weakened
variant of two-input PE. The class of policies supported by our UPCS scheme directly corresponds
to the set of predicates that the 2-PHPE scheme supports (see the technical overview below for
more details).

Our 2-PHPE needs to satisfy strong attribute-hiding (also known as two-sided security) [KSW08,
FFMV23], where no information about the hidden attributes is revealed beyond the output of the
predicate.1 Unfortunately, such 2-PHPE schemes can currently only be obtained making the strong
assumption of indistinguishability obfuscation (iO) [GGH+13,JLS21] which results in the immediate
impracticality of the resulting schemes. This raises the question whether one can construct UPCS
schemes without heavy tools such as 2-PHPE. We answer this question in the negative by proving that
any non-interactive UPCS scheme can be used to construct a 2-PHPE scheme. Practically efficient
non-interactive UPCS therefore appears to be out of reach with currently available techniques.

Interactive UPCS. Due to the negative result above, we relax the notion of UPCS to allow
for some limited interaction among the parties. Considering blockchain transactions as the main
motivation for PCS [BMW21], some sort of interaction between sender and receiver is already
happening: before the sender can sign a transaction for a receiver, it has to obtain the correct
address of the receiver and needs to agree on the amount to be transferred. The relevant information
for an interactive UPCS scheme can thus be integrated into an extension of an existing payment
process.

Based on this insight, we present two interactive UPCS schemes with a different tradeoff between
interactivity and efficiency: the first scheme is very simple and is based only on regular signature
schemes, a non-interactive zero-knowledge proof system and a two-party computation protocol.
Furthermore, it supports arbitrary (efficiently computable) policies. The downside of this scheme
is that it requires a single interaction between each sender and receiver every time the policy is
updated. The second interactive scheme we present only requires a single interaction between
sender and receiver and allows them to subsequently sign an unbounded number of messages even
after policy updates. This scheme, however, relies on a predicate-encryption (PE) scheme, and the
supported class of policies depends on the predicates supported by the PE scheme. Both schemes
are presented in more detail in the technical overview below.

1.4 Technical Overview

1.4.1 Defining UPCS and its Security

Since we are interested in both, non-interactive as well as interactive UPCS schemes, we define
UPCS in a generic way such that both settings are covered. Our definition models UPCS as

1Strong attribute-hiding (predicate-only) PE allows an adversary to obtain secret keys for predicates that can
decrypt a challenge ciphertext, but it is still required to hide any other information about the attributes.
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a message-driven protocol among a set of parties and a trusted authority A, all connected in a
complete network consisting of pairwise point-to-point channels. Parties can receive instructions
from the environment and subsequently can use the network to communicate with each other, and
produce an output for the environment. We do not consider a dedicated adversary but consider the
adversary to be part of the environment, as the dummy adversary in UC [Can01]. The environment
can therefore corrupt any party, except for the trusted authority A, to obtain full control over it
and learn all its secrets. For a fixed security parameter, we consider a family of attributes X, where
X denotes the powerset of X, and a set of supported policies F = {F : X × X → {0, 1}}. In the
beginning, the authority expects an input (Setup, F0) (from the environment) for some initial policy
F0 ∈ F . It then produces a master key pair and an initial token tok0. On input (Update, F ), the
authority produces an update token tokF . Furthermore, on input (KeyGen, Pi, xi), the authority
produces a key pair for the attributes xi for party Pi (using the master secret key). This formally
spawns the new party Pi initialized with this new key pair. Any party PS can then receive inputs
(Sign, tokF , pkR, m) instructing PS to sign the message m for a receiver PR with public key pkR

relative to the policy update token tokF , producing a signature σ. Any party (not just PR) can then
verify the signature via (Verify, tokF , pkS , pkR, m, σ). Correctness of the UPCS scheme requires
the result of the Verify instruction to be equal to F (xS , xR), where xS and xR are the attributes
of the sender and receiver, respectively. That is, the signature is valid if and only if the attributes of
the sender and receiver satisfy the policy F . A non-interactive UPCS scheme simply corresponds to
a scheme in which signing and verifying signatures are local operations, whereas interactive UPCS
schemes allow interaction between sender and receiver.

Security of a UPCS scheme covers unforgeability and attribute-hiding. Unforgeability means
that any environment can trigger any of the following events only with negligible probability:
(Verify, tokF , pkS , pkR, m, σ) returns 1 given pkS or pkR or tokF that have not been output by
KeyGen or Update, pkS and pkR correspond to attributes not satisfying the policy F corresponding
to tokF , or the sender S is uncorrupted and has not been instructed to sign the message m.

To define the attribute-hiding property, we introduce an additional instruction (Test-KeyGen, Pi,
(xi,0, xi,1)) that internally does the same as (KeyGen, Pi, xi,b) for a uniformly random bit b. The
goal of the environment is then to guess the bit b and we call the scheme attribute-hiding if this is
only possible with negligible advantage over random guessing. For this definition, we exclude queries
that would trivially allow an adversary to distinguish. That is, a party Pi can only be corrupted if
the tested attributes xi,0 and xi,1 are equal, and we require all policies to be equal for all attributes
involved in a Sign query, or belonging to corrupted senders (who could sign themselves).

1.4.2 Two-input Partially Hiding Predicate Encryption (2-PHPE)

We use secret-key 2-PHPE in Section 4.1 to construct a non-interactive UPCS scheme. For a
set of attributes X with powerset X , consider a class of predicates P = {P : X × X → {0, 1}}.
A 2-PHPE scheme for P allows an authority to generate a master secret key msk using the
algorithm Setup. The obtained msk can then be used to generate keys skP for predicates P ∈ P
via KeyGen(msk, P ). The master secret key is also used to encrypt attributes X ∈ X and obtain a
ciphertext ctX = Encrypt(msk, X). In addition to encrypting, we also consider a method Encode to
“encode” attributes X̂ using msk. In contrast to a ciphertext, an encoding e

X̂
does not hide the

attributes X̂ (hence the scheme is only partially hiding). Finally, there is an algorithm Decrypt that
takes a secret key skP for a predicate P , an encoding eX1 of X1, and a ciphertext ctX2 encrypting
X2 and outputs P (X1, X2) with overwhelming probability.

Security of 2-PHPE is defined via a distinguishing game in which an adversary has access to
KeyGen, Encode and Encrypt oracles, subject to some admissibility conditions. In particular, the
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adversary can obtain encryptions of X2,b, when submitting X2,0 and X2,1 for uniformly chosen b ∈
{0, 1}, along with encodings eX1 and secret keys skP satisfying P (X1, X2,0) = P (X1, X2,1). The
scheme is called partially strong attribute-hiding2 if no PPT adversary has non-negligible advantage
of determining b over random guessing.

To the best of our knowledge, the only known way to instantiate such a 2-PHPE scheme for all
predicates is via iO [GGH+13, JLS21]. Furthermore, a sub-exponentially secure 2-PHPE scheme
supporting all boolean circuits actually implies iO. Even for a limited class of predicates (e.g.,
inner-products), a secret-key 2-PHPE scheme with strong attribute-hiding yields a non-interactive
UPCS scheme for a class of policies captured by inner-products. One way to build such a 2-PHPE
scheme is using trilinear maps, where the linearity can be used to evaluate the inner-product of the
vectors provided by the authority, the sender, and the receiver. Weakening the assumption to build
it using bilinear maps, while satisfying attribute-hiding, seems challenging – the evaluation between
the attributes of these three parties seems to require trilinearity. We leave overcoming this issue as
an interesting open problem and refer to Section 4.1 (particularly to Remarks 2 and 3) for more
details on this.

1.4.3 Non-interactive UPCS from 2-PHPE

Given a 2-PHPE scheme for a class of predicates P, we can construct a non-interactive UPCS
scheme for the same class of policies F = P. Our construction additionally assumes a NIZK proof
system and a digital signature scheme. A token for a policy F ∈ F consists of a 2-PHPE secret
key for the predicate F , signed by the authority using the digital signature scheme. A public key
for attributes X consists of a digital signature public key and a ciphertext of X, both signed by
the authority. The corresponding secret key instead contains an encoding of X (since it does not
have to hide X) and additionally the secret key of the digital signature scheme. When S wants to
sign a message for a receiver R, S proves, using the NIZK, knowledge of a secret key with a valid
signature from the authority containing an encoding eX1 such that 2-PHPE decryption of eX1 and
the ciphertext ctX2 in the public key of R returns 1.

Unforgeability of the scheme follows from the correctness of the 2-PHPE scheme, the soundness
of the NIZK proof, and unforgeability of the digital signature scheme. The attribute-hiding property
of the UPCS scheme follows from the security of the 2-PHPE scheme and the zero-knowledge
property of the NIZK. Note that all 2-PHPE keys, ciphertexts, and encodings are generated by the
authority. Thus, a secret-key 2-PHPE scheme is sufficient. Furthermore, it is only necessary to hide
the attributes in the receiver’s public key is sufficient since the sender’s attributes are encoded in
the UPCS secret key only known to the sender.

1.4.4 Non-interactive UPCS implies 2-PHPE

Since 2-PHPE is a heavy tool, it would be desirable to construct a UPCS scheme without assuming
2-PHPE. Unfortunately, this is impossible for non-interactive UPCS schemes. We prove this by
constructing a 2-PHPE scheme based on a non-interactive UPCS scheme, where the set of supported
predicates exactly matches the set of supported policies of the assumed UPCS scheme. The basic
idea of the construction is as follows: a 2-PHPE secret key for a policy P corresponds to a UPCS
update token for the policy corresponding to P . To encode a set of attributes X1, we generate a
UPCS key pair for that attribute set, and the encoding consists of both the secret and public keys.

2Note that the adversary may even learn skP for which P (X1, X2,b) = 1, ∀b ∈ {0, 1}. This is referred to as strong
attribute-hiding for the 2-PHPE scheme. For brevity, we call this attribute-hiding in the rest of the paper (except
Section 4.1, where we again clarify this formally).
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To encrypt X2, we also generate a UPCS key pair, but only include the public key in the ciphertext,
to ensure that X2 remains hidden. To decrypt a pair (eX1 , ctX2), we use the secret key in eX1 and
the public key in ctX2 to generate a UPCS signature (on a fixed message). We then verify this
signature and output the bit that UPCS.Verify returns. Correctness of the UPCS scheme implies
that the generated signature is valid if and only if P (X1, X2) = 1, which implies correctness of the
2-PHPE scheme. Security of the 2-PHPE scheme also directly follows from the attribute-hiding
property of the UPCS scheme.

1.4.5 UPCS with Interaction after each Policy Update

If we allow the sender and receiver to interact when signing for the first time after a policy update, it
is rather easy to obtain a UPCS scheme. The basic idea is to let the parties jointly generate a NIZK
proof that their attributes satisfy the current policy. More concretely, the scheme assumes a basic
digital signature scheme, a NIZK proof system, and a secure two-party computation (2PC) protocol
and works as follows: on Setup, the authority generates a CRS for the NIZK and key pairs of the
digital signature scheme. The master public key consists of the CRS value and all signature public
keys, the master secret key contains the corresponding secret keys, and the initial update token
is a signature on the initial policy F0 under the authority’s signing key. Update simply consists
of signing the new policy. In the first step of KeyGen, for attributes x, a regular signature key
pair is generated. The final generated public key consists of the signature verification key signed
by the authority, and the secret key consists of the signing key and the signed pair of verification
key and attributes x. When a sender PS wants to sign a message for a receiver PR for the first
time under the current policy, the two execute the 2PC protocol to produce a NIZK proof π for
the statement that PS and PR know valid signatures from the authority on their verification keys
together with attributes that satisfy the current policy. The UPCS signature of a message m then
consists of π and a regular signature under the signing key of PS of m, π, and the verification key
of PR. For future signatures, under the same policy, the proof π can be reused. Verification of a
UPCS signature entails verifying the standard signature and the NIZK proof.

Unforgeability of the UPCS scheme is implied by unforgeability of the basic signature scheme
and soundness of the NIZK proof. The zero-knowledge property of the proof further implies that a
UPCS signature does not reveal anything about the attributes of the sender and receiver beyond
the fact that they satisfy the current policy. Security of the 2PC finally implies that the attributes
of the sender are hidden from the receiver and vice versa.

1.4.6 UPCS with One-Time Interaction

In the last step, we construct a UPCS scheme that requires only a single interaction between a pair
of sender and receiver such that the sender can afterwards sign arbitrarily many messages for that
receiver, even under future policy updates. This scheme combines ideas from our non-interactive
scheme and the interactive one, but only uses a standard single-input predicate-encryption (PE)
scheme. As in our non-interactive scheme, a policy update token consists of a signed PE secret key.
Since UPCS policies take the attributes of the sender and receiver as separate inputs and the PE
scheme only takes a single input, we concatenate the attributes of the sender and receiver into a
single element and generate a PE secret key for the corresponding predicate that splits the input in
half and then evaluates the corresponding two-input policy. In more detail, for a two-input policy
F ′ that takes as an input two attribute sets XS and XR, we create a single-input function F̂ ′ that
takes as an input a single set XS,R, which is the disjoint union of the sender and receiver attributes,
i.e. XS,R := {(x, 0)|x ∈ XS} ∪ {(x, 1)|x ∈ XR}. The function F̂ ′ then splits the input set XS,R into
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the two sets XS and XR, where attributes in XS are of the form (x, 0) and attributes in XR are
of the form (x, 1), and then executes F ′(XS , XR). The set of supported policies in this scheme
corresponds to all policies F ′ for which the PE scheme supports the corresponding F̂ ′. A UPCS
secret key for a set of attributes X contains a signature from the authority on X together with
a secret key for a digital signature scheme, and the corresponding public key contains the signed
corresponding digital signature public key.

When a sender S wants to sign a message for a receiver R for the first time, they interact
in a 2PC to first compute a PE ciphertext for the pair of attribute sets (XS , XR). Afterwards,
they produce a NIZK proof that the ciphertext was generated correctly using attributes with valid
signatures from the authority for the corresponding public keys of S and R. To sign a message,
the sender then produces a NIZK proof of knowledge of such a ciphertext and that the ciphertext
decrypts to 1 using the PE secret key in the current policy update token.

If the scheme is implemented directly as described above, then, for the final signing of the
message, the sender is required to generate a NIZK proof over another NIZK proof, namely that
the known ciphertext comes with a valid NIZK proof from the 2PC that it is an encryption of the
correct attributes. Since this can be rather inefficient (depending on the used NIZK scheme), we
slightly modify the scheme to avoid this recursive proof. A seemingly simple solution would be
to add the ciphertext generated in the 2PC in plain to a signature and then only prove that this
ciphertext decrypts to 1. The problem with this approach is that now everyone can evaluate this
ciphertext for all policies for which an update token exists, and not just those for which the sender
generates a signature. This scheme therefore does not satisfy our privacy notion that only allows
information leakage about the attributes that trivially follow from the usage of the scheme, and, in
particular, hide policy evaluations for policies under which no signature has been generated. We
avoid this issue by generating a commitment to the ciphertext in the 2PC, together with a proof
that the commitment was generated correctly, and then add this commitment to each signature. A
signature then contains two NIZK proofs, where the first one is taken directly from the 2PC, and
the second one proves that the commitment is to a (secret) ciphertext that decrypts to 1 using the
PE secret key of the current policy.

Instantiating PE. We also require a (strong) attribute-hiding, adaptively secure PE scheme
to instantiate the UPCS scheme with one-time interaction presented above. Such PE schemes
exist based on pairings for inner-product (in the standard model) [OT12] and quadratic predicates
(in the generic group model) [BCFG17, RPB+19]. We refer the reader to Section 5.2.1 for more
details about the instantiation. The fact that the underlying PE schemes can be based on pairings
highlights the practical potential of our UPCS scheme with one-time interaction, i.e., one can, in
principle, implement and benchmark the presented UPCS scheme, given efficient digital signatures
and NIZK proofs that are compatible with the underlying pairing-based PE schemes. We leave a
practical instantiation of this scheme as future work.

2 Preliminaries
Notation. We denote the security parameter with λ ∈ N and use 1λ as its unary representation.
We call a randomized algorithm A probabilistic polynomial time (PPT) if there exists a polynomial
p(·) such that for every input x the running time of A(x) is bounded by p(|x|). A function
negl : N → R+ is called negligible if for every positive polynomial p(λ), there exists λ0 ∈ N such
that for all λ > λ0 : negl(λ) < 1/p(λ). If clear from the context, we sometimes omit λ for improved
readability. The set {1, . . . , n} is denoted as [n] for n ∈ N. For the equality check of two elements,
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we use “=”. The assign operator is denoted with “:=”, whereas randomized assignment is denoted
with a ← A, with a randomized algorithm A and where the randomness is not explicit. If the
randomness is explicit, we write a := A(x; r) where x is the input and r is the randomness. For
algorithms A and B, we write AB(·)(x) to denote that A gets x as an input and has black-box oracle
access to B, that is, the response for an oracle query q is B(q). For any probabilistic event E, we
denote its complement by E. Furthermore, for the last construction that we present in the main
body, we introduce the following notation:

Xs∪̇Xr := {(x, 0)|x ∈ Xs} ∪ {(x, 1)|x ∈ Xr}.

2.1 Digital Signatures

In this section, we recap the definition of digital signatures as well as existential unforgeability as
introduced in [GMR88].

Definition 2.1 (Digital Signatures). A digital signature scheme (DS) is a triple of PPT algorithms
DS = (Setup, Sign, Verify):

Setup(1λ): Takes as input a security parameter λ and outputs a verification key vk and a signing
key sk.

Sign(sk, m): Takes as input the signing key sk, a message m ∈M and outputs a signature σ.

Verify(vk, m, σ): Takes as input the verification key vk, a message m and a signature σ, and outputs
0 or 1.

A scheme DS is correct if (for all λ ∈ N), for all vk in the support of Setup(1λ) and all m ∈M, we
have

Pr[Verify(vk, m, Sign(sk, m)) = 1] = 1.

Definition 2.2 (Existential Unforgeability of a Digital Signature Scheme). Let DS = (Setup, Sign,
Verify) be a DS scheme. We define the experiment EUF-CMADS in Figure 1 with Q being the set
containing the queries of A to the signing oracle Sign(sk, ·). The advantage of an adversary A is
defined by

AdvEUF-CMA
DS,A (λ) = Pr[EUF-CMADS(1λ,A) = 1].

A Digital Signature scheme DS is called existentially unforgeable under adaptive chosen-message
attacks (EUF-CMA secure) if for any polynomial-time adversary A it holds that AdvEUF-CMA

DS,A (λ) ≤
negl(λ) for a negligible function negl(·).

EUF-CMADS(1λ,A)
(vk, sk)← Setup(1λ)
(m, σ)← ASign(sk,·)(vk)
Output: Verify(vk, m, σ) = 1 ∧m /∈ Q

Figure 1: Existentially Unforgeability Game of DS.
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2.2 Non-Interactive Zero Knowledge Proofs

Now, we recap the definition of non-interactive zero knowledge (NIZK) proofs [GMW87, For87,
BGG+90].

Definition 2.3 (Non-Interactive Zero Knowledge Proofs). Let R be an NP Relation and consider the
language L = {x | ∃w with (x, w) ∈ R} (where x is called a statement or instance). A non-interactive
zero-knowledge proof (NIZK) for the relation R is a triple of PPT algorithms NIZK = (Setup, Prove,
Verify):

Setup(1λ): Takes as input a security parameter λ and outputs the common reference string CRS.

Prove(CRS, x, w): Takes as input the common reference string CRS, a statement x and a witness w,
and outputs a proof π.

Verify(CRS, x, π): Takes as input the common reference string CRS, a statement x and a proof π,
and outputs 0 or 1.

A system NIZK is complete, if (for all λ ∈ N), for all CRS in the support of Setup(1λ) and all
statement-witness pairs in the relation (x, w) ∈ R,

Pr[Verify(CRS, x, Prove(CRS, x, w)) = 1] = 1.

Besides completeness, a NIZK system should also fulfill the notions of soundness and zero-
knowledge, which we introduce in the following two definitions:

Definition 2.4 (Soundness). Given a proof system NIZK = (Setup, Prove, Verify) for a relation R
and the corresponding language L, we define the soundness advantage of an adversary A as the
probability:

AdvSound
NIZK,A(λ) := Pr[CRS← Setup(1λ); (x, π)← A(CRS) : Verify(CRS, x, π) = 1 ∧ x /∈ L].

A NIZK proof system is called perfectly sound if AdvSound
NIZK,A(λ) = 0 for all algorithms A, and

computationally sound, if AdvSound
NIZK,A(λ) ≤ negl(λ) for all PPT algorithms A.

Definition 2.5 (Zero Knowledge). Let NIZK = (Setup, Prove, Verify) be a NIZK proof system
for a relation R and the corresponding language L, Sim = (Sim1, Sim2) a pair of algorithms (the
simulator), with Sim′(CRS, τ, x, w) = Sim2(CRS, τ, x) for (x, w) ∈ R, and Sim′(CRS, τ, x, w) = failure
for (x, w) /∈ R. For β ∈ {0, 1}, we define the experiment ZKNIZK

β (1λ,A) in Figure 2. The associated
advantage of an adversary A is defined as

AdvZK
NIZK,A,Sim(λ) := |Pr[ZKNIZK

0 (1λ,A, Sim) = 1]− Pr[ZKNIZK
1 (1λ,A, Sim) = 1]|.

A NIZK proof system NIZK is called perfect zero-knowledge, with respect to a simulator Sim =
(Sim1, Sim2), if AdvZK

NIZK,A,Sim(λ) = 0 for all algorithms A, and computationally zero-knowledge, if
AdvZK

NIZK,A,Sim(λ) ≤ negl(λ) for all PPT algorithms A.

ZKNIZK
0 (1λ,A, Sim)

CRS← Setup(1λ)
α← AProve(CRS,·,·)(CRS)
Output: α

ZKNIZK
1 (1λ,A, Sim)

(CRS, τ)← Sim1(1λ)
α← ASim′(CRS,τ,·,·)(CRS)
Output: α

Figure 2: Zero-knowledge property of NIZK.
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Besides the notion of zero-knowledge and soundness, we also introduce the notion of extractability
as in [CKLM12].

Definition 2.6 (Extractability). Let NIZK = (Setup, Prove, Verify) be a NIZK proof system for a
relation R and the corresponding language L, E = (E1, E2) be a pair of algorithms (the extractor)
which shares a secret state. We define the extraction advantages of an adversary A as

AdvCRS
NIZK,A := |Pr[CRS ← Setup(1λ); 1 ← A(CRS)] − Pr[CRS ← E1(1λ); 1 ← A(CRS)]|,

and

AdvExt
NIZK,A(λ) := Pr[CRSE ← E1(1λ); (x, π)← A(CRSE) :

Verify(CRSE , x, π) = 1 ∧R(x, E2(CRSE , x, π)) = 0].

A NIZK proof system NIZK is called extractable, with respect to an extractor E = (E1, E2),
if AdvCRS

NIZK,A ≤ negl(λ) and AdvExt
NIZK,A(λ) ≤ negl(λ). Additionally, we call an extractable non-

interactive zero-knowledge proof a non-interactive zero-knowledge proof of knowledge (NIZKPoK).

2.3 Predicate Encryption

The notion of predicate-only predicate encryption has first been introduced by Katz et al. [KSW08].
At a high level, a predicate encryption scheme allows, given the master secret key, to generate secret
keys skf for functions f in the supported function family F . Using the master public key, one can
further encrypt an attribute x to obtain a ciphertext (the “predicate-only” part in the name refers
to not having a message encrypted). Decrypting the ciphertext with skf then yields a constant,
say 1, if f(x) = 1, and another constant, say 0, if f(x) ̸= 1. Put simply, for boolean functions with
range {0, 1}, this means the output of decrypt should be f(x) for predicate-only PE. For simplicity,
we assume that all the predicate encryption schemes that are used in this work are perfectly correct.
Nevertheless, our scheme can also be instantiated using predicate encryption schemes that are not
perfectly correct which results in an additional negligible error.

Definition 2.7 (Predicate-Only Predicate Encryption). Let F = {Fλ}λ∈N be a family of sets Fλ of
predicates f : Xλ → {0, 1}. A predicate-only predicate encryption (PE) scheme for the functionality
class Fλ is a tuple of four algorithms PE = (Setup, KeyGen, Enc, Dec):

Setup(1λ): Takes as input a unary representation of the security parameter λ and outputs a master
public-secret key pair (mpk, msk).

KeyGen(msk, f): Takes as input the master secret key msk and a function f ∈ F , and outputs a
functional key skf .

