
Sailfish: Towards Improving Latency of DAG-based BFT

Nibesh Shrestha1, Aniket Kate2, and Kartik Nayak3

1Supra Research, n.shrestha@supraoracles.com
2Supra Research/Purdue University, aniket@purdue.edu

3Duke University, kartik@cs.duke.edu

Abstract

Existing DAG-based BFT protocols exhibit long latency to commit decisions. The primary reason
for such a long latency is having a leader every 2 or more “rounds”. Even under honest leaders, these
protocols require two or more reliable broadcast (RBC) instances to commit the proposal submitted by
the leader (leader vertex), and additional RBCs to commit other proposals (non-leader vertices). In this
work, we present Sailfish, the first DAG-based BFT that supports a leader vertex in each round. Under
honest leaders, Sailfish maintains a commit latency of one RBC round plus 1δ to commit the leader
vertex (where δ is the actual transmission latency of a message) and only an additional RBC round to
commit non-leader vertices.

1 Introduction

Byzantine Fault Tolerant state machine replication (BFT SMR) protocols form the core underpinning for
blockchains. At a high level, these protocols enable a group of parties to agree on a sequence of values, even if
some of these parties are Byzantine (arbitrarily malicious). Owing to the need for efficient blockchains, there
has been a lot of progress in improving the key efficiency metrics namely, latency, communication complexity,
and throughput under various network conditions. Under the commonly assumed partial synchrony network,
we know of protocols that can commit with a latency of 3δ (where δ represents the actual network delay) [10,
9, 16] and also achieve linear communication complexity [35, 25] under optimistic conditions (such as an
honest leader).

Most of these protocol designs rely on a designated leader who is the party responsible for proposing
transactions and driving the protocol forward while other parties agree on the proposed values and ensure
that the leader keeps making progress. From an efficiency standpoint, this approach results in two key
drawbacks. First, there is an unequal distribution of work among the parties. The leader is burdened with
sending large amounts of data in its proposal, while others are only responsible for acknowledging/voting on
these proposals. Second, and more importantly, there is an uneven scheduling of work among the parties.
While the leader is sending a proposal, the other parties’ processors and their network is not used. Thus,
even if the former problem can be addressed by amortizing the work among parties over time, the problem
with uneven usage of the resources still remains.

Several techniques proposed in the literature can potentially mitigate these concerns. These include the
use of erasure coding techniques [28, 4] or the data availability committees [18, 19, 34] to disseminate the data
more efficiently. Recently, a novel approach known as DAG-based BFT has emerged [6, 20, 23, 24, 31, 32, 13].
These protocols enable all participating parties to propose in parallel, maximizing bandwidth utilization and
ensuring equitable distribution of workload. Consequently, these protocols have demonstrated improved
throughput compared to the leader-based counterparts under moderate network sizes [31, 14]. However, all
existing DAG-based protocols incur a high latency compared to their “leader-heavy” counterparts [10, 35,
21, 16, 25]. Is high latency inherent for such DAG-based protocols? Addressing this question is the key goal
of this paper.

1



Table 1: Comparison of DAG-based BFT protocols, after GST

RBC
Used

LV Commit
Latency

NLV Commit(1)

Latency

Communication
Complexity

Leader
Frequency

NLV Latency (2)

Under Failure

Bullshark [31, 32] Das et al. [15] 8δ +8δ O(n3) 1/2 8∆ + 8δ
Cordial Miners [24] None 6∆ +6∆ O(n4) 1/3 6∆
Shoal [30] Das et al. [15] 8δ +4δ O(n3) 1 8∆ + 4δ

Sailfish Das et al. [15] 5δ +4δ O(n3) 1 8∆ + 2δ
Sailfish Abraham et al. [2] 3δ +2δ O(n4) 1 4∆ + 2δ

LV implies leader vertex. NLV implies non-leader vertex. We use the erasure-coded reliable broadcast from Das et al. [15] which
incurs 4 communication steps and O(n2) communication complexity to propagate O(n)-sized message. Bullshark (and Shoal) can also

use RBC protocol of Abraham et al. [2] to achieve a commit latency of 4δ for leader vertices and 4δ (2δ for Shoal) for non-leader
vertices. (1) This column lists the additional latency to commit non-leader vertices that share a round with the leader vertex; the
commit latency of these vertices is the maximum among non-leader vertices. (2) The column lists the increase in latency to commit

non-leader vertices when a single Byzantine failure occurs between honest leaders.

In the following, we first discuss the core structure involved in a DAG-based protocol, then describe
the latency of the state-of-the-art protocols compared to ours, and then explain the key challenges and our
contributions.

Typical structure of DAG-based BFT. A DAG-based BFT progresses through a series of rounds. In
each round r, each party makes a proposal, represented as a DAG vertex. The vertex includes references
to at least 2f + 1 vertices proposed in round r − 1 (where f is the maximum number of Byzantine faults).
These references form the edges of the DAG. The edges and paths formed from these edges are used for
committing vertices in the DAG. Many DAG-based protocols rely on a reliable broadcast protocol (RBC) [8]
to disseminate the vertices; this ensures non-equivocation and guaranteed delivery [31, 30, 23]. Depending
on whether a communication-optimal [15] or latency-optimal [2] RBC protocols are used, the RBC would
incur a latency of 4δ and 2δ respectively.

Partially synchronous DAG-based protocols rely on designated parties called leaders to commit vertices.
In these protocols, the vertices proposed by the leaders (leader vertices) are committed whereas non-leader
vertices are ordered as part of the causal history of leader vertices.

Latency in state-of-the-art partially synchronous DAG-based BFT protocols. The state-of-the-
art partially synchronous DAG-based protocols are Bullshark [31, 32], Shoal [30], and Cordial miners [24].
We elaborate on the results obtained by these protocols in Table 1.

In Bullshark, each round employs an RBC to disseminate the proposal, and a leader is assigned every 2
rounds. The round after the leader round serves to “vote” the leader vertex; hence called the voting round.
Thus, committing the leader vertex requires two RBC rounds. On the other hand, non-leader vertices require
a minimum of 4 RBCs.

A recent work, Shoal [30] proposed a “pseudo-pipelining” technique to support leaders in each round;
aiming to reduce the commit latency of non-leader vertices. Their technique relies on executing multiple
instances of the Bullshark-based protocol sequentially, ensuring that a leader vertex is present in every round.
This approach relies on the observation that all parties agree on the first-ordered leader vertex, enabling
the system to deterministically start a new protocol instance in the subsequent round. By doing so, Shoal
achieves a pipelining effect as each instance starts with a leader vertex in its first round.

However, Shoal relies on Bullshark to commit some vertex before initiating a new instance. When
Bullshark fails to commit, Shoal requires an additional two rounds to commit some vertex and start a new
Bullshark instance. Furthermore, with an adversarial leader schedule alternating between Byzantine and
honest leaders, Bullshark (and Shoal) fails to make progress. Consequently, Shoal’s ability to ensure a leader
vertex in each round is compromised to some extent. Moreover, Shoal inherits the latency of 2 RBCs to
commit the leader vertex.

Similarly, Cordial Miners [24] aimed to improve the latency of DAG-based BFT protocols by using
best-effort broadcast instead of RBC. However, their protocol necessitates parties to explicitly wait for a

2



timeout (of at least 2∆, where ∆ is the known bound on message delay after global stabilization time (GST))
before advancing to the next round, indicating a lack of responsiveness [29]. Consequently, this results in
a commit latency of at least 6∆ for the leader vertex (leader vertex requires 3 rounds to commit) and an
additional 6∆ for non-leader vertices that coincide with the leader vertex (leader round repeats every 3
rounds). Furthermore, the communication complexity of their protocol blows to O(n4) per round in the
presence of Byzantine faults (where n is the number of parties in the system).

