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Abstract.
SHA2 is widely used in various traditional public key cryptosystems, post-quantum
cryptography, personal identification, and network communication protocols. There-
fore, ensuring its robust security is of critical importance. Several differential fault
attacks based on random word fault have targeted SHA1 and SHACAL-2. However,
extending such random word-based fault attacks to SHA2 proves to be much more
difficult due to the increased complexity of the Boolean functions in SHA2.
In this paper, assuming random word fault, we identify distinctive differential prop-
erties within the Boolean functions of SHA2. Based on these findings, we propose
a novel differential fault attack methodology that can be effectively used to recover
the final message block and its corresponding initial vector in SHA2, forge HMAC-
SHA2 messages, extract the key of SHACAL-2, and extend our analysis to similar
algorithms such as SM3. The efficacy of these attacks is validated through rigorous
simulations and theoretical deductions, illustrating that they represent a consider-
able threat to the security of SHA2. In simulations, our approach only requires
guessing T bits of a register, where T is at most 5. Moreover, the probability of suc-
cessfully recovering a register (excluding the guessed bits) approaches 100% when
introducing 15 faults (in 1000 instances), and the approximate probability is at least
95% when T = 1. Consequently, approximately 928 random faults are necessary to
successfully execute the attack on the compression function. Furthermore, we dis-
cuss potential countermeasures, including verification and infection detection, and
propose methods to determine the time and location of fault injection in practical
experiments.
Keywords: SHA2 · Differential Fault Attack · Boolean Function · HMAC · Hash
Function

1 Introduction
1.1 Background
SHA2 (Secure Hash Algorithm 2) family [Nat02], which serves as an advanced succes-
sor to SHA1 algorithm, was officially introduced by the National Institute of Standards
and Technology (NIST) in 2001. This suite comprises four variants: SHA224, SHA256,
SHA384 and SHA512, all of which share a common compression function, while differing
in terms of data block length. The compression function of SHA2 plays a pivotal role
within the SHACAL block cipher algorithm [BJ01] and HMAC (Hash-based Message Au-
thentication Code) [BCK96]. Meanwhile, SHA2 has been widely used in various public
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key cryptosystems, personal identification and network communication protocols. In par-
ticular, SHA256 and SHA512 have been widely adopted as key derivation functions in
both traditional public key cryptography (such as ECDSA and EdDSA) and emerging
post-quantum cryptography (such as Dilithium and Kyber). Moreover, SHA2 has be-
come a standard for authentication mechanisms within numerous secure communication
protocols, including TLS/SSL, IPsec, SSH (Secure Shell), PGP, PIN verification, OTP
(one-time password) systems, and others.

Despite the limited public information about its design, SHA2 is considered a more
secure alternative to MD5 and SHA1 in terms of resisting various attacks, including colli-
sion attacks [WYYD05] and differential attacks [SKP13]. Nevertheless, the computational
complexity renders many of these theoretical attacks impractical in real scenarios. Over
the past decade, research has increasingly focused on the implementation security of hash
algorithms, with particular attention paid to side-channel and fault attacks.

Side-channel attacks on HMAC implementations have been identified. McEvoy et
al. proposed a Differential Power Analysis (DPA) on HMAC-SHA2 [MTMM07], which
uses the leakage of the modular ADDs and XORs to reveal the secret initial state in
HMAC-SHA2 and perform a forgery attack. Meanwhile, Fouque etc. proposed a template
attack on HMAC [FLDV09], which can recover the secret key k by measuring a single
execution of HMAC-SHA1. These attacks are practical and have been demonstrated
many times in real products [Osw16, GWM16, SBB+18]. As another category of physical
attacks, fault attacks [LLG09, HH11, Sho13] have also been demonstrated to be effective
against hash algorithms. In general, the adversary intends to perturb the registers and
the corresponding Boolean functions in the compression function (by means of voltage
glitches, laser or electro-magnetic injection, etc.) in order to generate faulty results and
exploit them to perform input recovery.

1.2 Previous Works
The known fault attacks against hash algorithms and their derivatives are primarily based
on difference methodologies, including Differential Fault Attacks (DFA) and Algebraic
Fault Attacks (AFA). These attacks typically assume a random fault model.

The first fault attack (i.e., DFA) based on the 32-bit random word fault model, was
introduced in FDTC 2009 [LLG09], which employs the arithmetical differential relation
between the faulty and correct Boolean function f(x, y, z) = x ⊕ y ⊕ z (with the same
message) to manually recover the key in SHACAL-1. It is noteworthy that the attack
relies on the adversary’s knowledge of the final round output rH, which differs from
the output H of SHA1. Consequently, this attack is not feasible for hash algorithms
that include a final addition operation. After that, Hemme and Hoffmann improved
upon the aforementioned attack in FDTC 2011 [HH11]. They have developed a novel
approach targeting the cyclic shifts in the compression function of SHA1, thereby enabling
the recovery of the input to the compression function. However, due to the increased
complexity of the Boolean functions in SHA2, the DFA techniques presented in [LLG09,
HH11] cannot be directly applied to SHA2. Analogous DFA techniques based on random
word faults have been applied to SHACAL-2 [WLLL10, She14] as well. Such attacks not
only require knowledge of both the correct and faulty round outputs in the final round
of SHACAL-2 (i.e., knowing every Boolean differential value and the initial vector), but
they also fundamentally involve searching for the key by exploiting Boolean and arithmetic
difference pairs. These types of attacks are also not feasible for SHA2. In addition, Bagheri
et al. first introduced a DFA against SHA3 in INDOCRYPT 2015 [BGS15]. With only
80 faulty outputs, they were able to recover 1592 bits (out of the total 1600 bits) of
the internal state. Subsequently, Luo et al. [LFZ+16] improved upon this method in
FDTC 2016 by extending the bit fault model to byte fault model. However, due to
the fundamentally different compression structures between SHA2 and SHA3 (sponge
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construction), the DFAs against SHA3 are not directly applicable to the analysis of SHA2.
To the best of our knowledge, the round-counter fault attacks [Sho13, JLSH13] are the
only currently feasible fault attacks on SHA2. These attacks reduce the number of rounds
or bypass the round counter by fault injection to make the total rounds fewer than 16,
which can recover message blocks directly. However, such attacks require extremely precise
timing and positioning for fault injection. Furthermore, a low-cost countermeasure, such
as checking the round counter, can effectively prevent these attacks.

Since then, researchers have turned their attention to the study of other fault attack-
s, in particular AFA. AFA does not require the theoretical analysis of differential paths
within hash algorithms as DFA does. Instead, it formulates algebraic equations based on
both faulty and correct outputs, which are then processed by tools such as SAT solvers
to uncover the message block or the initial state of the compression function. The results
of AFA are obtained experimentally rather than derived strictly theoretically. The AFAs
presented in [HLMS14, NHGG18] are capable of forging the initial state of HMAC-SHA2.
In addition, Luo et al. in DATE 2017 [LAFW17] first proposed an AFA on SHA3. They
subsequently extended this work in [LAFW18] to accommodate more extensive fault mod-
els with multi-bit faults. Since AFA utilizes all the correct and faulty hash outputs, it
requires significantly fewer faults than DFA (which typically uses only one or two hash
outputs at each step). However, it typically exhibits a lower success rate due to constraints
on the search efficiency of SAT solvers and the complexity of the constructed algebraic
equations. Additionally, it is considerably more time-consuming due to the absence of a
theoretical framework that clarifies the differential properties intrinsic to the compression
function. Furthermore, if any part of the hash output is unknown, the success rate will be
drastically reduced or even rendered ineffective, and the computational complexity will be
multiplied accordingly. Therefore, AFA often serves as a complementary approach to DFA
and becomes advantageous when specific differential paths cannot be derived manually by
DFA.

To sum up, no reported DFA exploits vulnerabilities in the compression function of
SHA2, particularly in view of its final addition step. Therefore, the security of SHA2 under
the random word fault model remains an open question and requires further investigation.

1.3 Our Contributions
In this paper, based on the random word fault model, we established several differential
properties of the Boolean functions (Ch(x, y, z) = (x ∧ y) ⊕ (x′ ∧ y) and Maj(x, y, z) =
(a∧b)⊕(a∧c)⊕(c∧b)) in the compression function of SHA2. By exploiting these properties,
we proposed a novel differential fault attack strategy targeting the compression function of
SHA2 based on the random word fault model. We successfully performed such an attack on
SHA2, HMAC-SHA2, SHACAL-2 and SM3 [Sta16] (which have similar Boolean functions)
and demonstrated its effectiveness. The main advantages of our proposed differential
approach can be summarised as follows:

• The proposed approach exploits previously undiscovered differential properties of
Boolean functions and has a lower computational complexity. The Boolean functions
Ch(x, y, z) and Maj(x, y, z) have posed a challenge to differential analysis on SHA2
due to their complex operations. We introduce novel transformations of Boolean
functions and thereby uncover some differential properties, which can be employed
to ascertain the intermediate state registers in the compression function. In contrast
to previous DFAs on SHA1, which required guessing 16 bits of the targeted state
register, our approach only requires guessing T bits, where T ≤ 5. A detailed
explanation is given in Section 3.