Enc(mpk, x): Takes as input the master public key mpk and an attribute x ∈ Xλ, and outputs a
ciphertext ct.

Dec(skf , ct): Takes as input a functional key skf and a ciphertext ct and outputs 0 or 1.

A predicate-only predicate encryption scheme PE is correct if for all λ ∈ N, for all (mpk, msk) in
the support of Setup(1λ), all functions f ∈ Fλ, all secret keys skf in the support of KeyGen(msk, f),
and for all attributes x ∈ Xλ, we have

Pr
[
Dec(skf , Enc(mpk, x)) = f(x)

]
= 1.

As a security requirement, we want the ciphertexts to hide the encrypted attributes, for which
we define an indistinguishability-based notion below.
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AHPE
β (1λ,A)

(mpk, msk)← Setup(1λ)
α← AQEncLRβ(·,·),KeyGen(msk,·)(1λ, mpk)
Output: α

Figure 3: Attribute-Hiding game of PE.

2.3.1 Security Notions for PE

In the initial work of Katz et al. [KSW08], the authors only introduce the weaker notion of selective
security, as well as a construction that achieves this notion. The corresponding indistinguishability
based adaptive security notion for predicate encryption has been introduced in [OT12]. While the
definition in [OT12] allows the adversary to obtain only a single challenge ciphertext, we use a
generalization of this notion that allows for multiple challenges. A simple/standard hybrid argument
for public-key functional encryption can be used to show this implication.
Definition 2.8 (Indistinguishability-based Attribute-Hiding). Let PE = (Setup, KeyGen, Enc, Dec)
be a PE scheme for a function family F = {Fλ}λ∈N as defined above. For β ∈ {0, 1}, we define the
experiment AHPE

β in Figure 3, where the left-or-right oracle is defined as:
QEncLRβ(·, ·): On input two attribute sets x0 and x1, output ct← Enc(mpk, xβ).
The advantage of an adversary A is defined as:

AdvAH
PE,A(λ) = |Pr[AHPE

0 (1λ,A) = 1]− Pr[AHPE
1 (1λ,A) = 1]|.

We call an adversary valid if for all queries (x0, x1) to the oracle QEncLRβ(·, ·) and for any function f
queried to the key generation oracle KeyGen(msk, ·), we have f(x0) = f(x1) (with probability 1 over
the randomness of the adversary and the involved algorithms).

A predicate-only predicate encryption scheme PE is called attribute hiding if for any valid
polynomial-time adversary A, there exists a negligible function negl such that AdvAH

PE,A(λ) ≤ negl(λ).

2.4 Commitment Schemes

We recap the definition of a commitment scheme as stated in [Lin10] together with the definition of
computational hiding, perfect binding and equivocality.
Definition 2.9 (Commitment Scheme). A commitment scheme consists of a setup algorithm Setup
that takes as an input a unary representation of the security parameter and outputs a CRS CRS
and a PPT algorithm Com that takes as an input a CRS CRS, a message m, some randomness r
and outputs a commitment com.

We call the pair (m, r) the decommitment of com.
We recall that commitments are secure, w.r.t. the security definitions below, under parallel

composition, which we use in the proof of our predicate encryption based interactive UPCS scheme.
Definition 2.10 (Hiding of CS). Let (Setup, Com) be a commitment scheme, then we define the
experiment HIDECom

β in Figure 4. The advantage of an adversary A = (A1,A2) is defined as:

AdvHIDE
Com,A(λ) = |Pr[HIDECom

0 (1λ,A) = 1]− Pr[HIDECom
1 (1λ,A) = 1]| .

A commitment scheme Com is called computationally hiding, if for any PPT adversary A = (A1,A2)
it holds that AdvHIDE

Com,A(λ) ≤ negl(λ).
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HIDECom
β (1λ,A)

CRS← Setup(1λ)
(m0, m1, st)← A1(CRS)
r ← {0, 1}λ

c = Com(CRS, mβ; r)
α← A2(st, c)
Output: α

Figure 4: Hiding Game for a commitment
scheme.

BINDCom(1λ,A)
CRS← Setup(1λ)
(c, m, r, m′, r′)← A(CRS)
Output: 1 if Com(CRS, m; r) =
Com(CRS, m′; r′)

and 0 otherwise

Figure 5: Binding Game for a commitment
scheme.

Definition 2.11 (Binding of CS). Let (Setup, Com) be a commitment scheme, then we define the
experiment BINDCom in Figure 5. A commitment scheme Com is called perfectly binding, if for any
adversary A it holds that Pr[BINDCom(1λ,A) = 1] = 0.

Definition 2.12 (Equivocality). Let com = (Setup, Com) be a commitment scheme and Eq =
(Eq1, Eq2, Eq3) a triple of algorithms (the equivocator), then we define:

QCom(m): On input m, sample r ← {0, 1}λ, compute c := Com(CRS, m; r) and output (c, r).

and set Eq′(m) = (c := Eq2(CRS), r := Eq3(c, m)). For β ∈ {0, 1}, we define the experiment
Eqcom

β (1λ,A) in Figure 6. The associated advantage of an adversary A is defined as

AdvEq
com,A,Eq(λ) := |Pr[Eqcom

0 (1λ,A, Eq) = 1]− Pr[Eqcom
1 (1λ,A, Eq) = 1]|.

A commitment scheme com is called equivocal, with respect to an equivocator Eq = (Eq1, Eq2, Eq3),
if AdvEq

com,A,Eq(λ) ≤ negl(λ) for all PPT algorithms A.

Eqcom
0 (1λ,A, Eq)

CRS← Setup(1λ)
α← AQCom(·)(CRS)
Output: α

Eqcom
1 (1λ,A, Eq)

CRS← Eq1(1λ)
α← AEq′(·)(CRS)
Output: α

Figure 6: Equivocality of com.

We note that this is different to the standard definition of equivocality. We require the existence
of an oracle since, in the proof of our construction, we need to equivocate multiple commitments
at once. We observe that we can realize this potentially stronger notion by simply committing to
the message m using a commitment scheme with randomness r in the commit phase and output
a zero-knowledge proof that the message m with randomness r leads to the commitment, as a
decommitment. The equivocator in this scheme simply runs the simulator of the NIZK proof
system.3

3We note that the decommitment for this schemes consists of more then just the randomness r used to generate this
commitment. For simplicity, in the remainder of this work, we simply denote the decommitment as the randomness r.
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2.5 Two-Party Computation

In this section, we introduce the preliminaries on UC-secure MPC [GS18]. A secure two-party
computation protocol is carried out between two parties P1 and P2 (modeled as interactive Turing
machines) and is associated with a function specified as a circuit C. Party P1 has input x1 and P2
has input x2. At the end of the protocol, P1 gets the output. If the function is randomized, the
parties contribute randomness as part of their input. We follow the real/ideal world paradigm to
formalize security of a two-party computation protocol Π2PC secure against malicious adversaries.
First, we describe the ideal process.

2.5.1 Ideal Process

The ideal world is associated with a trusted party and parties P1, P2. At most one of P1, P2 is
controlled by an adversary. The process proceeds in the following steps:

Inputs: Each party obtains its input, party P1 obtains x1 and party P2 obtains x2 from the
environment.

Inputs to Trusted Party: The parties send their inputs to the trusted party FC . The honest
party sends the same input it received from the environment to the trusted party. The
adversary, however, can send a different input to the trusted party.

Aborting Adversaries: An adversarial party can send a message to the trusted party to abort
the execution. Upon receiving this, the trusted party terminates the ideal world execution.

Trusted party produces output to adversary: Suppose the trusted party receives inputs x′
1

and x′
2 from P1 and P2 respectively, then it evaluates out = C(x′

1, x′
2). If P1 is corrupted,

output out to the adversary. Otherwise, activate the adversary with the empty string.

Output to parties: If the party P1 is honest and the execution has not been aborted, FC outputs
out to P1.

We denote the adversary participating in the above protocol to be Sim. We define IdealΠ2PC
Z,C,Sim

to be the distribution of the output of the environment executing the ideal process.

2.5.2 Real Process

In the real process both the parties execute the protocol Π2PC. At most one of P1 or P2 is controlled
by an adversary. We denote the adversarial party to be A. As in the ideal process, they receive
inputs from the environment. We define RealΠ2PC

Z,C,(P1,P2) to be the joint distribution over the outputs
of the adversary and the honest party.

We define the security of two-party computation as follows:

Definition 2.13. Consider a two-party computation specified as a circuit C. Let Π2PC be a
two-party protocol for evaluating C. We say that Π2PC securely computes C if for every malicious
PPT adversary A in the real world, there exists a PPT adversary Sim (called the simulator) in the
ideal world such that for any enviornment Z,

IdealΠ2PC
Z,C,Sim ≈c RealΠ2PC

Z,C,A
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3 A Model for Interactive and Non-Interactive PCS with Updates
Here, we sketch a simple extension to the PCS setting that includes the possibility to have interactive
processes between protocol participants.

3.1 Model Basics

General protocol execution. We consider a standard real-world protocol execution as in [Can01]
with a dynamic set of parties that are able to pass messages to each other. A protocol is an interactive
program that specifies how incoming messages and inputs are processed, what outputs are generated
and which messages are sent to which party. Protocols can be triggered (and protocol machines
spawned) at a party by an external input, and/or due to incoming messages from the network. Upon
each of these events, the protocol specification prescribes how information is processed, how the
local state of the party is changed, whether output is given to the caller, or whether new messages
are sent onto the network. Protocols can further trigger the start of sub-protocols, and several of
these sub-protocols can be run simultaneously by any single party.

We follow the dynamic execution model defined in [Can01] where we simply merge the environ-
ment and the adversary into one entity (which is without loss of generality due to the completeness
of the dummy adversary in UC). We thus assume a PPT adversary A that has full control over
the basic communication network in that it can read, delay, delete, modify, and infect messages on
the basic network. For some actions, parties are assumed to be connected by secure channels, in
which case the adversary only learns that a message is being sent over that link without leaking the
contents, and without the ability of the attacker to modify the content. The adversary also controls
the scheduling of protocol events, including the initiation of protocols and providing their external
inputs. The adversary can at any time decide to corrupt a party by a special request Corrupt
(except the trusted third party), in which case the entire private state (unless explicitly erased) is
revealed together with all incoming and outgoing messages by this party. From this point on, the
adversary is in full control of the protocol machine.

A general model for PCS with updates. We first define some notation. Let {Xλ}λ∈N be a
family of attributes and denote by Xλ the powerset of Xλ. Further let F = {Fλ}λ∈N be a family of
sets Fλ = {F : Xλ ×Xλ → {0, 1}} of policies/predicates. We omit λ in the subscripts from now on
for the sake of simplicity and writing.

Updatable policy-compliant signatures can be modeled as message-driven protocols, denoted
UPCS, where the set of parties consists of an authority A and a set of users P1, . . . , Pn. The
authority is a trusted entity that generates the setup of the system and generates the key-pair for
the parties based on the attributes they are assigned to. More precisely, the authority is initially
triggered by an input (Setup, F ) upon which it generates and outputs a master public key mpk
and an additional token tok0, an auxiliary value in anticipation of future policy updates. If the
setup completes without failure, we say that the authority is initialized with policy F . After
setup, the authority accepts inputs of the form (KeyGen, Pi, xi) upon which it has to generate the
public-private key pair together with party Pi, potentially running an interactive sub-protocol over
private channels with Pi. Such a user that completed this process, and thereby obtains a key pair
(pki, ski) together with its attributes and the master public key, is called initialized (with attributes
xi). Formally the user Pi signals the successful initialization by outputting (Initialized, pki).

For policy updates, the authority accepts inputs of the form (Update, F ′) and must output a
so-called update token toke, where e is an increasing index corresponding to the number of times a
policy has been updated.
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Once a user is initialized, it accepts two types of inputs in order to sign and verify signa-
tures. On input (Sign, tok, R, m) to party S, the party generates a signature σ, potentially
after exchanging messages (i.e., running a sub-protocol) with the receiver R. Finally, on input
(Verify, tok, pkS , pkR, m, σ) for any combination of token, keys, message, and signature, the party
locally produces a decision bit, where 0 indicates that the signature is invalid, and 1 indicates that
the signature is valid with respect to the master public key mpk.

Concrete protocol descriptions in this work. Not all steps above involve an interactive
process between parties and hence many of the inputs to the protocol machines are answered directly
by running algorithms which we can define following and extending the definition of [BMW21]. In
fact, our interactive schemes leverage a 2PC during signing between sender S and receiver R, while
setup, key-generation, and verification are local operations (where in case of key-generation the keys
are transmitted to the enrolled user). Thus, in order to define a full UPCS protocol, it is sufficient
to specify the following tuple of algorithms:

Setup(1λ, F ): On input a unary representation of the security parameter λ and an initial policy
F ∈ Fλ, output a master public and secret key pair (mpk, msk), and an initial token tok. This
algorithm is run by A upon input (Setup, F ).

PolUpd(msk, mpk, F ′): On input the master secret and public key, msk and mpk, and a new policy
F ′, output an update token tok. This algorithm is run by A upon input (Update, F ′).

KeyGen(msk, Pi, xi): On input the master secret key msk and a set of attributes xi ∈ Xλ for party
Pi, output a public and secret key pair (pk, sk). This algorithm is run by A upon input
(KeyGen, Pi, xi). The authority then sends (mpk, pk, sk) to party Pi over a secure channel.

Verify(mpk, tok, pkS , pkR, m, σ): This is a deterministic algorithm, that on input a master public
key mpk, a token tok, two public keys pkS , pkR, a signature σ on a message m, output either
0 or 1. This algorithm is executed upon input (Verify, tok, pkS , pkR, m, σ) by party Pi.

Finally, in the general case of an interactive signing process, we will define the following subprotocol:

Πsign(mpk, tok, skS , pkR, R, m): On input a master public key mpk, a token tok, a sender secret
key skS and public key pkR, a receiver identity, and a message m, this subprotocol, after
termination, produces an output for the sender that is either a signature σ or ⊥ (and no
output for R). This subprotocol is invoked by S upon input (Sign, tok, R, m).

In case signing is a non-interactive process as in [BMW21], then the subprotocol Πsign boils
down to specifying an algorithm Sign just as in [BMW21], where we assume that any public key
pkR issued by the authority A towards a party Pi is associated to its identity in a certifiable way.4
Obtaining a public key for a given identity can be accomplished by any out-of-band communication
mechanism.

Sign(mpk, tok, skS , pkR, m): On input a master public key mpk, a token tok, a sender secret key skS ,
a receiver public key pkR, and a message m, output either a signature σ or ⊥. This is run by
S upon input (Sign, tok, R, m), and where pkR is the key issued to R by the authority (e.g.
obtained from R).

4For example via a signature on the pair (pkPi
, Pi).
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3.2 Correctness and Security for PCS with Updates

PCS Correctness with Policy Updates. We first define the correctness of a (potentially
interactive) updatable PCS scheme.

Definition 3.1. An updatable UPCS protocol π is called correct if the following property holds
with overwhelming probability in the above experiment with respect to any PPT adversary: if d is
the output by some initialized and honest party Pi upon input (Verify, tok, pkS , pkR, m, σ) and if
it holds that

1. tok is the value output by A on input (Update, F ) or (Setup, F ) for some policy F .

2. the public keys pkS and pkR belong to initialized honest parties PS and PR computed as a
result of invocations (KeyGen, PS , xS), (KeyGen, PR, xR), respectively; and

3. the signature σ is the returned value by party PS on input (Sign, tok, R, m),

then it must hold that d = F (xS , xR).

Unforgeability. We capture unforgeability in this setting following [BMW21], but cast it in our
execution model.

Definition 3.2. An updatable UPCS protocol π is called unforgeable if no PPT adversary A
is able to provoke the following event Eforge with better than negligible probability in the above
experiment. Event Eforge occurs if an honest party Pi outputs a decision bit d = 1 on input
(Verify, tok, pkS , pkR, m, σ) where the following property holds:

1. The public key pkS is associated with some initialized party PS that is not corrupted and was
never invoked on input (Sign, tok, R, m); or

2. the update token tok has never been computed by the authority A on any input (Update, F )
or (Setup, F ); or

3. the public key pkS (resp. pkR) does not belong to any initialized party S (resp. R) (by means
of an invocation (KeyGen, S, xS), (resp. (KeyGen, R, xR)) to A); or

4. there is a policy F such that tok is the output of A on input (Update, F ) or (Setup, F ), and
there are attributes xS and xR associated to some initialized parties S and R with public keys
pkS and pkR, respectively (as the result of inputs (KeyGen, S, xS) and (KeyGen, R, xR) to
A), such that F (xS , xR) = 0.

Attribute-Hiding. To define the attribute-hiding experiment, we extend the usual capabilities
of the adversary by allowing it to perform a test-key-gen query. That is, in addition to its regular
actions, the adversary A can initialize a party alternatively by (Test-KeyGen, Pi, (xi,0, xi,1)).
At the onset of the experiment, a bit b is chosen uniformly at random. Upon a test-query
(Test-KeyGen, Pi, (xi,0, xi,1)), party Pi executes the protocol action as if it received input (KeyGen,
Pi, xi,b). In the following, we treat inputs of the form (KeyGen, Pi, xi) made by A as if the ad-
versary asked (Test-KeyGen, Pi, (xi, xi)). The adversary is allowed to execute all regular actions
as defined above, but is not allowed to perform certain actions, involving any party Pi to which a
test query (Test-KeyGen, Pi, (xi,0, xi,1)) has been issued, that would violate any of the conditions
below:
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1. (Test-KeyGen, Pi, (xi,0, xi,1)) is only issued for a corrupted Pi if xi,0 = xi,1.

2. Vice-versa, the party Pi can only be corrupted in the execution if

(a) it holds that xi,0 = xi,1; and
(b) For all other initialized parties Pj , initialized via (Test-KeyGen, Pj , (xj,0, xj,1)), it must

hold that F (xi,0, xj,0) = F (xi,1, xj,1) for all policies F for which there is either the input
(Setup, F ) or an input (Update, F ) to A.

3. For any signature produced by Pi via input (Sign, tok, Pj , m), where tok is an update token for
policy F output by A on input (Update, F ) or (Setup, F ), it must hold that F (xi,0, xj,0) =
F (xi,1, xj,1).

An adversary is called valid, if it obeys the conditions with probability 1 over the randomness of
the adversary and the protocol machines. At the end of its run, A outputs a bit b′ (as a guess for b).

Definition 3.3. An updatable UPCS protocol π is called attribute-hiding if, for any valid PPT
adversary A in the above extended experiment, the probability of event b = b′ is at most 1/2+negl(λ).

4 Non-Interactive Updatable Policy-Compliant Signatures

4.1 Two-Input Partially Hiding (Predicate-Only) Predicate Encryption

In this section, we formally define the notion of a two-input partially hiding (predicate-only) predicate
encryption (2-PHPE) scheme that we use to build our non-interactive UPCS scheme in Section 4.2.
As the name suggests, our 2-PHPE definition considers attribute-hiding only with respect to one
slot of the predicate. We discuss this further in Remark 2 after formally defining the primitive.

Definition 4.1 (Two-input Partially-Hiding Predicate-Only Predicate Encryption). Let {Xλ}λ∈N
be a family of attributes and let Xλ denote the powerset of Xλ. Further, let P = {Pλ}λ∈N be
a family of two-input predicate sets Pλ = {P : Xλ × Xλ → {0, 1}}. A two-input partially-hiding
predicate-only predicate encryption (2-PHPE) scheme for the predicate class Pλ is given by a tuple of
five PPT algorithms 2-PHPE = (2-PHPE.Setup, 2-PHPE.KeyGen, 2-PHPE.Encode, 2-PHPE.Encrypt,
2-PHPE.Decrypt):

Setup(1λ): On input a unary representation of the security parameter λ , output public parameters
pp5 and a master secret key msk.

KeyGen(msk, P ): On input msk and a predicate P ∈ Pλ, output a secret key skP .

Encode(msk, x1): On input msk and an attribute set x1 ∈ Xλ (for slot 1), output an encoding ex1 of
x1. (Note that ex1 may not hide x1.)

Encrypt(msk, x2): On input msk and an attribute set x2 ∈ Xλ (for slot 2), output a ciphertext ct.

Decrypt(skP , (ex1 , ct)): On input a secret key skP , an encoded value ex1 for slot 1 and a ciphertext
ct for slot 2, output 0, 1 or ⊥.

5We assume pp to be an implicit input in all the other algorithms.
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Correctness. A 2-PHPE scheme for Pλ is correct, if for all (x1, x2) ∈ (Xλ)2, P ∈ Pλ, for all
pp and msk in the support of Setup(1λ), all secret keys skP in the support of KeyGen(msk, P ), it
holds that Pr[Decrypt(skP , (Encode(msk, x1), Encrypt(msk, x2))) = P (x1, x2)] ≥ 1− negl(λ), where
the probability is over the random coins of Encode and Encrypt.

Definition 4.2 (Indistinguishability-Based Partial Attribute-Hiding ). Let 2-PHPE = (Setup, KeyGen,
Encode, Encrypt, Decrypt) be a 2-PHPE scheme for a predicate class Pλ as defined in Definition 4.1.
For β ∈ {0, 1} and for an adversary A, we define an experiment AH2-PHPE

β (1λ,A) as shown below.

AH2-PHPE
β (1λ,A)

(pp, msk)← Setup(1λ)
α← AKeyGen(msk,·),Encode(msk,·),QEncLRβ(·,·)(1λ, pp)
Output: α

Figure 7: Partially-Hiding game of 2-PHPE.

The oracles KeyGen(msk, ·) and Encode(msk, ·) work exactly as described in Definition 4.1
above. For any attribute-set pair (x0

2, x1
2) ∈ X 2 for slot 2, define the oracle QEncLRβ(x0

2, x1
2) :=

Encrypt
(
msk, xβ

2

)
. The adversary A in the above experiment may make an arbitrary polynomial

number of queries adaptively to all its oracles before it outputs α. We call the adversary A valid,
if for all predicates P ∈ Pλ queried to KeyGen(msk, ·), for all attribute sets x1 ∈ X queried to
Encode(msk, ·) and for all attribute-pairs (x0

2, x1
2) ∈ X 2 queried to QEncLRβ(·, ·), it holds that

P (x1, x0
2) = P (x1, x1

2). We define the advantage of A as

AdvAH
2-PHPE,A(1λ) = |Pr[AH2-PHPE

0 (1λ,A) = 1]− Pr[AH2-PHPE
1 (1λ,A) = 1]|.

A 2-PHPE scheme satisfies partial attribute-hiding security, if for any valid PPT adversary A, there
exists a negligible function negl(·) such that AdvAH

2-PHPE,A(1λ) ≤ negl(λ).

Remark 1 (Asymmetric Evaluation). From Definition 4.1, we note that it is important that the
evaluation of any predicate P is asymmetric. That is, given skP , an encoding ex1 of attributes x1
and a ciphertext ct encrypting attributes x2, it is possible to learn P (x1, x2) only and not P (x2, x1).
This is generally ensured by the syntax of any multi-input FE or PE scheme by explicitly fixing the
index associated to a ciphertext w.r.t. a slot [AJ15,BKS16,AYY22,FFMV23]. For example, one
way to do this for an n-input FE scheme is to have the encryption algorithm take the index i ∈ [n]
as an input along with the message and generate the slot i ciphertext as cti [BKS16]. We keep this
implicit in Definition 4.1 by denoting the attribute set for slot i as xi for i ∈ [2].
Remark 2 (Partial Attribute-Hiding). Note that for the first slot, the “encoding” ex1 for attributes
x1 may not hide x1, but still allows the evaluation of any predicate P , given a secret key skP and
a ciphertext ct encrypting attributes x2 with respect to the second slot. However, this encoding
procedure requires the 2-PHPE master secret key and is thus a secret operation. The 2-PHPE
security definition above further allows the adversary A to learn secret keys that decrypt to 1.
That is, for any of A’s encoding query x1 (to the Encode(msk, ·) oracle) and any challenge query
(x0

2, x1
2) (to the QEncLRβ(·, ·) oracle), A may possess secret keys skP such that P (x1, xb

2) = 1 for
all b ∈ {0, 1}. Definition 4.2 thus requires (strong) attribute-hiding, but only with respect to the
second slot.
Remark 3 (2-PHPE Instantiations and Implications). As stated in Remark 1, our 2-PHPE requires
(strong) attribute-hiding for slot 2 whereas there are no privacy requirements on slot 1. 2-PHPE is
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thus a weaker variant of (and is implied by) the general notion of two-input predicate encryption
(2-PE) – a primitive that has recently been defined and studied under the more general framework of
multi-input attribute-based and predicate encryption [AYY22,FFMV23,ARYY23,ATY23]. However,
we believe there is no two-input (strong) attribute-hiding PE even for any specific class of predicates
in any model under any assumption.6 (Realizing even 2-PHPE with strong attribute-hiding for
inner-product predicates seems to require trilinear maps, which is a strong assumption. At a high
level, a trilinear map can allow the computation of the inner-product functionality between vectors
from three parties – the first and second party along with the secret key holder.) Currently, the
only known way to build a (strong) attribute-hiding 2-PE (and 2-PHPE) scheme for all circuits is
via iO for circuits [GGH+13,JLS21] through two-input FE [GGG+14,AJ15,BV15].