To the best of our knowledge, no DAG-based protocol supports a leader vertex in each round in a true
sense. Furthermore, all DAG-based BFT protocols require at least 2 RBCs to commit the leader vertex. In
this work, we address these concerns and introduce Sailfish, the first DAG-based BFT protocol that achieves
support for a leader vertex in each round while achieving a latency of 1RBC plus 1δ time to commit the
leader vertex, along with an additional RBC to commit the non-leader vertices. When employing the optimal
latency RBC [2], Sailfish incurs only 3δ to commit the leader vertex, effectively matching the best latency
achieved by classical approaches [10]. When using a communication-optimal RBC [15], our protocol incurs
5δ latency to commit the leader vertex. Compared to the state-of-the-art DAG-based BFT, Sailfish improves
the latency for committing leader vertices by at least 1δ (when using [2]) and 3δ time (when using [15]).

Challenges and Key Contributions

The key technical challenge. In DAG-based protocols, a crucial safety invariant that needs to be main-
tained is: when a round r leader vertex vk is committed by an honest party, the leader vertex of any round
r′ > r should have a path to vk. In earlier protocols, vk is committed when a sufficient (f + 1 or more)
round r+ 1 vertices have a path to vk and the safety invariant is achieved by having a leader vertex in every
two or more rounds. As a round r + 2 vertex has paths to 2f + 1 round r + 1 vertices, a round r + 2 leader
vertex will trivially have a path to vk. Similarly, the leader vertex of round r′ > r + 2 will have a path to
vk. However, the round r + 1 leader vertex lacks paths to other round r + 1 vertices. Consequently, even if
vk is committed, the round r + 1 leader vertex cannot establish a path to it via other round r + 1 vertices.
The only way it can form a path to vk is by awaiting its delivery. However, waiting for vk to be delivered
poses liveness concerns. Alternatively, if the round r + 1 leader vertex is proposed (after a timeout), it can
lack a path to vk even when other parties have committed vk, violating the safety requirement. This is the
key challenge when supporting a leader vertex in each round.

Towards having a leader vertex in each round. Our solution to the above challenge is simple. In
our protocol, we mandate the round r + 1 leader vertex to have a path to vk or contain a proof that shows
a sufficient number of honest parties did not vote for vk. When such a proof exists, we can guarantee vk
cannot be committed; it is thus safe for the round r + 1 leader vertex to lack a path to vk.

The requirement for the round r + 1 leader vertex to wait for vk or the proof marginally increases the
timeout duration a party has to wait in a round compared to existing protocols, potentially impacting latency
under failures. To address this concern, we conduct a thorough analysis of the latency. Our analysis indicates
that despite the increased timeout, our latencies outperform the state-of-the-art in the presence of a single
Byzantine failure between honest leaders (see Table 1).

Towards reducing the commit latency to 1RBC plus 1δ for leader vertices. In a typical RBC
protocol [8, 27, 15], the sender first sends its value to all other parties, followed by multiple rounds of
message exchanges among the parties. When the sender is honest, the first value received from the sender
is the value that is eventually delivered. We rely on this observation and decide based on the first received
values of the round r + 1 vertices, i.e., we do not require the RBC of round r + 1 vertices to be delivered
to commit the round r leader vertex. However, when the sender is faulty, the first value received from the
sender can be different from the final delivered value. In order to account for such Byzantine behavior, our
protocol commits the round r leader vertex only when 2f + 1 round-(r+ 1) vertices have paths to the round
r leader vertex. Out of the 2f +1 first messages for the round r+1 vertices, at least f +1 are sent by honest
parties which will be delivered by all honest parties.

This approach ensures the safety invariant while enabling our protocol to commit the leader vertex with
a latency of 1 RBC plus 1δ, and an additional RBC to commit the non-leader vertices. We further note that

3



this optimization is unique to our protocol and does not apply to the other protocols as it can cause liveness
concerns. We provide the intuition behind this reasoning in detail in Section 3.

2 Preliminaries

We consider a system P := P1, . . . , Pn consisting of n parties out of which up to f = ⌊n−1
3 ⌋ parties can

be Byzantine. The Byzantine parties may behave arbitrarily. A party that is not faulty throughout the
execution is considered to be honest and executes the protocol as specified.

We consider the partial synchrony model of Dwork et al. [17]. Under this model, the network starts in an
initial state of asynchrony during which the adversary may arbitrarily delay messages sent by honest nodes.
However, after an unknown time called the Global Stabilization Time (GST), the adversary must ensure that
all messages sent by honest nodes are delivered to their intended recipients within ∆ time of being sent. We
use δ to characterize the actual (variable) transmission latencies of messages and observe that δ ≤ ∆ after
GST. Additionally, we assume the local clocks of the parties have no clock drift and arbitrary clock skew.

We make use of digital signatures and a public-key infrastructure (PKI) to prevent spoofing and replays
and validate messages. We use ⟨x⟩i to denote a message x digitally signed by party Pi using its private key.
We use H(x) to denote the invocation of the hash function H on input x.

2.1 Building Blocks

Byzantine reliable broadcast. In a Byzantine reliable broadcast protocol (RBC), a designated sender
Pk invokes r bcastk(m, r) to propagate its input m in some round r ∈ N. Each party Pi then outputs the
message m via r deliveri(m, r, Pk) where Pk is the designated sender and r is the round number in which
sender Pk sent the message m. The reliable broadcast primitive satisfies the following properties:

- Agreement. If an honest party Pi outputs r deliveri(m, r, Pk), then every other honest party Pj

eventually outputs r deliverj(m, r, Pk).
- Integrity. For every round r ∈ N and party Pk ∈ P, an honest party Pi outputs r deliveri at most

once regardless of m.
- Validity. If an honest party Pk calls r bcastk(m, r) then every honest party eventually outputs

r deliver(m, r, Pk).

2.2 Problem Definition

Following Bullshark [31], we focus on the Byzantine Atomic Broadcast (BAB) problem as defined below:

Definition 1 (Byzantine atomic broadcast [23, 31]). Each honest party Pi ∈ P can call a bcasti(m, r)
and output a deliveri(m, r, Pk), Pk ∈ P. A Byzantine atomic broadcast protocol satisfies reliable broadcast
properties (agreement, integrity, and validity) as well as:

- Total order. If an honest party Pi outputs a deliveri(m, r, Pk) before a deliveri(m
′, r′, Pℓ), then no

honest party Pj outputs a deliverj(m
′, r′, Pℓ) before a deliverj(m, r, Pk).

3 The Sailfish Protocol

In this section, we present Sailfish, a protocol that supports a leader vertex in each round and improves
the latency to commit both leader and non-leader vertices. Specifically, Sailfish incurs one RBC, plus 1δ to
commit the leader vertex and an additional RBC to commit the non-leader vertex. We first provide some
basic preliminaries to ease the protocol description.