• Our methodology is broadly applicable to numerous hash functions and cryptograph-
ic algorithms with similar Boolean functions, such as SHA2 (SHA224/256/384/512),
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HMAC-SHA2, SHACAL-2 and SM3. The methodology was successfully employed
to recover final message blocks and initial vectors in SHA2, forge HMAC-SHA2 mes-
sages, and retrieve SHACAL-2 secret keys. Specially, we have confirmed that SM3’s
Boolean functions are indeed functionally equivalent to Ch(x, y, z) and Maj(x, y, z).
See section 4 for detailed case studies.

• Our attacks exhibit remarkably high success rates and exceptionally low time con-
sumption, supported by rigorous theoretical analysis and experimental evidence.
Experiments show that inducing 15 random word faults (N = 15) achieves a success
rate of nearly 100% (across 1000 instances) in recovering one register (or the XOR
value of two registers). Additionally, there is a success rate of approximately 99%
(and at least 95% when T = 1) for recovering the final round input with 14N faults,
with a time consumption of less than 0.001 seconds, when T ≤ 5. Tables 1 and 2
provide more detailed experimental results and comparisons.

The comparison of our attacks with previous DFAs [LLG09, HH11, WLLL10, She14,
Sho13, JLSH13] is shown in Table 1. The column "Number of Faults" indicates the mini-
mum number of faults required to achieve a success probability of at least 98% (over 1000
attack instances), excluding the guessing step. In addition, Table 2 provides a comparison
between our DFA and previous AFAs on SHA256 [HLMS14, NHGG18]. Although a much
larger number of faults are required, our attack exhibits a obvious advantage in terms of
time complexity and success rate in recovering the message block and initial vector (in
100 instances). Furthermore, our attack remains feasible even when only the left half of
the hash values are output (see column 6 in Table 2).

Table 1: Comparison with previous DFAs

Attacks Fault model Complexity Number of Algorithms
of guessing faults of analysis

Our attack Random word fault 2T (T ≈ 1) 928 SHA2,SM3
and HMAC-SHA2

– 720 SHACAL-2
[LLG09] Random word fault 216 120 SHACAL-1
[HH11] Random word fault 216 1000 SHA1, SHACAL-1

[WLLL10] Random word fault – 128 SHACAL-2[She14] 240
[Sho13] Round counter fault – 16 SHA2

[JLSH13] SHACAL-2

Table 2: Comparison with previous AFAs on SHA256

Attacks Time Success Needed Solving All hash
consumption(s) rate faults Method values required

Our attack 0.016 98% 928 Deduction ×
[NHGG18] 43200 – 48 Search X
[HLMS14] 200 80% 65 Search X

The remainder of this paper is organized as follows: In Section 2, we present the fun-
damental theory of Boolean operations and the architectural design of both SHA2 and
HMAC-SHA2. Section 3 presents the core concepts of the differential theory applied to
Boolean functions, along with the associated proofs. Section 4 provides concrete exam-
ples of differential attacks on SHA2, HMAC-SHA2, SHACAL-2, and SM3, as well as a
discussion of potential countermeasures. Finally, in Section 5, we present the experimental
results that validate the effectiveness of the proposed key recovery method.
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2 Preliminaries
2.1 Notations
Throughout the paper, we define the notations listed in Table 3.

Table 3: Notations

Symbols Definition
n The bit length of one state register
N The Number of faults
T The number of bits required to guess when recovering one register
Zn

2 The set of integers with bit length n
⊕ Exclusive-OR (XOR)

· or & Logical bitwise AND, i.e., boolean AND
′ Logical bitwise NOT

+ Addition modulo 2n when the operators belong to Zn
2 ;

Logical bitwise OR when the operators belong to ∈ Z2
∨ 32-bit logical bitwise OR
xy Abbreviation of x · y. Higher priority than XOR and OR
xi The i-th bit value of n-bit x

xj The faulty value (∈ Zn
2 ) derived by j-th fault injection

N−1∑
j=0

xj
i x0

i + . . . + xN−1
i . Equals to the sum of logical OR (xj

i ∈ Z2)

− Subtraction modulo 2n

≫ t Circular right shift by t positions
x ∥ y Concatenation of two operators x and y

Ch(x, y, z) (x&y) ⊕ (x′&z), where x, y, z ∈ Zn
2 .

Maj(x, y, z) (x&y) ⊕ (x&z) ⊕ (y&z), where x, y, z ∈ Zn
2∑

0 (x),
∑

1 (x), (x ≫ i) ⊕ (x ≫ j) ⊕ (x ≫ k),
σ0 (x), σ1 (x) where x ∈ Zn

2 is n-bit operator, and i, j and k depend on n
H(M, IV ) Hash function with message M and initial vector IV

F (Vi, M i) The i-th compression function in H(M, IV )
with initial vector Vi and message block M i

r The number of message blocks
R The round number of compression function

f(Vi,j , Wj) The j-th round of transformation in the i-th F (Vi, M i)
P (X) The probability of event X

Random number X
Each bit of X (∈ Zn

2 ) follows uniform bernoulli distribution,
i.e., P (Xi = 1) = 1

2 and P (Xi = 0) = 1
2

Pi
The average probability of successfully recovering the i-th bit

of the register x in Lemma 4

2.2 SHA2 family
The following is a brief overview of the SHA2 hash algorithms (SHA224, SHA256, SHA384
and SHA512), which all share the same compression function design. SHA224/SHA256
use a 32-bit word size (i.e., n = 32) and 64 rounds (i.e., R = 64), while SHA384/SHA512
use a 64-bit word size and 80 rounds. The full hash function H(M, IV ), which takes a
padded message M = M0||M1||...||Mr−1 and an initial vector IV as input, is shown in
Figure 1. Here M i (i ∈ Zr) is the i-th message block, F is the compression function of
SHA2 and Vi is the input to the i-th function F (Vi, M i) (where V0 = IV ).

2.2.1 Message Extension

As illustrated in Figure 1, the message block M i is firstly divided into sixteen n-bit words
W0, ..., W15 (i.e., M i = W0||...||W15), and then extended to R words Wj using the following
equation:

Wj = σ1 (Wj−2) + Wj−7 + σ0 (Wj−15) + Wj−16 (16 ≤ j < R) . (1)
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Figure 2: Structure of HMAC

2.2.2 Compression function

As illustrated in Figure 3, the compression function F employs an R-round iterative
transformation, denoted as f(Vi,j , Wj)(j = 0, ..., R − 1), which operates on the internal
state for every round j from 0 to R−1. The internal state Vi,j (i = 0, ..., r−1) is composed
of eight concatenated n-bit word registers: aj , bj , cj , dj , ej , fj , gj , hj(j = 0, ..., R), such that
Vi,j = aj ||...||hj . The initial state is defined as a constant initial vector, denoted by V0.
That is, V0 = V0,0 = a0||...||h0. The transformation function f comprises several Boolean
functions, including Maj(x, y, z), Ch(x, y, z),

∑
0 (x),

∑
1 (x) and the additions modulo 2n

defined in Table 3. IKj represents a predefined constant for each round. After running R
rounds of the transformation function f , a final modulo 2n addition is performed between
the initial input vector Vi and the R-th round output, denoted as Vi,R, to derive Vi+1,
which serves as the input for the next compression function. Finally, the final state Vr is
the hash result of H(M, IV ).

Figure 3: Compression function of SHA2

In our subsequent analysis, we will focus on two specific Boolean functions within the
round transformation f(Vi,j , Wj), i.e., Ch(ej , fj , gj) and Maj(aj , bj , cj).
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2.3 HMAC of SHA2
HMAC is formulated as follows:

HMAC(M, k, IV ) = H(k̄ ⊕ opad∥H(k̄ ⊕ ipad∥M, IV ), IV ),

where M represents the message requiring authentication, k denotes the secret key, k̄
denotes the padded form of k (padded with zeros to a specified length), and ipad are
distinct 8n-bit padding strings for the HMAC steps. []As shown in Fig. 2, there are
two hash functions. First, an inner hash function is processed by inputting k̄, ipad, the
message M and IV . The output of this hash is subsequently hashed again along with k̄,
opad and IV . The utilization of dual hash functions serves to ensure the integrity and
authenticity of the message.

