
Guess and Determine Analysis Based on Set
Split ?

Zhe CEN1, Xiutao FENG2??, Zhangyi WANG3, Yamin ZHU4 and Chunping
CAO1

1 Department of Computer Science and Technology, University of Shanghai for
Science and Technology, Shanghai 200093, China

2 Key Laboratory of Mathematics Mechanization, Academy of Mathematics and
Systems Sciences, CAS, Beijing 100089, China

3 School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China
4 School of Science, Xi’an Technological University, Xi’an 710021, China

Abstract. The guess and determine attack is a common method in
cryptanalysis. Its idea is to firstly find some variables which can deduced
all remaining variables in a cipher and then traverse all values of these
variables to find a solution. People usually utilize the exhausted search
to find these variables. However, it is not applicable any more when the
number of variables is a bit large. In this work we propose a guess and de-
termine analysis based on set split to find as few variables as possible in
the first step of guess and determine attack, which is a kind of exhausted
search based on trading space for time and is more effective than the
latter. Firstly we give an idea of set split in detail by introducing some
conceptions such as base set, likely solution region and so on. And then
we discuss how to utilize the set split to achieve a guess and determine
analysis and give its specific implementation scheme. Finally, comparing
it with the other two guess and determine analysis based on the ex-
hausted search and the MILP method, we illustrate the effectiveness of
our method by two ciphers Snow 2.0 and Enocoro-128v2. Our method
spends about 0.000103 seconds finding a best solution of 9 variables for
the former and 0.13 seconds finding a best solution of 18 variables for the
latter in a personal Macbook respectively, which are better than those
of both the exhausted search and the MILP method.

Keywords: guess and determine analysis, exhausted search, set split, Snow 2.0,
Enocoro-128v2

1 Introduction

In recent years the guess and determine method as a common method has been
wildly used in various fields such as logical reasoning, graph theory, equation

? This work was supported by National Natural Science Foundation (61972297) and
National Key Research and Development Project(Grant 2018YFA0704705).

?? Corresponding author: fengxt@amss.ac.cn

solving, cryptanalysis and so on. For a given deduction system of some variables
and relations among them, it includes two phases: firstly find some key variables
which can deduce all other variables by these relations; and then go through all
values of these variables to find a solution. In this course people are more con-
cerned about the minimum number of these variables, which is directly related
to the complexity of searching a solution in the second phase. In cryptography
we usually use it to find a trail of a guess and determine attack, and call it a
guess and determine analysis.

The idea of guess and determine attacks first appeared in 1985 when Siegen-
thaler proposed a divide and conquer attack recovering the unknown initial state
from a known key stream sequence [1]. In 1997, Golic applied the guess and
determine attack to the alleged A5/1 and broke it theoretically [2]. In 2000,
Philip and Gregory described a dummy SOBER-like cipher which was used to
demonstrate how the guess and determine attack was performed and improved
by exploiting multiples in some cases [3]. In 2003, they utilized the guess and
determine attack to break the stream cipher SNOW [4]. In 2005 and 2009, Hadi
et. al and Ding et. al introduced a guess and determine attack on the stream
cipher SOSEMANUK respectively [5, 6]. The former’s time complexity is 2226

and the latter’s time complexity is 2192. In 2010, Feng et. al presented a new
byte-based guess and determine attack on SOSEMANUK, where they viewed a
byte as a basic data unit and guessed some certain bytes of the internal states
instead of the original 32-bit words, and dramatically reduced the time com-
plexity to 2176 [7]. Furthermore, combining the idea of the guess and determine
method and the time-memory tradeoff method, they further presented realtime
key or state recovering attacks against a series of ciphers including A2U2 [8],
FASER128/FASER256 [9], Sablier [10] and PANDA-s [11]. In 2006, Zhang and
Feng proposed a new type of guess and determine attack on the self-shrinking
generator [12]. Enes proposed a guess and determine method for filter genera-
tor [13] and Wei et.al further improved his method in 2012 [14]. In 2011, Charles
et al. proposed a guess and determine attack on the round-reduced AES by local
pruning and global pruning [15]. Their method is suitable for an equation system
derived from a round-reduced block cipher with less variables. In 2013, Maria
et. al proposed a method to store and propagate linear relations of variables
efficiently in the guess and determine attack for Hash functions [16]. In 2014,
Mohammad and Taranehan proposed an improved heuristic guess and deter-
mine attack of 5 guessed variables for SNOW 3G [17]. We find that M4 and M5
derived from M1 (see Section C in [17]) are always linearly dependent on M1,
which can not reduce the number of guessed variables. Therefore their result is
incorrect. In 2015, Mehmet et. al proposed a new guess and determine attack on
14-round Khudra where only 2 known plaintext-ciphertext pairs were required
to mount the attack in a time complexity of 264 encryption operations [18]. In
2017, Oleg and Stepan adopted the idea of the guess and determine method
to simplify the system of equations and solved it by the SAT optimizer [19].
Recently we proposed a method of solving a minimizing problem of deduction
systems based on mixed integer linear programming (in short, MILP) [20] and