4



Local variables:
struct vertex v: ▷ The struct of a vertex in the DAG

v.round - the round of v in the DAG
v.source - the party that broadcast v
v.block - a block of transactions
v.strongEdges - a set of vertices in v.round that represent strong edges
v.weakEdges - a set of vertices in rounds < v.round−1 that represent weak edges
v.nvc - a no-vote certificate for v.round− 1(if any)
v.tc - a timeout certificate for v.round− 1 (if any)

DAGi[]− An array of sets of vertices (indexed by rounds)
blocksToPropose - A queue, initially empty, Pi enqueues valid blocks of transactions from clients
leaderStack ← initialize empty stack

1: procedure path(v, u) ▷ Check if exists a path consisting of strong and weak edges in the DAG
2: return exists a sequence of k ∈ N, vertices v1, . . . , vk s.t.

v1 = v, vk = u, and ∀j ∈ [2, .., k] : vj ∈
⋃

r≥1 DAGi[r] ∧ (vj ∈ vj−1.weakEdges ∪ vj−1.strongEdges)

3: procedure strong path(v, u) ▷ Check if exists a path consisting of only strong edges from v to u in the DAG
4: return exists a sequence of k ∈ N, vertices v1, . . . , vk s.t.

v1 = v, vk = u, and ∀j ∈ [2, .., k] : vj ∈
⋃

r≥1 DAGi[r] ∧ vj ∈ vj−1.strongEdges

5: procedure set weak edges(v, r) ▷ Add edges to orphan vertices
6: v.weakEdges← {}
7: for r′ = r − 2 down to 1 do
8: for every u ∈ DAGi[r

′] s.t. ¬path(v, u) do
9: v.weakEdges← v.weakEdges ∪ {u}

10: procedure get vertex(p, r)
11: if ∃v ∈ DAGi[r] s.t. v.source = p then
12: return v
13: return ⊥

14: procedure get vertex leader(r)
15: return get vertex(Lr, r)

16: procedure broadcast vertex(r)
17: v ← create vertex(r)
18: try add to dag(v)
19: r bcasti(v, r)

20: procedure a bcasti(b, r)
21: blocksToPropose.enqueue(b)

22: procedure order vertices()
23: while ¬leaderStack.isEmpty() do
24: v ← leaderStack.pop()
25: verticesToDeliver ← {v′ ∈

⋃
r>0 DAGi[r] | path(v, v′) ∧ deliveredV ertices}

26: for every v′ ∈ verticesToDeliver in some deterministic order do
27: output a deliveri(v

′.block, v′.round, v′.source)
28: deliveredV ertices← deliveredV ertices ∪ {v′}

Figure 1: Basic data structures for Sailfish. The utility functions are adapted from [23, 31].

Round based execution. Our protocol progresses through a sequence of numbered rounds. Rounds are
numbered by non-negative integers starting with 1. Each round r consists of a designated leader, denoted
by Lr, which is selected via a deterministic method based on the round number.

Basic data structures. We adopt the DAG construction protocol from Bullshark and modify it appropri-
ately to fit our need. At a high level, the communication among parties is represented in the form of DAG.
In each round, each party proposes a single vertex containing a (possibly empty) block of transactions along
with references to at least 2f + 1 vertices proposed in an earlier round. Those references serve as the edges
in the DAG. The proposed vertices are propagated using reliable broadcast to ensure non-equivocation and
guarantee all honest parties eventually deliver the proposed vertex.

The basic data structures and utilities for DAG construction are presented in Figure 1. Each party

5



maintains a local copy of the DAG and different honest parties may observe different views of the DAG.
However, due to the reliable broadcast of the vertices, each party will eventually converge on the same view
of the DAG. The local view of DAG for party Pi is represented as DAGi. Each vertex is associated with
a unique round number and a unique sender (source). When Pi delivers a round r vertex, it is added to
DAGi[r]. DAGi[r] contains up to n vertices.

Each vertex consists of two sets of outgoing edges — strong edges and weak edges. The strong edges
of round r vertex v consist of at least 2f + 1 vertices from round r − 1 while the weak edges of the vertex
consist of up to f vertices from rounds < r − 1 such that there is no path from v to these vertices. A path
from vertex vk to vℓ following the strong edges is called a strong path. Compared to Bullshark [31], we add
two additional fields in the structure of the vertex – (i) v.nvc, which stores a no-vote certificate (consisting
of a quorum of no-vote messages in a round), and (ii) v.tc, which store timeout certificate (consisting of a
quorum of timeout messages in a round). We explain the purpose of these fields shortly.

DAG construction protocol. The DAG construction protocol is presented in Figure 2. In each round r,
each party Pi proposes one vertex v. A round r vertex proposed by leader Lr is referred to as the round
r vertex leader while the other round r vertices are non-leader vertices. In order to propose a vertex in a
round r, Pi waits to receive at least 2f + 1 round r−1 vertices along with the round r−1 leader vertex until
a timeout occurs in round r − 1. In the event that Pi receives 2f + 1 round r − 1 along with round r − 1
leader vertex, Pi can immediately enter round r and propose a round r vertex. We note that including a
reference to the round r− 1 leader vertex serves as the “vote” towards the round r− 1 leader vertex. These
votes are later used to commit the leader vertex. Thus, waiting for the leader vertex until a timeout helps
honest parties to vote for the leader vertex and helps commit the leader vertex with a small latency when
the leader is honest (after GST).

If Pi did not receive the round r− 1 leader vertex before the timeout, it multicasts ⟨timeout, r− 1⟩i to all
other parties. In addition, an honest party Pj in round r′ ≤ r−1 also multicasts ⟨timeout, r−1⟩j messages if
it receives f + 1 distinct round r− 1 timeout messages. Upon receiving 2f + 1 round r− 1 timeout messages
(denoted by T Cr−1), Pi can enter round r and propose a round r vertex as long as it has received at least
2f + 1 round r− 1 vertices. In our protocol, we require a round r vertex to either have a strong path to the
round r − 1 leader vertex or include T Cr−1 in v.tc. This is a constraint that we place on all vertices. We
will clarify the purpose of this constraint shortly.

When Pi proposes a round r vertex without a strong path to the round r− 1 leader vertex, it also sends
a no-vote message to Lr indicating that Pi did not vote for round r − 1 leader vertex. Upon entering round
r, Pi starts a timer which is set to some τ time. We will shortly provide more details on the value of τ .

We place an additional constraint on the leader vertex. A round r leader vertex needs to either have a
strong path to the round r − 1 leader vertex or contain 2f + 1 round r − 1 no-vote messages (denoted by
NVCr−1). The NVCr−1 serves as a proof that a quorum of parties did not “vote” for the round r− 1 leader
vertex. Hence, the round r− 1 leader vertex cannot be committed and it is safe to lack a strong path to the
round r − 1 leader vertex.

Upon delivering a round r vertex v, each party Pi checks if these constraints are met via is valid(v)
function. In particular, is valid(v) checks whether v consists of either a strong path to round r − 1 leader
vertex or T Cr−1 (and NVCr−1 for the round r leader vertex). In addition, Pi also checks if vertex v consists
of at least 2f + 1 strong edges to round r − 1 vertices. Once these checks are satisfied, vertex v is added
to DAGi[r] via try add to dag(v) which succeeds when Pi has delivered all the vertices that have a path
from vertex v in the DAG. If try add to dag(v) fails, the vertex is added to the buffer for a later retry. In
addition, when try add to dag(v) succeeds, the vertices in the buffer are re-attempted to be added to the
DAGi.

Apart from advancing the rounds sequentially, our protocol supports honest parties in round r′ < r to
“jump” to a higher round r when they observe 2f + 1 round r − 1 vertices along with round r − 1 leader
vertex or receive a T Cr−1. If Lr is the lagging party, it additionally needs to wait to receive either NVCr−1

or round r − 1 leader vertex in order to propose round r leader vertex. When jumping rounds from r′ to r,
parties do not propose vertices between those rounds.