In terms of implications, we note that sub-exponentially secure, (strong) attribute-hiding 2-
PHPE (even in the secret-key setting) for all circuits actually implies iO. To see this, we observe
that (strong) attribute-hiding 2-PHPE implies PE with the same security (by simply ignoring the
first input). Furthermore, (strong) attribute-hiding PE implies FE (where a secret key for some
function with, say, n output bits corresponds to n PE secret keys for the individual bits). Finally,
sub-exponentially secure, collusion-resistant, secret-key FE for all circuits implies iO [KNT18].

4.2 Non-interactive UPCS Scheme

In this section, we present our first, non-interactive updatable policy-compliant signature scheme.
This scheme relies on the two-input partially-hiding predicate encryption scheme introduced in the
previous section. In this scheme, a public key of a party consists of a ciphertext ct encrypting its
attributes as well as a verification key vk of a signature scheme. The corresponding secret key of
this party contains the encoding of its attributes ex and the signing key sk that corresponds to the
verification key vk in the public key. Furthermore, the public key and the secret key of a party
contain a signature of the authority that binds them together using the verification key vk, i.e., a
signature in the public key that is generated for (vk, ct) and a signature in the secret key that is
generated for (vk, ex). These signatures are also used later to prove that the keys have been output
by the authority.

To generate an update token in this scheme, the authority simply executes the key generation
procedure of the two-input partially-hiding predicate encryption scheme for the update policy F ′ to
generate the corresponding functional key skF ′ . Afterwards, this key is signed by the authority and,
together with this signature, output as the update token.

If a sender now wants to generate a signature for a receiver, it uses its secret key (skS , eS)
together with the public key of the receiver pkR := (vkR, ctR) and the functional key skF ′ that is
part of the current token. In the first step, the sender verifies the signature of the receiver that is
contained in its public key as well as the signature that has been generated for the update token
skF ′ to check their authenticity. Afterwards, the sender executes the decryption procedure of the
two-input partially-hiding predicate encryption scheme using the functional key skF ′ , the ciphertext
of the receiver ctR, and its own encoding eS to check if the sender and the receiver fulfill the current
policy. If this is the case, the sender generates a non-interactive zero-knowledge proof π over the
output of the decryption procedure using the information of the receiver’s public key, the update
token and its own public and secret key. Here, the information contained in the public keys of the
parties is used as part of the statement. The final signature σ, for a message m, is then generated
by signing (m, pkR, π) using the signing key sk of the sender.

6A recent work from [ATY23] can be used to instantiate 2-PE from bilinear maps for inner-product predicates, but
it does not support (strong) attribute-hiding. To the best of our knowledge, there are no (even one-input) PE schemes
for general predicates based on standard assumptions satisfying this strong notion of privacy [GVW15,GKW17,WZ17].
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For the verification of a signature, it is then simply required to verify that a signature associated
with the public keys of the sender and the receiver, as well as the signature of the token for which
it has been generated. If these verifications succeed, then the information inside the public keys
and the token can be used to verify the proof π of the signature. In the last step, the signature
σ generated over the proof and the message (m, pkR, σ) is verified using the verification key of
the sender vkS . If all of these verification checks succeed, then the signature is deemed valid. We
describe the formal scheme in Figure 8.

4.2.1 Correctness and Security

The correctness of the scheme follows directly from the correctness of the underlying schemes: DS,
NIZK and that of 2-PHPE. For security, unforgeability follows from unforgeability of the signature
schemes and the (knowledge) soundness of the NIZK proof. Further, the attribute-hiding of UPCS
follows from the zero-knowledge property of NIZK, as well as the partially attribute-hiding of
2-PHPE. We present the formal proofs below. We note in passing that when switching to a model
where we cannot erase the randomness during proof generation, we obtain an analogous result when
switching to a NIZK that supports adaptive corruptions [GOS06].

Unforgeability

Now, we prove unforgeability of the scheme presented above.

Theorem 4.3. Let DSpub = (DSpub.Setup, DSpub.Sign, DSpub.Verify), DStok = (DStok.Setup, DStok.Sign,
DStok.Verify), DSpriv = (DSpriv.Setup, DSpriv.Sign, DSpriv.Verify) and DSP = (DSP.Setup, DSP.Sign,
DSP.Verify) be EUF-CMA secure signatures schemes, and let NIZK = (NIZK.Setup, NIZK.Prove,
NIZK.Verify) be an extractable proof system, then the construction UPCS = (Setup, KeyGen, Enc, Dec),
defined in Figure 8, is existentially unforgeable.

Proof. The proof of unforgeability for this construction proceeds very similar to the unforgeability
proof of the PCS scheme presented [BMW21]. The main difference being that we do not need to
rely on strong unforgeability since, in this scheme, the (unique) party identifier Pi is part of the
public key. Additionally, we need to bound an event that prevents an adversary from producing a
valid forgery w.r.t. a policy update.

Consider the unforgeability experiment for which we define the following two events:

• Event KeyForgeA: The adversary A terminates with output (tok, pkS , pkR, m, σ) where the
public key pkS (resp. pkR) does not belong to any initialized party PS (resp. PR) (by means
of an invocation (KeyGen, PS , xS), (resp. (KeyGen, PR, xR))).

• Event KeyCollA: The adversary terminates and it holds that there are two parties Pi and Pj

where i ̸= j such that for the corresponding public keys pki = (vki, ·, ·, ·) and pkj = (vkj , ·, ·, ·)
it holds that vki = vkj .

We denote the winning condition of the experiment by the event WINA and split it into three parts:

• Event WIN1A: The adversary generates the output (tok∗, pk, pk∗, m∗, σ∗) for which it holds that
Verify(mpk, tok∗, pk, pk∗, m∗, σ∗) = 1 and where the public key pk is associated with some ini-
tialized party PS that is not corrupted and was never invoked on input (Sign, PS , tok, pkR, m).
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Setup(1λ, Finit ∈ Fλ):
CRS← NIZK.Setup(1λ)
mskPE ← 2-PHPE.Setup(1λ,Fλ)
skFinit ← 2-PHPE.KeyGen(mskPE, Finit)
(vkpub, skpub)← DSpub.Setup(1λ)
(vkpriv, skpriv)← DSpriv.Setup(1λ)
(vktok, sktok)← DStok.Setup(1λ)
σtok ← DStok.Sign(sktok, (Finit, skFinit))
mpk := (CRS, vkpub, vkpriv, vktok)
msk := (mskPE, skpub, skpriv, sktok)
tokinit := (Finit, skFinit , σtok)
Return (mpk, msk), tokinit

KeyGen(msk, Pi, x):
Parse msk = (mskPE, skpub, skpriv, sktok)
(vkP, skP)← DSP.Setup(1λ)
ex ← 2-PHPE.Encode(mskPE, x)
ct← 2-PHPE.Encrypt(mskPE, x)
σpub ← DSpub.Sign(skpub, (vkP, ct, Pi))
σpriv ← DSpriv.Sign(skpriv, (vkP, ex))
pk := (vkP, ct, Pi, σpub)
sk := (vkP, skP, ex, σpriv)
Return (pk, sk)

PolUpd(mpk, msk, F ′):
Parse mpk := (CRS, vkpub, vkpriv)

msk = (mskPE, skpub, skpriv)
skF ′ ← 2-PHPE.KeyGen(mskPE, F ′)
σ′

tok ← DStok.Sign(sktok, (F ′, skF ′))
tok′ := (F ′, skF ′ , σ′

tok)
Return tok′

Sign(mpk, tok, sk, pkR, m):
Parse mpk = (CRS, vkpub, vkpriv, vktok),

tok = (F ′, skF ′ , σtok),
sk = (vkS , skS , ex, σpriv),
pkR = (vkR, ctR, PR, σpub)

If DSpub.Verify(vkpub, (vkR, ctR, PR), σR
pub) = 0

or DStok.Verify(vktok, (F ′, skF ′), σtok) = 0,
return ⊥,

π ← Prove(CRS, (vkpriv, skF ′ , vkS , ctR), (ex, σpriv))
where the NIZK relation is defined in Figure 9.
Erase the randomness used for computing π.
σ′ ← DSP.Sign(skS , (m, pkR, π))
Return (m, pkR, σ := (π, σ′))

Verify(mpk, tok, pkS , pkR, m, σ):
Parse mpk = (CRS, vkpub, vkpriv, vktok)

tok = (F ′, skF ′ , σtok)
pkS = (vkS , ctS , PS , σS

pub)
pkR = (vkR, ctR, PR, σR

pub)
σ = (π, σ′)

(Return 0 if parsing fails or σ = ⊥)
Return Verify(vktok, (F ′, skF ′), σtok)
∧Verify(vkpub, (vkR, ctR), σR

pub)
∧Verify(vkpub, (vkS , ctS), σS

pub)
∧Verify(CRS, (vkpriv, vkS , ctR), π)
∧Verify(vkS , (m, pkR, π), σ′)

Figure 8: Our non-interactive updatable policy-compliant signature scheme.
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Relation RZK:
Instance: x = (vkpriv, skF ′ , vkS , ctR)
Witness: w = (ex, σpriv)
RZK(x, w) = 1 if and only if:

DSpriv.Verify(vkpriv, (vkS , ex), σpriv) = 1 and 2-PHPE.Dec(skF , (ex, ctR)) = 1

Figure 9: Relation used for the non-interactive UPCS scheme in Figure 8.

• Event WIN2A: The adversary A generates the output (tok∗, pk, pk∗, m∗, σ∗) for which it holds
that Verify(mpk, tok∗, pk, pk∗, m∗, σ∗) = 1 and where the update token tok∗ is not associated
with a policy F ∗ that has never been an input to the authority (Update, F ∗). We also denote
this event as PolicyForgeA.

• Event WIN3A: The adversary A generates the output (tok∗, pk, pk∗, m∗, σ∗) for which it holds
that Verify(mpk, tok∗, pk, pk∗, m∗, σ∗) = 1 and where there is a policy F ′ such that tok is the
output by A on input (Update, F ′), and there are attributes xS and xR associated to some
initialized parties PS and PR with public keys pkS and pkR, respectively (as the result of
inputs (KeyGen, PS , xS) and (KeyGen, PR, xR) to A), such that F ′(xS , xR) = 0.

By Lemmata 4.4 and 4.5, we obtain

Pr[KeyForgeA] ≤ AdvEUF-CMA
DSpub,B1 (λ) and Pr[KeyCollA] ≤ q · AdvEUF-CMA

DSP,B′
2

(λ)

for adversaries B1 and B′
2 which are constructed based on A and have roughly the same efficiency

as A and where q are the number of key generation queries KeyGen.
Finally, we obtain by Lemmata 4.6 to 4.8 that

Pr[WIN1A] ≤ q · AdvEUF-CMA
DSP,B′′

2
(λ),

Pr[WIN2A/ PolicyForgeA] ≤ AdvEUF-CMA
DStok,B′

1
(λ) and

Pr[WIN3A ∩KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]
≤ AdvEUF-CMA

DSpriv,B3 (λ) + AdvExt
NIZK,B4(λ) + AdvCRS

NIZK,B′ ,

where the adversaries B′
1,B′′

2 , B3, B4, and distinguisher B′ are constructed based on A and have
roughly the same efficiency as A.

By definition of the events, we have

Pr[WINA] ≤Pr[KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]
+ Pr[WINA ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]
≤Pr[KeyCollA] + Pr[KeyForgeA] + Pr[PolicyForgeA]

+ Pr[WIN1A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]
+ Pr[WIN2A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]︸ ︷︷ ︸

=0, since WIN2A=PolicyForgeA

+ Pr[WIN3A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA].

Finally, adversaries B′
2 and B′′

2 can be combined into a single adversary B2 which picks B ∈ {B′
2,B′′

2}
at random and running it against EUF-CMADSP . Therefore, the theorem follows.
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Lemma 4.4. Consider the unforgeability experiment and let KeyForgeA be defined as above. We
construct an adversary B such that Pr[KeyForgeA] ≤ AdvEUF-CMA

DSpub,B (λ).

Proof. We build an adversary B that simulates the unforgeability experiment towards A when
interacting with the underlying unforgeability experiment EUF-CMADSpub and show that if A
outputs (tok∗, pk, pk∗, m∗, σ∗) as described in the above event, it can be used as a forgery in the
EUF-CMADSpub experiment.

In the first step, the adversary B receives vkpub from the forgeability experiment EUF-CMADSpub

and the policy Finit from the adversary A. In the next step, B generates (vkpriv, skpriv) ←
DSpriv.Setup(1λ), (vktok, sktok)← DStok.Setup(1λ), CRS← NIZK.Setup(1λ) and mskPE ← 2-PHPE.Setup(1λ)
and sets mpk := (CRS, vkpub, vkpriv, vktok). Furthermore, B computes skFinit ← 2-PHPE.KeyGen(mskPE,
Finit) and σtok ← DStok(sktok, (Finit, skFinit)), sets tokinit := (Finit, skFinit , σtok) and sends mpk and tokinit
to the adversary A. The adversary B also initializes the counter e = 2.

If the adversaryA asks a policy update query F ′, the adversary B computes skF ′ ← 2-PHPE.KeyGen
(mskPE, F ′), σ′

tok ← DStok.Sign(sktok, (F ′, skF ′)) and outputs tok′ := (F ′, skF ′ , σ′
tok) to A. Afterwards,

it increases e, i.e. e := e + 1.
Whenever A asks a key generation query (KeyGen, Pi, x), the adversary B samples a signa-

ture key pair (vkP, skP) ← DSP.Setup(1λ), computes ex ← 2-PHPE.Encode(mskPE, x) and ct ←
2-PHPE.Enc(mskPE, x) and generates the signature σpriv ← DSpriv(skpriv, (vkP, ex)). In the next step,
the adversary B submits (vkP, ct, Pi) to its signing oracle and receives σpub as a reply. Then, B sets
pk := (vkP, ct, Pi, σpub) and sk := (vkP, skP, ex, σpriv) and sends pk to A.

For every corruption query (Corrupt, Pj), B returns sk to A for (j, pk, sk, x) ∈ QK, and
returns ⊥ if no such entry exists.

If the adversary A asks a signing query (Sign, tok, Pj , pkR := (vkR, ctR, PR, σR
pub), m), if tok has

been output by a previous query Update, then the adversary B executes Sign(mpk, tok, sk, pkR, m)
with sk being the secret key associated with Pj and sends the output as a reply to A. If no key for
Pj or no token tok exists, it outputs ⊥.

We observe that the simulation of B towards A is perfect since the only difference is the generation
of the verification key vkpub and the corresponding signatures, which, in this setting, are honestly
generated by the underlying challenger, which results in the identical distribution as in the PCS
experiment.

Thus, when A terminates with output (tok, pkS , pkR, m, σ), adversary B considers the set of all
queries to Sign and searches for a tuple (tok∗ := (F ∗, skF ∗ , σ∗

tok), pk∗
S := (vk∗

S , ct∗
S , P ∗

S , σ∗
pub,S), pk∗

R :=
(vk∗

R, ct∗
R, P ∗

R, σ∗
pub,R), m∗, σ∗) that fulfills the condition of the event KeyForgeA, that is, the condition

that Verify(mpk, tok∗, pk∗
S , pk∗

R, m∗, σ∗) = 1 and where the public key pk∗
S or pk∗

R does not belong to
any initialized party PS or PR. If no such tuple exists, the adversary aborts with output ⊥. Otherwise,
at least one of the two message-signature pairs ((vk∗

S , ct∗
S , P ∗

S), σ∗
pub,S) or ((vk∗

R, ct∗
R, P ∗

R), σ∗
pub,R) has

to be a forgery of the underlying EUF-CMADSpub experiment w.r.t. public key vkpub. Without loss
of generality, let pk∗

S be the key that has not been output by KeyGen fulfilling the above condition.
This is a valid forgery, since either the pair (vk∗

S , ct∗
S , P ∗

S) has never been queried to the signing
oracle of EUF-CMADSpub by B, or, if it has been queried, the result was not σ∗

pub,S as otherwise the
key pk∗

S would have been an answer to KeyGen. This concludes the proof.

Lemma 4.5. Consider the unforgeability experiment and let KeyCollA be defined as above. We
construct an adversary B such that Pr[KeyCollA] ≤ q · AdvEUF-CMA

DSP,B (λ).

Proof. This proof proceeds exactly as the proof of [BMW21, Lemma 4.4]. We recap it here verbatim
for completeness.
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We observe that in the the execution of the unforgeability experiment all public keys added
to the set QK are computed by calling (pki, ski) ← KeyGen(msk, ·), where (pki = (vki, ·, ·) and
(vki, ·) ← DSP.Setup(1λ). At the point when A terminates, by definition of the event, we have
two indices i, j such that in particular vki = vkj and i ̸= j. We further see that Pr[KeyCollA] ≤∑q

k=1 Pr[∃j : vkk = vkj ], which follows from the union bound. Since the distribution of keys is
independent of the index, denote α := Pr[∃j : vkk = vkj ] for some arbitrarily fixed index k. We
now construct an adversary B against the signature scheme DSP: on input a verification key ṽk
from its challenger, B samples (q − 1) PCS public keys. This induces the same distribution as the
distribution of the vki’s in QK. Therefore, Pr[∃j : ṽk = vkj ] ≥ α. Conditioned on this event, B can
forge a signature with probability 1 since it knows the secret key corresponding to vkj and because
of the correctness of the signature scheme, we can generate fresh signatures for any message m that
will successfully verify w.r.t. ṽk.

Lemma 4.6. Consider the unforgeability experiment and let WIN1A be defined as above. We
construct an adversary B such that Pr[WIN1A] ≤ q · AdvEUF-CMA

DSP,B (λ).
Proof. We define the following events E1, . . . , Eq: The event Ek is the event where the adver-
sary outputs a valid signature for the k’th public key output by the generation oracle QK
not obtained from the signing oracle without querying it to the corruption oracle Corrupt.
Formally, the adversary A outputs (tok∗, pk, pk∗, m∗, σ∗) in the EUF-CMAUPCS game such that
Verify(mpk, tok∗, pk, pk∗, m∗, σ∗) = 1 and where the public key pk is associated with some initialized
party PS that is not corrupted and was never invoked on input (Sign, PS , tok, pkR, m).

When q denotes the number of key generation queries, we see that WIN1A = ⋃q
k=1 Ek, since, by

definition, the public key pk∗
S specified in a forgery output by an adversary A corresponds to some

party for which a key generation query has been asked and at least one party is honest.
Now, we bound Pr[Ek]: we build an adversary Bk that simulates EUF-CMAUPCS towards A

when interacting with the underlying existential unforgeability experiment EUF-CMADSP and show
that if A outputs (tok∗, pk, pk∗, m∗, σ∗), as described in event Ek, it can be used as a forgery in the
EUF-CMADSP experiment.

In the first step, the adversary Bk receives vkchall
P from experiment EUF-CMADSP and the pol-

icy Finit from the adversary A. In the next step, Bk generates (vkpub, skpub) ← DSpub.Setup(1λ),
(vkpriv, skpriv) ← DSpriv.Setup(1λ), (vktok, sktok) ← DStok.Setup(1λ), CRS ← NIZK.Setup(1λ) and
mskPE ← 2-PHPE.Setup(1λ), sets mpk := (CRS, vkpub, vkpriv), computes skFinit ← 2-PHPE.KeyGen(mskPE,
Finit) and σtok ← DStok.Sign(sktok, (Finit, skFinit)), sets tokinit := (Finit, skFinit , σtok) and sends mpk and
tokinit to the adversary A. The adversary Bk also initializes the counter e = 2.

Whenever the adversary A asks a policy update query (Update, F ′), the adversary B com-
putes skF ′ ← 2-PHPE.KeyGen(mskPE, F ′), σ′

tok ← DStok.Sign(sktok, (F ′, skF ′)) and outputs tok′ :=
(F ′, skF ′ , σ′

tok) to A. Afterwards, it increases e, i.e., e := e + 1.
For a key generation query (KeyGen, Pi, x), we distinguish between two cases: the query

is not the k’th query to the oracle, i.e. i ̸= k, and the query is the k’th query to the oracle,
i.e. i = k. In the first case, Bk samples a signature key pair (vkP, skP) ← DS.Setup(1λ) and
computes ex ← 2-PHPE.Encode(mskPE, x) and ct ← 2-PHPE.Enc(mskPE, x). In the next step, the
adversary Bk generates the signatures σpub and σpriv, where σpub ← Sign(skpub, (vkP, ct, Pi)) and
σpriv ← Sign(skpriv, (vkP, ex)). Then, Bk sets pk := (vkP, ct, Pi, σpub) and sk := (vkP, skP, ex, σpriv)
and sends pk to A.

If the query is the k’th key generation query, i.e. (KeyGen, Pk, x), B proceeds in the same
way as in the first case, with the only difference that instead of generating a fresh signature
key pair, it uses the verification key vkchall

P . Afterwards, Bk sets pk := (vkchall
P , ct, Pk, σpub) and

sk := (vkchall
P , ·, ex, σpriv) and sends pk to A.
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Whenever A asks a corruption query (Corrupt, Pj), the adversary Bk finds the secret key sk
of the party Pj . If no such key exists, the adversary Bk outputs ⊥ to A, otherwise it sends sk to
A. In the case that A asks a corruption query for the k’th party Pk, the adversary Bk aborts the
execution (note that in this case, Ek does not occur).

If the adversaryA asks a signing query (Sign, tok := (F ′, skF ′ , σtok), Pj , pkR := (vkR, ctR, PR, σpub,R),
m), then the adversary Bk checks that a key has been generated for party Pj and returns
⊥ if this is not the case. Now, we distinguish between two cases: first the signature is re-
quested for the k’th party, i.e. j = k, and, second, the signature is not requested for the k’th
public key, i.e. j ≠ k. In the first case, Bk checks that PE.Dec(skF ′ , eS , ctR) = 1, computes
π ← NIZK.Prove(CRS, (vkpriv, skF ′ , vkS , ctR), (eS , σpriv)) with skF ′ being the key associated with the
token tok and vkS , eS and σpriv being part of the secret key of Pk, submits (m, pkR, π) to the signing
oracle of EUF-CMADSP and receives σ′ as a reply. Then, Bk sets σ := (π, σ′) and outputs σ to A.
In the second case, Bk executes Sign using the secret key sk of the party Pj and sends the resulting
signature σ as a reply to A.

Finally, when A terminates with output (tok∗, pk∗
S := (vk∗

S , ct∗
S , P ∗

S , σ∗
pub,S), pk∗

R := (vk∗
R, ct∗

R, P ∗
R,

σ∗
pub,R), m∗, σ∗ := (π∗, σ′)) check the conditions of Ek, i.e., Verify(mpk, tok∗, pk∗

S , pk∗
R, m∗, σ∗) = 1

where the public key pk∗ is associated with some initialized party PS that is not corrupted and
was never invoked on input (Sign, PS , tok∗, pk∗

R, m∗), and verify that pk∗
S is indeed the public key

associated to party Pk, in which case pk∗
S = (vkchall

P , . . . ). In this case the adversary Bk outputs
((m∗, pk∗

R, π∗), σ′) as its forgery to the underlying EUF-CMADSP experiment.
We first observe that if Bk does not abort and the conditions of event Ek hold in this emulation

then Bk’s output is a valid forgery and thus wins in experiment EUF-CMADSP . By definition of
Ek, we must in particular have a valid signature for (m∗, pk∗

R, π∗) w.r.t. vkchall
P specified in pk∗

S . If
m∗ was never part of any signing query by A for party Pk as a signer, then the output of Bk in
experiment EUF-CMADSP is a novel message. If m∗ has been asked, then it holds that Bk did not
emulate a signing operation queried by A for m∗ specifically for the receiver public key pk∗

R as the
combination would contradict event Ek. Hence, the combination (m, pk∗

R) must be novel.
Second, we observe that the simulation of Bk towards A is perfect up to the point where it

aborts. The distribution of keys that A observes are q independently and honestly sampled public
keys (and correctly computed signatures thereof) and the emulated oracle calls execute the scheme
as in the unforgeability experiment, thus the definition of event Ek applies directly to the emulation
and the probability is the same as in an execution of the unforgeability experiment.