2.4 Boolean Theorems
The Boolean operations, which are denoted by the symbols “⊕”, “·” , “′” and “+” (as
defined in Table 3) exhibit the following distinctive properties when their operands are
single-bit.

Theorem 1 (Operational rules). x, y, z ∈ Z2 and satisfy:

1. Distributive law.

(a) (x ⊕ y) · z = (x · z) ⊕ (y · z).
(b) (x + y) · z = (x · z) + (y · z).

2. Absorption law. x + xy = x, x + x′y = x + y.

3. (x · y)′ = x′ + y′, (x + y)′ = x′ · y′, (x ⊕ y)′ = x′y + y′x.

Theorem 2 (Transformation between boolean and arithmetic operations). Given x, y ∈
Zn

2 , there exists a transformation defined as follows:

x + y = (x ⊕ y) + ((x · y) ≪ 1) .

3 Methodology of Attack
This section presents some differential fault properties of the Boolean functions in SHA2,
which are used to determine the intermediate state registers. Subsequently, we present
a differential fault attack methodology on SHA2 that can effectively recover the initial
vector Vr−1 and message block Mr−1 in the final compression function.

3.1 Differential Fault Properties of Boolean Functions
Lemma 1. If x ⊕ σ = x + ∆, where x, σ, ∆ ∈ Zn

2 , then the bits of x, σ and ∆ satisfy

σi · (∆i ⊕ xi) = σi+1 ⊕ ∆i ⊕ ∆i+1 for i ∈ Zn−1

and σ0 = ∆0.

Proof. Let c be the carry generated during the addition modulo 2n of x and ∆. Then, the
bits of c satisfy

ci =
{

0 i = 0
(ci−1∆i−1) ⊕ (ci−1 ⊕ ∆i−1) xi−1 0 < i < n



8The Insecurity of SHA2 under the Differential Fault Characteristic of Boolean Functions

and
xi ⊕ σi = xi ⊕ ∆i ⊕ ci for 0 ≤ i < n.

Hence,
ci = σi ⊕ ∆i (where ∆0 = σ0)

and
ci+1 = ∆i+1 ⊕ σi+1 = ci∆i ⊕ (ci ⊕ ∆i) xi.

Replacing ci with σi ⊕ ∆i in the equation above, we obtain

σi (∆i ⊕ xi) = σi+1 ⊕ ∆i ⊕ ∆i+1 (2)

Lemma 2. Given
{

x ⊕ σj = x + ∆j

x ⊕ eσj = x + Λj for j ∈ ZN , where σj ∈ Zn
2 is an unknown

random number, ∆j , Λj ∈ Zn
2 are known values and x, e ∈ Zn

2 are unknown values, each
bit ei of e for i ∈ Zn can be determined with probability 1 − ( 1

2 )N .

Proof. From Lemma 1, we have the following equations (3) and (4) for j ∈ ZN and i ∈ Zn,
where Aj

i = ∆j
i+1 ⊕ ∆j

i and Bj
i = Λj

i+1 ⊕ Λj
i .

σj
i

(
∆j

i ⊕ xi

)
= σj

i+1 ⊕ Aj
i (3)

σj
i ei

(
Λj

i ⊕ xi

)
= σj

i+1ei+1 ⊕ Bj
i (4)

Hence, we can deduce
(σj

i )′σj
i+1 = (σj

i )′Aj
i , (5)

σj
i+1ei′ei+1 = Bj

i ei′, (6)

σj
i+1eiei+1′ = eiα

j
i+1 ⊕ ei(σj

i )′αj
i , (7)

where αj
i = ∆j

i ⊕Λj
i and αj

i ⊕αj
i+1 = Aj

i ⊕Bj
i . Equation (7) is obtained by multiplying

Equation (3) and Equation (4) individually by ei, and then eliminating xi.
By the equations (5), (6) and (7), the following relations hold.

1. Case 1: Determine e0.
From Lemma 1, we have σj

0 = ∆j
0 and σj

0e0 = Λj
0 for j = 0, ..., N − 1. Hence,(

N−1∑
j=0

σj
0

)
e0 =

N−1∑
j=0

Λj
0. Due to the randomness of σj

0, e0 =
∑N−1

j=0 Λj
0 holds with

probability 1 − ( 1
2 )N .

2. Case 2: Determine ei+1 when ei = 0.

If ei = 0, then σj
i+1ei+1 = Bj

i ( by equation (6)). Hence,

(
N−1∑
j=0

σj
i+1

)
ei+1 =

N−1∑
j=0

Bj
i .

Similarly, ei+1 =
N−1∑
j=0

Bj
i holds with probability 1 − ( 1

2 )N when ei = 0.

3. Case 3: Determine ei+1 when ei = 1.
When ei = 1, we have σj

i+1ei+1′ = αj
i+1 ⊕ σj

i ′αj
i ( from equation (7)).

If i = 0, then σj
0 = ∆j

0 and σj
1e1′ = αj

1 ⊕ ∆j
0′αj

0.
If i > 0, there are two cases:
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(a) If ei−1 = 0, then σj
i = Bj

i−1 (from equation (6));

(b) If ei−1 = 1, then αj
i = σj

i−1′αj
i−1. Hence,

i. When αj
i = 0: σj

i+1ei+1′ = αj
i+1;

ii. When αj
i = 1: σj

i−1 = 0 and σj
i = Aj

i−1 (from equation (5)).

Consequently,

ei+1 =



(
N−1∑
j=0

(
αj

i+1 ⊕ Bj
i−1′αj

i

))
′ ei−1 = 0, ei = 1 , i > 0 N−1∑

j=0,αj
i
=0

(
αj

i+1

)
+

N−1∑
j=0,αj

i
=1

(
αj

i+1 ⊕ Aj
i−1′αj

i

) ′ ei−1 = 1, ei = 1, i > 0(
N−1∑
j=0

(
αj

1 ⊕ ∆j
0′αj

0

))
′ ei = 1, i = 0

holds with probability 1 − ( 1
2 )N when ei = 1.

To sum up above, with probability 1 − ( 1
2 )N we can get each bit ei of e from Cases 1-3.

The lemma above suggests that, if all bits of x have been flipped at least once during
N fault injections, the value of e can be uniquely determined with probability (1−( 1

2 )N )n.

Lemma 3. Given
{

x ⊕ eσj = x + Λj

x ⊕ e′εj = x + Ψj for j = 0, . . . , N − 1, where σj , εj ∈ Zn
2 are

unknown random numbers, Λj , Ψj ∈ Zn
2 are known values, and x, e ∈ Zn

2 are unknown
values, each bit ei of e for i = 0, . . . , n − 1 can be determined with probability 1 − ( 1

2 )N .

Proof. From Lemma 1 and equation (6), we have

σj
i+1ei′ei+1 = Bj

i ei′
εj

i+1eiei+1′ = Cj
i ei,

(8)

where Bj
i = Λj

i+1 ⊕ Λj
i and Cj

i = Ψj
i+1 ⊕ Ψj

i .
Hence,

ei+1 =


N−1∑
j=0

Bj
i ei = 0(

N−1∑
j=0

Cj
i

)
′ ei = 1

holds with probability 1 − ( 1
2 )N , where e0 is equal to

N−1∑
j=0

Λj
0 as defined in Case 1 of

Lemma 2.

Lemma 4. Suppose that
{

x ⊕ σj = x + ∆j

x ⊕ eσj = x + Λj for j = 0, . . . , N − 1, where σj ∈ Zn
2 is

unknown random number, ∆j , Λj ∈ Zn
2 are known values, e ∈ Zn

2 is a known random
number, and x ∈ Zn

2 is an unknown value. Each bit xi of x ∈ Zn
2 for i = 0, . . . , n − 2 can

be determined with an average probability Pi, where

Pi =


1
4

(
1 −

( 1
2
)Ei+1

)(
1 −

( 1
4
)Ei
)

+ 1
2

(
1 −

( 1
2
)Ei
)

i ∈ {1, . . . , n − 3}
1
2

(
1 −

( 1
2
)Ei
)

i = n − 2
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and Ei =
{

N i = 0
N
2i + N

4 i ∈ {1, . . . , n − 1} .