Committing and ordering the DAG. In our protocol, only the leader vertices are committed. The

6



Local variables:
round← 1; buffer← {}

29: upon r deliveri(v, r, p) do
30: if v.source = p ∧ v.round = r ∧ |v.StrongEdges| ≥ 2f + 1∧ is valid(v) then
31: if ¬try to add to dag(v) then
32: buffer← buffer ∪ {v}
33: else
34: for v′ ∈ buffer : v′.round ≤ r do
35: try to add to dag(v′)

36: upon timeout do
37: multicast ⟨timeout, round⟩i

38: upon receiving f + 1 distinct ⟨timeout, r⟩∗ such that r ≥ round do
39: multicast ⟨timeout, r⟩i

40: upon receiving T Cr such that r ≥ round do
41: multicast T Cr

42: upon |DAGi[r]| ≥ 2f + 1 ∧ (∃v′ ∈ DAGi[r] : v
′.source = Lr ∨ T Cr is received) for r ≥ round do

43: advance round(r + 1)

44: procedure create new vertex(r)
45: v.round← r
46: v.source← Pi

47: v.block ← blocksToPropose.dequeue()
48: v.strongEdges← DAGi[r − 1]
49: set weak edges(v, r)

50: if ̸ ∃v′ ∈ DAGi[r − 1] : v′.source = Lr−1 then
51: n.tc← T Cr−1

52: if Pi = Lr then
53: v.nvc← NVCr−1

54: return v

55: procedure try to add to dag(v)
56: if ∀v′ ∈ v.strongEdges ∪ v.weakEdges : v′ ∈

⋃
k≥1 DAGi[k] then

57: DAGi[v.round]← DAGi[v.round] ∪ {v}
58: if |DAGi[v.round]| ≥ 2f + 1 then
59: try commit(v.round− 1, DAGi[v.round])

60: buffer← buffer \ {v}
61: return true
62: return false

63: procedure advance round(r)
64: if ̸ ∃v′ ∈ DAGi[r − 1]| : v′.source = Lr−1 then
65: send ⟨no-vote, r − 1⟩i to Lr

66: if Pi = Lr then
67: wait until ∃v′ ∈ DAGi[r − 1] : v′.source = Lr−1 or NVCr−1 is received

68: round← r; start timer
69: broadcast vertex(round)

Figure 2: Sailfish: DAG construction protocol for party Pi

non-leader vertices are ordered (in some deterministic order) as part of the causal history of a leader vertex
when the leader vertex is (directly or indirectly) committed as shown in order vertices function (see Line 22).

An honest party Pi directly commits a round r leader vertex vk when it observes 2f + 1 “first messages”
(of the RBC) for round r + 1 vertices with strong paths to the round r leader vertex, i.e., Pi does not need
to wait for the RBC of round r + 1 vertices to terminate. This is because when the sender of the RBC
is honest, the first observed value (i.e., the first message of the RBC) is the value that will eventually be
delivered. Among the 2f + 1 round r+ 1 vertices, at least f + 1 vertices are sent by honest parties which will
eventually be delivered such that the delivered value is equal to the first received value (in the first message
of RBC). This is sufficient to ensure NVCr will not exist and any round r′ > r leader vertex (if it exists)

7



Local variables:
committedRound← 0

70: upon receiving a set S of ≥ 2f + 1 first messages for round r + 1 vertices do
71: try commit(r,S)

72: procedure try commit(r,S)
73: p← get vertex leader(r)
74: votes← {v′ ∈ S | strong path(v′, p)}
75: if votes ≥ 2f + 1 then
76: commit leader(p)

77: procedure commit leader(v)
78: leaderStack.push(v)
79: r ← v.round− 1
80: v′ ← v
81: while r > committedRound do
82: vs ← get vertex leader(r)
83: if strong path(v′, vs) then
84: leaderStack.push(vs)
85: v′ ← vs
86: r ← r − 1

87: committedRound← v.round
88: order vertices()

Figure 3: Sailfish: The commit rule for party Pi

will have strong paths to the round r leader vertex; thus ensuring the safety of a commit.
In addition to the above commit rule, our protocol also allows party Pi to directly commit a round r

leader vertex vk if it delivers (via RBC) 2f +1 round r+1 vertices that have strong paths to vk (see Line 59).
This commit rule is helpful in scenarios when the RBC delivers a vertex without having received the first
message of the RBC. Such scenarios arise when the sender of the RBC is faulty or during an asynchronous
period.

Upon directly committing vk in round r, Pi first indirectly commits leader vertices vm in smaller rounds
such that there exists a path from vk to vm (based on its local copy of the DAG) until it reaches a round
r′ < r in which it previously directly committed a leader vertex. In this protocol, we ensure that when a
round r leader vertex vk is directly committed by some honest party, leader vertices for any round r′ > r
have a strong path to vk. This ensures vk will be (directly or indirectly) committed by all honest parties.

Remark on timeout parameter τ . The value of timeout parameter τ depends on two factors (i) the
underlying RBC primitive used to propagate the vertices, and (ii) how an honest party Pi entered round r.

Several RBC primitives [8, 2, 3, 27] have been proposed in the literature with various tradeoffs in com-
munication complexity, number of steps required, setup assumptions, etc. For a comprehensive list of RBC
primitives, we refer readers to the recent work by Alhaddad et al. [3]. The value of parameter τ should be
long enough to ensure that when an honest party enters round r, it can deliver the round r leader vertex
broadcast by an honest leader along with 2f + 1 round r vertices before its timeout occurs. In particular,
when Pi enters round r, the parameter τ should accommodate the time it takes for other honest parties to
enter the common round r, including Lr (if honest) and deliver their round r vertices before the timeout
occurs for Pi.

The timeout parameter τ also depends on whether party Pi entered round r via T Cr−1 or not. When
T Cr−1 exists and Lr does not deliver round r−1 leader vertex, Lr has to collect NVCr−1 before proposing a
round r leader vertex which may require up to 2∆ time. Accordingly, party Pi has to wait for 2∆ additional
time in round r when entering round r via T Cr−1 compared to when it enters round r via receiving round
r − 1 leader vertex.

The RBC primitive of Das et al. [15] has 4 communication steps and delivers a value within 4∆ time
(see Property 1). In addition, it also ensures that when an honest party delivers a value at time t, all honest
parties deliver the value by t + 2∆ (see Property 2). Accordingly, party Pi sets its parameter τ to 6∆ when

8



it enters round r after delivering round r− 1 leader vertex and to 8∆ when it enters round r via T Cr−1. We
note that different honest parties may set different values for τ depending on how they entered a round.

Intuition behind including a timeout certificate on the vertex. As mentioned above, we place a
constraint on all the vertices: a valid round r + 1 vertex should either have a strong path to round r leader
vertex or include a T Cr. This is to prevent Byzantine parties from driving the protocol too fast and prevent
an honest leader vertex from getting directly committed (even after GST). Note that our protocol requires
2f + 1 round r + 1 vertices with strong paths to round r leader vertex for the round r leader vertex to be
directly committed. In addition, our protocol also supports parties to “jump” to a higher round r′ > r when
they observe 2f + 1 round r′−1 vertices including the round r′−1 leader vertex or T Cr′−1. If T Cr were not
included in the vertex, the f Byzantine parties can propose round r + 1 vertices without strong paths to the
round r leader vertex. And, as soon as f + 1 honest parties propose round r vertices (with strong paths to
the round r leader vertex), the protocol can move to round r + 1 while f honest parties are lagging behind
in some lower round r′′ ≤ r. Relying on the same technique, the protocol can proceed to round r′ > r. The
adversary can then deliver 2f + 1 round r′ vertices along with round r′ leader vertex to the f lagging honest
parties; causing them to enter round r′ + 1 such that these f lagging honest parties do not propose a round
r + 1 vertex. This prevents the round r leader vertex from being committed.