Therefore, the probability that Bk terminates with a valid forgery is AdvEUF-CMA
DSP,Bk

(λ) = Pr[Ek].
The proof concludes by sampling k ← [q] and executing Bk.

Lemma 4.7. Consider the unforgeability experiment and let WIN2A/PolicyForgeA be defined as
above. We construct an adversary B such that Pr[WIN2A/PolicyForgeA] ≤ AdvEUF-CMA

DStok,B (λ).
Proof. We build an adversary B that simulates EUF-CMAUPCS towards A when interacting with the
underlying unforgeability experiment EUF-CMADStok and show that ifA outputs (tok∗, pk, pk∗, m∗, σ∗)
as described in the event WIN2A/PolicyForgeA, it can be used as a forgery in the EUF-CMADStok

experiment.
In the first step, the adversary B receives vktok from the forgeability experiment EUF-CMADStok

and the policy Finit from the adversary A. In the next step, B generates (vkpub, skpub) ←
DSpriv.Setup(1λ), (vkpriv, skpriv) ← DStok.Setup(1λ), CRS ← NIZK.Setup(1λ) and mskPE ← 2-PHPE.
Setup(1λ) and sets mpk := (CRS, vkpub, vkpriv, vktok). Furthermore, B computes skFinit ← 2-PHPE.KeyGen
(mskPE, Finit) and queries the signing oracle of its underlying challenger using (Finit, skFinit) to obtain
the signature σtok. Afterwards, it sets tokinit := (Finit, skFinit , σtok) and sends mpk and tokinit to the
adversary A. The adversary B also initializes the counter e = 2.
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If the adversary A asks a policy update query (Update, F ′), the adversary B computes skF ′ ←
2-PHPE.KeyGen(mskPE, F ′) and sends (F ′, skF ′) to the singing oracle of its underlying challenger to
obtain σ′

tok and outputs tok′ := (F ′, skF ′ , σ′
tok) to A. Afterwards, it increases e, i.e. e := e + 1.

Whenever A asks a key generation query (KeyGen, Pi, x), then the adversary B samples a
signature key pair (vkP, skP)← DSP.Setup(1λ), computes ex ← 2-PHPE.Encode(mskPE, x) and ct←
2-PHPE.Enc(mskPE, x) and generates the signatures σpub ← DSpub(skpub, (vkP, ct, Pi)) and σpriv ←
DSpriv(skpriv, (vkP, ex)). Afterwards, B sets pk := (vkP, ct, Pi, σpub) and sk := (vkP, skP, ex, σpriv) and
sends pk to A.

For every corruption query (Corrupt, Pj), B finds the secret key sk of the party Pj and sends
it to A. If no key for Pj exists, it returns ⊥.

If the adversary A asks a signing query (Sign, tok, Pj , pkR := (vkR, ctR, PR, σR
pub), m), if the

token tok has been previously been used as the answer to an Update query, the adversary B
executes Sign(mpk, tok, sk, pkR, m) with sk being the secret key associated with party Pj and sends
the output as a reply to A. If no key for party Pj or no token tok has previously been output by
Update, output ⊥.

We observe that the simulation of B towards A is perfect since the only difference is the generation
of the verification key vkpub and the corresponding signatures, which, in this setting, are honestly
generated by the underlying challenger, which results in the identical distribution as in the PCS
experiment.

Thus, when A terminates with output (tok, pkS , pkR, m, σ), adversary B considers the set of all
queries to Sign and searches for a tuple (tok∗ := (F ∗, skF ∗ , σ∗

tok), pk∗
S := (vk∗

S , ct∗
S , P ∗

S , σ∗
pub,S), pk∗

R :=
(vk∗

R, ct∗
R, P ∗

R, σ∗
pub,R), m∗, σ∗) that fulfills the condition of the event WIN2A, that is, the condition that

Verify(mpk, tok∗, pk∗
S , pk∗

R, m∗, σ∗) = 1 and where the update token tok∗ has never been computed by
the authority on any input (Update, F ∗). If no such tuple exists, the adversary aborts with output
⊥. Otherwise, ((F ∗, skF ∗), σ∗

tok) has to be a forgery of the underlying EUF-CMADStok experiment
w.r.t. policy F ∗. This is a valid forgery, since either the policy F ∗ has never been queried to the
signing oracle of EUF-CMADStok by B, or, if it has been queried, the reply was not σ∗

tok as otherwise
the token tok∗ would have been an answer to a policy update query Update. This concludes the
proof.

Lemma 4.8. Consider the unforgeability experiment and let WIN3A be defined as above. We can
construct adversaries B1 and B2 and a distinguisher B′ such that

Pr[WIN3A ∩KeyCollA ∪ KeyForgeA ∪ PolicyForgeA] ≤ AdvCRS
NIZK,B′(λ)+AdvEUF-CMA

DSpriv,B1 (λ)+AdvExt
NIZK,B2(λ).

Proof. On a high-level, the adversary needs to prove a wrong claim which can either be done by
attacking the NIZK directly, or if the NIZK is extractable, then the attacker must attack the
underlying signature scheme in order to possess a valid witness.

We first make a transition to a hybrid world EUF-CMAUPCS
Hyb , which is identical to EUF-CMAUPCS

except that we replace NIZK.Setup(1λ) by the CRS simulation algorithm E1 associated with the
NIZK scheme. All above defined events are still defined in this hybrid experiment. Clearly, we can
construct a distinguisher B′ such that

Pr[WIN3A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]

≤ PrHyb
[

WIN3A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA

]
+ AdvCRS

NIZK,B′ ,

where PrHyb[.] makes it explicit that this probability is taken w.r.t. experiment EUF-CMAUPCS
Hyb .

This reduction is standard: in order to distinguish the two distributions, on input a sample CRS,
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the distinguisher B′ emulates the experiment towards A. When A terminates, B′ outputs 1 if event
WIN3A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA occurs (which is computable by B′ that manages
all key-sets).

We build an adversary B1 that simulates EUF-CMAUPCS
Hyb towards A when interacting with the

underlying EUF-CMADSpriv experiment. We show that if A outputs (tok∗, pk, pk∗, m∗, σ∗) as event
WIN2 defines it can be used as a forgeability attack in the EUF-CMADSpriv experiment unless a
certain failure event Failext occurs in the reduction, which we then relate to the extraction advantage.

In the first step, the adversary B1 receives vkpriv from the EUF-CMApriv experiment and the policy
Finit from the adversary A. In the next step, B1 generates CRS← E1(1λ), (vkpub, skpub)← DSpub(1λ),
(vktok, sktok) ← DStok.Setup(1λ) and mskPE ← PE.Setup(1λ), sets mpk := (CRS, vkpub, vkpriv, vktok).
Furthermore, B computes skFinit ← 2-PHPE.KeyGen(mskPE, Finit) and generates σtok ← DStok(sktok,
(Finit, skFinit)). Afterwards, it sets tokinit := (Finit, skFinit , σtok) and sends mpk and tokinit to the
adversary A. The adversary B also initializes the counter e = 2.

If the adversary A asks a policy update query (Update, F ′), the adversary B computes
skF ′ ← 2-PHPE.KeyGen(mskPE, F ′), generates σ′

tok ← DStok(sktok, (F ′, skF ′)) and outputs tok′ :=
(F ′, skF ′ , σ′

tok) to A. Afterwards, it increases e, i.e., e := e + 1.
For a key generation query (KeyGen, Pi, x), B1 samples a signature key pair (vkP, skP) ←

DS.Setup(1λ), computes ex ← 2-PHPE.Encode(mskPE, x) and ct ← 2-PHPE.Enc(mskPE, x). In the
next step, the adversary B1 generates the signatures σpub ← DSpub.Sign(skpub, (vkP, ct, Pi)) and
submits (vkP, ex) to the sign oracle of the underlying EUF-CMADSpriv experiment to obtain the
signature σpriv. Then, B1 sets pk := (vkP, ct, Pi, σpub) and sk := (vkP, skP, ex, σpriv) and sends pk to
A. If at any point in time the conditions of event KeyCollA are fulfilled, B1 aborts.

Whenever A asks a corruption query (Corrupt, Pj), the adversary B1 searches for the key sk
that is associated with Pj . If no such entry exists, the adversary B1 outputs ⊥ to A, otherwise it
sends sk to A.

If the adversary A asks a signing query (Sign, tok, Pj , pkR := (vkR, ctR, PR, σR
pub), m), then the

adversary B1 checks that a key has been generated for Pj and that pkR has been the reply to a
previous key generation query KeyGen. If this is not the case the adversary B1 aborts. Otherwise,
it continues with the execution of Sign, using the key sk of party Pj . Finally, B1 sends the resulting
signature σ, containing π, as a reply to A.

WhenA terminates with (tok∗ := (F ∗, skF ∗ , σ∗
tok), pk∗

S := (vk∗
P,S , ct∗

S , P ∗
S , σ∗

pub,S), pk∗
R := (vk∗

P,R, ct∗
R,

P ∗
R, σ∗

pub,R), m∗, σ∗ := (π∗, σ′)), B1 first checks whether the conditions of event KeyForgeA hold,
in which case it aborts. It also verifies that the conditions of event WIN3A hold and in case
this is true, it first calls (e∗

x,S , σ∗
priv,S) ← E2(CRS, (vkpriv, skF ∗ , vk∗

P,S , ct∗
R), π∗) and checks whether

(x := (vkpriv, skF ∗ , vk∗
P,S , ct∗

R), w := (e∗
x,S , σ∗

priv,S)) ∈ RZK (which is efficiently checkable) and if this is
the case, it submits ((vk∗

P,S , e∗
x,S), σ∗

priv,S) as a forgery to the underlying experiment EUF-CMADSpriv .
If (x, w) ̸∈ RZK then it aborts with failure event Failext.

We observe that the emulation towards adversary A is perfect until the point in the execution
where B1 would abort. The only difference is the generation of the verification key vkpriv and
the corresponding signatures, which, in this setting, are all honestly generated by the underlying
challenger. Therefore, all events in this emulation are defined as in the experiment EUF-CMAUPCS

Hyb
with respectively the same probabilities.

Now, we analyze the final forgery output of a run of B1 which does not abort. We observe
that, in this case, all signature verification keys are unique and that all keys can be uniquely
associated with some attributes as all keys, including the output pk∗

S and pk∗
R of A, have been

previously been an answer to a query KeyGen. Therefore, there are parties Pj and Pk such that
pk∗

S is the key of Pj and pk∗
R is the key of Pk and where the keys contain vki and cti and are
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associated with xi for i ∈ {j, k}. Let us fix these two indices. Furthermore, we can assume that
NIZK.Verify(CRS, (vkpriv, skF ∗ , vkj , ctk), π∗) = 1 as otherwise, WIN3 does not hold. Additionally,
we know that e∗

x,S is a correct witness, in particular, PE.Dec(skF ∗ , (e∗
x,S , ctk)) = 1. However, we

know that F ∗(xj , xk) = 0 and since the predicate-encryption scheme is perfectly correct and all
keys and ciphertexts are generated honestly by B, the keys of party Pj (pkj , skj = (·, ·, exj , σpriv,j))
specify exj for which PE.Dec(skF ∗ , (exj , ctk)) = 0, and thus exj ̸= e∗

x,S . Since, by uniqueness,
B1 has only submitted the query (vkj , exj ) to the signing oracle of EUF-CMADSpriv , the pair
((vk∗

P,S = vkj , e∗
x,S ̸= exj ), σ∗

priv,S) is a valid signature for a novel message and, therefore, a valid
forgery. We obtain that the probability that B1 terminates with a valid forgery is

AdvEUF-CMA
DSpriv,B1 = PrHyb

[
WIN3A ∩ Failext ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA

]
.

This results in

PrHyb
[

WIN3A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA

]
= AdvEUF-CMA

DSpriv,B1 +

PrHyb
[

WIN3A ∩ Failext ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA

]
︸ ︷︷ ︸

≤AdvExt
NIZK,B2

.

It is straightforward to obtain an adversary B2 (based on A) which has an advantage AdvExt
NIZK,B2 =

PrHyb
[

WIN3A ∩ Failext ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA

]
. In fact, the adversary B2 receives

as input the CRS and executes the same instructions as B1, with the exceptions that it can simply
generate signatures for the scheme DSpriv by itself. In addition, when A terminates with output
(tok∗ := (F ∗, skF ∗ , σ∗

tok), pk∗
S := (vk∗

P,S , ct∗
S , P ∗

S , σ∗
pub,S), pk∗

R := (vk∗
P,R, ct∗

R, P ∗
R, σ∗

pub,R), m∗, σ∗ :=
(π∗, σ′)), B2 behaves as B1 but does not execute the final steps running the extractor, instead, it just
outputs (x := (vkpriv, skF ∗ , vk∗

P,S , ct∗
R), π∗) in case the conditions of WIN3 are satisfied (note that the

extractor is run as part of the experiment in Definition 2.6). As above, the emulation towards A
is perfect until the point where B2 would abort. Therefore, the advantage is as claimed, because
the event of interest is that the extractor E2 is called precisely on the accepting proof string π∗

output by A (which is accepting for statement x as defined above because of event WIN3) but the
extraction produces a witness w such that (x, w) ̸∈ RZK. Therefore, the statement follows.

Attribute-Hiding

After proving the unforgeability of our construction, we proceed to proving the attribute-hiding
property.

Theorem 4.9. Let 2-PHPE = (2-PHPE.Setup, 2-PHPE.KeyGen, 2-PHPE.Encode, 2-PHPE.Encrypt,
2-PHPE.Dec) be a two-party partially-hiding predicate encryption scheme, let NIZK = (NIZK.Setup,
NIZK.Prove, NIZK.Verify) be a NIZK proof system (for the relation RZK of Figure 9) and let
DSpub = (DSpub.Setup, DSpub.Sign, DSpub.Verify) and DStok = (DStok.Setup, DStok.Sign, DStok.Verify)
be unforgeable signature schemes, then the construction UPCS = (Setup, PolUpd, KeyGen, Enc, Dec),
defined in Figure 8, is attribute-hiding.

Proof. The proof of this theorem proceeds very similar to the proof of the PCS scheme in [BMW21].
Many parts of this proof are taken verbatim from the proof of [BMW21, Theorem 4.7].

To prove this statement, we use a hybrid argument with the following games:

Game G0: This game is defined as the attribute-hiding game for b = 0.

30



Game G1: In this game, we change the behavior of the sign query Sign and define a modified
sign query Sign′. The query Sign′ is defined as Sign with the difference that it only answers
queries for tokens that have previously been output by a policy update query Update and
receiver keys that have previously been output by a key generation query Test-KeyGen,
i.e., for a query (Sign′, toke, pki, m) to Pj with toke not previously been output by a Update
query or pki not previously been output by a Test-KeyGen query, the sign query Sign′

replies with ⊥. The transition from G0 to G1 is justified by the same reasoning as we have
seen in Lemma 4.4 (bounding the event KeyForgeA) and in Lemma 4.7 (bounding the event
PolicyForge).

Game G2: In this game, we change from an honestly generated CRS and honestly generated proofs to
a simulated CRS and simulated proofs. That is, upon a PCS signing query (Sign′, toke, j, pki, m)
to Pj , we find the query (Update, Fe) that has been answered using toke and the attributes
xj,0 associated with pki and xj,0 s.t. Fe(xj,0, xi,0) = 1 (xi,0 is associated with the party Pi,
i.e, the party that is associated with the key pki) and then we simulate the proof using the
NIZK simulator on input the trapdoor and (vkpriv, skF ′ , vkj , ctR) where skF ′ is part of the
token toke (note that all values are defined since by definition of this hybrid, all keys for which
a signature is returned, have been generated using the key-generation oracle). In any other
case (in particular associated attributes do not satisfy the policy), we output ⊥.

Game G3: In this game, we change the attributes used for the generation of the challenge public
keys pki from xi,0 to xi,1 for all i which results in a ciphertext cti that encrypts xi,1 instead of
xi,0. Similarly, upon PCS signing, we now find the policy update query (Update, Fe) that
has been answered using toke and check that Fe(xj,1, xi,1) = 1 where xj,1 and xi,1 are the
attributes associated with the parties/keys of the query, before simulating the proofs as above.
The transition from G2 to G3 is justified by the attribute-hiding property of 2-PHPE.

Game G4: In this game, we change back from a simulated CRS and simulated proofs π to an
honestly generated CRS and honestly generated proofs π. Symmetrical to Lemma 4.11, this
transition is justified by the zero-knowledge property of NIZK.

Game G5: This game corresponds to the attribute-hiding game using b = 1 as its input. In this
game, we change back from signing queries Sign′ to queries Sign. As in Lemma 4.10, this
transition is justified again by the inability to forge updates and public keys.

From the definition of the games it is clear that G0 corresponds to the attribute-hiding game
with b = 0 and G5 corresponds to the attribute-hiding game with b = 1. Since it holds that
G0 ≈c · · · ≈c G5, the theorem follows.

Lemma 4.10 (Transition from G0 to G1). Let DSpub and DStok be unforgeable signature schemes,
then the games G0 and G1 are computationally indistinguishable.

Proof (Sketch). As described above, the difference between the games G0 and G1 is that in G0, A
receives answers to Sign queries and in G1, A receives replies to the sign queries Sign′, which we
informally described above and which is formally defined as:

(Sign′, toke, skj , pki, m): On querying a token toke, a (sender) secret key skj , a (receiver) public key
pki, and a message m. if toke has been the reply to a query (Update, Fe) and pki has been
the reply to a query (Test-KeyGen, Pi, xi,0, xi,1), then return σ ← UPCS.Sign(mpk, toke, skj ,
pki, m). Otherwise, return ⊥.
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Compared to the Sign′ queries, the signing queries Sign does not require the token tok as well
as the receiver key pki to have been previously output by the challenger, i.e., using an Update and
a Test-KeyGen query, to obtain as a reply a valid signature σ ̸= ⊥. This is not possible for the
Sign′ queries where every query using a token tok or a receiver key pki that has not been generated
by the challenger, i.e., a Update query or a Test-KeyGen query, results in an invalid signature
σ = ⊥.

Therefore, to show that the games G0 and G1 are indistinguishable, it suffices to show that the
probability that the adversary asks a signing query Sign using a token tok or a receiver key pki that
has not been previously generated by the challenger, i.e., using a Update or a Test-KeyGen query,
and that leads to a valid signature σ ̸= ⊥ is negligible. We denote this as the event SignForgeA.

For the event SignForgeA to occur, the adversary A needs to either generate a token that
verifies with respect to the signature scheme DStok or needs to generate a receiver key that
verifies with respect to the signature scheme DSpub, i.e., it needs to generate a token tok :=
(F ′, skF ′ , σ′

tok) such that DStok.Verify(vktok, (F ′, skF ′), σ′
tok) or a key pk′ := (vk′, ct′, P ′, σ′

pub) such
that DSpub.Verify(vkpub, (vk′, ct′, P ′), σ′

pub) = 1 (note that an honest signer issues a signature string
only if the validity of the token and the receiver public key is successfully verified). This means
that adversary A must either generate a policy forgery as captured by the event PolicyForgeA or
a key forgery as captured by the event KeyForgeA in the proof of Theorem 4.3, and which can
be defined and analyzed analogously here (with just minor syntactical changes). Therefore, the
event SignForgeA is bounded by KeyForge and PolicyForge, i.e., Pr[SignForgeA] ≤ Pr[KeyForgeA] +
Pr[PolicyForgeA], the analysis of the event KeyForgeA follows the same reasoning as in Lemma 4.4
and the analysis of the event follows the same reasoning as in Lemma 4.7 to conclude that
Pr[KeyForgeA] ≤ AdvEUF-CMA

DSpub,B0 (λ) and Pr[PolicyForgeA] ≤ AdvEUF-CMA
DStok,B1 (λ). This results in the fact

that Pr[SignForgeA] ≤ AdvEUF-CMA
DSpub,B0 (λ) + AdvEUF-CMA

DStok,B1 , which proves the lemma.

Lemma 4.11 (Transition from G1 to G2). Let NIZK be a zero-knowledge proof system, then G1 and
G2 are computationally indistinguishable.

Proof. We build an adversary B that simulates G1+β towards A when interacting with the underlying
ZKNIZK

β experiment.
In the beginning of the reduction, B receives Finit from adversary A and CRS from the ZKNIZK

β

experiment. It generates three signature key pairs (vkpub, skpub)← DSpub.Setup(1λ), (vkpriv, skpriv)←
DSpriv.Setup(1λ) and (vktok, sktok)← DStok.Setup(1λ), a two-party partially-hiding predicate encryp-
tion master secret key msk2-PHPE ← 2-PHPE.Setup(1λ), sets (mpk, msk) = ((CRS, vkpub, vkpriv, vktok),
(msk2-PHPE, skpub, skpriv, sktok)) and generates the first token, i.e., it generates skFinit ← 2-PHPE.KeyGen
(msk2-PHPE, Finit), signs it σtok ← DStok.Sign(sktok, (Finit, skFinit)) and sets tokinit := (Finit, skFinit , σtok).
Later, B sends mpk and tokinit to the adversary A and also initializes the counter e = 1.

Whenever A submits a policy update query (Update, F ′), B increaes e, i.e. e := e + 1, and gen-
erates skF ′ ← 2-PHPE.KeyGen(msk2-PHPE, F ′) and σ′

tok ← DStok.Sign(sktok, (F ′, skF ′)). Afterwards,
B sets toke := (F ′, skF ′ , σ′

tok) and sends toke to A.
For every challenge key generation query (Test-KeyGen, Pi, xi,0, xi,1) asked by A, B generates

(pk, sk)← KeyGen(msk, Pi, xi,0) and sends pk as a reply to A.
Whenever A asks a corruption query (Corrupt, Pj), the adversary B finds the corresponding

secret key skj of the party Pj . If no key exists for party Pj , the adversary B outputs ⊥ to A,
otherwise it sends skj to A. Here, we highlight that the adversary is not able to determine if the
proof has been honestly generated or simulated since the randomness used to generate it has been
deleted by the party Pj afterwards.
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For every sign query (Sign′, toke, pki, m) asked by A to Pj , B finds the key generation query
that has been used to generate pki and parses pki = (vki, cti, Pi, σi

pub), it also parses the secret key
of Pj as sk = (vkj , skP, exS

j,0
, σj

priv). If the token toke has not been the reply to a query (Update, Fe)
or if Fe(xj,0

S , xi,0
R ) = 0 where xi,0 are the attributes associated with Pi, then the adversary B outputs

⊥.7 Otherwise, B submits ((vkpriv, skFe , vkj , cti), (exS
j,0

, σpriv)) to the prove oracle which replies with
π. The adversary B finally produces the signature σ′ ← DSP.Sign(skP, (m, pkR, π)) and returns
σ := (π, σ′) to A.

Finally, the adversary B outputs the same bit β′ returned by A. To conclude the proof, we
observe that our emulation is perfect. This follows from the fact that the only difference in the
two games is the generation of the CRS and the proofs contained in the signatures, which is done
by the underlying challenger. In the case that the challenger outputs an honestly generated CRS
and honestly generated proofs, the adversary B is simulating the game G1 and in the case that
the challenger simulates the CRS and the proofs, B is simulating G2. Note that by the perfect
correctness of the predicate encryption scheme, we know that the challenger always replies, i.e.,
we have that 2-PHPE.Dec(skFe , (exS

0
, ctR)) = Fe(x0

S , x0
R) (since all UPCS keys and tokens can be

assumed to be honestly generated in this hybrid experiment), and thus we are in fact submitting a
valid witness. Thus, if the policy is not satisfied, returning ⊥ is the correct behavior. This covers
the simulation of G1+β and leads to the advantage mentioned in the lemma.

Lemma 4.12 (Transition from G2 to G3). Let PE be an attribute-hiding scheme, then the games G2
and G3 are computationally indistinguishable.

Proof. We build an adversary B that simulates G1+β to A when interacting with the underlying
AHPE

β experiment.
In the beginning of the reduction, B receives Finit from the adversary A. It simulates a CRS, i.e.,

(CRS, τ)← Sim1(1λ), generates two signature key pairs (vkpub, skpub)← DSpub.Setup(1λ), (vkpriv, skpriv)
← DSpriv.Setup(1λ) and (vktok, sktok)← DStok.Setup(1λ), sets mpk := (CRS, vkpub, vkpriv, vktok) and
obtains the initial token by submitting Finit to the key generation oracle of the underlying challenger to
obtain skFinit . It then generates σtok ← DStok.Sign(sktok, (Finit, skFinit)) sets tokinit := (Finit, skFinit , σtok)
and sends mpk and tokinit to A. The adversary B also initializes e = 1.