applied it to the guess and determine attack for two ciphers Snow 2.0 [21] and
Enocoro-128v2 [22].

The original guess and determine analysis is useful when the number of vari-
ables is small. However, it can not find a best solution quickly while the number
of variables is a bit large. In this work we propose a guess and determine anal-
ysis based on set split, which is a kind of exhausted search based on trading
space for time and is more effective than the latter. Firstly we give an idea of set
split in detail by introducing some conceptions such as base set, likely solution
region and so on. And then we discuss how to utilize the set split to achieve a
guess and determine analysis and give its specific implementation scheme. Fi-
nally, comparing it with the other two guess and determine analyses based on
the exhausted search and the MILP method, we illustrate the effectiveness of
our method by two ciphers Snow 2.0 and Enocoro-128v2. Our method spends
about 0.000103 seconds finding a best solution of 9 variables for the former and
0.13 seconds finding a best solution of 18 variables for the latter in a personal
Macbook respectively, which are better than those of both the exhausted search
and the MILP method.

The rest of this paper is organized as follows: in Section 2, we propose a
theoretical guess and determine analysis based on set split; in Section 3, we give
its specific implementation scheme; in Section 4, we apply it into two ciphers
Snow 2.0 and Enocoro-128v2 and compare it with the other two methods.

2 Guess and determine attack based on set split

2.1 Guess and determine attack

In a guess and determine attack for a cipher, people usually extract some vari-
ables and rules from the cipher itself, where the rules characterize the relations
among the variables. Let n and m be the number of the variables and the rules
respectively. We represent them in a 2 tuple (V,R), where V = {v1, v2, · · · , vn}
is a set of the variables and R = {r1, r2, · · · , rm} is a set of the rules. The course
of the guess and determine attack usually includes two steps: 1) find k variables
which can deduce all other variables according to R; 2) recover a solution by
traversing all values of these k variables. Most of the time, people care more
about the minimum of k since it is directly related to the complexity of search-
ing all possible candidates in the second step. At present, people usually utilize
the exhausted search to find these k variables and its complexity is about

(
n
k

)
.

It is apparent that the exhausted search is not applicable any more when n is a
bit large. In order to surmount this problem, we adopt the idea of exchanging
space for time to split a huge search space into some small search spaces and
remove some infeasible search spaces gradually. We call this course a set split.
In the next section we will introduce how to use the idea of set split to achieve
an efficient guess and determine attack.

2.2 Some conceptions on set split

For any nonempty subset B of V, we call it a base set of V. Below we introduce
some key conceptions on set split.

Definition 1. Let
B = {B1, B2, · · · , Bτ},

where τ is a positive integer and Bi is a base set of V, 1 ≤ i ≤ τ . Then B is
called a base set representative of V if Bi ∩Bj = ∅ for 1 ≤ i 6= j ≤ τ .

Let k be the number of guessed variables in a guess and determine attack. We
fix k and call any a group of k variables in V to be a likely solution. Further it
is a solution if it can deduce all other variables.

Definition 2. Let B = {B1, B2, · · · , Bτ} be a base set representative of V, where
τ is a positive integer. Then B is called a likely solution region if it meets the
following two conditions:

1. τ ≤ k;
2.
∑τ
i=1 |Bi| ≥ k,

where |Bi| means the size of Bi.