After GST, when Lr is honest, honest parties do not timeout in round r. Thus, Byzantine parties cannot
propose round r + 1 vertex without voting for the round r leader vertex. This ensures round r leader vertex
gets directly committed.

Explicit round-synchronization. Our protocol consists of an explicit round-synchronization via multi-
casting of timeout messages and T Cr when Lr is faulty. This is to ensure all honest parties can receive T Cr

and 2f + 1 round r vertices within 2∆ time and send ⟨no-vote, r⟩ to Lr+1. This allows Lr+1 to collect a
NVCr in a timely manner and allows all honest parties to receive the round r + 1 leader vertex before they
timeout in round r + 1.

3.1 Efficiency Analysis

Commit latencies. The commit latency of the leader vertex is the time taken to propagate round r vertices
(via RBC), and one communication step required to receive the first messages for 2f + 1 round r+ 1 vertices
i.e., one RBC, plus 1δ. When employing the RBC protocol due to Das et al. [15], the commit latency of the
leader vertex is 5δ. The non-leader vertices require an additional RBC (i.e. 4δ) to be committed.

We note that the Bullshark (and Shoal) cannot support a commit with a latency with one RBC, plus 1δ.
This is due to the following reasons. First, Bullshark waits for only f + 1 round r + 1 vertices with strong
paths to round r leader vertex to commit the round r leader vertex. Out of these round r + 1 vertices, up
to f could be sent by Byzantine parties. If we rely only on the first received value of the RBC (based on
the first message), the final delivered value could be different when its sender is faulty. In this case, the final
delivered vertices may not have strong path to the round r leader vertex for up to f vertices. A single round
r+1 vertex from an honest party with a strong path to the round r leader vertex is insufficient to ensure the
safety of a commit. On the other hand, if Bullshark were to be modified to commit upon receiving 2f + 1
round r + 1 vertices with strong paths to round r leader vertex, it may fail to commit any leader vertices.
This is because Bullshark does not require a round r + 1 vertex to include T Cr when it does not have a
strong path to round r vertex leader. As explained above, this allows Byzantine parties to drive the protocol
fast and prevent a commit (even after GST).

Latency analysis under failures. Note that τ of our protocol is 6∆ in the round following an honest
leader and 8∆ in the round following a Byzantine leader. The additional timeout is required because the
round r leader vertex needs to wait for NVCr−1 when Lr−1 is faulty. In contrast, Bullshark (and Shoal)
requires τ of 6∆ in all scenarios (when using the RBC primitive of Das et al. [15]).

Despite our protocol having a slightly larger τ compared to Bullshark (and Shoal), the commit latency
does not worsen when a single Byzantine failure occurs between two honest leaders. This is because both
our protocol and Bullshark (and Shoal) require honest parties to wait for 6∆ in the round corresponding to

9



the Byzantine leader. In the subsequent round, the honest leader can obtain NVC and propose responsively,
meaning the increased value of τ doesn’t increase latency in practice (when messages arrive in δ < ∆ time).
In fact, our protocol incurs less latency despite the need to wait for T C and NVC, primarily due to having
a leader every round and smaller commit latency.

As a concrete example, we consider the commit latency of the non-leader vertices of round r−1 when Lr

is Byzantine and both Lr−1 and Lr+1 are honest. For both our protocol and Bullshark (and Shoal), honest
parties need to wait for 6∆ time in round r. Let t be the time when the first honest party enters round
r. Since honest parties may enter round r within 2∆ of each other, all honest parties receive T Cr by time
t + 8∆ + δ and Lr+1 receives NVCr by t + 8∆ + 2δ. As Lr+1 is honest, its leader vertex can be committed
in the next 5δ time; committing round r− 1 non-leader vertices in 8∆ + 11δ time (compared to 9δ when Lr

is honest.)
In the case of Bullshark (and Shoal), apart from 6∆ wait in round r, honest parties would need to wait

for round r + 1 vertices from some honest parties that entered round r late (since honest parties enter a
round within 2∆ of each other). Moreover, in their case, the round r + 2 leader vertex is the next vertex to
be committed in round r + 3. In total, the latency to commit round r − 1 non-leader vertices is 8∆ + 16δ
(compared to 12δ when Lr is honest, in the case of Shoal). Thus, under a single Byzantine failure between
honest leaders, our protocol still performs better compared to both Bullshark and Shoal.

However, when there is a sequence of two or more bad leaders in between honest leaders, honest parties
need to wait for τ of 8∆ time, and hence our protocol would slightly underperform compared to Bullshark
(and Shoal) in terms of latency.

Communication complexity. The size of each vertex is O(n) since it consists of references to up to n
vertices and, may contain timeout certificate and no-vote certificate. The size of these certificates is O(1)
assuming threshold signatures [7] (O(n) without threshold signatures). In each round, each party propagates
a single vertex via RBC. The RBC protocol of Das et al. [15] incurs an optimal O(n2) communication to
propagate O(n)-sized messages. Thus, the total communication complexity is O(n3) per round. Similarly,
all-to-all multicast of timeout certificates incurs O(n2) communication assuming threshold signatures (or
O(n3) without threshold signatures). Thus, the overall communication complexity is O(n3) per round.

We note that a single vertex can contain O(n) transactions without increasing its size. This results in
amortized linear communication complexity per round.

3.2 Security Analysis

We say that a leader vertex vi is committed directly by party Pi if Pi invokes commit leader(vi). Similarly,
we say that a leader vertex vj is committed indirectly if it is added to leaderStack in Line 84. In addition,
we say party Pi consecutively directly commit leader vertices vk and vk′ if Pi directly commits vk and vk′ in
rounds r and r′ respectively and does not directly commit any leader vertex between r and r′.

The following fact is immediate from using reliable broadcast to propagate a vertex v and waiting for the
entire causal history of v to be added to the DAG before adding v.

Fact 1. For every two honest parties Pi and Pj (i) for every round r,
⋃

r′≤r DAGi[r
′] is eventually equal

to
⋃

r′≤r DAGj [r
′], (ii) at any given time t and round r, if v ∈ DAGi[r] ∧ v′ ∈ DAGj [r] s.t. v.source =

v′.source, then v = v′. Moreover, for every round r′ < r, if v′′ ∈ DAGi[r
′] and there is a path from v to v′′,

then v′′ ∈ DAGj [r
′] and there is a path from v′ to v′′.

Claim 1. If an honest party Pi directly commits a leader vertex vk in round r, then for every leader vertex
vℓ in round r′ such that r′ > r, there exists a strong path from vℓ to vk.

Proof. Since Pi directly committed vk in round r, there exists a set Q of 2f + 1 vertices in DAGi[r+ 1] that
included a reference to vertex vk. Let H ⊂ Q be the set of vertices proposed by honest parties in Q. We
complete the proof by showing the statement holds for any r′ > r.

Case r′ = r + 1: If vℓ ∈ H, we are trivially done. Otherwise, the vertices in H are from round r + 1
honest non-leader parties. When a round r + 1 honest non-leader party Pi includes a reference to vertex

10



leader vk, it does not send a round r no-vote message. Since |H| ≥ f + 1, by standard quorum intersection
argument, NVCr does not exist. Moreover, parties in H have delivered vk. By Fact 1, Lr+1 will eventually
deliver vk. Thus, if vℓ exists, it must include a reference to vk and there exists a strong path from vℓ to vk.