Proof. For j ∈ ZN and i ∈ Zn, let σj
i = F

(
σj

i−1, xi−1

)
, then F

(
σj

i−1, xi−1

)
is defined as

F
(

σj
i−1, xi−1

)
=


∆j

i ⊕ xi−1 σj
i−1 = 1

Aj
i−1 σj

i−1 = 0
Bj

i−1 ei = 1, ei−1 = 0
αj

i ⊕ σj
i−1′αj

i−1 ei = 0, ei−1 = 1

, (9)

which is derived by the equations (3) and (5)-(7) in Lemma 2 (having the similar condi-
tions), where σj

0 = ∆j
0 (see Lemma 1), Aj

i = ∆j
i+1 ⊕∆j

i , Bj
i = Λj

i+1 ⊕Λj
i and αj

i = ∆j
i ⊕Λj

i .
Let Ei be the expected value of the number of known σj

i for all j ∈ ZN . Given the
randomness of e and σj , Ei satisfies the following equation (10), where Ei−1

4 , N
4 , and Ei−1

4
correspond respectively to the expected values under the following cases:

1) ei−1 ⊕ ei = 0 and σj
i−1 = 0, with probability 1

4 ;
2) {ei, ei−1} = {1, 0}, with probability 1

4 ;
3) {ei, ei−1} = {0, 1}, with probability 1

4 .

Ei =
{

N i = 0
Ei−1

4 + N
4 + Ei−1

4 = Ei−1
2 + N

4 i ∈ {1, . . . , n − 1} (10)

Furthermore, the equations (ref. equations (3) and (4)) in Lemma 2 can be used to
derive the following equation

σj
i (ei+1 ⊕ ei) xi = σj

i

(
∆j

i ei+1 ⊕ Λj
i ei

)
⊕ Aj

i ei+1 ⊕ Bj
i

(ei+1 ⊕ ei) σj
i+1 = Bj

i ⊕
(

Aj
i ⊕ σj

i αj
i

)
ei

, (11)

From equation (3), the value of xi can be determined provided that σj
i = 1 and σj

i+1
is known for a specific j. The following cases must be considered in order to determine
xi.

1. Case 1: {ei+1, ei} = {1, 0}

(a) When {ei+1, ei} = {1, 0}, we have σj
i

(
xi ⊕ ∆j

i

)
= Aj

i ⊕ Bj
i and σj

i+1 = Bj
i by

equation (11).

For any j ∈ ZN , if σj
i is known and σj

i = 1 (obtained from F
(

σj
i−1, xi−1

)
),

then xi = ∆j
i+1 ⊕ Bj

i ; Otherwise, if there exist Aj
i ⊕ Bj

i = 1, then xi = ∆j
i ′.

(b) Let P (recovering xi|{ei+1, ei} = {1, 0}) (P10 for short) be defined as the av-
erage probability of recovering xi when {ei+1, ei} = {1, 0}. It is known that
σj

i+1 = Bj
i for any j ∈ ZN . Consequently, P10 is primarily influenced by the

condition that σj
i is not only known, but also equal to 1. From equation (10),

P10 = 1 − ( 1
2 )Ei .

2. Case 2: {ei+1, ei} = {0, 1}

(a) When {ei+1, ei} = {0, 1}, we have σj
i

(
xi ⊕ Λj

i

)
= Bj

i and σj
i+1 = αj

i+1 ⊕ σj
i ′αj

i .

For any j ∈ ZN , if σj
i = 1 (obtained from F(σj

i−1, xi−1) ), then xi = Λj
i+1,

Otherwise, if there exists Bj
i = 1, then xi = Λj

i ′.
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(b) Similarly, the average probability of recovering xi when {ei+1, ei} = {0, 1},
denoted by P (recovering xi|{ei+1, ei} = {0, 1}) (P01 for short), depends on
whether σj

i is known and equal to 1, i.e., P01 = 1 − ( 1
2 )Ei .

3. Case 3: {ei+1, ei} = {1, 1}. There are also two sub-phases:

(a) If {ei+2, ei+1, ei} = {1, 1, 1}, substituting {ei+2, ei+1, ei} = {1, 1, 1} into equa-
tion (11), we have σj

i ′αj
i = αj

i+1 and σj
i+1′αj

i+1 = αj
i+2. If σj

i = 1, then
αj

i+1 = αj
i+2 = 0. Consequently, σj

i+1 and xi cannot be determined when
σj

i = 1.

(b) If {ei+2, ei+1, ei} = {0, 1, 1}, then σj
i+1

(
xi+1 ⊕ Λj

i+1

)
= Bj

i+1.

For any j ∈ ZN and i > 0, if xi+1 has been known, σj
i = 1 and

(
xi+1 ⊕ Λj

i+1

)
=

1, then σj
i+1 = Bj

i+1 and xi = ∆j
i+1 ⊕ Bj

i+1 (by equation (3)); Otherwise, if
there exist σj

i = 1 and Bj
i+1 = 1, then σj

i+1 = 1, xi+1 = Λj
i+1 and xi = ∆j

i+1′.
(c) The key conditions for the recovery of xi are as follows: 1) xi+1 is known, with

a probability of 1 − ( 1
2 )Ei+1 (demonstrated in Case 2); 2) There exists an index

j, such that σj
i is known to equal 1 and

(
xi+1 ⊕ Λj

i+1

)
= 1, with a probability

of 1 −
( 1

4
)Ei .Hence,

P (recovering xi|{ei+2, ei+1, ei} = {0, 1, 1}) =

(
1 −

(
1
2

)Ei+1
)(

1 −
(

1
4

)Ei
)

.

4. Case 4 : {ei+1, ei} = {0, 0}. There are two sub-phases:

(a) If {ei+2, ei+1, ei} = {0, 0, 0}, then Bj
i = Bj

i+1 = 0, and thus no information is
available to determine xi.

(b) If {ei+2, ei+1, ei} = {1, 0, 0}, then σj
i+1

(
xi+1 ⊕ ∆j

i+1

)
= Aj

i+1 ⊕ Bj
i+1 and

σj
i+2 = Bj

i+1.
If xi+1 is known, σj

i = 1 and xi+1 ⊕ ∆j
i+1 = 1, then σj

i+1 = Aj
i+1 ⊕ Bj

i+1 and
xi = ∆j

i+2 ⊕ Bj
i+1 ( by equation (3)); Otherwise, for any j ∈ ZN and i > 0, if

there exist σj
i = 1 and Aj

i+1 ⊕ Bj
i+1 = 1, then σj

i+1 = 1 and xi = ∆j
i+1′.

(c) Similar to Case 3,

P (recovering xi|{ei+2, ei+1, ei} = {1, 0, 0}) =

(
1 −

(
1
2

)Ei+1
)(

1 −
(

1
4

)Ei
)

.

In summary, the average probability of successfully recovering xi for j ∈ {0, ..., n − 2},
which may be denoted henceforth as P (recovering xi) (Pi for short), is subject to the
condition that

Pi =


(

1−( 1
2 )Ei+1

)(
1−( 1

4 )Ei
)

4 + 1−( 1
2 )Ei

2 i ∈ {0, . . . , n − 3}
1−( 1

2 )Ei

2 i = n − 2
. (12)

If Ei (at least greater than N/4) is sufficiently large, Pi approximates to 3
4 for i ∈

{0, . . . , n − 3} and 1
2 for i = n − 2, respectively. In particular, when {ei+2, ei+1, ei} =

{0, 0, 0} and {ei+2, ei+1, ei} = {1, 1, 1} with a probability of 1
4 , the value of xi remains
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undeterminable. As an alternative approach, in Subsection 3.2, eight distinct instances
of e (as in Algorithm 2) are employed to ascertain the remaining bits of x. Additionally,
the most significant bit, xn−1, remains inherently unrecoverable.

It should be noted that the average probability is defined in this context, rather than
an exact probability. This is due to the fact that the quantity of known σj

i is represented
by the expected value Ei, which is contingent upon the random distribution of ei. Conse-
quently, there may be a slight discrepancy between the average probability and the exact
probability when the value of e assumes specific real values. The experiments in Section 5
also illustrate this case. Conversely, it serves as a theoretical approximation intended to
provide an estimate of the exact probability.

Lemma 5. Given the function Maj (a, b, c) = ab ⊕ bc ⊕ ac, the following equations hold:

Maj (a, b ⊕ σ, c) − Maj (a, b, c) = (b ⊕ (a ⊕ c) σ) − b,

Maj (a, b, c ⊕ σ) − Maj (a, b, c) = (c ⊕ (a ⊕ b) σ) − c,

where a, b, c, σ ∈ Zn
2 .

Proof. From Theorem 2, we have

Maj (a, b ⊕ σ, c) = Maj (a, b, c) ⊕ (a ⊕ c) σ
= Maj (a, b, c) + (a ⊕ c) σ − (Maj (a, b, c) (a ⊕ c) σ) ≪ 1
= Maj (a, b, c) + (a ⊕ c) σ − (b (a ⊕ c) σ) ≪ 1
= Maj (a, b, c) + (b ⊕ (a ⊕ c) σ) − b

.

Similarly, the equation Maj (a, b, c ⊕ σ) − Maj (a, b, c) = (c ⊕ (a ⊕ b) σ) − c can also be
demonstrated.