For an arbitrary base set representative B = {B1, B2, · · · , Bτ}, we make con-
vention that a likely solution X selected from B must satisfy that X ∩ Bi 6= ∅
for all 1 ≤ i ≤ τ . It is obvious that we can always select some variables from
each base set in B to make up a likely solution X if B is a likely solution region.
Since we have to select at least one variable from each base set in B, the number
of selected variables is always not less than τ . When B is not a likely solution
region, it is easy to check that any a group of selected variables is not a solution
if τ > k. On the other hand, if

∑τ
i=1 |Bi| < k, the number of selected variables

is always less than k. Therefore we have the following conclusion:

Theorem 1. If a base set representative B is not a likely solution region, then
B does not contain any solutions.

Let M be a nonempty subset of V. We call M an infeasible solution set if
any a group of k variables of M is not a solution. It is easy to get the following
conclusion:

Theorem 2. Let M be an infeasible solution set. Then an arbitrary subset of
M is also an infeasible solution set.

2.3 Splitting a likely solution region

For a given base set B and infeasible solution set M , there are three relationships
among them as shown in Fig.1.

– As shown in Fig.1.(1), B ⊆M . We denote it by R1.
– As shown in Fig.1.(2), B ∩M = ∅. We denote it by R2.

Fig. 1. Three relationships among B and M

– As shown in Fig.1.(3), B ∩M 6= ∅ and B −M 6= ∅. We denote it by R3.

Below we introduce how to use an infeasible solution set M to split a likely
solution region B = {B1, B2, · · · , Bτ} into some smaller likely solution regions.
We discuss it in three cases:

Case 1. For all base sets in B, all of them meet R3, as shown in Fig.2. In this
case each base set Bi is split into two base sets Bi,1 and Bi,2, where
Bi,1 = Bi ∩ M and Bi,2 = Bi − M . For each 1 ≤ i ≤ τ , we have
3 ways to select base sets from Bi,1 and Bi,2, that is, Bi,1 or Bi,2 or
both Bi,1 and Bi,2. Therefore we get totally 3τ regions. Since the union
of all base sets in the region {B1,1, B2,1, · · · , Bτ,1} is a subset of M ,
there is no solution in this region by Theorem 2. We discard it. For the
remaining (3τ −1) regions, we further discard all regions which are not
likely solution regions by Definition 2.

Fig. 2. The first split of the likely solution region B

Case 2. For all base sets in B, some of them meet R1 and the rest meet R2.
Without loss of generality, we assume that λ base sets meet R1, denoted
by {B1, B2, · · · , Bλ}, where 1 ≤ λ ≤ τ , as shown in Fig.3. In this case,
B is not split since no base set is split. What is more, if λ = τ , B is not
a likely solution region any more since the union of all base sets in B
is a subset of M .

Fig. 3. The second split of the likely solution region B

Case 3. For all base sets in B, some of them meet R1, some meet R3, and the
rest meet R2. Without loss of generality, we assume that λ base sets
meet R1 and (γ − λ) base sets meet R3, denoted by {B1, B2, · · · , Bλ}
and {Bλ+1, Bλ+2, · · · , Bγ} respectively, where 1 ≤ λ < γ ≤ τ , as
shown in Fig.4. In this case each base set Bi is split into two base sets
Bi,1 and Bi,2 for all λ < j ≤ γ, where Bi,1 = Bi∩M and Bi,2 = Bi−M .
For each λ < i ≤ γ, we have 3 ways to select base sets from Bi,1 and
Bi,2, that is, Bi,1 or Bi,2 or both Bi,1 and Bi,2. For 1 ≤ i ≤ λ or
γ < i ≤ κ, we only have 1 way to select a base set, that is itself.
Therefore we get totally 3γ−λ regions. If γ = τ , since the union of
all base sets in the region {B1, B2, · · · , Bλ, Bλ+1,1, Bλ+2,1, · · · , Bτ,1}
is a subset of M , there is no solution in this region by Theorem 2. We
discard it. For the remaining (3γ−λ− 1) regions, we further discard all
regions which are not likely solution regions by Definition 2. If γ 6= τ ,
we discard directly all regions which are not likely solution regions from
all 3γ−λ regions by Definition 2.

Fig. 4. The third split of the likely solution region B

According to the above discussion of three cases, the split of a likely solution
region is shown in Algorithm 1.