Whenever A submits a policy update query (Update, F ′), check that F (x′
0, x′′

0) = F (x′
1, x′′

1) for
all key generation queries (Test-KeyGen, Pi, x′

0, x′
1) and (Test-KeyGen, Pi, x′′

0, x′′
1). If this check

is unsuccessful, the adversary B outputs a random bit α← {0, 1} as its guess and aborts.8 If the
check is successful, increase e, i.e., e := e + 1, and submit F ′ to the key generation oracle of the
underlying challenger to obtain skF ′ and generate σ′

tok ← DStok.Sign(sktok, (F ′, skF ′)). Afterwards,
B sets toke := (F ′, skF ′ , σ′

tok), and outputs toke to A.
For every key generation query (Test-KeyGen, Pi, x0, x1) asked byA, B checks that Fe(x′

0, x0) =
Fe(x′

1, x1) for all (Test-KeyGen, Pi, x′
0, x′

1) and all queries (Update, Fe). If this check is unsuc-
cessful, the adversary B outputs a random bit α ← {0, 1} as its guess and aborts. If the check
is successful, the adversary B submits the left-or-right challenge query (x0, x1) to its own en-
cryption oracle to receive ct as a reply. In the next step, B samples a digital signature key
pair (vkP, skP) ← DSP.Setup(1λ), computes σpub ← DSpub.Sign(skpub, (vkP, ct, Pi)) and outputs
pk = (vkP, ct, Pi, σpub) to A.

Whenever A asks a corruption query (Corrupt, Pj), B checks the key generation queries to find
the query (Test-KeyGen, Pj , x0, x1). If no such query exists, the adversary B returns ⊥. If it holds

7We again note in passing that for a valid adversary, it must hold that F (xS
j,0, xR

i,0) = F (xS
j,1, xR

i,1).
8Looking ahead, the output of a random bit happens in cases where the adversary is not valid and thus we do not

lose any advantage.
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that x0 ̸= x1 or if Fe(x0, x′
0) ̸= Fe(x1, x′

1) for any (Test-KeyGen, Pi, x′
0, x′

1) and (Update, Fe),
then the adversary B outputs a random bit α ← {0, 1} as its guess and aborts (again, this only
occurs for an invalid A). Otherwise, B submits x := x0 := x1 to the encoding oracle of the underlying
challenger to obtain as a reply ex. In the next step, B computes σpriv ← DSpriv.Sign(skpriv, (vkP, ex))
and outputs sk = (vkP, skP, ex, σpriv) to A, where skP is the signature key generated during the key
generation oracle query.

For every sign query (Sign, toke, Pj , pkR, m) asked by A, B checks the list key generation queries
(Test-KeyGen, Pi, x0, x1) to find the query associated with pkR and the policy update queries
(Update, Fe) to find the policy Fe associated with the token toke. If no public key pkR or no token
toke has been generated, then the adversary B outputs ⊥. Otherwise, B checks, in the next step,
that the attributes associated with the public keys pkS and pkR fulfill the policy Fe, i.e., it checks
that Fe(x0

S , x0
R) = 1 and Fe(x1

S , x1
R) = 1. If this is the case, the adversary B simulates the proof π

for the language L (defined in Figure 9),9 generates the signature σ′ ← DSP.Sign(skP, (m, pkR, π))
and outputs σ = (π, σ′) to A. If the attributes associated with the public keys pkS and pkR do not
fulfill the policy Fe, i.e., Fe(x0

S , x0
R) = 0 or Fe(x1

S , x1
R) = 0, the adversary B outputs ⊥ to A. In the

case that the policy evaluations differ, i.e., it holds that either Fe(x0
S , x0

R) = 0 and Fe(x1
S , x1

R) = 1
or Fe(x0

S , x0
R) = 1 and Fe(x1

S , x1
R) = 0, B aborts and outputs a random bit α← {0, 1} as its guess

to the underlying challenger (the adversary A is invalid).
In the last step, B outputs the same bit β′ returned by A.
We need to argue that the adversary B is a valid adversary with respect to the AH2-PHPE

β

experiment if the adversary A fulfills all the checks described above, i.e., is a valid adversary in
the G2+β (AHUPCS

β ) game. One of the validity requirements above (and in the definition of UPCS)
that A needs to fulfill is that for every x where x := x0 = x1 and where the corresponding party
has been corrupted, it needs to hold that Fe(x, x0) = Fe(x, x1) for all the challenge queries (x0, x1),
and all policy updates Fe. This matches exactly the validity requirements asked for B in the
AH2-PHPE

β experiment, which is the requirement that Fe(x, x0) = Fe(x, x1) for all encoding queries
x, all encryption queries (x0, x1), and all key generation queries Fe. Therefore, it follows that the
adversary B is a valid adversary with respect to the AH2-PHPE

β experiment and does not abort if the
adversary A is a valid adversary in the game G2+β (AHUPCS

β ).
To conclude the proof, we observe that the difference in the two games is the generation of the

challenge public keys pk, which either consists of a ciphertext encrypting the attribute set x0 or the
attribute set x1. The computation of the ciphertexts is done by the underlying challenger of the
attribute-hiding game. Together with the analysis above, it follows that, for a valid adversary A, the
game G2+β is simulated towards A when the challenger encrypts the attribute set xβ for β ∈ {0, 1}.

This concludes the simulation of the game G2+β and the lemma follows.

4.3 Relationship between UPCS and 2-PHPE

Now, we show a simple compiler to realize 2-PHPE from non-interactive UPCS.10 In particular,
the predicate class supported by the resulting 2-PHPE scheme is the same that the underlying
UPCS scheme supports. This establishes the formal equivalence of the primitives UPCS and 2-PHPE.
This equivalence thus highlights the non-triviality in building any UPCS scheme from concrete
assumptions. Let Pλ = {P : Xλ ×Xλ → {0, 1}} be the class of two-input predicate UPCS schemes.
We build a 2-PHPE scheme supporting the same class of predicates Pλ as follows:

9The check regarding the associated policies together with the correctness of the PHPE scheme ensure that the
statement for which we simulate the proof is in the language L (and thus, we do not need to rely on additional
properties of the NIZK such as simulation soundness).

10For brevity, we will omit the term “non-interactive” and refer to the scheme as just UPCS in this section.
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2-PHPE.Setup(1λ) : Let P0 ∈ Pλ be any arbitrary predicate. (Without loss of generality, we can fix
P0 as the first lexicographically appearing policy in Pλ.)
Initialize a UPCS authority A with an input (Setup, P0) upon which it computes

(mpkUPCS, mskUPCS, tok0)← UPCS.Setup(1λ, P0)

Output (pp, msk) := (mpkUPCS, mskUPCS).

2-PHPE.KeyGen(msk, P ) : Parse pp = mpkUPCS, msk = mskUPCS and the predicate P . Invoke the
policy-update algorithm on input (Update, P ) to get a token associated to P as

tokP ← UPCS.PolUpd(mskUPCS, mpkUPCS, P ).

Output skP := tokP .

2-PHPE.Encode(msk, x1) : Parse msk = mskUPCS and a set of attributes x1 ∈ Xλ. Initialize a party
PS by invoking A on input (KeyGen, PS , x1) to compute

(pkS , skS)← UPCS.KeyGen(mskUPCS, PS , x1).

Output ex1 := (pkS , skS , x1).

2-PHPE.Encrypt(msk, x2) : Parse msk = mskUPCS and a set of attributes x2 ∈ Xλ. Initialize a party
PR by invoking A on input (KeyGen, PR, x2) to compute

(pkR, skR)← UPCS.KeyGen(mskUPCS, PR, x2).

Output ct := pkR.

2-PHPE.Decrypt(skP , (ex1 , ct)) : Parse pp = mpkUPCS, skP = tokP associated with predicate P ,
ex1 = (pkS , skS , x1) associated with a party PS , ct = pkR associated with a party PR (with
identifier R). Fix a message m. Run the signing algorithm on behalf of party PS on
input (Sign, tokP , R, m) to compute σ ← UPCS.Sign(mpkUPCS, tokP , skS , pkR, m). Run the
verification algorithm on behalf of party PR on input (Verify, tokP , pkS , pkR, m, σ) to compute
and output the bit b := UPCS.Verify(mpkUPCS, tokP , pkS , pkR, m, σ).

Correctness follows directly from that of the UPCS scheme. Formally, consider any predicate
P ∈ Pλ and inputs x1, x2 ∈ Xλ, such that P (x1, x2) = b for any b ∈ {0, 1}.

1. The 2-PHPE.Setup initializes a UPCS authority with a fixed predicate P0 (as described above)
that outputs (mpkUPCS, mskUPCS, tok0)← UPCS.Setup(1λ, P0). Accordingly, the 2-PHPE.Setup
sets (pp, msk) := (mpkUPCS, mskUPCS).

2. For a key associated to predicate P , the 2-PHPE.KeyGen procedure outputs a secret key
skP = UPCS.tokP ← UPCS.PolUpd(mskUPCS, mpkUPCS, P ).

3. To encode input attributes x1 for slot 1, the 2-PHPE.Encode algorithm invokes a key generation
for an initialized party PS as UPCS.KeyGen(mskUPCS, PS , x1) and sets ex1 := (pkS , skS , x1).

4. To encrypt input attributes x2 for slot 2, the 2-PHPE.Encrypt algorithm again invokes a key
generation for an initialized party PR to compute (pkR, skR)← UPCS.KeyGen(mskUPCS, PR, x2)
and sets ct := pkR.
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5. Observe that both, ex1 = (pkS , skS , x1) and ct := pkR, correspond to UPCS keys held by
parties initialized by the UPCS experiment. Therefore, the 2-PHPE.Decrypt algorithm simply
signs a fixed message m with respect to the token tokP and the keys (skS , pkR), and verifies it
with respect to the same token and the key pair (pkS , pkR).

Note that the predicate class supported by the UPCS scheme is inherited by the resulting 2-PHPE
scheme. Further, since the 2-PHPE scheme initializes all the honest parties in the UPCS experiment,
we have that UPCS.Verify(mpkUPCS, tokP , pkS , pkR, m, σ) = b = P (x1, x2) with probability 1. This
concludes the formal correctness of the 2-PHPE scheme.

We next present the attribute-hiding proof.

Theorem 4.13. Let UPCS = (UPCS.Setup, UPCS.PolUpd, UPCS.KeyGen, UPCS.Sign, UPCS.Verify)
be an attribute-hiding non-interactive UPCS scheme supporting the two-input predicate class Pλ =
{P : Xλ×Xλ → {0, 1}}. Then the scheme 2-PHPE = (2-PHPE.Setup, 2-PHPE.KeyGen, 2-PHPE.Encode,
2-PHPE.Encrypt, 2-PHPE.Decrypt) obtained above for the predicate class Pλ is also attribute-hiding.

Proof. Assume A to be a valid PPT adversary against the 2-PHPE scheme in the AH2-PHPE
β experi-

ment as per Definition 4.2. We then construct an adversary A′ that internally uses A as a subroutine
and plays an execution in the UPCS environment to break attribute-hiding of UPCS as follows:

• A′ triggers the UPCS authority A on input (Setup, P0) to get (mpkUPCS, tok0) and feeds
pp := mpkUPCS to A.

• For a key query by A for some predicate P ∈ Pλ, A′ invokes A on input (Update, P ) and
gets a token tokP for P . Upon receiving it, A′ feeds skP := tokP to A.

• When A queries to encode an attribute x1,i ∈ Xλ, A′ initializes a party P i
S which invokes

A on input (Test-KeyGen, P i
S , (x′

i,0, x′
i,1)) setting x′

i,0 = x′
i,1 = x1,i. After P i

S receives
(mpkUPCS, pki

S , ski
S , x1,i) and outputs (Initialized, pki

S), A′ obtains pki
S from this output.

Next, A′ inputs Corrupt to party P i
S and further obtains (ski

S , x1,i). A′ then feeds ex1,i =
(pki

S , ski
S , x1,i) to A.

• When A issues a challenge query (x0
2,j , x1

2,j) ∈ (Xλ)2, A′ initializes a party P j
R which invokes

A on input (Test-KeyGen, P j
R, (x0

2,j , x1
2,j)). After P j

R receives (mpkUPCS, pkj
R, skj

R, xb
2,j) and

outputs (Initialized, pkj
R), A′ obtains pkj

R from this output and feeds ct := pkj
R to A.

• When A returns a bit b′, A′ outputs the same.

It is easy to observe that the UPCS execution enviroment lets A′ simulate a distribution identical to
the AH2-PHPE

β experiment in the view of its internal 2-PHPE adversary A. The output distribution
of A′ is also exactly the same as that of A. Hence, we have AdvAH

2-PHPE,A = AdvAH
UPCS,A′ . It remains to

establish that A′ is a valid UPCS adversary, given A is valid. For this, we first observe the following:

1. Any key generation query for a predicate P put forth by A is answered with a token tokP for
the same predicate P by the UPCS authority A.

2. Any encoding query issued by A for attributes x1,i in slot 1 is essentially translated to a
corruption query by A′. This is already fine since this encoding is not supposed to hide
x1,i. Hence, as per the UPCS attribute-hiding experiment, A′ initializes the party P i

S which
further inputs (Test-KeyGen, P i

S,, (x′
i,0, x′

i,1)) setting x′
i,0 = x′

i,1 = x1,i to A and outputs
(Initialized, pki

S) once it gets (mpkUPCS, pki
S , ski

S , x1,i) from A. Next, A′ further inputs
Corrupt to P i

S to obtain (ski
S , x1,i) and feeds ex1,i accordingly to A.
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3. Any encryption query issued by A for a pair of attributes (x0
2,j , x1

2,j) in slot 2 is again answered
by A′ in a similar manner as above by freshly initializing a party P j

R (except that now it is
not corrupted). In particular, A′ gets to see pkj

R once P j
R is initialized and accordingly feeds

ct := pkj
R to A.

4. Note that A can issue all the above three queries adaptively, while maintaining its validity
criteria that for all i, j and all key queries P , it must hold that P (x1,i, x0

2,j) = P (x1,i, x1
2,j).

Clearly, the validity of A above implies P (x′
i,0, x0

2,j) = P (x1,i, x0
2,j) = P (x1,i, x1

2,j) = P (x′
i,1, x1

2,j)
for all predicates P and for all the query indices i, j. Besides, note that A′ never needs to run an
instruction of the type (Sign, tokP , R, m) in this environment. Thus, all other validity criteria for
A′ related to tokens and signing oracles are satisfied vacously. This concludes the proof.

5 Interactive Updatable Policy-Compliant Signatures
In this section, we present our interactive updatable policy-compliant signature schemes.

The first scheme relies on signatures, non-interactive zero-knowledge proofs and two-party
computation. This scheme requires interaction between the sender and receiver in each update for
a signature generation. Our second scheme instead requires only a single interaction between the
sender and receiver that allows a signature generation for all updates. To facilitate this, we need
to additionally rely on a predicate encryption scheme. We present both these schemes formally in
Sections 5.1 and 5.2 below.

5.1 Interactive UPCS using Two-Party Computation

We start by presenting the first scheme that relies only on two-party computation. Here, the public
key of a party simply consists of a verification key of a signature scheme vk and its secret key
contains the corresponding signing key sk as well as its attribute set x. Additionally, the authority
binds these keys together by generating signatures for both of them involving the verification key vk,
i.e., it generates a signature over vk for the public key and a signature over (vk, x) for the secret key.
Looking ahead, they are used inside the two-party computation protocol in the signature generation
to allow for the policy computation. The authority generates a policy update for a policy F ′ by
simply signing it and outputting the corresponding signature σtok together with the policy.
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Setup(1λ, Finit):
CRSNIZK ← NIZK.Setup(1λ)
(vkpub, skpub)← DSpub.Setup(1λ)
(vkpriv, skpriv)← DSpriv.Setup(1λ)
(vktok, sktok)← DStok.Setup(1λ)
σtok ← DStok.Sign(sktok, Finit)
mpk := (CRSNIZK, vkpub, vkpriv, vktok)
msk := (skpub, skpriv, sktok)
tokinit := (Finit, σtok)
Return (mpk, msk), tokinit

KeyGen(msk, Pi, x):
Parse msk = (skpub, skpriv, sktok)
(vkP, skP)← DSP.Setup(1λ)
σpub ← DSpub.Sign(skpub, (vkP, Pi))
σpriv ← DSpriv.Sign(skpriv, (vkP, x))
pk := (vkP, Pi, σpub), sk := (vkP, skP, x, σpriv)
Return (pk, sk)

PolUpd(mpk, msk, Fupd)
Parse mpk = (CRSNIZK, vkpub, vkpriv, vktok)

msk = (skpub, skpriv, sktok)
σtok ← DStok.Sign(sktok, Fupd)
tokupd := (Fupd, σtok)
Return tokupd

Verify(mpk, tok, pkS , pkR, m, σ):
Parse mpk = (CRSNIZK, vkpub, vkpriv, vktok)

tok = (F, σtok), pkS = (vkS , PS , σS
pub)

pkR = (vkR, PR, σR
pub), σ = (π, σ′)

(Return 0 if parsing fails or σ = ⊥)
Return Verify(vktok, F, σtok)
∧Verify(vkpub, (vkR, PR), σR

pub)
∧Verify(vkpub, (vkS , PS), σS

pub)
∧ Verify(CRSNIZK, (tok, vkpriv, vkS , vkR), π)
∧ Verify(vkS , (m, pkR, π), σ′)

Figure 10: The setup, policy update, key generation and verification procedures of our interactive
UPCS scheme.

For the signature generation, the sender and the receiver interact in a two-party computation
protocol where the sender inputs its secret key skS := (vkS , xS) and the public key of the receiver
pkR and the receiver inputs its secret key skR := (vkR, xR) as well as the public key of the sender
pkS . Furthermore, both of the parties input the current token (F ′, σtok). The circuit that the
two-party computation protocol computes first verifies that the secret keys input by the parties
correspond to the public keys, i.e., that skS corresponds to pkS and skR corresponds to pkR, by
checking the contained information as well as verifying the signatures. Furthermore, it also verifies
the signature of the token σtok. Afterwards, it evaluates the policy, i.e., checks that F ′(xS , xR) = 1,
and, if the check succeeds, it generates a non-interactive zero-knowledge proof π that the sender
and receiver together fulfill the policy. In this proof, the verification keys of the sender and the
receiver vkS and vkR are part of the statement. After the execution of the two-party computation
protocol, the sender obtains π and uses it together with the message m and its signing key to
generate the signature σ over the tuple (m, pkR, π). The sender then outputs ((m, pkR, π), σ) as the
final signature.

To verify a signature, the signatures associated with the public keys of the sender and the
receiver are verified, as well as the signature of the token for which it has been generated. If these
verifications succeed, then the information inside the public keys and the token can be used to
verify the proof π of the signature. In a last step, the signature σ generated over the proof and the
message (m, pkR, π) is verified using the verification key vkS of the sender. If all of these verification
checks succeed, then the signature is deemed valid.

If the sender wants to generate another signature for the same receiver under the same token, it
can simply reuse the proof π that has been output by the two-party computation protocol and no
additional interaction is required. We describe the formal scheme in Figures 10 and 11.
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Πsign(mpk, tok, skS , pkS , R, m) for signer S:
Parse mpk = (CRSNIZK, vkpub, vkpriv, vktok)

tok = (F, σtok)
skS = (vkS

P, skS
P, xS , σS

priv)
pkS = (vkS

P, PS , σS
pub)

Obtain pkR =(vkR
P , PR, σR

pub) from R (cf. Sec. 3).
If this algorithm has already been executed between S and R for this token tok,
proceed to “If π ̸= ⊥, . . . ” Otherwise, proceed as follows:
If DStok.Verify(vktok, F, σtok) = 0, return ⊥.
The remainder of this algorithm is an interactive process between S and R:
S: If DSpub.Verify(vkpub, (vkR

P , PR), σR
pub) = 0,

return ⊥.
R: If DSpub.Verify(vkpub, (vkS

P, PS), σS
pub) = 0,

return ⊥
S and R execute Π that computes the circuit described in Figure 12.
After the execution of Π, S obtains π.
If π ̸= ⊥, S computes σ′ ← DSP.Sign(skS

P, (m, pkR, π)),
sets σ := (π, σ′) and returns (m, pkR, σ).

Figure 11: Our interactive 2PC-based UPCS scheme. It uses a NIZK proof system NIZK, a 2PC
protocol Π in the CRS model, and four digital signature schemes DSpub, DSpriv, DStok and DSP.

5.1.1 Correctness and Security

The correctness of the scheme follows directly from the correctness of the underlying schemes: DS,
NIZK and that of 2PC. For security, unforgeability follows from unforgeability of the signature
schemes and the (knowledge) soundness of the NIZK proof. Further, the attribute-hiding of the
UPCS scheme follows from the simulatability of 2PC and the zero-knowledge property of the NIZK.
We present the formal proofs below. We note in passing that when switching to a model where we
cannot erase the randomness during proof generation, we obtain an analogous result when switching
to a NIZK that supports adaptive corruptions [GOS06].

Unforgeability

Now, we proceed to the unforgeability proof of our scheme.

Theorem 5.1. Let DSpub = (DSpub.Setup, DSpub.Sign, DSpub.Verify), DStok = (DStok.Setup, DStok.Sign,
DStok.Verify), DSpriv = (DSpriv.Setup, DSpriv.Sign, DSpriv.Verify) and DSP = (DSP.Setup, DSP.Sign,
DSP.Verify) be EUF-CMA secure signature schemes, and let NIZK = (NIZK.Setup, NIZK.Prove,
NIZK.Verify) be an extractable proof system and Π be an adaptively UC-secure two-party computa-
tion protocol for the specified circuit in Figure 12, then the construction UPCS = (Setup, KeyGen,
Enc, Dec), defined in Figures 10 and 11, is existentially unforgeable.

Proof. Using the composition theorem, we can effectively work in a world where parties use FC to
evaluate a circuit C and rely on the correctness of the computation to ensure the computed values
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Circuit CCRSNIZK,vktok,vkpriv :

Inputs: S uses (pkR := (vkR
P,S , PR, σR

pub,S), skS := (vkS
P,S , ·, xS , σS

priv), tokS := (FS , σtok,S)) as its
input and R uses (pkS := (vkS

P,R, PS , σS
pub,R), skR := (vkR

P,R, ·, xR, σR
priv),

tokR := (FR, σtok,R)) as its input.
Check that:
• F := FS = FR, σtok := σtok,S = σtok,R and that DStok.Verify(vktok, (F, σtok)) = 1.
• vkR

P := vkR
P,S = vkR

P,R, σR
pub,S = σR

pub,R, vkS
P := vkS

P,R = vkS
P,S , σS

pub,R = σS
pub,S .

• DSpriv.Verify(vkpriv, (vkS
P,S , xS), σS

priv) = 1 and
DSpriv.Verify(vkpriv, (vkR

P,R, xR), σR
priv) = 1.

• F (xS , xR) = 1.
If one of these checks fails output ⊥. If all of these checks are successful, compute:
• π ← NIZK.Prove(CRSNIZK, ((F, σtok), vkpriv, vkS

P, vkR
P ), (xS , xR, σS

priv, σR
priv))

for the relation described in Figure 13.
Output: π to S.

Figure 12: The circuit that is being computed by the 2PC of the interactive UPCS scheme
in Figure 11.

Relation RZK:
Instance: x = (tok := (F, σtok), vkpriv, vkS

P, vkR
P )

Witness: w = (xS , xR, σS
priv, σR

priv)
RZK(x, w) = 1 if and only if:

DSpriv.Verify(vkpriv, (vkP
P , xP ), σP

priv) = 1, for P ∈ {S, R} and F (xS , xR) = 1

Figure 13: Relation used for the NIZK inside the 2PC of the interactive UPCS scheme in Figure 12.

are as specified. The proof of this theorem proceeds very similar to the proof of the non-interactive
scheme. We define the same events as in the proof of Theorem 4.3 and recap them here:

• Event KeyForgeA: The adversary A terminates with output (tok, pkS , pkR, m, σ) where the
public key pkS (resp. pkR) does not belong to any initialized party PS (resp. PR) (by means
of an invocation (KeyGen, PS , xS), (resp. (KeyGen, PR, xR))).