Lemma 6. Given the function Ch (e, f, g) = ef ⊕ e′g, the following equations hold:

Ch (e, f ⊕ σ, g) − Ch (e, f, g) = (f ⊕ eσ) − f,

Ch (e, f, g ⊕ σ) − Ch (e, f, g) = (f ⊕ e′σ) − f,

where e, f, g, σ ∈ Zn
2 .

Proof. From Theorem 2, we have

ch (e, f ⊕ σ, g) = ch (e, f, g) ⊕ eσ
= ch (e, f, g) + eσ − (ch (e, f, g) eσ) ≪ 1
= ch (e, f, g) + eσ − (efσ ≪ 1)
= ch (e, f, g) + (f ⊕ eσ) − f

Similarly, the equation Ch (e, f, g ⊕ σ)−Ch (e, f, g) = (f ⊕ e′σ)−f can also be demon-
strated.

3.2 Recovery of Initial Input and Message Block in Final Compression
Function

By employing the lemmas above and the random word fault model, it is feasible to retrieve
the initial vector and the message in SHA2’s final compression function (see Figure 1).
The model assumes that a single state register, denoted as x, is subject to a random fault,
resulting in its transition into the j-th faulty state register, xj , which is equal to x ⊕ σj

for each j ∈ ZN . Each σj is a unique random number. After injecting faults into various
registers, the following propositions can be drawn.
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Proposition 1. By introducing N random faults for each of the 14 special state regis-
ters in SHA2, knowing the correct hash value {A, ..., H} and all the faulty hash values
{Aj , ..., Hj} for any j ∈ ZN , it is possible to recover the (R − 1)-th round’s input registers
{aR−1, ..., hR−1} and their faulty forms {aj

R−1, ..., hj
R−1} with probability Pr · Pl, where

Pr =
(

1 −
( 1

2
)N
)4n

and Pl =
(

1 −
( 1

2
)N
)8n n−2∏

i=0

(
1 − (1 − Pi)8

)
.

Proof. Step.1 Recover eR−1, fR, f0 by introducing N faults into fR−1.
As shown in Figure 4, if N random faults are introduced into fR−1, then fR−1 → f j

R−1,
where f j

R−1 = fR−1 ⊕ σj for each j ∈ ZN . Consequently, the final outputs, namely A, E

and G, are transformed into Aj , Ej and Gj , respectively.
From Lemma 6, we have

Gj − G =
(
fR−1 ⊕ σj

)
− fR−1

Aj − A =
(
fR−1 ⊕ eR−1σj

)
− fR−1

(13)

Let Gj −G = ∆j and Aj −A = Λj . Then, eR−1 can be determined from Lemma 2 with
probability

(
1 − ( 1

2 )N
)n

. Consequently, the values of fR and f0 can also be determined.
Step.2 Recover fR−1, gR, g0 by introducing N faults into fR−2.
Similarly, if N random faults are induced into fR−2, then fR−2, H, and B are trans-

formed into f j
R−2 (=fR−2 ⊕ σj), Hj , and Bj for any j ∈ ZN , respectively.

Hj − H =
(
fR−2 ⊕ σj

)
− fR−2

Bj − B =
(
fR−2 ⊕ eR−2σj

)
− fR−2

(14)

From Lemma 2, eR−2 (i.e.,fR−1 and gR) can be recovered with probability
(

1 − ( 1
2 )N

)n

.
Step.3 Recover gR−1, hR, h0 by introducing N faults into fR−3 and gR−3

respectively.
Inducing N faults into fR−3 results in f j

R−3 = fR−3 ⊕ σj , altering output C to Cj

for all j ∈ ZN . Unlike the scenario above, the hash output does not reveal the value
of f j

R−3 − fR−3. Consequently, a further N faults in gR−3 are required, resulting in the
transformation of gR−3 → gj

R−3(= gR−3 ⊕ εj) and C → CN+j , respectively. The random
number εj is analogous to σj for all j ∈ ZN .

Hence, from Lemma 6, we have the following equations

Cj − C =
(
fR−3 ⊕ eR−3σj

)
− fR−3

Cj+N − C =
(
gR−3 ⊕ eR−3′εj

)
− gR−3

. (15)

From Lemma 3, let Cj − C = Λj , Cj+N − C = Ψj , then eR−3, hR and h0 can be
recovered with probability

(
1 − ( 1

2 )N
)n

.
Step.4 Recover hR−1 by introducing N faults into fR−4 and gR−4 respectively.

Similarly, N faults are introduced into fR−4 and gR−4, respectively, resulting in
f j

R−4(= fR−4 ⊕ σj), faulty output Dj , gj
R−4(= gR−4 ⊕ εj) and faulty output Dj+N for all

j ∈ ZN . we have

Dj − D =
(
fR−4 ⊕ eR−4σj

)
− fR−4

Dj+N − D =
(
gR−4 ⊕ eR−4′εj

)
− gR−4

. (16)

From Lemma 3, let Dj − D = Λj and Dj+N − D = Ψj , then eR−4, i.e., hR−1 can be
recovered with probability

(
1 − ( 1

2 )N
)n

.
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Figure 4: Fault injection on fR−1
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In summary, the four-step process above recovers the registers {eR−1, fR−1, gR−1, hR−1},
{fR, gR, hR}, and {f0, g0, h0} with a probability Pr that satisfies the following equation:

Pr =

(
1 −

(
1
2

)N
)4n

. (17)

Meanwhile, the recovery process requires a total of 6N random faults.
It should be noted that, due to the lack of knowledge about Gj , G, Hj , and H, steps

1-2 for SHA224 and SHA384 will adopt the same strategy as steps 3-4. N random faults
are introduced separately into fR−1, gR−1 in step 1 (fR−2, gR−2 in step 2). The faulty
values Aj , AN+j (Bj , BN+j for step 2) are obtained. From Lemma 3, eR−1 (fR−1) can
also be recovered.

Step.5 Recover aR−1 ⊕ cR−1 and partial bits of bR−1(denoted as part(bR−1))
by introducing N faults into bR−1.

As shown in Figure 4, if N random faults are induced into bR−1, then bR−1 → bR−1⊕σj

(denoted by bj
R−1), A → Aj and C → Cj for all j ∈ ZN .

From Lemma 5, we have

Cj − C =
(
bR−1 ⊕ σj

)
− bR−1

Aj − A =
(
bR−1 ⊕ (aR−1 ⊕ cR−1)σj

)
− bR−1

. (18)

From Lemma 2, let Cj −C = ∆j and Aj −A = Λj , then aR−1 ⊕cR−1 can be recovered
with probability

(
1 − ( 1

2 )N
)n

.
Furthermore, the recovered aR−1 ⊕ cR−1 from equation (18) enables the recovery of

n − 1 bits of bR−1 (denoted by part(bR−1)) with a probability given by
n−2∏
i=0

Pi, where Pi

is the i-th bit recovery probability as defined in equation (12) and Table 3.
Step.6 Recover aR−1 ⊕ bR−1 and partial bits of cR−1(denoted as part(cR−1))

by introducing N faults into cR−1.
Similarly, based on Lemma 5 and Lemma 2, the value of aR−1 ⊕cR−1 can be recovered

with probability
(

1 −
( 1

2
)N
)n

. Based on Lemma 4, n − 1 bits of part(cR−1) is recovered

with a probability
n−2∏
i=0

Pi.

It should be noted that due to the single random value of aR−1 ⊕ cR−1 (and aR−1 ⊕
bR−1), not all n − 1 bits of part(bR−1) (and part(cR−1)) are recovered.

Step.7 Recover more bits of aR−1, bR−1 and cR−1.
Given the known values of aR−1 ⊕bR−1 and aR−1 ⊕cR−1, the value of bR−1 ⊕cR−1 can

be determined. From Algorithm 1, the values of part(bR−1), part(cR−1) and subsequently
part(aR−1) are updated.

In view of the random nature of aR−1 ⊕ bR−1 and aR−1 ⊕ cR−1, the probability of
recovery for each bit (except the MSB) of bR−1, cR−1, and aR−1 is given by 1 − (1 − Pi)2.

Step.8 Repeat steps 5 to 7 in order to update more bits of part(cR−1) (and
part(aR−1), part(bR−1), part(dR−1)) by introducing N faults into bR−2, cR−2, bR−3,
cR−3, bR−4 and cR−4 respectively.

As outlined in Algorithm 2, by iterating steps 5 to 7, it is possible to recover n − T
bits of the set {aR−1, bR−1, cR−1, dR−1}, where T is the number of undetermined bits and
is typically equal to 1.