Case r′ > r + 1: Observe that a round r + 2 vertex has a strong path to 2f + 1 round r + 1 vertices.
By standard quorum intersection, this includes at least f + 1 vertices in Q which has a strong path to vk.
Thus, all-round r+ 2 vertices (including round r+ 2 leader vertex) have a strong path to vk. Moreover, each
round r′′ > r + 2 vertex has strong paths to at least 2f + 1 vertices in round r′′ − 1. By transitivity, each
vertex at round r′′ has strong paths to at least 2f + 1 vertices in round r + 2. This implies vℓ must have a
strong path to vk.

Claim 2. If an honest party Pi directly commits a leader vertex vk in round r and an honest party Pj directly
commits a leader vertex vℓ in round r′ ≥ r, then Pj (directly or indirectly) commits vk in round r.

Proof. If r′ = r, by Fact 1, vk = vℓ and we are trivially done. When r′ > r, by Fact 1 and Claim 1, there
exists a strong path from vℓ to vk in DAGj . By the code of commit leader, after directly committing a
leader vertex vℓ in round r′, Pi tries to indirectly commit leader vertices vm in smaller rounds such that
there exists a path from vℓ to vm until it reaches a round r′′ < r′ in which it previously directly committed
a leader vertex. If r′′ < r < r′, party Pj will indirectly commit vk in round r. Otherwise, by inductive
argument and Claim 1, party Pj must have indirectly committed vk when directly committing round r′′

leader vertex.

Claim 3. Let vk and v′k be two leader vertices consecutively directly committed by a party Pi in rounds ri
and r′i > ri respectively. Let vℓ and v′ℓ be two leader vertices consecutively directly committed by party Pj in
rounds rj and r′j > rj respectively. Then, Pi and Pj commits the same leaders between rounds max(ri, rj)
and min(r′i, r

′
j) and in the same order.

Proof. If r′i < rj or r′j < ri, then there are no rounds between max(ri, rj) and min(r′i, r
′
j) and we are trivially

done. Otherwise, assume wlog that ri ≤ rj ≤ r′i. By Claim 2, both Pi and Pj will (directly or indirectly)
commit the same leader in the round min(r′i, r

′
j). By the code of commit leader, after (directly or indirectly)

committing a leader vertex, parties try to indirectly commit leaders in smaller round numbers until they
reach a round in which they previously directly committed a leader. Therefore, both Pi and Pj will indirectly
commit all leaders from min(r′i, r

′
j) to max(ri, rj). Assume min(r′i, r

′
j) = r′i. By Fact 1, both DAGi and

DAGj will contain v′i and all vertices that have a path from v′i in DAGi. Due to deterministic code of
commit leader, both parties will commit the same leaders between rounds min(r′i, r

′
j) to max(ri, rj).

By inductively applying Claim 3 between any two pairs of honest parties we obtain the following corollary.

Corollary 1. Honest parties commit the same leaders in the same order.

Lemma 1 (Total order). The protocol in Figures 1 to 3 satisfies Total order.

Proof. By Corollary 1, honest parties commit the same leaders in the same order. By the code of or-
der vertices, parties iterate on the committed leaders according to their order and a deliver all vertices in
their causal history by a predefined deterministic rule. By Fact 1, all honest parties have the same causal
history in their DAG for every committed leader. Thus, the lemma follows.

Lemma 2 (Agreement). The protocol in Figures 1 to 3 satisfies Agreement.

Proof. If an honest party Pi outputs a deliveri(vi.block, vi.round, vi.source), vi must be in the causal history
of some leader vertex vk.

When party Pj eventually directly commits a leader vertex vℓ for round higher than vk.round, by Lemma 1,
Pj also commits vk. By Fact 1, the causal histories of vk in DAGi and DAGj are the same. Thus, when Pj

orders the causal histories of vk, it outputs a deliverj(vi.block, vi.round, vi.source).

Lemma 3 (Integrity). The protocol in Figures 1 to 3 satisfies Integrity.

11



Proof. An honest party Pi calls a deliveri(v.block, v.round, v.source) only when vertex v is in DAGi. The
vertices in DAGi are added with event r deliveri(v, v.round, v.source). Therefore, the proof follows from the
Integrity property of reliable broadcast.

Validity. We rely on GST to prove validity. For RBC, we use the protocol from Das et al. [15] for its
(nearly) optimal communication complexity. Their protocol requires 4 communication steps and satisfies the
RBC properties at all times. After GST, it provides the following stronger guarantees:

Property 1. Let t be a time after GST. If an honest party reliably broadcasts a message M at time t, all
honest parties deliver M by time t + 4∆.

Property 2. Let tg denote the GST. If an honest party delivers message M at time t, then all honest parties
deliver M by time max(tg, t) + 2∆.

Claim 4. Let tg denote the GST and Pi be the first honest party to enter round r. If Pi enters round r at time
t via receiving round r − 1 leader vertex, then all honest parties enter round r or higher by max(tg, t) + 2∆.

Proof. Observe that Pi must have delivered 2f + 1 round r− 1 vertices along with round r− 1 leader vertex
by time t. By Property 2, all honest parties must have delivered 2f +1 round r−1 vertices along with round
r− 1 leader vertex by max(tg, t) + 2∆. Thus, all honest parties will enter round r by max(tg, t) + 2∆ if they
have not already entered a higher round.

Claim 5. Let tg denote the GST and Pi be the first honest party to enter round r. If Pi enters round
r at time t via T Cr−1, then (i) all honest parties (except Lr when Pi ̸= Lr) enter round r or higher by
max(tg, t) + 2∆, and (ii) Lr (if honest and Pi ̸= Lr) enters round r or higher by max(tg, t) + 4∆.

Proof. Observe that Pi must have delivered 2f + 1 round r − 1 vertices and received T Cr−1 by time t.
By Property 2, all honest parties must have delivered 2f + 1 round r − 1 vertices by max(tg, t) + 2∆. In
addition, Pi must have multicasted T Cr−1 which arrives all honest parties by max(tg, t)+∆. Thus, all honest
parties (except Lr when Pi ̸= Lr) will enter round r by max(tg, t) + 2∆ if they have not already entered a
higher round. This proves part (i) of the claim.

Observe that if no honest party delivered round r− 1 leader vertex by max(tg, t) + 2∆, all honest parties
(including Lr) will send ⟨no-vote, r−1⟩ to Lr. Thus, Lr will receive NVCr−1 by time max(tg, t)+3∆. On the
other hand, if at least one honest party delivered round r−1 leader vertex by max(tg, t)+2∆, by Property 2,
Lr will deliver round r− 1 leader vertex by max(tg, t) + 4∆. Thus, Lr will enter round r by max(tg, t) + 4∆
if it has not already entered a higher round. This proves part (ii) of the claim.

Claim 6. All honest parties keep entering increasing rounds.

Proof. Suppose all honest parties are in round r or above. Let party Pi be in round r. If there exists an
honest party Pj in round r′ > r at any time, then by Claim 4 and Claim 5, all honest parties will enter round
r′ or higher. Otherwise, all honest parties are in round r. Observe that all honest parties will r broadcast
round r vertex when entering round r. Thus, all honest parties will deliver 2f + 1 round r vertices.

Observe that if no honest party delivered round r leader vertex, due to the timeout rule, all honest parties
will multicast ⟨timeout, r⟩ and receive T Cr. In addition, all honest parties will also send ⟨no-vote, r⟩ to Lr+1

and Lr+1 will receive NVCr−1. Thus, all honest parties will move to round r + 1. On the other hand, if
at least one honest party has delivered round r leader vertex, by Fact 1, all honest parties will deliver the
round r leader vertex. Having delivered 2f + 1 round r vertices and round r leader vertex, all honest parties
will move to round r + 1.