Algorithm 1 The split of a likely solution region

Input: A likely solution region B = {B1, B2, · · · , Bτ}, an infeasible solution set
M

Output: Several smaller likely solution regions or B or no likely solution region
1: Judge the relationship between M and Bi, 1 ≤ i ≤ τ , and denote by n1, n2

and n3 the number of R1, R2 and R3 respectively;
2: if n3 = τ then
3: According to Case 1, get (3τ − 1) regions;
4: else
5: if n3 = 0 then
6: if n2 = 0 then
7: Return no likely solution region;
8: else
9: Return B;

10: end if
11: else
12: if n2 = 0 then
13: According to Case 3, get (3n3 − 1) regions;
14: else
15: According to Case 3, get 3n3 regions ;
16: end if
17: end if
18: end if
19: Return several smaller likely solution regions by Definition 2;

2.4 Maximizing deduction

In the guess and determine attack based on set split, it is a key to find an
infeasible solution set whose size is as large as possible. Here we introduce two
conceptions of maximizing deduction and maximal infeasible solution set.

Definition 3. For an infeasible solution set M of V, it is called a maximal
infeasible solution set if any variable in V −M is added into M , M can deduced
all other variables of V. The course of getting a maximal infeasible solution set
by an infeasible solution set is called a maximizing deduction.

Below we give a method of maximizing deduction. Let M be an empty set.
Firstly select k variables randomly from a likely solution region B and add them
into M . And then add all possible variables deduced by M into M . If M = V,
it is ok and we find a solution luckily. If not, select a variable v from V −M

and go on deducing by v and M . If all other variables in V −M are deduced,
we will try another variable in V −M and go on deducing; otherwise, add v and
variables deduced by v and M into M . Repeat the above step until all variables
in V −M will be deduced no matter which variable in V −M is selected. At
this time M is a maximal infeasible solution set. The maximizing deduction is
shown in Algorithm 2.

Algorithm 2 Maximizing deduction.

Input: The 2 tuple (V,R), V = {v1, v2, · · · , vn}, R = {r1, r2, · · · , rm}, a likely
solution region B, the number k of guessed variables

Output: A maximal infeasible solution set M or a solution
1: Set M = ∅;
2: Select k variables from B and add them into M ;
3: Deduce all possible variables by M and R and add them into M ;
4: If M = V, return a solution made of these k variables;
5: Let N = V −M ;
6: for all v in N do:
7: Let M ′ = M ∪ {v};
8: Deduce all possible variables by M ′ and R and add them into M ′;
9: If M ′ 6= V, let M = M ′ and go to Step 5;

10: end for
11: Return M ;

2.5 Apply the set split to guess and determine analysis

For a guess and determine analysis, the set V of all variables itself is a likely
solution region. According to the maximizing deduction, we can get a maximal
infeasible solution set. As shown in Fig.5, we firstly select a likely solution region
randomly and select a group of k variables from it as a likely solution, and then
utilize it to deduce, maximize deduction and split likely solution regions in turn.
Repeat the above step until a solution is found or no likely solution region is
left. The specific course of the guess and determine analysis based on set split is
shown in Algorithm 3.

3 An Implementation

In the previous section we provide a framework of the guess and determine attack
based on set split. In this section we give its concrete implementation based on
multi-thread parallel technology.

Fig. 5. A framework of the guess and determine analysis based on set split

Algorithm 3 The guess and determine analysis based on set split.

Input: The 2-tuple (V,R), V = (v1, v2, · · · , vn), R = (r1, r2, · · · , rm), the num-
ber k of guessed variables

Output: A solution or no solution
1: Let the repository L = {V};
2: If L = ∅, return no solution;
3: Select a likely solution region B from L and select k variables from B;
4: Utilize these k variables and R to deduce other variables;
5: If all variables can be deduced, return a solution made of these k variables;
6: Utilize these k variables to conduct the maximizing deduction, and get a

maximal infeasible solution set M ;
7: Utilize M to split all likely solution regions in L, and go to Step 2;

3.1 Overall framework

As shown in Fig.6, we utilize two kinds of threads to achieve a guess and de-
termine attack based on set split. The task of the dispatch thread is to split
large likely solution regions into some small likely solution regions or send some
small likely solution regions to the task pool T . Each search thread takes a likely
solution region from T and searches all likely solutions in it.