From Algorithm 2, the probability of undetermined bits in part(aR−1), part(bR−1),
part(cR−1) and part(dR−1) depends on the randomness of eight values: {aR−1⊕bR−1, aR−1⊕
cR−1, ..., aR−4 ⊕ cR−4} and the faulty value σj for each j ∈ ZN . Excluding the most sig-
nificant bit, the probability of determining any bit in bR−1 is about 1 − (1 − Pi)8, when
bR−1 ⊕ cR−1, aR−1 ⊕ bR−1, and bR−1 ⊕ dR−1 are known (by Lemma 2). Consequently, the
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Algorithm 1 Algorithm for Updating target registers
Require: u(= x ⊕ y), part(x) and part(y), where u, x, y ∈ Zn

Ensure: Updated part(x) and part(y)
For i = 0 to n − 2

If xi ∈ part(x) and yi /∈ part(y)
yi = ui ⊕ xi and incorporate yi into part(y)

Else If yi ∈ part(y) and xi /∈ part(x)
xi = ui ⊕ yi and incorporate xi into part(x)

return part(x) and part(y)

Algorithm 2 Recovery of n − T bits of aR−1, bR−1, cR−1 and dR−1

Require: All faulty results denoted as {Sj
0, Sj

1, Sj
2, Sj

3, Sj
4, Sj

5, Sj
6, Sj

7} (equivalent to
{Aj , Bj , Cj , Dj , Ej , F j , Gj , Hj}) for any j ∈ ZN , and all correct results denoted as
{S0, S1, S2, S3, S4, S5, S6, S7} (equivalent to{A, B, C, D, E, F, G, H}), obtained by intro-
ducing N faults into bi and ci (for each i ∈ {R − 1, ..., R − 4}) respectively.

Ensure: The least significant n − T bits of aR−1, bR−1, cR−1 and dR−1, denoted as
part(aR−1), part(bR−1), part(cR−1) and part(dR−1), respectively.
For i = R − 1 to R − 4

1. Introduce N random faults into bi so that bi → bj
i (= bi ⊕ σj), and thereby

yielding N sets of faulty hash outputs {Sj
0, Sj

1, Sj
2, Sj

3, Sj
4, Sj

5, Sj
6, Sj

7} for each j ∈ ZN .
2. Let ∆j = Sj

R−i+1 − SR−i+1 = (bi ⊕ σj) − bi, Λj = Sj
R−i−1 − SR−i−1 = (bi ⊕

(ai ⊕ ci)σj) − bi.
3. Recover ai ⊕ ci by Lemma 2 and part(bi) by Lemma 4.
4. Repeat steps 1-3 for ci (where ∆j = Sj

R−i+2 − SR−i+2 and Λj = Sj
R−i−1 −

SR−i−1), using lemmas 2 and 4 to recover ai ⊕ bi and part(ci), respectively.
5. Update part(aR−1), part(bR−1), part(cR−1), part(dR−1) by Algorithm 1.

return part(aR−1), part(bR−1), part(cR−1) and part(dR−1)

probability of successfully recovering all n − T bits of {aR−1, bR−1, cR−1, dR−1} is given
by the following equation:

Pl =

(
1 −

(
1
2

)N
)8n n−2∏

i=0

(
1 − (1 − Pi)8

)
. (19)

It can be demonstrated that the value of Pl approaches 99% when n = 32 or 64 and
N is sufficiently large, for example, N = 15. Consequently, T is typically equal to 1.

In summary, Algorithm 2 allows for the recovery of {aR−1, bR−1, cR−1, dR−1} (with
only T guessed bits). In addition, the recovery process requires 8N random faults.

Step.9 Recover the faulty registers {aj
R−1, ..., hj

R−1} for each j ∈ ZN .
As shown in Figure 4, state registers {aR−1, . . . , hR−1} and {b0, c0, d0, f0, g0, h0}, along

with correct and faulty hash values, {A, . . . , H} and {Aj , . . . , Hj} for each j ∈ ZN , are
all known. It is evident that

aj
R−1 = Bj − b0, bj

R−1 = Cj − c0, cj
R−1 = Dj − d0, and

ej
R−1 = F j − f0, f j

R−1 = Gj − g0, gj
R−1 = Hj − h0.

Let Ti = Ch(ei, fi, gi) +
∑

1 (ei), Ui = Maj(ai, bi, ci) +
∑

0 (ai), T j
i = Ch(ej

i , f j
i , gj

i ) +∑
1

(
ej

i

)
and U j

i = Maj(aj
i , bj

i , cj
i ) +

∑
0

(
aj

i

)
(for i ∈ ZR and j ∈ ZN ), then

hj
R−1 = Aj − A − (T j

R−1 + U j
R−1 − TR−1 − UR−1) + hR−1,
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where Aj , A, T j
R−1, U j

R−1, UR−1 and TR−1 are known quantities.
Consequently, dj

R−1 = Ej − E − (T j
R−1 + hj

R−1 − TR−1 − hR−1) + dR−1.

Proposition 2. By introducing N random faults into each of the 48 special target registers
(before R − 1-th round) in SHA2, and knowing the (R − 1)-th round’s input registers
{aR−1, ..., hR−1} and all their faulty forms {aj

R−1, ..., hj
R−1} for any j ∈ ZN , it is possible

to recover the message block Mr−1 and initial vector Vr−1 of the final compression function
F (Vr−1, Mr−1) with a probability

(
1 − 1

2N

)32n.

Proof. Step 1. Recover the correct registers {aR−2, bR−2, ..., hR−2}.
Obviously, aR−2 = bR−1, bR−2 = cR−1, cR−2 = dR−1, eR−2 = fR−1, fR−2 = gR−1,

gR−2 = hR−1.
As demonstrated in the Step 4 of Proposition 1, if N random faults are introduced

into fR−5 and gR−5 respectively, then fR−5 → f j
R−5 (where f j

R−5 = fR−5 ⊕ σj) and
gR−5 → gj

R−5 (where gj
R−5 = gR−5 ⊕ εj) for any j ∈ ZN . Subsequently, by Lemma 6, we

have
dj

R−1 − dR−1 =
(
fR−5 ⊕ eR−5σj

)
− fR−5

dN+j
R−1 − dR−1 =

(
gR−5 ⊕ eR−5′εj

)
− gR−5

,

where dj
R−1 and dN+j

R−1 represents the j-th faulty value of dR−1 when a random fault is
introduced into fR−5 and gR−5, respectively.

Let dj
R−1 − dR−1 = Λj , dN+j

R−1 − dR−1 = Ψj , then hR−2 (i.e., eR−5) can be recovered
with probability (1 − 1

2N )n from Lemma 3. A total of 2N faults are required.
As demonstrated in the Step 5 of proposition 1, if N faults are introduced into bR−3,

then bR−3 → bj
R−3 (where bj

R−3 = bR−3 ⊕ σj). Consequently, from Lemma 5, we have

dj
R−1 − dR−1 =

(
bR−3 ⊕ σj

)
− bR−3

bj
R−1 − bR−1 =

(
bR−3 ⊕ (aR−3 ⊕ cR−3)σj

)
− bR−3

.

From Lemma 2, aR−3 ⊕ cR−3 can be recovered with probability (1 − 1
2N )n, where aR−3

is known to be equal to cR−1. Consequently, dR−2 (i.e., cR−3) can be recovered with N
random faults.

Step 2. Recover message WR−2.
Given the knowledge of TR−2 (i.e., Ch(eR−2, fR−2, gR−2) +

∑
1 (eR−2)), dR−2, KR−2

and eR−1, the following equation is derived:

WR−2 = eR−1 − TR−2 − KR−2 − dR−2.

Step 3. Recover the faulty registers {aj
R−2, ..., hj

R−2} for any j ∈ ZN

In the set of values {aj
R−2, ..., hj

R−2}, only the values dj
R−2 and hj

R−2 remain unknown.
Furthermore, the values of T j

R−2 (i.e., Ch(ej
R−2, f j

R−2, gj
R−2) +

∑
1

(
ej

R−2

)
) and U j

R−2

(i.e., Maj(aj
R−2, bj

R−2, cj
R−2) +

∑
0

(
aj

R−2

)
) for any j ∈ ZN are known. Hence, the values

of hj
R−2 and hj

R−2 can be obtained as follows:

hj
R−2 = aj

R−1 − T j
R−2 − WR−2 − KR−2 − U j

R−2,

and
dj

R−2 = ej
R−1 − T j

R−2 − WR−2 − KR−2 − hj
R−2.

Following the completion of steps 1-3, the R − 2-th correct and faulty round inputs
and message WR−2 can be recovered with probability

(
1 − 1

2N

)2n and 3N random faults.
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Step 4. Recover the message block Mr−1 and initial vector Vr−1 in the
compression function F (Vr−1, Mr−1).