• Event KeyCollA: The adversary terminates and it holds that there are two parties Pi and Pj

where i ̸= j such that for the corresponding public keys pki = (vki, ·, ·, ·) and pkj = (vkj , ·, ·, ·)
it holds that vki = vkj .

We denote the winning condition of the experiment by the event WINA and split it into three parts:

• Event WIN1A: The adversary generates the output (tok∗, pk, pk∗, m∗, σ∗) for which it holds that
Verify(mpk, tok∗, pk, pk∗, m∗, σ∗) = 1 and where the public key pk is associated with some ini-
tialized party PS that is not corrupted and was never invoked on input (Sign, PS , tok, pkR, m).

• Event WIN2A: The adversary A generates the output (tok∗, pk, pk∗, m∗, σ∗) for which it holds
that Verify(mpk, tok∗, pk, pk∗, m∗, σ∗) = 1 and where the update token tok∗ is not associated
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with a policy F ∗ that has never been an input to the authority (Update, F ∗). We also denote
this event as PolicyForgeA.

• Event WIN3A: The adversary A generates the output (tok∗, pk, pk∗, m∗, σ∗) for which it
holds that Verify(mpk, tok∗, pk, pk∗, m∗, σ∗) = 1 and where there is a policy F ′ such that a
query (Update, F ′) has been asked, and there are attributes xS and xR associated to some
initialized parties PS and PR with public keys pkS and pkR, respectively (as the result of
inputs (KeyGen, PS , xS) and (KeyGen, PR, xR) to A), such that F ′(xS , xR) = 0.

The bounds for events KeyForgeA and KeyCollA follow as in the non-interactive scheme, i.e.,
by Lemmata 4.4 and 4.5:

Pr[KeyForgeA] ≤ AdvEUF-CMA
DSpub,B1 (λ) and Pr[KeyCollA] ≤ q · AdvEUF-CMA

DSP,B′
2

(λ)

for adversaries B1 and B′
2 which are constructed based on A and have roughly the same efficiency

as A and where q are the number of key generation queries KeyGen.
Also the bounds of the events WIN1A, WIN2A and WIN3A are the same as in the non-interactive

case.

Pr[WIN1A] ≤ q · AdvEUF-CMA
DSP,B′′

2
(λ),

Pr[WIN2A/ PolicyForgeA] ≤ AdvEUF-CMA
DStok,B′

1
(λ) and

Pr[WIN3A ∩KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]
≤ AdvEUF-CMA

DSpriv,B3 (λ) + AdvExt
NIZK,B4(λ) + AdvCRS

NIZK,B′ ,

where the adversaries B′
1,B′′

2 , B3, B4, and distinguisher B′ are constructed based on A and have
roughly the same efficiency as A.

The proof of the bounds for the events WIN1A and WIN2A proceed in almost exactly the
same way as described in the proofs of Lemmata 4.6 and 4.7. The proof of the bound for WIN3A
differs slightly from the proof in the non-interactive case, therefore, we recap the adjusted proof
in Lemma 5.2.

By definition of the events, we have

Pr[WINA] ≤Pr[KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]
+ Pr[WINA ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]
≤Pr[KeyCollA] + Pr[KeyForgeA] + Pr[PolicyForgeA]

+ Pr[WIN1A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]
+ Pr[WIN2A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]︸ ︷︷ ︸

=0, since WIN2A=PolicyForgeA

+ Pr[WIN3A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA].

Finally, adversaries B′
2 and B′′

2 can be combined into a single adversary B2 which picks B ∈ {B′
2,B′′

2}
at random and running it against EUF-CMADSP . Therefore, the theorem follows.

Lemma 5.2. Consider the unforgeability experiment and let WIN3A be defined as above. We can
construct adversaries B1 and B2 and a distinguisher B′ such that

Pr[WIN3A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]
≤ AdvCRS

NIZK,B′(λ) + AdvEUF-CMA
DSpriv,B1 (λ) + AdvExt

NIZK,B2(λ).
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Proof. On a high-level, the adversary needs to prove a wrong claim which can either be done by
attacking the NIZK directly, or if the NIZK is extractable, then the attacker must attack the
underlying signature scheme in order to possess a valid witness.

We first make a first transition to a hybrid world EUF-CMAUPCS
Hyb , which is identical to

EUF-CMAUPCS except that we replace NIZK.Setup(1λ) by the CRS simulation algorithm E1 associ-
ated with the NIZK scheme. All the above defined events are still defined in this hybrid experiment.
Clearly, we can construct a distinguisher B′ such that

Pr[WIN3A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]

≤ PrHyb
[

WIN3A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA

]
+ AdvCRS

NIZK,B′ ,

where PrHyb[.] makes explicit that this probability is taken w.r.t. experiment EUF-CMAUPCS
Hyb . This

reduction is standard: in order to distinguish the two distributions, on input a sample CRS, the
distinguisher B′ emulates the experiment towards A. When A terminates, B′ outputs 1 if event
WIN3A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA occurs (which is computable by B′ that manages
all key-sets).

We build an adversary B1 that simulates EUF-CMAUPCS
Hyb towards A when interacting with the

underlying EUF-CMADSpriv experiment. We show that if A outputs (tok∗, pk, pk∗, m∗, σ∗) as defined
in event WIN2, it can be used as a forgeability attack in the EUF-CMADSpriv experiment, unless a
certain failure event Failext occurs in the reduction, which we then relate to the extraction advantage.

In the first step, the adversary B1 receives vkpriv from the EUF-CMApriv experiment and the
policy Finit from the adversary A. In the next step, B1 generates CRSNIZK ← E1(1λ), (vkpub, skpub)←
DSpub(1λ), (vktok, sktok)← DStok.Setup(1λ) and sets mpk := (CRSNIZK, vkpub, vkpriv, vktok). Further-
more, B generates σtok ← DStok(sktok, Finit). Afterwards, it sets tokinit := (Finit, σtok) and sends mpk
and tokinit to the adversary A. The adversary B also initializes the counter e = 2.

If the adversary A asks a policy update query (Update, F ′), the adversary B generates σ′
tok ←

DStok(sktok, F ′) and outputs tok′ := (F ′, σ′
tok) to A. Afterwards, it increases e, i.e., e := e + 1.

For a key generation query (KeyGen, Pi, x), B1 samples a signature key pair (vkP, skP) ←
DS.Setup(1λ), generates the signature σpub ← DSpub.Sign(skpub, (vkP, Pi)) and submits (vkP, x) to
the sign oracle of the underlying EUF-CMADSpriv experiment to obtain the signature σpriv. Then, B1
sets pk := (vkP, Pi, σpub) and sk := (vkP, skP, x, σpriv) and sends pk to A. If at any point in time, the
conditions of event KeyCollA are fulfilled, B1 aborts.

Whenever A asks a corruption query (Corrupt, Pj), the adversary B1 searches for the key sk
that is associated with Pj . If no such entry exists, the adversary B1 outputs ⊥ to A, otherwise it
sends sk to A.

If the adversary A asks a signing query (Sign, tok, Pj , pkR := (vkR, PR, σR
pub), m), then the

adversary B1 checks that a key has been generated for Pj and that pkR has been the reply to a
previous key generation query KeyGen. If this is not the case, the adversary B1 aborts. Otherwise,
it continues with the execution of Sign, using the key sk of party Pj and terminates once Sign
terminates.

WhenA terminates with (tok∗ := (F ∗, σ∗
tok), pk∗

S := (vk∗
P,S , P ∗

S , σ∗
pub,S), pk∗

R := (vk∗
P,R, P ∗

R, σ∗
pub,R),

m∗, σ∗ := (π∗, σ′)) B1 first checks whether the conditions of event KeyForgeA hold, if this is the
case, it aborts. It also verifies that the conditions of event WIN3A hold and in case this is true,
it first calls (x∗

S , x∗
R, σ∗

priv,S , σ∗
priv,R) ← E2(CRS, (tok∗, vkpriv, vk∗

P,S , vk∗
P,R), π∗) and checks whether

(x := (tok∗, vkpriv, vk∗
P,S , vk∗

P,R), w := (x∗
S , x∗

R, σ∗
priv,S)) ∈ RZK (which is efficiently checkable) and if

this is the case, it submits either ((vk∗
P,S , x∗

S), σ∗
priv,S) or ((vk∗

P,R, x∗
R), σ∗

priv,R), depending on which
one has not been previously queried to the underlying challenger, as a forgery to the underlying
experiment EUF-CMADSpriv . If (x, w) ̸∈ RZK, then abort with failure event Failext.
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We observe that the emulation towards adversary A is perfect until the point in the execution
where B1 would abort. The only difference is the generation of the verification key vkpriv and
the corresponding signatures, which, in this setting, are all honestly generated by the underlying
challenger. Therefore, all events in this emulation are defined as in the experiment EUF-CMAUPCS

Hyb
with respectively the same probabilities.

We now analyze the final forgery output of a run of B1 (which therefore does not abort).
In this case, we observe that all signature verification keys are unique and that all keys can
be uniquely associated to some attributes as all keys including the output pk∗

S and pk∗
R of A

have previously been the answer to a KeyGen query. Therefore, there are parties Pj and Pk

such that pk∗
S is the key of Pj and pk∗

R is the key of Pk and where the keys contain vki and are
associated with xi for i ∈ {j, k}. Let us fix these two indices. Furthermore, we can assume that
NIZK.Verify(CRS, (tok∗, vkpriv, vkj , vkk), π∗) = 1 as otherwise, WIN3 does not hold. Additionally, we
know that F ∗(xj , xk) = 0 and since all keys are generated honestly by B, for the keys of party Pj

(pkj , skj = (·, ·, xj , σpriv,j)), it holds that xj ̸= x∗
S . Since by uniqueness, B1 has only submitted the

query (vkj , xj) to the signing oracle of EUF-CMADSpriv , the pair ((vk∗
P,S = vkj , x∗

S ̸= xj), σ∗
priv,S) is a

valid signature for a novel message and, therefore, a valid forgery. We obtain that the probability
that B1 terminates with a valid forgery is

AdvEUF-CMA
DSpriv,B1 = Pr

Hyb
[WIN3A ∩ Failext ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA].

This results in

PrHyb
[

WIN3A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA

]
= AdvEUF-CMA

DSpriv,B1 + PrHyb
[

WIN3A ∩ Failext ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA

]
︸ ︷︷ ︸

≤AdvExt
NIZK,B2

.

It is straightforward to obtain an adversary B2 (based on A) which has an advantage AdvExt
NIZK,B2 =

PrHyb
[

WIN3A ∩ Failext ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA

]
. In fact, the adversary B2 receives

as input the CRS and executes the same instructions as B1, with the exceptions that it can simply
generate signatures for the scheme DSpriv by itself. In addition, when A terminates with output
(tok∗ := (F ∗, σ∗

tok), pk∗
S := (vk∗

P,S , P ∗
S , σ∗

pub,S), pk∗
R := (vk∗

P,R, P ∗
R, σ∗

pub,R), m∗, σ∗ := (π∗, σ′)), B2
behaves as B1 but does not execute the final steps running the extractor, but instead just outputs
(x := ((F ∗, σ∗

tok), vkpriv, vk∗
P,S , vk∗

P,R), π∗) in case the conditions of WIN3 are satisfied (note that the
extractor is run as part of the experiment in Definition 2.6). As above, the emulation towards A
is perfect until the point where B2 would abort. Therefore, the advantage is as claimed, because
the event of interest is that the extractor E2 is called precisely on the accepting proof string π∗

output by A (which is accepting for statement x as defined above because of event WIN3) but the
extraction produces a witness w such that (x, w) ̸∈ RZK. Therefore, the statement follows.

Attribute-Hiding

After proving the unforgeability, we prove the attribute-hiding of our scheme.

Theorem 5.3. Let Π be an adaptively UC-secure two-party computation protocol for the specified
circuit in Figure 12, let NIZK = (NIZK.Setup, NIZK.Prove, NIZK.Verify) be a NIZK proof system (for
the relation RZK of Figure 9) and let DSpub = (DSpub.Setup, DSpub.Sign, DSpub.Verify) and DStok =
(DStok.Setup, DStok.Sign, DStok.Verify) be an unforgeable signature scheme, then the construction
UPCS = (Setup, PolUpd, KeyGen, Enc, Dec), defined in Figures 10 and 11, is attribute hiding.
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Proof. The proof of this theorem proceeds very similar to the proof of the non-interactive UPCS
scheme with the difference that, instead of relying on the attribute-hiding property of the two-input
partially-hiding predicate encryption scheme, we need to rely on the security of the two-party
computation protocol.

To prove this statement, we use a hybrid argument with the following hybrids:

Hybrid H0: This hybrid is defined as the attribute-hiding game for the case that b = 0.

Hybrid H1: In this hybrid, we answer the Sign query asked by the adversary differently. We
denote the modified sign query as Sign′. A Sign′ query is defined as a Sign query with the
difference that it is only answered if the queried receiver key has been previously output as an
answer to a Test-KeyGen query and the token has been previously output as an answer
to a Update query, i.e., for a query (Sign, toke, pki, m) to Pj the public pki has been the
answer to a query (Test-KeyGen, Pi, (xi,0, xi,1)) and the token toke has been the answer to
a query (Update, Fe). If this is not the case then the reply ot the Sign′ query is ⊥. The
indistinguishability of H0 and H1 is justified by the same reasoning as we have seen for the
non-interactive scheme (Figure 8). Namely, by relying on the Lemmata 4.4 and 4.7, as in the
proof of Theorem 5.1. We prove this more formally in Lemma 5.4.

Hybrid H2: In this hybrid, we change the way the output of every Sign′ query that involves party
Pj , which has obtained its key using a Test-KeyGen query, is computed. To compute the
answer to the Sign′ query we replace the execution of the protocol Π with an ideal execution
of functionality FC by relying on the composition theorem. Intuitively, what is happening is
that in case that Pj is acting as the sender in the signing query, i.e., it is acting as the party
P1 in the underlying two-party computation protocol, simulated messages (that do not depend
on the secret values of the honest party) are generated for Pi, the receiver of the transaction
(corresponding to P2 of the two-party computation protocol). This happens without any
observable difference by the security of the 2PC. The case that the party Pj is acting as the
receiver is analogous. The transition from H1 to H2 is stated as Lemma 5.5 for completeness.

Hybrid H3: In this hybrid, we switch from an honestly generated CRSNIZK and honestly generated
proofs in the singing queries to a simulated CRSNIZK and simulated proofs in the signing queries.
That is, upon a PCS signing query (Sign′, toke, pki, m) to Pj , we find the attributes that have
been used to generate the key pki for Pi, i.e., we find the query (Test-KeyGen, Pi, (xi,0, xi,1))
that was answered using pki, as well as the policy Fe that corresponds to the token toke,
i.e., the query (Update, Fe) which has been answered using toke. Further, we also obtain
the attributes that are associated with party Pj , i.e., we search for the corresponding query
(Test-KeyGen, Pi, (xi,0, xi,1)). In the next step, we check that Fe(xj,0, xi,0) = 1. If this is
the case, then we simulate the proof π that is generated inside the two-party computation
protocol using the NIZK simulator on input the trapdoor and (toke, vkpriv, vkS

P, vkR
P ) where

vkS
P and vkR

P are part of the public keys of the sender (Pi or Pj) and receiver (Pj or Pi). This
simulated proof is then used as the output of the 2PC protocol. In any other case (in particular
where associated attributes do not satisfy the policy), we output ⊥. For more details, we refer
to the proof of Lemma 5.6, where we argue the indistinguishability of H2 and H3 by relying
on the zero-knowledge property of NIZK.

Hybrid H4: In this hybrid, we answer the Test-KeyGen queries using the attributes x1 instead
of x0. This transition is possible since, at this point, the generated signatures are completely
independent of the attributes associated with the keys and, furthermore, a valid adversary
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can only ask corruption queries for a key where x0 = x1. Taking these two facts into account
directly results in the indistinguishability between the hybrids H3 and H4.

Hybrid H5: In this hybrid, we change back from a simulated CRS and simulated proofs π in the
signing queries to an honestly generated CRS and honestly generated proofs π. In more detail,
we use as a witness for the generation of the proof all the information that is part of the
secret or public key, depending on if the party is acting as a sender or as a receiver in the
query. In this hybrid, the attributes used as the witness now correspond to x1 instead of
x0. Symmetrical to the transition from H2 to H3, this transition can be argued using the
zero-knowledge property of NIZK, we refer to the proof of Lemma 5.6 for further details.

Hybrid H6: In this hybrid, we change from a simulated execution of the two-party protocol to an
honest execution of the protocol. As in the previous hybrid, the private information that the
involved parties use in this hybrid are now w.r.t. x1. Symmetrical to the transition from H1
to H2, this transition can be argued using the security of the two-party computation protocol
Π. We refer to the proof of Lemma 5.5 for further details.

Hybrid H7: This hybrid corresponds to the attribute-hiding game using b = 1 as its input. In this
game, we change the behavior of the signing queries back from Sign′ to Sign. Symmetrical to
the transition from H0 to H1, this transition can be argued using the unforgeability of public
keys. We refer to the proof of Lemma 5.4 for further details.

From the definition of the hybrids it is clear that H0 corresponds to the attribute-hiding game
with b = 0 and H7 corresponds to the attribute-hiding game with b = 1. Since it holds that
H0 ≈c · · · ≈c H7, the theorem follows.

Lemma 5.4 (Indistinguishability of H0 to H1). Let DSpub and DStok be existentially-unforgeable
signature scheme, then the hybrids H0 and H1 are computationally indistinguishable.

Proof (Sketch). As described above, the difference between the hybrids H0 and H1 is in the signing
queries. In the hybrid H0 the adversary A can ask signing queries Sign and in the hybrid H1 the
adversary A can ask signing queries Sign′. The answer to a Sign′ query is computed as follows.

For a sign query (Sign′, toke, pki, m) to Pj , check that the token toke has been previously been
the answer to a query (Update, Fe) and the public key pki has been previously output as an answer
to a query (Test-KeyGen, Pi, (xi,0, xi,1)). If this is the case, proceed as in the standard signing
query Sign, otherwise, output ⊥.

To show that the hybrids H0 and H1 are indistinguishable, it suffices to show that the probability
that the adversary issues a signing query using a token toke or a receiver key pki that has not been
previously generated by the challenger and that leads to a valid signature σ ̸= ⊥ is negligible. We
denote this as the event SignForgeA.

For the event SignForgeA to occur, the adversary A needs to generate either a token toke that
verifies with respect to the signature scheme DStok or a receiver key that verifies with respect
to the signature scheme DSpub, i.e., it needs to generate a key pk′ := (vk′, P ′, σ′

pub) such that
DSpub.Verify(vkpub, (vk′, P ′), σ′

pub) = 1 (note that an honest signer issues a signature string only if
the validity of a receiver public key is successfully verified). This means that adversary A must
generate either a forgery as captured by the event PolicyForgeA or a key forgery as captured by the
event KeyForgeA in the proof of Theorem 5.1, and which can be defined and analyzed analogously
here (with just minor syntactical changes).

Therefore, the event SignForgeA is bounded by KeyForge and PolicyForge, i.e., Pr[SignForgeA] ≤
Pr[KeyForgeA]+Pr[PolicyForgeA], and the analysis of the events KeyForgeA and PolicyForgeA follows
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using the same reasoning as in Theorem 5.1 to conclude that Pr[KeyForgeA] ≤ AdvEUF-CMA
DSpub,B0 (λ) and

Pr[KeyForgeA] ≤ AdvEUF-CMA
DStok,B1 (λ). This results in the fact that Pr[SignForgeA] ≤ AdvEUF-CMA

DSpub,B0 (λ) +
AdvEUF-CMA

DStok,B1 (λ), which proves the lemma.

Lemma 5.5 (Indistinguishability of H1 to H2). Let Π be an adaptively UC-secure two-party
computation protocol (Section 2.5), then the hybrids H1 and H2 are computationally indistinguishable.

Proof. This statement follows by the UC composition theorem, as our security experiment can be
seen as an environment for Π resp. FC for computing circuit C. In particular, due to the security of
Π against adaptive corruption, this allows us to handle adaptive corruption of the different parties
during the protocol execution.

Lemma 5.6 (Indistinguishability of H2 to H3). Let NIZK be non-interactive zero-knowledge proof,
then the hybrids H2 and H3 are computationally indistinguishable.

Proof. To show that the hybrids H2 and H3 are computationally indistinguishable, we build a
reduction to the zero-knowledge property of the NIZK to argue the independence of the signatures
from the attributes of the parties. Before we analyze this case, we stress that the policy update
queries, key generation queries and corruption queries, are answered as in the previous hybrid. The
only difference here is that the CRSNIZK is obtained from the underlying NIZK challenger and not
generated by the reduction.

For a singing query (Sign′, toke, pki, m) asked to party Pj , we can now rely on FC and the
proof follows by a straightforward reduction. In more detail, in the ideal execution, the inputs of
both, Pj and Pi, in the 2PC must be provided to the functionality (either by the reduction/en-
vironment or the adversary for corrupted parties). Let (pkj , ski := (vkR

P,i, ·, xi,0, σi
priv), toke, mpk)

denote the input of party Pi and (pki, skj := (vkS
P,j , ·, xj,0, σj

priv), toke, mpk) the input of party
Pj . We can now evaluate the circuit as per specification CCRSNIZK,vktok,vkpriv using the inputs
of the parties Pj and Pi and, if all checks of the circuit succeed, we generate the proof π

by forwarding ((Fe, σtok), vkpriv, vkS
P,j , vkR

P,i), (xj,0, xi,0, σj
priv, σi

priv)) to the prove oracle of the un-
derlying challenger for the NIZK protocol. If any of the checks does not succeed, we output
⊥, otherwise, the proof π is used as an output. Afterwards, π is used to generate the final
signature σ′ ← DSP.Sign(skj

P, (m, pkR, π)) using the signing key skj
P of party Pj and output

(m, pki, σ := (π, σ′)).
We observe that it follows from the zero-knowledge property that this emulation is perfect

and, if the underlying challenger generates the proofs using the witness, then the hybrid H2 is
simulated and, if the underlying challenger simulates the proofs, then the hybrid H3 is simulated.
This concludes the proof of the lemma.

5.2 Interactive UPCS using Predicate Encryption

The interactive scheme that we present in this section relies on the same primitives as the one
from the previous section with the addition that it also requires a single-input predicate encryption
scheme as well as an equivocal commitment scheme. The public and secret key pairs in this scheme
have the same structure as in the previous scheme. In more detail, the public key consists of a
verification key vk, whereas the secret key contains the corresponding signing key sk as well as the
attributes x of the parties. To connect both of the keys and attest their authenticity a signature
over vk as well as over (vk, x) is generated.
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Setup(1λ, Finit):
CRSNIZK,1 ← NIZK1.Setup(1λ)
for R1

ZK (Fig. 17).
CRSNIZK,2 ← NIZK2.Setup(1λ)
for R2

ZK (Fig. 18).
CRScom ← com.Setup(1λ)
(mpkPE, mskPE)← PE.Setup(1λ)
(vkpub, skpub)← DSpub.Setup(1λ)
(vkpriv, skpriv)← DSpriv.Setup(1λ)
(vktok, sktok)← DStok.Setup(1λ)
skFinit ← PE.KeyGen(mskPE, Finit)
σtok ← DStok.Sign(sktok, (Finit, skFinit))
CRSNIZK := {CRSNIZK,i}i∈[2]

mpk = (CRSNIZK, CRScom, mpkPE,

vkpub, vkpriv, vktok)
msk := (mskPE, skpub, skpriv, sktok)
tokinit := (Finit, skFinit , σtok)
Return (mpk, msk), tokinit

PolUpd(mpk, msk, Fupd)
Parse mpk := (CRSNIZK, CRScom, mpkPE,

vkpub, vkpriv, vktok)
msk := (mskPE, skpub, skpriv, sktok)

Set F̂upd as the single input function
that splits its input into two sets and
then evaluates Fupd

skFupd ← PE.KeyGen(mskPE, F̂upd)
σ′

tok ← DStok.Sign(sktok, (Fupd, skFupd))
tokupd := (Fupd, skFupd , σ′

tok)
Return tokupd

KeyGen(msk, Pi, x):
Parse msk := (mskPE, skpub, skpriv)
(vkP, skP)← DSP.Setup(1λ)
σpub ← DSpub.Sign(skpub, (vkP, Pi))
σpriv ← DSpriv.Sign(skpriv, (vkP, x))
pk := (vkP, Pi, σpub)
sk := (vkP, skP, x, σpriv)
Return (pk, sk)

Verify(mpk, tok, pkS , pkR, m, σ):
Parse mpk = (CRSNIZK, CRScom, mpkPE,

vkpub, vkpriv, vktok)
tok = (F, skF , σtok),
pkS = (vkS , PS , σS

pub),
pkR = (vkR, PR, σR

pub),
σ = (π := (comS,R, π′, π′′), σ′)

(Return 0 if parsing fails or σ = ⊥)
Return Verify(vktok, (F, skF , σtok))

∧ Verify(vkpub, (vkR, PR), σR
pub)

∧ Verify(vkpub, (vkS , PS), σS
pub)

∧ Verify(CRSNIZK, (CRScom,

vkpriv, vkS , vkR, comS,R), π′)
∧ Verify(CRSNIZK, (CRScom,

skF , comS,R), π′′)
∧ DSP.Verify(vkS , (m, pkR, π), σ′)

Figure 14: The setup, policy update, key generation and verification procedure of our interactive
PE-based UPCS scheme.