3.2 Task pool T

We use a circular queue of size s to store all likely solution regions in the task
pool T so that we can synchronize the dispatch thread and the search threads
conveniently, where s is a positive integer. As shown in Fig. 7, the dispatch
thread always sends a likely solution region to the tail of the queue and the
search thread always takes a likely solution region from the head of the queue.
If T is full, the dispatch thread will wait. If T is empty, the search thread will
wait.

Fig. 6. Overall framework

Fig. 7. The structure of the task pool T

3.3 Dispatch thread

3.3.1 Work mode of dispatch thread

The main work of the dispatch thread is to split large likely solution regions in
the main repositoryM and send small likely solution regions into T . For a given
likely solution region B = {B1, B2, · · · , Bτ}, we define its weight as

wt(B) =

τ∑
i=1

|Bi|.

Let H be a threshold. We call B to be dispatchable if wt(B) < H. When B is
dispatchable, the dispatch thread sends it into T . As shown in Fig. 8, we use
Algorithm 4 to depict the work mode of the dispatch thread.

3.3.2 Update of main repository M

The main repository M adopts a layer structure to store all likely solution
regions. As shown in Fig.9, M totally includes d layers of storage units and
each layer store at least L likely solution regions. We call L a minimum storage
length. Since most likely solution regions in a layer have some common base

Fig. 8. The work mode of the dispatch thread

Algorithm 4 The work mode of the dispatch thread.

Input: The 2-tuple (V,R), V = (v1, v2, · · · , vn), R = (r1, r2, · · · , rm), the num-
ber k of guessed variables, the threshold H

Output: A solution or a flag of no region
1: Let M = {V};
2: IfM 6= ∅, select a likely solution region B fromM; otherwise, wait or return

a flag of no region;
3: If wt(B) < H, add B into T and remove B from M, and then go to Step 2;
4: Select k variables from B and deduce other variables by R;
5: If all variables are deduced, return a solution made of these k variables;
6: Conduct a maximizing deduction by these k variables and get a maximal

infeasible solution set M ;
7: Invoking Algorithm 1 to update M by M and go to Step 2;

sets, in order to avoid splitting these base sets repeatedly, we use a base set
representative to store all base sets appearing in this layer and a set of their
positions to represent a likely solution region.

Below we introduce an interaction between the dispatch thread andM. The
dispatch thread always selects the last likely solution region in the last layer,
denoted by B·,j . If it is dispatchable, we send it into T and remove it from the
current layer. If all likely solution regions are removed at the current layer, go
back to the previous layer. If B·,j is not dispatchable and j > L, we put it into
the next layer and regard it as a base set representative of this layer. Then we
select k variables randomly from B·,j as a likely solution X. If all variables are
deduced by X, it is ok and we find a solution luckily; Otherwise, we conduct a
maximizing deduction and get a maximal infeasible solution set M . And then

Fig. 9. The structure of the main repository M

we utilize M to split all likely solution regions in the last layer and update its
base set representative.

Here we consider how many likely solution regions a layer contains at most.
Since at most L likely solution regions are split in a layer and each likely solution
region can be split into at most 3k regions, each layer contains at most 3kL likely
solution regions. When k is a bit large, both the storage space and computational
complexity are too large. In order to overcome the above problem, we set an
upper bound for the number of split base sets, denoted by K. When the number
of split base sets is more than K, the other base sets will not be split. Below we
illustrate the update of a base set representative.

For a given base set representative B = {B1, B2, · · · , Bτ} , we assume that
total w base sets in B are split into two base sets, 0 ≤ w ≤ K. Without loss
of generality, we assume that these w base sets are B1, B2, · · · , Bw and the
remaining base sets are Bw+1, Bw+2, · · · , Bτ . For all 1 ≤ i ≤ w, each Bi can be
split into two base sets Bi,1 and Bi,2, where Bi,1 = Bi ∩M and Bi,2 = Bi −M .
We get a new base set representative:

B′ = {B1,1, B1,2, B2,1, B2,2, · · · , Bw,1, Bw,2, Bw+1, Bw+2, · · · , Bτ}.