Repeat steps 1-3 until all 16 intermediate round message sets, {WR−2, ..., WR−17},
have been recovered. Subsequently, the original message block, denoted by Mr−1, is
inferred via equation (1). The initial vector Vr−1 is then derived retrospectively using the
recovered Mr−1 and the known final stage inputs, namely {aR−1, ..., hR−1}.

In summary, the final message block Mr−1 and its corresponding initial vector Vr−1

can be recovered with probability
(
1 − 1

2N

)32n and 48N random faults.

Finally, a practical differential fault attack can be achieved by applying Propositions
1 and 2. The specific steps for executing this attack are listed in Algorithm 3. The total
number of random faults is 62N . Note that the recovery of dR−2 and dR−3 as Step 1 of
Proposition 2 may be omitted since the registers {aR−i, . . . , dR−i} for any i ∈ {2, 3} have
already been successfully recovered by Algorithm 2 (with T guessed bits) as prescribed in
Proposition 1. This optimization reduces the total number of random faults to 62N − 2.

Algorithm 3 Recovery of initial vector Vr−1 and message block Mr−1 in compression
function F (Vr−1, Mr−1)
Require: The correct and faulty hash values for each of the 62N − 2 special targets,

denoted as {A, ..., H} and {Aj , ..., Hj}, respectively, where j ∈ ZN .
Ensure: Vr−1 (equivalent to the set of {a0, ..., h0}) and Mr−1

1. Recover the last round of correct and faulty inputs {aR−1, bR−1, ..., hR−1} and
{aj

R−1, bj
R−1, ..., hj

R−1} according to Proposition 1, where there are T unknown bits
in any one of aR−1, ..., bR−1.
2. Guess the unknown T bits of any one in the set {aR−1, ..., dR−1}, thereby yielding
2T guessed values of the set {aR−1, ..., dR−1}.
3. For each guessed value:

3.1. Recover Vr−1 and Mr−1 according to Proposition 2.
3.2. If F (Vr−1, Mr−1) + Vr−1 = {A, ..., H}

return Vr−1 and Mr−1.
return Recovery failed.

4 Cases of Study
The theoretical foundations set out in the aforementioned propositions can now be ap-
plied to the analysis of SHA2, SHACAL-2, and HMAC-SHA2. Furthermore, the attack
methodology is also applicable to other algorithms that use SHA2-like functions, such as
SM3 and A5/1. The following sections will present the attacks against different modes
and algorithms.

4.1 Attack on SHA2 and its application
As shown in Figure 1, the adversary is unable to obtain the faulty output (such as the
faulty values of V1, ..., Vr−1) of the compression function, except for the final hash output
of F (Vr−1, Mr−1). In light of the above, the objective of our attack on SHA2 is the final
compression function, F (Vr−1, Mr−1). In the context of the SHA2 family, which encom-
passes SHA224, SHA256, SHA384, and SHA512, it is only possible to recover the final
message block, Mr−1, and the corresponding initial state, Vr−1, by Algorithm 3. Despite
this limitation, several potential attack scenarios remain feasible, as detailed below.
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• In dynamic token systems, the SHA2 algorithm is employed for the purpose of
compressing the seed key and identifier, and subsequently outputting either the left
or right half of the hash value. In this case, it is possible to apply Lemma 3 in place
of Lemma 2, as with the attacks on SHA224 and SHA384. Consequently, our attack
strategy allows for the recovery of the seed key when processing a single message
block (r = 1).

• In identity authentication mechanisms, the user’s password, ID, and salt are con-
catenated and hashed to generate a verification hash. Similarly, our attack method
enables the recovery of the ID, salt, and hash within a single message block.

• SHA2 is critical for public key cryptography which use the private key and mes-
sage as hash inputs, such as ECDSA and EdDSA. A compromise of SHA2 would
also compromise the security of these signatures. It is also a core element in post-
quantum systems, primarily used for functions such as random number generation
and key compression, and its strength directly affects the reliability of post-quantum
cryptography, particularly in hash-based schemes.

4.2 Forgery Attack on HMAC-SHA2
Based on our methodology of fault attacks, an almost universal forgery attack can be
successfully performed as the same with in [HLMS14, NHGG18]. For ease of understand-
ing, the entire attack process is still briefly described in Figure 5. The strategy involves
inducing fault injections into the final compression function (highlighted in yellow) during
the compression of the specific message block M0, and utilizing Algorithm 3 to recover
Mr and V1. This capability enables the forging of HMACs for messages beginning with
M0 (as indicated by the right area enclosed by the dotted lines).

Figure 5: Almost universal forgery attack on HMAC

4.3 Differential fault attack on SHACAL-2
SHACAL-2 is a 256-bit block cipher supporting keys up to 512 bits, derived from the
compression function of SHA256. Developed under the NESSIE project, it serves to secure
electronic systems. As depicted in Figure 6, SHACAL-2 employs a modified F ′ function
that mirrors SHA256’s F function (illustrated in Figure 3), with the notable exception
of omitting the "final addition" step. Here, the SHA256 message block M assumes the
role of the encryption key, while V0 takes on a position analogous to plaintext. Both are
processed through F ′ to yield the ciphertext output.

Our approach enables an attack on SHACAL-2, exploiting the omission of the final
addition step (Figure 3). This exposes the internal state registers {aR, ..., hR} and their
faulty values directly. Consequently, by applying Proposition 2, one can determine both
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Figure 6: Structure of SHACAL-2

the plaintext (corresponding to V0 in SHA2) and the key (corresponding to message block
M in SHA2) using just 48N faults.

4.4 Extensions to Other Algorithms with Similar Boolean Functions
A number of algorithms, including SM3 [Sta16], A5/1, and A2U2 [DMRL11], employ
similar Boolean functions, namely Maj and Ch. This analysis focuses on SM3’s security
against our proposed attack. For other stream ciphers, a comprehensive understanding of
Boolean functions requires further research.

As depicted in Figure 7, SM3 mirrors the structural design of SHA256, incorporating
boolean functions FFj and GGj that are equivalent to Maj and Ch, respectively, where

FFj(X, Y, Z) = (X&Y ) ∨ (X&Z) ∨ (Y &Z) 16 ≤ j ≤ 63

and
GGj(X, Y, Z) = (X&Y ) ∨ (X ′&Z) 16 ≤ j ≤ 63.

Figure 7: Structure of SM3

The principal difference between the functions FFj and Maj (as well as GGj and
Ch) resides in their use of the bitwise OR operation (∨) instead of the bitwise XOR
operation (⊕). Despite these operational differences, FFj (GGj) and Maj (Ch) are
indeed functionally equivalent. The following section offers a detailed explanation of this
equivalence.
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(XY ) ⊕ (XZ) ⊕ (Y Z)
= (XY Z ′ ∨ XY ′Z) ⊕ (Y Z)
= (XY Z ′ ∨ XY ′Z) (Y Z)′ ∨ (XY Z ′ ∨ XY ′Z)′ (Y Z)
= (XY Z ′ ∨ XY ′Z) (Y ′ ∨ Z ′) ∨ (X ′ ∨ (Y Z ′ ∨ Y ′Z)′) (Y Z)
= (XY Z ′ ∨ XY ′Z) ∨ (X ′Y Z ∨ Y Z)
= XY Z ′ ∨ XY ′Z ∨ Y Z
= Y (XZ ′ ∨ Z) ∨ XY ′Z
= Y (Z ∨ X) ∨ XY ′Z
= XY ∨ (Y ∨ XY ′) Z
= XY ∨ XZ ∨ Y Z

(20)

(XY ) ⊕ (X ′Z)
= (XY )(X ′Z)′ ∨ (XY )′(X ′Z)
= (XY ∨ XY Z ′) ∨ (X ′Z ∨ X ′Y ′Z)
= XY ∨ X ′Z

(21)

The Equations (20) and (21) demonstrate that Maj is equivalent to FFj , and Ch is
equivalent to GGj . Thus, as demonstrated in Sections 4.1 and 4.3, our fault attack is
similarly effective against SM3 and its encryption variant. However, unlike SHA2 which
incorporates an addition operation between initial inputs and final round outputs, SM3
employs XOR operations. This difference is of paramount importance for HMAC, espe-
cially considering the unknown the initial input to the compression function. As a result,
the forgery attacks targeting SM3-HMAC become unfeasible under such conditions.

In conclusion, our proposed attack methodology reveals a multitude of potential attack
instances, and thus poses a genuine threat to algorithms that incorporate the same Boolean
functions, specifically Maj and Ch. It is necessary to re-evaluate the security of such
cryptographic structures against fault attacks.

4.5 Discussion of Countermeasures
The countermeasure against our attacks comprises two primary strategies: verification
and infection.

• Verification. The final four rounds must be recomputed, yielding two hash values
that will be checked for equality. If they match, the hash value is returned; otherwise,
an indication of a fault is returned.