For the generation of an update token for a policy F ′, the authority first turns this two-input
policy, that takes as an input two attribute sets XS and XR, into a single-input function F̂ ′ that
takes as an input a single set XS,R which is a disjoint union of the sender and receiver attributes,
i.e., XS,R := {(x, 0)|x ∈ XS} ∪ {(x, 1)|x ∈ XR}. The function F̂ ′ splits the input set XS,R into two
sets XS and XR, where attributes in XS are of the form (x, 0) and attributes in XR are of the
form (x, 1), and then executes F ′(XS , XR). This transformation is needed since we only rely on a
single-input predicate encryption scheme here. Afterwards, a functional key skF ′ for the policy F̂ ′ is
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generated and signed.
The first step of the signature generation works as in the previous scheme. In more detail, the

sender and the receiver interact in a two-party computation protocol where the sender inputs its
secret key skS := (vkS , xS) and the public key of the receiver pkR and the receiver inputs its secret
key skR := (vkR, xR) as well as the public key of the sender pkS . Furthermore, both of the parties
input the current token (skF ′ , σtok) as well as the master public key of the predicate encryption
scheme mpkPE. The circuit that the two-party computation protocol computes first verifies that
the secret keys input by the parties correspond to the public keys, i.e., that skS corresponds to
pkS and skR corresponds to pkR, by checking the contained information as well as verifying the
signatures. Furthermore, it also verifies the signature of the token σtok. Afterwards, it generates
a predicate encryption ciphertext ctS,R encrypting a concatenation (xS , xR) of the attributes of
the sender xS and the receiver xR as well as a commitment comS,R to the ciphertext ctS,R. In
the last step of the two-party computation protocol, a proof π′ is generated that the commitment
comS,R commits to the ciphertext ctS,R and that the ciphertext ctS,R is honestly generated using
the attributes xS of the sender S and the attributes xR of the receiver R. The statement used in
this proof involves the commitment comS,R as well as the verification keys of the sender vkS and the
receiver vkR. Finally, the commitment comS,R as well as its randomness rcom, the ciphertext ctS,R

and the proof π are output to the sender. The sender then generates the signature for a message m
by first decrypting the obtained ciphertext ctS,R using the functional key skF ′ of the current token
and then proving, using a second zero-knowledge proof, that the commitment comS,R commits to a
ciphertext ctS,R that decrypts to 1. The commitment comS,R as well as the token skF ′ are used as
the statement and the randomness for the commitment rcom and the ciphertext ctS,R are used as the
witness. The final step of the signature generation is by signing (m, pkR, π := (π′, π′′)), where π′′ is
the second proof generated as described above, using the signing key sk of the sender. For every
further signature generation for the same pair of parties the ciphertext ctS,R and the commitment
comS,R, and therefore the resulting proofs π′ and π′′, in case that the proof is generated under the
same policy, can be reused. If a signature for the same pair of parties needs to be generated for a
different token, a new proof π′′ needs to be generated and the remaining information can be reused.

The commitment here is needed to ensure that the ciphertext is not revealed when a signature
is generated. A revelation of the ciphertext would allow every other party in the system to evaluate
every policy over the attributes of the parties that are involved in this single signature generation.
Another alternative to prevent this leakage, if someone does not want to rely on a commitment
scheme, is to generate the second proof for the relation that proves that the owned ciphertext
decrypts to 1 and that the proof output by the two-party computation protocol verifies. This then
requires the generation of a proof of a proof which might be less efficient than a second proof that
only proves some properties of the commitment. Therefore, we present the construction using the
commitment scheme.

To verify a signature, the signatures associated with the public keys of the sender and receiver
are verified, as well as the signature on the token for which it has been generated. If these checks
succeed, then the information in the public keys and the token can be used to verify the proofs
π′ and π′′ of the signature. Lastly, the signature σ generated over the proof and the message
(m, pkR, π := (π′, π′′)) is verified using the sender’s verification key vkS . If all of these verifications
succeed, the signature is deemed valid. We describe our formal scheme in Figures 14 and 15.
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Πsign(mpk, tok, skS , pkS , R, m) for signer S:
Parse mpk = (CRSNIZK, CRScom, mpkPE, vkpub, vkpriv, vktok), tok = (F, skF , σtok),

skS = (vkS
P, skS

P, xS , σS
priv), pkS = (vkS

P, PS , σS
pub)

Obtain pkR = (vkR
P , PR, σR

pub) from R (cf. Sec. 3)
If the algorithms were already executed between S and R, proceed to the decryption step.
Else:
S: Return ⊥, if DSpub.Verify(vkpub, (vkR

P , PR), σR
pub) = 0.

R: Return ⊥, if DSpub.Verify(vkpub, (vkS
P, PS), σS

pub) = 0.
S and R execute Π that computes the circuit described in Figure 16.
After the execution of Π, S obtains (comS,R, ctS,R, rcom, π′).
If PE.Dec(skF , ctS,R) = 0, return ⊥
S computes π′′ ← NIZK2.Prove(CRSNIZK,2, (CRScom, skF , comS,R), (ctS,R, rcom)) for the
relation R2

ZK described in Figure 18 and erases the randomness used for the generation of π′′.
Compute σ′ ← DSP.Sign(skS

P, (m, pkR, comS,R, π := (π′, π′′))), set σ := (comS,R, π, σ′).
Return (m, pkR, σ).

Figure 15: The signing procedure of our interactive PE-based UPCS scheme.

Circuit CCRSNIZK,1,mpkPE,vkpriv :

Inputs: S uses (pkR := (vkR
P,S , PR, σR

pub,S), skS := (vkS
P,S , ·, xS , σS

priv),
mpkS := (CRSS

NIZK, CRSS
com, mpkS

PE, ·, vkS
priv, ·)) as its input and

R uses (pkS := (vkS
P,R, PS , σS

pub,R), skR := (vkR
P,R, ·, xR, σR

priv),
mpkR := (CRSR

NIZK, CRSR
com, mpkR

PE, ·, vkR
priv, ·)) as its input.

Check that:
• CRSNIZK := CRSS

NIZK = CRSR
NIZK, CRScom := CRSS

com = CRSR
com,

mpkPE := mpkS
PE = mpkR

PE, vkpriv := vkS
priv = vkR

priv.
• vkR

P := vkR
P,S = vkR

P,R and vkS
P := vkS

P,R = vkS
P,S .

• DSpriv.Verify(vkpriv, (vkS
P, xS), σS

priv) = 1 and DSpriv.Verify(vkpriv, (vkR
P , xR), σR

priv) = 1.
If any of these checks fails, output ⊥.
If all of these checks are successful, compute:
• ctS,R := PE.Enc(mpkPE, (xS∪̇xR); rEnc) with rEnc ← {0, 1}λ and “∪̇” as in Section 2.
• comS,R := Com(CRScom, ctS,R; rcom), with rcom ← {0, 1}λ.
• π′ ← NIZK1.Prove(CRSNIZK,1, (CRScom, vkpriv, vkS

P, vkR
P , comS,R),

(xS , xR, σS
priv, σR

priv, ctS,R, rEnc, rcom))
for the relation R1

ZK described in Figure 17.
Output (comS,R, ctS,R, rcom, π′) to S.

Figure 16: The circuit computed by the 2PC in the signing procedure of the interactive UPCS
scheme in Figure 15.
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Relation R1
ZK:

Instance: x = (CRScom, vkpriv, vkS
P, vkR

P , comS,R)
Witness: w = (xS , xR, σS

priv, σR
priv, ctS,R, rEnc, rcom)

RZK(x, w) = 1 if and only if:
DSpriv.Verify(vkpriv, (vkP

P , xP ), σP
priv) = 1, for P ∈ {S, R},

ctS,R := PE.Enc(mpkPE, (xS∪̇xR); rEnc) and comS,R := Com(CRScom, ctS,R; rcom).

Figure 17: Relation used for the NIZK inside the 2PC of the interactive UPCS scheme in Figure 16.

Relation R2
ZK:

Instance: x = (CRScom, skF , comS,R)
Witness: w = (ctS,R, rcom)
RZK(x, w) = 1 if and only if:

com := Com(CRScom, ctS,R, rcom) and PE.Dec(skF , ctS,R) = 1

Figure 18: Relation used for the final NIZK in the signature generation of the interactive UPCS
scheme in Figure 15.

5.2.1 PE Instantiations

For the interactive UPCS scheme described above, we require attribute-hiding PE with adaptive
security. This primitive has been realized for inner-product predicates in the standard model based on
bilinear pairings in [OT12]. In more detail, such an instantiation allows to evaluate expressions such
as ⟨(x, y), (u, v)⟩ = (⟨x, u⟩+ ⟨y, v⟩) mod Zq, where x ∈ Zn

q and y ∈ Zn
q are the attributes associated

with the sender and receiver respectively, and (u, v) ∈ Z2n
q defines the policy (for any n ∈ N and

some prime q). The values x, y, u and v here might be obtained by passing the attributes of the
sender and the receiver, as well as the policy, through a preprocessing phase. Such a preprocessing
procedure can be defined similarly as in [KSW08, Section 5] and [BMW21, Section 4.5] to obtain
more concrete policies.

Further, we can also instantiate the underlying PE scheme with an adaptively secure, attribute-
hiding PE scheme for quadratic predicates in the generic group model, again, based on pairings,
from [BCFG17, Section 6] or [RPB+19, Section 3]. Concretely, having x ∈ Zn1

q and y ∈ Zn2
q (for

some n1, n2 ∈ N) as the sender’s and receiver’s attributes respectively, the policies P are described
by matrices F ∈ Zn1×n2

q as P ((x, y), F) =
(
x⊤Fy

)
mod Zq. Such policies also capture richer

functions like constant-depth boolean formulas or comparison predicates [BCFG17, Section 6.1].
These pairing-based PE schemes show that our UPCS scheme with one-time interaction can, in

principle, be implemented and benchmarked supporting different classes of predicates and given
efficient instantiations of digital signatures and NIZK proofs that are compatible with the underlying
PE schemes.

5.2.2 Correctness and Security

The correctness of the scheme follows directly from the correctness of the underlying schemes:
DS, NIZK, 2PC and that of PE. For security, unforgeability follows from the unforgeability of the
signature schemes, the (knowledge) soundness of the NIZK proof and the binding property of the
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commitment com. Further, the attribute-hiding of this UPCS schemes follows from the simulatability
of the 2PC, the zero-knowledge property of NIZK and the attribute-hiding of PE. We present the
formal proofs below. We note in passing that when switching to a model where we cannot erase the
randomness during proof generation, we obtain an analogous result when switching to a NIZK that
supports adaptive corruptions [GOS06].

Unforgeability

Now, we prove the unforgeability of our construction.

Theorem 5.7. Let DSpub = (DSpub.Setup, DSpub.Sign, DSpub.Verify), DStok = (DStok.Setup, DStok.Sign,
DStok.Verify), DSpriv = (DSpriv.Setup, DSpriv.Sign, DSpriv.Verify) and DSP = (DSP.Setup, DSP.Sign,
DSP.Verify) be EUF-CMA secure signature schemes, let NIZK = (NIZK.Setup, NIZK.Prove, NIZK.Verify)
be an extractable proof system and Π be an adaptively UC-secure two-party computation protocol for
the specified circuit in Figure 16 and com = (Setup, Com) an equivocal commitment scheme, then
the construction UPCS = (Setup, KeyGen, Enc, Dec), defined in Figures 14 and 15, is existentially
unforgeable.

Proof. Using the composition theorem, we can effectively work in a world where parties use FC to
evaluate a circuit C and rely on the correctness of the computation to ensure the computed values
are as specified. The proof of this theorem proceeds very similar to the proof of the non-interactive
scheme. We define the same events as in the proof of Theorem 4.3. We recap them here:

• Event KeyForgeA: The adversary A terminates with output (tok, pkS , pkR, m, σ) where the
public key pkS (resp. pkR) does not belong to any initialized party PS (resp. PR) (by means
of an invocation (KeyGen, PS , xS), (resp. (KeyGen, PR, xR))).

• Event KeyCollA: The adversary terminates and it holds that there are two parties Pi and Pj

where i ̸= j such that for the corresponding public keys pki = (vki, ·, ·, ·) and pkj = (vkj , ·, ·, ·)
it holds that vki = vkj .

Denote the winning condition of the experiment by an event WINA and split it into three parts:

• Event WIN1A: The adversary generates the output (tok∗, pk, pk∗, m∗, σ∗) for which it holds that
Verify(mpk, tok∗, pk, pk∗, m∗, σ∗) = 1 and where the public key pk is associated with some ini-
tialized party PS that is not corrupted and was never invoked on input (Sign, PS , tok, pkR, m).

• Event WIN2A: The adversary A generates the output (tok∗, pk, pk∗, m∗, σ∗) for which it holds
that Verify(mpk, tok∗, pk, pk∗, m∗, σ∗) = 1 and where the update token tok∗ is not associated
with a policy F ∗ that has never been an input to the authority (Update, F ∗). We also denote
this event as PolicyForgeA.

• Event WIN3A: The adversary A generates the output (tok∗, pk, pk∗, m∗, σ∗) for which it
holds that Verify(mpk, tok∗, pk, pk∗, m∗, σ∗) = 1 and where there is a policy F ′ such that a
query (Update, F ′) has been asked, and there are attributes xS and xR associated to some
initialized parties PS and PR with public keys pkS and pkR, respectively (as the result of
inputs (KeyGen, PS , xS) and (KeyGen, PR, xR) to A), such that F ′(xS , xR) = 0.

The bounds for events KeyForgeA and KeyCollA follows as in the non-interactive scheme, i.e.
by Lemmata 4.4 and 4.5:

Pr[KeyForgeA] ≤ AdvEUF-CMA
DSpub,B1 (λ) and Pr[KeyCollA] ≤ q · AdvEUF-CMA

DSP,B′
2

(λ)
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for adversaries B1 and B′
2 which are constructed based on A and have roughly the same efficiency

as A and where q are the number of key generation queries KeyGen.
Also the bounds of the events WIN1A, WIN2A and WIN3A have the same bounds as in the

non-interactive case.

Pr[WIN1A] ≤ q · AdvEUF-CMA
DSP,B′′

2
(λ),

Pr[WIN2A/ PolicyForgeA] ≤ AdvEUF-CMA
DStok,B′

1
(λ) and

Pr[WIN3A ∩KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]
≤ AdvEUF-CMA

DSpriv,B3 (λ) + AdvExt
NIZK1,B4(λ) + AdvCRS

NIZK1,B′

+ AdvBIND
Com,B5(λ) + AdvExt

NIZK2,B6(λ) + AdvCRS
NIZK2,B′′ ,

where the adversaries B′
1,B′′

2 , B3, B4,B5,B6, and distinguishers B′ and B′′ are constructed based on
A and have roughly the same efficiency as A.

The proof of the bounds for the events WIN1A and WIN2A proceeds in almost exactly the
same way as described in the proofs of Lemmata 4.6 and 4.7. The proof of the bound for WIN3A
differs slightly from the proof in the non-interactive case, therefore, we recap the adjusted proof
in Lemma 5.8.

By definition of the events, we have

Pr[WINA] ≤Pr[KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]
+ Pr[WINA ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]
≤Pr[KeyCollA] + Pr[KeyForgeA] + Pr[PolicyForgeA]

+ Pr[WIN1A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]
+ Pr[WIN2A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]︸ ︷︷ ︸

=0, since WIN2A=PolicyForgeA

+ Pr[WIN3A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA].

Finally, adversaries B′
2 and B′′

2 can be combined into a single adversary B2 which picks B ∈ {B′
2,B′′

2}
at random and running it against EUF-CMADSP . Therefore, the theorem follows.

Lemma 5.8. Consider the unforgeability experiment and let WIN3A be defined as above. We can
construct adversaries B1 and B2 and a distinguisher B′ such that

Pr[WIN3A ∩KeyCollA ∪ KeyForgeA ∪ PolicyForgeA] ≤ AdvCRS
NIZK,B′(λ)+AdvEUF-CMA

DSpriv,B1 (λ)+AdvExt
NIZK,B2(λ).

Proof. To prove this theorem, we split the event WIN3A into two different events WIN3.1A and
WIN3.2A which are defined as follows:

WIN3.1A: The adversaryA generates the output (tok∗ := (F ∗, skF ∗ , σ∗
tok), pk, pk∗, m∗, σ∗ := (comS,R,

π := (π′, π′′), σ′)) for which it holds that Verify(mpk, tok∗, pk, pk∗, m∗, σ∗) = 1 and where there
is a policy F ′ such that a query (Update, F ′) has been asked, and there are attributes
xS and xR associated to some initialized parties PS and PR with public keys pkS and pkR,
respectively (as the result of inputs (KeyGen, PS , xS) and (KeyGen, PR, xR) to A), such
that F ′(xS , xR) = 0 where it holds that R2

ZK((CRScom, skF ∗ , comS,R), (ctS,R, rcom)) = 1 with
ctS,R, comS,R and rcom being output by the two-party computation protocol between S and R.
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WIN3.2A: The adversary A generates the output (tok∗ := (F ∗, skF ∗ , σ∗
tok), pk := (vk∗

P,S , P ∗
S , σ∗

pub,S),
pk∗ := (vk∗

P,R, P ∗
R, σ∗

pub,R), m∗, σ∗ := (comS,R, π := (π′, π′′), σ′)) for which it holds that
Verify(mpk, tok∗, pk, pk∗, m∗, σ∗) = 1 and where there is a policy F ′ such that a query
(Update, F ′) has been asked, and there are attributes xS and xR associated to some initial-
ized parties PS and PR with public keys pkS and pkR, respectively (as the result of inputs
(KeyGen, PS , xS) and (KeyGen, PR, xR) to A), such that F ′(xS , xR) = 0 where it holds that
R1

ZK((CRScom, vkpriv, vkS
P, vkR

P , comS,R), (xS , xR, σS
priv, σR

priv, ctS,R, rEnc, comS,R, rcom)) = 1 with
(xS , σS

priv) and (xR, σR
priv) being parts of the secret keys corresponding to pk and pk∗ respectively

and where ctS,R, comS,R and rEnc, rcom are generated by the two-party computation protocol
and vkpriv is part of the master public key.

From the definition of the events WIN3.1A and WIN3.2A, it follows that WIN3A = WIN3.1A ∪
WIN3.2A which, in turn, implies that Pr[WIN3A ∩KeyCollA ∪ KeyForgeA ∪ PolicyForgeA] = Pr[WIN3.1A ∩
KeyCollA ∪ KeyForgeA ∪ PolicyForgeA] + Pr[WIN3.2A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]. For
the first event WIN3.1A, it holds that Pr[WIN3.1A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA] ≤
AdvEUF-CMA

DSpriv,B3 (λ) + AdvExt
NIZK1,B4(λ) + AdvCRS

NIZK1,B′ . The proof for this bound follows using the ar-
guments of Lemmata 4.8 and 5.8. Therefore, we refer to these Lemmas for the proof and focus in
the remainder of this proof on bounding the event WIN3.2A.

Lemma 5.9. Consider the unforgeability experiment and let WIN3.2A be defined as above. We can
construct adversaries B1 and B2 and a distinguisher B′ such that

Pr[WIN3.2A ∩KeyCollA ∪ KeyForgeA ∪ PolicyForgeA] ≤ AdvCRS
NIZK,B′(λ)+AdvBIND

Com,B1(λ)+AdvExt
NIZK,B2(λ).

Proof. On a high-level, the adversary needs to prove a wrong claim which can either be done by
attacking the NIZK directly, or if the NIZK is extractable, then the attacker must attack the binding
of the underlying commitment scheme in order to possess a valid witness.

We first make a first transition to a hybrid world EUF-CMAUPCS
Hyb , which is identical to

EUF-CMAUPCS except that we replace NIZK1.Setup(1λ) NIZK2.Setup(1λ) by the CRS simulation
algorithm E1 associated to the NIZK schemes. All above defined events are still defined in this
hybrid experiment. Clearly, we can construct a distinguisher B′ such that

Pr[WIN3.2A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA]

≤ PrHyb
[

WIN3.2A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA

]
+ AdvCRS

NIZK1,B′ + AdvCRS
NIZK2,B′′ ,

where PrHyb[.] makes explicit that this probability is taken w.r.t. experiment EUF-CMAUPCS
Hyb . This

reduction is standard: in order to distinguish the two distributions, on input a sample CRS, the
distinguisher B′, and B′ respectively, emulates the experiment towards A. When A terminates,
B′ (or B′′) outputs 1 if event WIN3.2A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA occurs (which is
computable by B′/B′′ that manages all key-sets).

We build an adversary B1 that simulates EUF-CMAUPCS
Hyb towards A when interacting with

the underlying BINDCom experiment. We show that if A outputs (tok∗, pk, pk∗, m∗, σ∗) as event
WIN3.2A defines it can be used as a binding attack in the BINDCom experiment unless a certain
failure event Failext occurs in the reduction, which we then relate to the extraction advantage.

In the first step, the adversary B1 receives CRScom from the underlying challenger and the
policy Finit from the adversary A. In the next step, B1 generates CRSNIZK,1 ← NIZK.E1(1λ),
CRSNIZK,2 ← NIZK2.E1(1λ), (vkpub, skpub)← DSpub(1λ), (vkpriv, skpriv)← DSpriv(1λ), (vktok, sktok)←
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DStok.Setup(1λ), (mpkPE, mskPE)← PE.Setup(1λ) and sets mpk := (CRSNIZK := {CRSNIZK,1, CRSNIZK,2},
CRScom, vkpub, vkpriv, vktok). Furthermore, B generates skFinit ← PE.KeyGen(mskPE, skFinit) and signs
it σtok ← DStok(sktok, (Finit, skFinit)). Afterwards, it sets tokinit := (Finit, skFinit , σtok) and sends mpk
and tokinit to the adversary A. The adversary B also initializes the counter e = 2.

If the adversary A asks a policy update query (Update, F ′), the adversary B generates skF ′ ←
PE.KeyGen(mskPE, F ′), signs it σ′

tok ← DStok(sktok, (F ′, skF ′)) and outputs tok′ := (F ′, skF ′ , σ′
tok) to

A. Afterwards, it increases e, i.e. e := e + 1.
For a key generation query (KeyGen, Pi, x) to the key generation oracle QKeyGen, B1 samples a

signature key pair (vkP, skP)← DS.Setup(1λ) and generates the signatures σpub ← DSpub.Sign(skpub,
(vkP, Pi)) and submits as well as σpriv ← DSpriv.Sign(skpriv, (vkP, x)). Then, B1 sets pk := (vkP, Pi, σpub)
and sk := (vkP, skP, x, σpriv) and sends pk to A. If at any point in time, the conditions of event
KeyCollA are fulfilled, B1 aborts.

Whenever A asks a corruption query (Corrupt, Pj), the adversary B1 searches for the key sk
that is associated with Pj . If no such entry exists, the adversary B1 outputs ⊥ to A, otherwise it
sends sk to A.

If the adversary A asks a signing query (Sign, tok, Pj , pkR := (vkR, PR, σR
pub), m), then the

adversary B1 checks that a key has been generated for Pj and that pkR has been the reply to a
previous key generation query KeyGen. If this is not the case, the adversary B1 aborts. Otherwise,
it continues with the execution of Sign, using the key sk of party Pj and terminates once Sign
terminates.