3.3.3 Random work mode of dispatch thread

In the above section the dispatch thread goes through every likely solution region
in M in turn. When the number of all likely solution regions is too large, the
complexity of going through the whole likely solution regions is still high. What
is more, since all likely solution regions in a layer are from a common likely
solution region in the previous layer, they are similar to each other in some
extent. The deeper the layer is, the more similar these likely solution regions
are. If we can not find a solution from a likely solution region, it is difficult
to find a solution in its similar likely solution regions. That means it is not
necessary to split all likely solution regions every time when the layer depth is a
bit large. Therefore we design a random work mode for the dispatch thread. For
a layer where the number of likely solution regions is more than L, the dispatch

thread does not select all likely solution regions any more, but selects several
likely solution regions randomly, and then splits them or sends them into T .

3.4 Search thread

Unlike the dispatch thread, the aim of the search thread is to pick up a likely
solution region from T and search its all likely solutions. In order to speed up
the search, we still utilize set split to search the likely solution region. As shown
in Fig. 10, we use Algorithm 5 to depict the search thread.

Fig. 10. The workflow of the search thread

Algorithm 5 The workflow of the search thread.

Input: The 2-tuple (V,R), V = (v1, v2, · · · , vn), R = (r1, r2, · · · , rm), the num-
ber k of guessed variables

Output: A solution or no solution
1: If T 6= ∅, pick up a likely solution region B from T ; otherwise, wait or return

no solution;
2: Let L = {B};
3: If L 6= ∅, select a likely solution region B′ from L; otherwise, go to Step 1;
4: Select k variables from B′ and deduce other variables by R;
5: If all variables are deduced, return a solution made of these k variables;
6: Conduct a maximizing deduction by these k variables and get a maximal

infeasible solution set M ;
7: Invoking Algorithm 1 to update L by M and go to Step 3;

Since the scale of likely solution regions in T is small, we design a local
repository L which only contains a layer of storage units, as shown in Fig. 11.
Unlike the update of M, there is no limitation about the number of split base
sets or the minimum storage length of L.

Fig. 11. The structure of the local repository L

4 Experiment

In order to illustrate the effectiveness of the guess and determine analysis based
on set split, we apply it to two stream ciphers Snow 2.0 and Enocoro-128v2
and compare it with the other two guess and determine attacks based on the
exhausted search and the MILP method respectively. Below we recall Snow 2.0
and Enocoro-128v2 briefly.

4.1 Snow 2.0 and Enocoro-128v2

Snow 2.0 is one of the most important stream ciphers and has been an ISO/IEC
standard [23]. Enocoro-128v2 is Japanese lightweight stream cipher standard.
At present, the best solution is to guess 9 variables for the guess and determine
attack to Snow 2.0 and 18 variables to Enocoro-128v2 [20]. We assume that
10 and 17 key words are known for Snow 2.0 and Enocoro-128v2 respectively.
Referring to [20], the numbers of variables and rules after the permeation criteria
and independent variable criteria are shown in Table 1.

Table 1. The numbers of variables and rules of Snow 2.0 and Enocoro-128v2.

Cipher Key words Variables Rules
Snow 2.0 10 35 27

Enocoro-128v2 17 101 74

4.2 Experimental results

For Snow 2.0 and Enocoro-128v2, we conduct guess and determine analysis based
on set split under the same parameter settings according to Section 3, where the
number of search threads is 2 and the minimum storage length is 512. And then
we compare the results of our method with the other two methods, as shown in
Table 2. It is shown that our method is significantly better than the other two
methods.
5 For Snow 2.0, we only split the search space of Snow 2.0 twice and then go through

all likely solution regions. We spend 0.000103 seconds finding a solution on average
and reduce the size of search space by about 11 percent.

Table 2. The comparison of three methods.

Method/Cipher
SNOW 2.0

(k = 9)
Enocoro-128v2

(k = 18)
Exhaustive Search 0.000112 s N/A

MILP 0.1 s 3.5 m
Base Splitting 0.000103 s 5 0.13 s

References

1. T. Siegenthaler, ”Decrypting a class of stream ciphers using ciphertext only”,
IEEE Transaction on Computer, Vol. 34, pp.81–85, 1985.