Claim 7. If an honest party enters round r then at least f + 1 honest parties must have already entered
r − 1.

Proof. For an honest party to enter round r, it must have delivered 2f + 1 round r − 1 vertices. At least
f + 1 of those vertices are sent by honest parties while they were in round r− 1. Thus, f + 1 honest parties
must have already entered r − 1.

12



Claim 8. If the first honest party to enter round r does so after GST and Lr is honest, then there exists at
least 2f + 1 round r + 1 vertices with strong paths to round r leader vertex.

Proof. Let t be the time when the first honest party (say Pi) entered round r. Observe that no honest
party sends ⟨timeout, r⟩ before t + 8∆ due to its round timer expiring. Accordingly, no honest party sends
⟨timeout, r⟩ due to receiving f + 1 ⟨timeout, r⟩ before t + 8∆. Thus, T Cr does not exist before t + 8∆. In
addition, by Claim 7, no honest party can enter a round greater than r until at least f + 1 honest parties
have entered r. Thus, no honest party sends a timeout message for a round greater than r before t + 8∆
and no honest party enters a round greater than r via a timeout certificate before t + 8∆.

Since, Pi entered round r at time t, by Claim 5, all honest parties (except Lr) enter round r or higher by
t + 2∆ and Lr enters round r or higher by t + 4∆. Observe that if some honest party enters a round higher
than r+ 1 before t+ 8∆, there exists at least 2f + 1 round r+ 1 vertices with strong paths to round r leader
vertex (say vk). This is because for an honest party to enter round r′, it must have delivered 2f + 1 round
r′ − 1 vertices. By transitive argument, it must be that there exists 2f + 1 round r + 1 vertices. Since T Cr

does not exist before t + 8∆, the round r + 1 vertices must have a strong path to round r to vk.
Also, note that if an honest party enters round r + 1 before t + 8∆, it must have delivered 2f + 1 round

r vertices and vertex vk (since T Cr does not exist before t + 8∆). Thus, its round r + 1 vertex must have a
strong path to vk.

In the rest of the proof, we consider the case when no honest party entered a round higher than r before
t + 8∆. Thus, by Claim 5, all honest parties (except Lr) enter round r by t + 2∆ and Lr enters round r
by t + 4∆. Note that an honest party r broadcasts round r vertex when it enters round r. By Property 1,
round r vertices from all honest parties (except Lr) will be delivered by t + 6∆. In addition, by Property 1,
vk will be delivered by t + 8∆. Thus, all honest parties will receive 2f + 1 round r vertices by t + 8∆ along
with vk and send round r + 1 vertex with a strong path to vk.

The above claim uses τ = 8∆. When an honest party enters round r via receiving round r − 1 leader
vertex, by using Claim 4 (instead of Claim 5), we can show the above claim holds with τ = 6∆. By the
commit rule and Claim 8, the following corollary follows.

Corollary 2. If the first honest party to enter round r does so after GST and Lr is honest, all honest parties
will directly commit round r leader vertex.

Lemma 4 (Validity). The protocol in Figures 1 to 3 satisfies Validity.

Proof. Let party Pi be an honest party that invokes a bcast(b, r). We show that all honest parties eventually
output a deliver(b, r, pi). Observe that Pi pushes b into the blocksToPropose queue. By Claim 6, Pi keeps
increasing rounds and creating new vertices in those new rounds. Thus, Pi will eventually create a vertex
vi with b at some round r and reliably broadcast it. By the Validity property of reliably broadcast, all
honest parties will eventually add it to their DAG i.e., vi ∈ DAG[r] for every honest party. By the code of
create new vertex, every vertex that Pj creates after vi is added to DAGj [r] has a path to vi.

By Corollary 2, the leader vertex proposed by an honest leader is directly committed after GST. With
a leader-election function that elects all parties with equal probability, there will be an honest leader who
will propose a vertex with a path to vi and the leader vertex will be committed. By the code of or-
der vertices, Pj will eventually invoke a deliver(b, r, pi). By Lemma 2, all honest parties will eventually
invoke a deliver(b, r, pi).

4 Related Work

There has been an extensive body of research aimed at enhancing the performance of BFT consensus pro-
tocols. Recently, DAG-based BFT protocols have emerged as a means to enhance the throughput of BFT
consensus protocols. We review the most recent and closely related works below. Compared to all these
protocols, our protocols require one RBC, plus 1δ to commit the leader vertex and an additional RBC to
commit the non-leader vertices. When employing the RBC protocol by Das et al. [15], our protocol requires

13



5δ to commit the leader vertex and an additional 4δ to commit the non-leader vertices. Moreover, our
protocol maintains a communication complexity of O(n3) per round.

Asynchronous DAG-based BFT. Hashgraph [6] builds an unstructured DAG, with each vertex containing
two references to previous vertices, and on top of the DAG, the parties run an inefficient binary agreement
protocol. This leads to expected exponential time complexity. Aleph [20] is an asynchronous DAG-based
BFT that builds a structured round-based DAG, where parties proceed to the next round once they receive
2f + 1 DAG vertices from other parties in the same round. On top of the DAG construction protocol, an
asynchronous binary agreement protocol decides on the order of vertices to commit; resulting in a higher
commit latency.

DAG-Rider [23] is an asynchronous DAG-based BFT protocol. DAG-Rider progresses through waves
where each wave consists of 4 rounds. There is a single leader in each wave and it requires an expected 6
rounds (i.e., 6 sequential RBCs) to commit the leader vertex. Since the non-leader vertices are ordered when
the leader vertex is committed, they require an additional 4 rounds to commit the non-leader vertices that
share a round with the leader vertex. Tusk [14] is an implementation based on DAG-Rider.

Very recently, GradedDAG [12] and LightDAG [11] improve the latency of asynchronous DAG-based
BFT protocols by using weaker primitives such as consistent broadcast [33] instead of RBC. While the use of
weaker primitives improves the latency in fault-free cases, they require parties to download missing vertices
at a later point when failures occur, leading to an increase in latency.

Partially synchronous DAG-based BFT. Bullshark [31, 32] builds upon DAG-Rider to improve the
commit latency during the synchronous period. It follows the same wave structure consisting of 4 rounds.
The partially synchronous version of Bullshark has one leader every two rounds. It requires 2 RBCs to
commit a leader vertex and an additional 2 RBCs to commit the non-leader vertices that share a round
with the leader vertex. Furthermore, Bullshark relies on an honest leader to synchronize all parties post the
GST, committing a vertex only after such synchronization. Consequently, it demands two honest leaders
to successfully commit a vertex after GST, leading to latency issues in case of frequent transitions between
synchrony and asynchrony in the network. In contrast, our protocol has explicit round synchronization and
supports commit with a single honest leader after GST.

Shoal [30] proposed a pseudo-pipelining approach to reduce the latency of non-leader vertices in Bullshark-
based consensus protocols. In their protocol, they execute multiple instances of the Bullshark-based protocol
sequentially, ensuring that a leader vertex is present in every round. However, their protocol relies on an
instance of Bullshark to commit some vertex before initiating a new instance with a leader in the next
round. With an adversarial leader schedule alternating between Byzantine and honest leaders, Bullshark
(and Shoal) fails to make progress. Consequently, Shoal’s ability to ensure a leader vertex in each round is
compromised. Furthermore, Shoal inherits the latency of 2 RBCs to commit leader vertices.