When A terminates with (tok∗ := (F ∗, skF ∗ , σ∗
tok), pk∗

S := (vk∗
P,S , P ∗

S , σ∗
pub,S), pk∗

R := (vk∗
P,R, P ∗

R,
σ∗

pub,R), m∗, σ∗ := (π∗ := (π′, π′′), σ′)) B1 first checks whether the conditions of event KeyForgeA hold,
in which case it aborts. It also verifies that the conditions of event WIN3.2A hold and in case this is
true, it first calls (x∗

S , x∗
R, σ∗

priv,S , σ∗
priv,R, ctS,R, rEnc, rcom)← E2(CRSNIZK,1, (CRScom, vkpriv, vk∗

P,S , vk∗
P,R,

comS,R), π′) and (ct′
S,R, r′

com) ← E2(CRSNIZK,2, (CRScom, skF ∗ , comS,R), π′′) and checks whether
(x := (CRScom, vkpriv, vk∗

P,S , vk∗
P,R, comS,R), w := (x∗

S , x∗
R, σ∗

priv,S , σ∗
priv,R, ctS,R, rEnc, rcom)) ∈ R1

ZK and
(x := (CRScom, skF ∗ , comS,R), w := (ct′

S,R, r′
com)) ∈ R2

ZK (which is efficiently checkable) and if
this is the case, it submits (comS,R, ctS,R, rcom, ct′

S,R, r′
com), as a forgery to the underlying binding

experiment BINDCom. If (x, w) ̸∈ R1
ZK or (x′, w′) ̸∈ R2

ZK then abort with failure event Failext.
We observe that the emulation towards adversary A is perfect until the point in the execution

where B1 would abort. The only difference is the generation of the verification key vkpriv and
the corresponding signatures, which, in this setting, are all honestly generated by the underlying
challenger. Therefore, all defined events for experiment EUF-CMAUPCS

Hyb are likewise defined in this
emulation and with respectively the same probabilities.

We now analyze the final forgery output of a run of B1 (which therefore does not abort). In
this case, we observe that all signature verification keys are unique and that all keys can be
uniquely associated to some attributes as all keys including the output pk∗

S and pk∗
R of A have

been previously been an answer to a query KeyGen. Therefore, there are parties Pj and Pk

such that pk∗
S is the key of Pj and pk∗

R is the key of Pk and where the keys contain vki and are
associated with xi for i ∈ {j, k}. Let us fix these two indices. Furthermore, we can assume that
NIZK.Verify(CRS, (tok∗, vkpriv, vkj , vkk), π∗) = 1 as otherwise, WIN3.2A does not hold. Additionally,
we know that F ∗(xj , xk) = 0 and that the two-party computation has been executed correctly,
assuming the extractability of NIZK1 which we argue below, it follows that ctS,R ̸= ct′

S,R and
rcom ̸= r′

com. Therefore, it holds that (ctS,R, rcom) and (ct′
S,R, r′

com) is a valid opening for the
commitment comS,R which results in a valid binding attack. We obtain that the probability that B1
terminates with a valid forgery is therefore

AdvBIND
Com,B1 = Pr

Hyb
[WIN3.2A ∩ Failext ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA].
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We obtain

PrHyb
[

WIN3.2A ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA

]
= AdvBIND

Com,B1 + AdvExt
NIZK1,B2+

PrHyb
[

WIN3.2A ∩ Failext ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA

]
︸ ︷︷ ︸

≤AdvExt
NIZK2,B3

.

It is straightforward to obtain an adversary B3 (based on A) which has an advantage AdvExt
NIZK,B3 =

PrHyb
[

WIN3.2A ∩ Failext ∩ KeyCollA ∪ KeyForgeA ∪ PolicyForgeA

]
. The case for a soundness attack

w.r.t. NIZK1 is analyzed accordingly for event WIN3.1A therefore the advantage of AdvExt
NIZK,B2 in the

bound follows. In fact, the adversary B3 receives as input the CRS and executes the same instructions
as B1, with the exceptions that it can simply generate signatures for the scheme DSpriv by itself. In
addition, when A terminates with output (tok∗ := (F ∗, skF ∗ , σ∗

tok), pk∗
S := (vk∗

P,S , P ∗
S , σ∗

pub,S), pk∗
R :=

(vk∗
P,R, P ∗

R, σ∗
pub,R), m∗, σ∗ := (π∗ := (π′, π′′), σ′)), B3 behaves as B1 but does not execute the final

steps running the extractor, but instead just outputs (x := (CRScom, skF ∗ , comS,R), π′′) in case
the conditions of WIN3.2 are satisfied (note that the extractor is run as part of the experiment
in Definition 2.6). As above, the emulation toward A is perfect until the point B3 would abort.
Therefore, the advantage is as claimed, because the event of interest is that the extractor E2 is called
precisely on the accepting proof string π∗ output by A (which is accepting for statement x as defined
above because of event WIN3.2) but the extraction produces a witness w such that (x′, w′) ̸∈ R2

ZK.
The statement follows.

Attribute-Hiding

Next, we show that our scheme achieves attribute-hiding.

Theorem 5.10. Let Π be an adaptively UC-secure two-party computation protocol for the circuit
specified in Figure 16, com = (Setup, Com) an equivocal commitment scheme, PE = (PE.Setup,
PE.KeyGen, PE.Enc, PE.Dec) be a predicate encryption scheme, NIZK1 = (NIZK1.Setup, NIZK1.Prove,
NIZK1.Verify) and NIZK1 = (NIZK2.Setup, NIZK2.Prove, NIZK2.Verify) NIZK proof systems (for the
relation R1

ZK of Figure 17 and for the relation R2
ZK of Figure 18, respectively) and DSpub =

(DSpub.Setup, DSpub.Sign, DSpub.Verify) and DStok = (DStok.Setup, DStok.Sign, DStok.Verify) unforge-
able signature schemes, then the construction UPCS = (Setup, PolUpd, KeyGen, Enc, Dec), defined
in Figures 14 and 15, is attribute hiding.

Proof. The proof of this theorem proceeds very similar to the proof of the previous interactive
UPCS scheme with the difference that we additionally need to rely on the security of the second
non-interactive zero-knowledge proof, the equivocality of the commitment scheme and the predicate
encryption scheme. We describe the corresponding hybrids in more detail:

Hybrid H0: This hybrid is defined as the attribute-hiding game for the case that b = 0.

Hybrid H1: This hybrid is the same as in the previous proof. We recap it here for easier readability.
In this hybrid, we answer the Sign query asked by the adversary differently. We denote
the modified sign query as Sign′. A Sign′ query is defined as a Sign query with the
difference that it is only answered if the queried receiver key has been previously output as an
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answer to a Test-KeyGen query and the token has been previously output as an answer
to a Update query, i.e., for a query (Sign, toke, pki, m) to Pj the public pki has been the
answer to a query (Test-KeyGen, Pi, (xi,0, xi,1)) and the token toke has been the answer to
a query (Update, Fe). If this is not the case, then the reply ot the Sign′ query is ⊥. The
indistinguishability of H0 and H1 is justified by the same reasoning as we have seen for the
non-interactive scheme (Figure 8). Namely, by relying on the Lemma 4.4 and Lemma 4.7, as
in the proof of Theorem 5.1. For the details of this transition, we refer to the proof of the
previous scheme, i.e. Lemma 5.4.

Hybrid H2: This hybrid is obtained by invoking the security of the 2PC and switch to an ideal
execution with functionality FC . In this hybrid, we change the way the output of every Sign′

query that involves party Pj is computed as in the previous section. The transition from H1
to H2 follows, as stated previously, from the proof of Lemma 5.5.

Hybrid H3: This hybrid is almost the same as in the previous proof. We recap and adapt it here
for easier readability. In this hybrid, we switch from an honestly generated CRSNIZK,1 and
honestly generated proofs in the singing queries to a simulated CRSNIZK,1 and simulated proofs
for the output of the two-party computation protocols. That is, upon a PCS signing query
(Sign′, toke, pki, m) to Pj , we find the attributes that have been used to generate the key pki

for Pi, i.e., we find the query (Test-KeyGen, Pi, (xi,0, xi,1)) that was answered using pki, as
well as the policy Fe that corresponds to the token toke, i.e., the query (Update, Fe) which
has been answered using toke. Further, we also obtain the attributes that are associated with
party Pj , i.e., we search for the corresponding query (Test-KeyGen, Pi, (xi,0, xi,1)). In the
next step, we check that Fe(xj,0, xi,0) = 1. If this is the case, then we simulate the proof
π′ that is generated inside the two-party protocol using the NIZK simulator on input the
trapdoor and (CRScom, vkpriv, vkS

P, vkR
P , comS,R) where vkS

P and vkR
P are part of the public keys

of the sender (Pi or Pj) and receiver (Pj or Pi) and the commitment comS,R that has also
been generated during the execution of the two-party protocol. The simulated proof π′ is
then used as part of the output of the protocol. In any other case (in particular associated
attributes do not satisfy the policy), we output ⊥. As in the previous proof, the transition
from H2 to H3 is justified by the zero-knowledge property of NIZK1. For the details of this
transition, we refer to the previous proof, i.e., Lemma 5.6.

Hybrid H4: In this hybrid, we also simulate the proofs of the second proof system NIZK2. In more
detail, we change from an honestly generated CRSNIZK,2 and honestly generated proofs in the
final signing step to a simulated CRSNIZK,2 and simulated proofs. That is, upon a PCS signing
query (Sign′, toke, pki, m) to Pj , we find the attributes that have been used to generate the
key pki for Pi, i.e., we find the query (Test-KeyGen, Pi, (xi,0, xi,1)) that was answered using
pki, as well as the policy Fe that corresponds to the token toke, i.e., the query (Update, Fe)
which has been answered using toke. Further, we also obtain the attributes that are associated
with party Pj , i.e., we search for the corresponding query (Test-KeyGen, Pi, (xi,0, xi,1)). For
the execution of the two-party computation protocol, we behave as in the previous hybrid, i.e.,
we simulate the proof π that results from the interaction of the two parties. Afterwards, for
the generation of the final proof π′′ by Pj , we check that PE.Dec(skFe , ctS,R) = 1, where ctS,R

has been output by the two-party computation protocol and skFe is part of toke. If this is
the case, then the simulator of NIZK2 is used. In more detail, on input (skFe , comS,R), where
comS,R is also obtained as an output of the two-party computation protocol, the trapdoor
is used to simulate the proof π′′ which is then used to compute the final signature. The
indistinguishability between this and the previous hybrid follows from the zero-knowledge

56



property of NIZK2, which we formally prove in Lemma 5.11.

Hybrid H5: In this hybrid, we rely on the equivocator for the generation of the commitment comS,R,
which is output during the signing procedure. In more detail, the CRS CRSEq is generated
by the algorithm Eq1 instead of the setup procedure Setup and if a query (Sign, toke, pki, m)
is issued for the party Pj , then we generate the commitment comS,R by executing Eq2,
i.e., comS,R ← Eq2(CRSCom), and the corresponding opening rcom by executing Eq3, i.e.,
rcom ← Eq3(comS,R, ctS,R) with ctS,R ← PE.Enc(mpkPE, (xj,0∪̇xi,0)). The indistinguishability
between this and the previous hybrid follows from the equivocality of the commitment scheme,
which we formally prove in Lemma 5.12.

Hybrid H6: In this hybrid, we change the generation of the ciphertext ctS,R inside the two party
computation protocol for a signing query issued for a corrupted Pj acting as the sender.
In more detail, if a query (Sign, toke, pki, m) is issued where the key pki for party Pi has
been generated using a query (Test-KeyGen, Pi, (xi,0, xi,1)), we distinguish between two
cases: first, the sender is honest and gets corrupted later and, second, the sender is already
corrupted. In the second case, we generate the commitment and its opening using Eq2 and
Eq3 as described in the previous hybrid where ctS,R ← PE.Enc(mpkPE, (xj,1∪̇xi,1)) instead of
ctS,R ← PE.Enc(mpkPE, (xj,0∪̇xi,0)). In the second case, we generate the commitment comS,R

that is used as an output of the signing query by executing Eq2(CRS) and, once the sender Pj is
being corrupted, we generate the corresponding opening by executing Eq3(comS,R, ctS,R) with
ctS,R ← PE.Enc(mpkPE, (xj,1∪̇xi,1)). The indistinguishability between this and the previous
hybrid can be argued by relying on the attribute-hiding property of the PE scheme, which we
formally prove in Lemma 5.13.

Hybrid H7: In this hybrid, we answer the Test-KeyGen queries using the attributes x1 instead
of x0. As already mentioned in the end of the previous transition, at this point, the generated
signatures are completely independent of the attributes associated with the key. Furthermore,
a valid adversary can only ask corruption queries for a key where x0 = x1. Taking these two
facts into account directly results in the computational indistinguishability of the hybrids H6
and H7.

Hybrid H7: In this hybrid, we change the generation of the commitment comS,R from equivocal
mode back to being an honest commitment to the ciphertext ctS,R. In more detail, for a
signing query (Sign, toke, pki, m) issued for the party Pj , we generate the commitment comS,R

by executing Com(ctS,R; rcom) with ctS,R ← PE.Enc(mpkPE, (xj,1∪̇xi,1)) where rcom ← {0, 1}λ,
instead of comS,R := Eq2(CRSCom).11 The indistinguishability between this and the previous
hybrid follows analogously to the transition from H4 to H5. Therefore, we refer to the proof
of Lemma 5.12 for further details.

Hybrid H8: In this hybrid, we change back from a simulated CRSNIZK,1 and the simulated proofs
π of the proof system NIZK1 in the two-party computation protocol back to an honestly
generated CRSNIZK,1 and honestly generated proofs π. Since the attributes of the parties have
been changed in hybrid H6 and, therefore, honest statements are proven again, this transition
follows symmetrically to the transition from H3 to H4.

Hybrid H9: In this hybrid, we change back from a simulated CRSNIZK,2 and the final simulated
proofs π of the proof system NIZK2 in the signature back to an honestly generated CRSNIZK,2

11Here, we also need to change the generation of the CRS from equivocal mode CRSEq back to an honest generation
using Setup.
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and honestly generated final signature proofs π. Since the attributes of the parties have
been changed in hybrid H6 and, therefore, honest statements are proven again, this transition
follows symmetrically to the transition from H2 to H3.

Hybrid H10: In this hybrid, we change from a simulated execution of the two-party protocol to an
honest execution of the protocol. Symmetrical to the transition from H1 to H2, this transition
can be argued using the security of the two-party computation protocol Π.

Hybrid H11: This hybrid corresponds to the attribute-hiding game using b = 1 as its input. In this
game, we change the behavior of the signing queries back from Sign′ to Sign. Symmetrical
to the transition from H0 to H1, this transition can be argued using the unforgeability of the
public keys and the update tokens.

From the definition of the hybrids, it is clear that H0 corresponds to the attribute-hiding game
with b = 0 and H11 corresponds to the attribute-hiding game with b = 1. Since it holds that
H0 ≈c · · · ≈c H11, the theorem follows.

Lemma 5.11 (Indistinguishability of H3 to H4). Let NIZK2 be non-interactive zero-knowledge proof,
then the hybrids H3 and H4 are computationally indistinguishable.

Proof. To show that the hybrids H3 and H4 are computationally indistinguishable, we build a
reduction to the zero-knowledge property of the NIZK2 to argue the independence of the final
signatures from the commitment, the ciphertexts and, therefore, the attributes of the parties. Before
we analyze this case, we stress that all the other queries, i.e., policy update queries, corruption
queries and key generation queries, are answered as in the previous hybrid. The only difference here
is that the CRSNIZK,2 is obtained from the underlying NIZK2 challenger and not generated by the
reduction.

For a singing query (Sign′, toke, pki, m) asked to party Pj , we can now rely on FC . In more detail,
in the ideal execution, the inputs of both Pj and Pi in the 2PC must be provided to the functionality
(either by the environment/reduction or the adversary for corrupted parties). Let (pkj , ski :=
(vkR

P,i, ·, xi,0, σi
priv), mpk) denote the input of party Pi and (pki, skj := (vkS

P,i, ·, xj,0, σj
priv), mpk) denote

the input of party Pj . We can now evaluate the circuit as per specification CCRSNIZK,1,mpkPE,vkpriv

using the inputs of the parties Pj and Pi and, if all checks of the circuit succeed, we generate
the ciphertext ctS,R := PE.Enc(mpkPE, (xj,0∪̇xi,0); rEnc) with rEnc ← {0, 1}λ and the corresponding
commitment comS,R := Com(CRScom, ctS,R; rcom), with rcom ← {0, 1}λ. Afterwards, the proof π′ is
simualted using (CRScom, vkpriv, vkS

P,j , vkR
P,i, comS,R). Finally, Pj obtains (comS,R, ctS,R, rcom, π′) as

an output from the protocol. If any of the previous checks failed, we output ⊥ to Pj and the signing
procedure terminates.

In case the signing procedure succeeds and if PE.Dec(skFe , ctS,R) = 1, Pj generates the final
signature by forwarding ((CRScom, skFe , comS,R), (ctS,R, rcom)) to the prove oracle of the underlying
challenger for the NIZK protocol which replies with the proof π′′, otherwise it outputs ⊥. Afterwards,
Pj generates the final signature by computing σ′ ← DSP.Sign(skj

P, (m, pki, comS,R, π := (π′, π′′)))
using the signing key skj

P of party Pj and outputs (m, pki, σ := (comS,R, π, σ′)).
We observe that it follows from the zero-knowledge property that this emulation is perfect, and if

the underlying challenger generates the proofs using the witness, then the hybrid H3 is simulated and
if the underlying challenger simulates the proofs, then the hybrid H4 is simulated. This concludes
the proof of the lemma.

Lemma 5.12 (Indistinguishability of H4 to H5). Let com be an equivocal commitment scheme, then
the hybrids H4 and H5 are computationally indistinguishable.
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Proof. To show that the hybrids H4 and H5 are computationally indistinguishable, we build a
reduction to the equivocality of the commitment scheme com to argue the independence of the final
signatures from the ciphertexts and therefore the attributes of the parties. Before we analyze this
case, we stress that all the other queries, i.e. policy update queries, corruption queries and key
generation queries, are answered as in the previous hybrid with the exception that the CRS CRScom
is obtained from the underlying challenger of the commitment scheme and not generated by the
reduction.

For a singing query (Sign′, toke, pki, m) asked to party Pj , we proceed as in the previous
hybrid until the generation of the commitment comS,R. To generate the commitment comS,R

for a query to FC , where Pj uses as an input (pki, skj := (vkS
P,j , ·, xj,0, σj

priv), mpk) and Pi uses
(pkj , ski := (vkR

P,i, ·, xi,0, σi
priv), mpk) as an input, we generate the commitment comS,R by submitting

ctS,R := PE.Enc(mpkPE, (xj,0∪̇xi,0)) to the underlying challenger, which will reply with (comS,R, rcom).
Afterwards, the proof π′ is simulated and the values (comS,R, ctS,R, rcom, π′) are used as the output
of FC to Pj . To generate the final signature, we first check that the policy evaluation under
both of the possible attributes is equal, i.e., Fe(xj,0, xi) = Fe(xj,0, xi) = 1 where Fe is the policy
associated with the token toke. If this check succeeds, then we simulate the proof π′′, i.e., the
proof for the statement (skFe , comS,R). This proof is then used to generate the final signature, i.e.,
σ′ ← DSP(skj

P, (m, pki, comS,R, π := (π′, π′′))) where skj
P is part of the secret key of Pj . Finally, the

signature (m, pki, σ := (comS,R, π, σ′)) is output.
We conclude the proof by observing that if the underlying challenger honestly commits to ctS,R,

then the hybrid H5 is simulated and if the underlying challenger generates the commitment comS,R

using Eq2, then the hybrid H6 is simulated.

Lemma 5.13 (Indistinguishability of H5 to H6). Let PE be an attribute-hiding predicate encryption
scheme, then the hybrids H5 and H6 are computationally indistinguishable.

Proof. To show that the hybrids H5 and H6 are computationally indistinguishable, we build a
reduction to the attribute-hiding property of the PE scheme. Before we analyze this case, we stress
that all the other queries, i.e., policy update queries and key generation queries, are answered as in
the previous hybrid. The only difference here is that the mpkPE is obtained from the underlying PE
challenger and not generated by the reduction.

For a singing query (Sign′, toke, pki, m) asked to party Pj , we proceed as in the previous hybrid,
until the generation of the predicate encryption ciphertext ctS,R. Here, we distinguish between two
cases, first, the case in which the party Pj is honest and, second, the case in which the party Pj is
corrupted. We proceed in the two different cases as follows:

Pj is honest: For a query to FC , where Pj uses as an input (pki, skj := (vkS
P,j , ·, xj,0, σj

priv), mpk)
and Pi uses (pkj , ski := (vkR

P,i, ·, xi,0, σi
priv), mpk) as an input, we proceed as in the previous

hybrid without generating the ciphertext and obtaining the commitment comS,R by executing
Eq2(CRScom). Afterwards, the proofs π′ and π′′ are simulated using (CRScom, vkpriv, vkS

P,j , vkR
P,i,

comS,R) and (CRScom, skFe , comS,R) respectively and the final signature is generated by com-
puting σ′ ← DSP.Sign(skj

P, (m, pki, comS,R, π := (π′, π′′))) using the signing key skj
P of party

Pj . Afterwards, (m, pki, σ := (comS,R, π, σ′)) is output.

Pj is corrupted: For a query to FC , where Pj uses as an input (pki, skj := (vkS
P,j , ·, xj,0, σj

priv), mpk)
and Pi uses (pkj , ski := (vkR

P,i, ·, xi,0, σi
priv), mpk) as an input, we proceed as in the previous

hybrid until the generation of the ciphertext ctS,R. To obtain the ciphertext, the values
((xj,0 ∪ xi,0), (xj,1 ∪ xi,1)) are submitted to the underlying challenger which replies with ctS,R.
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To generate the commitment comS,R, the two equivocators are executed, i.e., comS,R ←
Eq2(CRScom) and rcom ← Eq3(comS,R, ctS,R). Afterwards, the proofs π′ and π′′ are simulated
using (CRScom, vkpriv, vkS

P,j , vkR
P,i, comS,R) and (CRScom, skFe , comS,R) respectively and the final

signature is generated by computing σ′ ← DSP.Sign(skj
P, (m, pki, comS,R, π := (π′, π′′))) using

the signing key skj
P of party Pj . Afterwards, (m, pki, σ := (comS,R, π, σ′)) is output.

If a corruption query is asked for a party Pj for which signatures have previously been generated
for the parties Pi1 , . . . , Pik

, then let com1
S,R, . . . , comk

S,R be the corresponding commitments. Since
those commitments have been generated using Eq2, no openings r1

com, . . . , rk
com are known yet. To

generate these openings, the values ((xj,0 ∪ xi1,0), (xj,1 ∪ xi1,1)), . . . , ((xj,0 ∪ xik,0), (xj,1 ∪ xik,1)) are
submitted to the underlying challenger to obtain the ciphertexts ct1

S,R, . . . , ctk
S,R. Afterwards the

equivocator Eq3 is executed, i.e., r1
com ← Eq3(com1

S,R, ct1
S,R), . . . , rk

com ← Eq3(comk
S,R, ctk

S,R). These
values are then used together with the proofs π′

1, . . . , π′
k generated during the signing process as an

output to the adversary.
To analyze this simulation, we observe that if the underlying challenger encrypts (xj,0∪̇xi,0)

for the generation of the ciphertext ctS,R, then the hybrid H5 is simulated and if the underlying
challenger uses (xj,1∪̇xi,1) for the generation of the ciphertext ctS,R, then the hybrid H6 is simulated.

To conclude the proof, we need to rely on the perfect correctness of the encryption scheme and
the validity of the adversary against the UPCS scheme to argue that no decryption errors allow an
adversary to distinguish between two hybrids.

If the adversary towards UPCS is valid, then it means that it only requests signatures and
updates, such that it holds that Fe(xj,0, xi,0) = Fe(xj,1, xi,1) and, furthermore, that for all corrupted
parties Pj , it holds that Fe(xj , xi,0) = Fe(xj , xi,1) with xj := xj,0 = xj,1 for all policy updates Fe.
This, in turn, implies that all the ciphertexts, that are generated by the underlying challenger, are
generated using challenges ((xj,0∪̇xi,0), (xj,0∪̇xi,0)) for which it holds that Fe(xj,0, xi,0) = Fe(xj,1, xi,1)
where Fe are all the submitted policies for update queries. Taking into account the perfect
correctness of the predicate encryption scheme, it follows that PE.Dec(skFe , ctS,R) = Fe(xj,0, xi,0)
and PE.Dec(skFe , ct′

S,R) = Fe(xj,1, xi,1) with probability 1. This mirrors the correct policy evaluation
in both cases and, therefore, an adversary is not able to distinguish between the two hybrids.
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