2. J. Golic, ”Cryptanalysis of alleged A5 stream cipher”, EUROCRYPT’97, LNCS
1233, pp.239-255, 1997.

3. H. Philip and R. G. Gregory, “Exploiting multiples of the connection polynomial
in word-oriented stream ciphers”, ASIACRYPT, pp.302-316, 2000.

4. H. Philip and R. G. Gregory, ”Guess-and-determine attacks on SNOW”, SAC
2002, LNCS 2595, pp.37–46, 2002.

5. A. Hadi and E. Taraneh, “Advanced guess and determine attacks on stream
cipher”, IST, pp.87-91, 2005.

6. L. Ding and J. Guan, “guess and determine attack on SOSEMANUK”, Inter-
national Conference on Information Assurance and Security 2009, pp.658-661,
2009.

7. X. T. Feng, J. Liu, Z. C. Zhou, C. K. Wu and D. G. Feng, ”A byte-based guess
and determine attack on SOSEMANUK”, ASIACRYPT 2010, pp.146-157, 2010.

8. Z. Q. Shi, X. T. Feng, D. G. Feng and C. K. Wu, ”A real-time key recovery
attack on the lightweight stream cipher A2U2”, CANS 2012, pp.12-22, 2012.

9. X. T. Feng and F. Zhang, ”A realtime key recovery attack on
the authenticated cipher FASER128”, IACR Cryptology ePrint Archive,
https://eprint.iacr.org/2014/258, 2014.

10. X. T. Feng and F. Zhang, ”Cryptanalysis on the authenticated cipher sablier”,
NSS 2014, Vol. 8792, pp.198-208, 2014.

11. X. T. Feng, F. Zhang and H. Wang, ”A practical forgery and state recovery
attack on the authenticated cipher PANDA-s”, IACR Cryptology ePrint Archive,
https://eprint.iacr.org/2014/325, 2014.

12. B. Zhang and D. G. Feng, “New guess-and-determine attack on the self-shrinking
generator”, ASIACRYPT, LNCS 4284, pp.54–68, 2006.

13. P. Enes, ”On guess and determine cryptanalysis of LFSR-based stream ciphers”,
IEEE Transactions on Information Theory, Vol. 55, Issue 7, pp.3398-3406, 2009.

14. Y. Z. Wei, P. Enes and Y. P. Hu, ”Guess and determine attacks on filter
generators-revisited”, IEEE Transactions on Information Theory, Vol. 58, Issue
4, pp.2530-2539, 2012.

15. B. Charles, D. Patrick and F. A. Pierre, ”Automatic search of attacks on round-
reduced AES and applications”, CRYPTO 2011, LNCS 6841, pp.169–187, 2011.

16. E. Maria, M. Florian, N. Tomislav, R. Vincent and S. Martin, “Linear propaga-
tion in efficient guess-and-determine attacks”, WCC 2013, pp.1-10, 2013.

17. N. N. S. Mohammad and E. Taraneh, “Improved heuristic guess and determine
attack on SNOW 3G stream cipher”, International Symposium on Telecommu-
nications 2014, pp.972–976, 2014.

18. Ö. Mehmet, Ç. Mustafa, K. Ferhat, ”A guess-and-determine attack on reduced-
round Khudra and weak keys of full cipher”, IACR Cryptology ePrint Archive,
http://eprint.iacr.org/2015/1163, 2015.

19. Z. Oleg and K. Stepan, ”An improved SAT-based guess-and-determine attack
on the alternating step generator”, International Conference on Information Se-
curity 2017, LNCS 10599, pp.21-38, 2017.

20. Z. Cen, X. T. Feng, Z. Y. Wang and C. P. Cao, ”Minimizing deduction system
and its application”, https://arxiv.org/abs/2006.05833, 2020.

21. E. Patrik and J. Thomas, ”A new version of the stream cipher SNOW”, SAC
2002, LNCS 2595, pp.47–61, 2002.

22. D. Watanabe, K. Okamoto and T. Kaneko, ”A hardware-oriented light weight
pseudo-random number generator Enocoro-128v2”, The Symposium on Cryp-
tography and Information Security, 3D1–3, 2010.

23. ISO/IEC 18033–4: Information technology - Security techniques - Encryption
algorithms - Part 4: Stream ciphers, 2011.