• Infection. The R − 2-th round of the compression function should be computed
twice to obtain two sets of output values, which are denoted as {aR−1, ..., hR−1} and
{a∗

R−1, ..., h∗
R−1}, respectively. Subsequently, calculate

(m1&Maj(aR−1, bR−1, cR−1)) ∨ Maj(a∗
R−1, b∗

R−1, c∗
R−1)

and
(m2&Ch(eR−1, fR−1, gR−1)) ∨ Ch(e∗

R−1, f∗
R−1, g∗

R−1),

and then substitute these results for Maj(aR−1, bR−1, cR−1) and Ch(eR−1, fR−1, gR−1),
respectively. The variables m1 and m2 are represented by n-bit random numbers.

Compared to verification, infection provides less exploitable information for our fault
attacks. Moreover, repeated fault injection might potentially bypass the verification
process, but such an approach is infeasible for infection.
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5 Experiments
In this section, we simulated a random fault model and executed fault attacks to evalu-
ate the validity and practicality of our method. For clarity and brevity, we focused on
validating Lemma 2 and Algorithm 2, which are crucial for recovering the right and left
halves of the final-round input registers for SHA256 and SHA512, respectively. It should
be noted that similar attack strategies can be applied to other hash algorithms such as
SHA224/384 and SM3, which share a similar operational structure. In addition, Table 2
provides the detailed results for recovering the final message block and initial vector in
simulations. No further details will be given here.

First, we systematically simulated fault injection experiments N times, where N
ranged from 1 to 30, specifically targeting register fR−1, as shown in Figure 4. For
each unique value of N (corresponding to the x-coordinate), we executed 1,000 attack in-
stances based on Lemma 2 to attempt to recover eR−1. We then computed and compared
both the experimental and theoretical success rates (corresponding to the y-coordinate)
of recovering eR−1.

As shown in Figure 8, the red and blue lines represent the success rates of recovering
eR−1 for SHA256 and SHA512, respectively. The dashed lines represent theoretical success
rates, while the solid lines represent experimental success rates. The results show that
the experimental success rate slightly exceeds its theoretical counterpart. In particular,
the experimental success rate approaches an almost perfect 100% for both SHA256 and
SHA512 when N reaches 15, which is achievable in real experiments.

Moreover, it is important to note that all attacks based on Lemma 2, such as those
that recover aR−1 ⊕ cR−1 and aR−1 ⊕ bR−1, are basically identical. Moreover, except for
the requirement of double fault targets, the attacks based on Lemma 3 have an equivalent
success rate to those based on Lemma 2. Therefore, we will not go into the details here.
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Figure 8: Success rate of recovering e in Lemma 2 when introducing N faults

Next, we validated the practical feasibility and success rate of Algorithm 2, which
fundamentally relies on Lemma 2 and Lemma 4 to recover the left half of the final round
input. We chose {bR−4, cR−4, ..., bR−1, cR−1} as eight sequential targets and simulated 1 to
50 random faults (i.e., N ∈ {1, ..., 50}) for each target. We then executed 1,000 repeated
instances of the attack in Algorithm 2 for each N .

The experimental and theoretical results are shown in Figure 9. The red and blue
lines represent the respective success rates of SHA256 and SHA512. Dashed lines denote
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theoretical success rates, while solid lines denote experimental success rates for success-
fully recovering the lower n − 1 (T = 1) bits of the registers in Algorithm 2 for SHA256
and SHA512, depending on N and e (as specified in Lemma 4). Dotted lines indicate the
experimental success rate for successfully recovering n − T (T ≥ 1) bits of the registers in
Algorithm 2 for SHA256 and SHA512 (recovered success rate for short), without consid-
ering the cases of {ei+2, ei+1, ei} = {0, 0, 0} or {1, 1, 1} in Lemma 4 and depending only
on N .

We can see that the experimental success rates of recovering all the lower n − 1 bits
for SHA256 and SHA512 are consistently around 97% and 95%, respectively, when N is
greater than 9. The theoretical average success rate reaches 99% when N is greater than
17/20 for SHA256/SHA512. The recovered success rates are close to 100% when N is
greater than 15, which is slightly higher than the theoretical average success rates.

The above results show a slight divergence between the experimental and theoretical
success rates. This divergence is primarily due to the fact that our theoretical success
rates are based on the expected value of the number of known σj

i values, which depend
on the randomness of e as stated in Lemma 4. However, in the actual experiments, we
used only eight random numbers (i.e., {bR−4, cR−4, ..., bR−1, cR−1}), which may explain
the observed discrepancy.

In addition, in cases where the recovered bits are correct but their number is less
than n − 1 (i.e., T > 1) with a probability of 3% for SHA256 (or 5% for SHA512) when
N ≥ 15, the average value of T (the average number of unrecoverable bits) remains at 3,
and its maximum value is 5. This means that in the most unfavorable scenarios (with a
probability of 3% or 5%), 3 bits will need to be guessed. In more common circumstances,
it’s only the most significant bit that needs to be guessed.
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Figure 9: Success rate of recovering the left half of the final round

For the left half of the R−1-th input, as N approaches 15, the number of bits to guess,
T , is generally 1 (with a probability of 95% for SHA512, 97% for SHA256) and rarely
exceeds 5, achieving similarly high success rates (see Figure 9). In addition, 928 faults
(i.e., 62N − 2) are required to recover the message block and the initial vector in the final
compression function of SHA2 in the entire attack.

In conclusion, based on the random fault model, we achieve a near-perfect success rate
of approximately 100% for the right half of the R − 1-th input as N approaches 15 (see
Figure 8). For the left half of the R − 1-th input, as N approaches 15, the number of
bits to guess, T , is generally 1 with a probability of 95% for SHA512, 97% for SHA256.
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Moreover, T is less than 5 with a probability approaching 100%, achieving similarly high
success rates (see the recovered success rate in Figure 9). In addition, 928 faults (i.e.,
62N − 2) are required to recover the message block and the initial vector in the final
compression function of SHA2 in the entire attack.

As the aforementioned results are derived from simulations, it is not necessary to
distinguish between all potential faults. In order to identify the desired faults in practical
experiments, it is recommended that the following steps be taken to determine the location
and timing of fault injection.

• Observe the characteristics of the power traces from the oscilloscope in order to
determine the time for each round.

• To identify the presence of a fault, it is necessary to introduce a fault during the
scanning of the chip and subsequently observe the resulting hash values. As listed
in Table 4, the faulty outputs resulting from introducing faults into intermediate
registers are enumerated. For example, if the hash values {A, E, G} differ from the
correct values, it can be inferred that the fault injection occurred precisely at the
location of fR−1. Note that the faulty outputs are identical when both dR−1 and
hR−1 are disturbed by fault injection.

• Fix the location of chip and return to the time of the R − 2-th (beginning with
0) round, then introduce faults at this location. If {A, B, E, F, G} are faulty, the
corresponding location of fault injection is for dR−1. If {A, B, E, F} are faulty, the
location is for hR−1. By following these steps, the locations of all the registers can
be determined.

• For each round of eight input registers, fix the location on the chip and adjust the
time of the i-th (i ∈ ZR) round (as determined by the aforementioned steps) to
perform fault injection.

This method enables the precise locating and timing of the targeted register.

Table 4: The cases of faulty hash outputs when introducing faults into different targets

target aR−1 bR−1 cR−1 dR−1 eR−1 fR−1 gR−1 hR−1
faulty {A, B} {A, C} {A, D} {A, E} {A, E, F } {A, E, G} {A, E, H} {A, E}Output

6 Conclusion
Our study has identified distinct differential fault properties of Boolean functions in SHA2,
which enables us to propose a new differential fault attack that effectively targets SHA2,
HMAC-SHA2, SHACAL-2, and even SM3. The effectiveness of our attacks is substantiat-
ed by rigorous theoretical proofs and experimental verifications, which indicate that they
pose a significant threat to SHA2, with a success probability of at least 95% and requiring
a guess of fewer than 5 bits. In particular, approximately 928 faults enables the recovery
of the final message block and its initial vector.

Our findings reveal the essential attributes of Boolean functions in SHA2 and their
potential threat for security. Moreover, they extend the scope of research on fault attacks
and offer insights into traditional differential analysis. It can be reasonably inferred that
other algorithms with analogous Boolean functions are similarly vulnerable to our attack.
Future research will investigate the differential characteristics of Boolean functions in
SHA3 under a 64-bit random word fault model, aiming to evaluate its resilience against
potential fault attacks. Additionally, applying our approach to stream ciphers such as
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A5/1 and A2U2 could yield valuable insights. Notwithstanding these contributions, our
attack is not without limitations, including the lack of practical verification on devices
implementing SHA2. This limitation necessitates further study.
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