In a recent work, Cordial Miners [24] proposed a DAG-based BFT protocol by using best-effort-broadcast
instead of RBC to propagate the vertices in order to improve the latency. In their protocol, each party Pi

sends references to at least 2f + 1 round r− 1 vertices in the round r vertex. In the next round, each honest
party Pj sends vertices “not seen” by party Pi to party Pi. Thus, honest parties will need to send O(n)
blocks in each round when the Byzantine parties “selectively” send their blocks to only some honest parties.
Moreover, the Byzantine parties can always send their round r vertices without strong paths to up to f
round r − 1 vertices sent by honest parties. This causes the honest parties to send the missing vertices to
the Byzantine parties. Thus, their communication complexity is always O(n4) per round with f Byzantine
failures. Moreover, their protocol requires honest parties to “wait” for a timeout before moving to higher
round in order to receive honest block proposals in each round. This is to ensure honest parties do not need
to forward honest vertices at a later round. In order to ensure timely delivery of the messages, each round
has to be at least 2∆ [1]; this results in a commit latency of at least 6∆ for leader vertices and an additional
6∆ to commit non-leader vertices that share a round with the leader vertices.

Mysticeti [5] introduces fast path commit for account based transactions and adds support to commit
multiple leaders from a single round. Their protocol requires 3 RBCs to commit a leader vertex. Moreover,
leader rounds occur every four rounds. This further increases the commit latency for non-leader vertices.

14



We also note two recent works, BBCA-chain [26] and Motorway [22] that focus on improving the through-
put of chain-based BFT protocols by enabling all parties to propose in each round. In BBCA-chain, non-
leader parties propose their blocks using best-effort-broadcast, and the leader incorporates these non-leader
blocks in its proposal. In Motorway, all parties additionally acquire data availability certificates (acknowledg-
ments from f + 1 parties) for their proposed blocks with the leader including n data availability certificates
in its block proposal. In both schemes, the leader is responsible for propagating O(n) proposals when the
Byzantine parties “selectively” send their proposals only to the leader. When the size of each proposal is
O(n) bits (which is typically the case with DAG-based BFT), the leader is responsible to disseminate O(n2)
bits; imposing an heavier burden on the leader i.e., these protocol do not have equal distribution of work.
In comparison, in our protocol (and DAG-based BFT protocols in general), each party is responsible for
performing the same amount of work.

References

[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous byzantine
agreement with expected o (1) rounds, expected communication, and optimal resilience. In International
Conference on Financial Cryptography and Data Security, pages 320–334. Springer, 2019.

[2] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of byzantine broadcast:
A complete categorization. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing, pages 331–341, 2021.

[3] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and Haibin Zhang.
Balanced byzantine reliable broadcast with near-optimal communication and improved computation. In
Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, pages 399–417, 2022.

[4] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and Haibin Zhang.
Brief announcement: Asynchronous verifiable information dispersal with near-optimal communication.
In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, pages 418–420,
2022.

[5] Kushal Babel, Andrey Chursin, George Danezis, Lefteris Kokoris-Kogias, and Alberto Sonnino. Mys-
ticeti: Low-latency dag consensus with fast commit path. arXiv preprint arXiv:2310.14821, 2023.

[6] Leemon Baird. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault tolerance. Swirlds
Tech Reports SWIRLDS-TR-2016-01, Tech. Rep, 34:9–11, 2016.

[7] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. Journal of
cryptology, 17:297–319, 2004.

[8] Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987.

[9] Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Victor Shoup, and Dominic
Williams. Internet computer consensus. In Proceedings of the 2022 ACM Symposium on Principles
of Distributed Computing, pages 81–91, 2022.

[10] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, number 1999 in 99,
pages 173–186, 1999.

[11] Xiaohai Dai, Guanxiong Wang, Jiang Xiao, Zhengxuan Guo, Rui Hao, Xia Xie, and Hai Jin. Lightdag:
A low-latency dag-based bft consensus through lightweight broadcast. Cryptology ePrint Archive, 2024.

[12] Xiaohai Dai, Zhaonan Zhang, Jiang Xiao, Jingtao Yue, Xia Xie, and Hai Jin. Gradeddag: An asyn-
chronous dag-based bft consensus with lower latency. Cryptology ePrint Archive, 2024.

15



[13] George Danezis and David Hrycyszyn. Blockmania: from block dags to consensus. arXiv preprint
arXiv:1809.01620, 2018.

[14] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal and
tusk: a dag-based mempool and efficient bft consensus. In Proceedings of the Seventeenth European
Conference on Computer Systems, pages 34–50, 2022.

[15] Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its applications. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pages
2705–2721, 2021.

[16] Isaac Doidge, Raghavendra Ramesh, Nibesh Shrestha, and Joshua Tobkin. Moonshot: Optimizing
chain-based rotating leader bft via optimistic proposals. arXiv preprint arXiv:2401.01791, 2024.

[17] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the ACM (JACM), 35(2):288–323, 1988.

[18] EigenLabs. Intro to eigenda: Hyperscale data availability for rollups, 2023. Accessed on March 20,
2024.

[19] Ethereum. Data availability — ethereum.org, 2024. Accessed on March 20, 2024.

[20] Adam Gκagol, Damian Leśniak, Damian Straszak, and Micha l Świκetek. Aleph: Efficient atomic
broadcast in asynchronous networks with byzantine nodes. In Proceedings of the 1st ACM Conference
on Advances in Financial Technologies, pages 214–228, 2019.

[21] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun Xiang.
Jolteon and ditto: Network-adaptive efficient consensus with asynchronous fallback. In International
Conference on Financial Cryptography and Data Security, pages 296–315. Springer, 2022.

[22] Neil Giridharan, Florian Suri-Payer, Ittai Abraham, Lorenzo Alvisi, and Natacha Crooks. Motorway:
Seamless high speed bft. arXiv preprint arXiv:2401.10369, 2024.

[23] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need is dag.
In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, pages 165–175,
2021.

[24] Idit Keidar, Oded Naor, Ouri Poupko, and Ehud Shapiro. Cordial miners: Fast and efficient consensus
for every eventuality. In 37th International Symposium on Distributed Computing (DISC 2023). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik, 2023.

[25] Dahlia Malkhi and Kartik Nayak. Hotstuff-2: Optimal two-phase responsive bft. Cryptology ePrint
Archive, 2023.

[26] Dahlia Malkhi, Chrysoula Stathakopoulou, and Maofan Yin. Bbca-chain: One-message, low latency bft
consensus on a dag. arXiv preprint arXiv:2310.06335, 2023.

[27] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft protocols.
In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pages
31–42, 2016.

[28] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. Improved extension protocols
for byzantine broadcast and agreement. arXiv preprint arXiv:2002.11321, 2020.

[29] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model. In 31
International Symposium on Distributed Computing, page 6, 2017.

16



[30] Alexander Spiegelman, Balaji Aurn, Rati Gelashvili, and Zekun Li. Shoal: Improving dag-bft latency
and robustness. arXiv preprint arXiv:2306.03058, 2023.

[31] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bullshark: Dag
bft protocols made practical. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 2705–2718, 2022.

[32] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bullshark: The
partially synchronous version. arXiv preprint arXiv:2209.05633, 2022.

[33] TK Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-tolerant algo-
rithms. Distributed Computing, 2:80–94, 1987.

[34] Espresso Systems. Designing the espresso sequencer: Combining hotshot consensus with tiramisu da -
hackmd, 2023. Accessed on March 20, 2024.

[35] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft
consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 347–356, 2019.

17


	Introduction
	Preliminaries
	Building Blocks
	Problem Definition

	The Sailfish Protocol
	Efficiency Analysis
	Security Analysis

	Related Work

