
Classical and Quantum Generic Attacks on
6-round Feistel Schemes

Maya Chartouny1,2, Benoit Cogliati1, and Jacques Patarin1,2

1 Thales DIS, Meudon, France
{maya.saab-chartouni, benoit-michel.cogliati,

jacques.patarin}@thalesgroup.com
2 Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de Versailles,

78000, Versailles, France

Abstract. In this paper, we describe new quantum generic attacks on
6 rounds balanced Feistel networks with internal functions or internal
permutations. In order to obtain our new quantum attacks, we revisit a
result of Childs and Eisenberg that extends Ambainis’ collision finding
algorithm to the subset finding problem. In more details, we continue
their work by carefully analyzing the time complexity of their algorithm.
We also use four points structures attacks instead of two points structures
attacks that leads to a complexity ofO(28n/5) instead ofO(22n). Moreover,
we have also found a classical (i.e. non quantum) improved attack on 6
rounds with internal permutations. The complexity here will be in O(22n)
instead of O(23n) previously known.

Keywords: Feistel ciphers · Pseudo-random permutation · Quantum
cryptanalysis · Luby–Rackoff block cipher · Subset finding problem

1 Introduction

In this paper, we will study the classical and the quantum security of random
balanced Feistel ciphers, by showing the best known quantum attacks on these
schemes. A random Feistel cipher also known as Luby–Rackoff block cipher is
a symmetric structure used in the construction of block ciphers. The benefit of
the Feistel network is that the same structure can be used for encryption and
decryption, and both consist of running a function called a “round function” a
fixed number of times. Each round of a (balanced) Feistel scheme takes as input
[L, R] that stands for Left and Right and outputs [R, L⊕f(R)] where the internal
round function f is a secret function from n bits to n bits. When the internal
round functions f1, . . . , fr are random functions, or random permutations these
schemes are called “random Feistel ciphers” also known as Luby-Rackoff block
ciphers. A huge number of papers have been written on these constructions, and
the most studied way to build pseudo-random permutation from random function
(or random permutations) is the r−round Feistel construction.

2 Chartouny et al.

State of the art. Classical attacks on Feistel’s schemes have been widely studied
in the literature [Pat01,NVP13,Pat08,Wag99]. Since 2010, the quantum security
of these schemes is studied. We will present results that have been published in
various papers on these quantum attacks, and we will also present new quantum
attacks that we have found.

At least three very different quantum technique can be used to attack the
Feistel network. For instance, Simon’s quantum algorithm was used for 3 rounds
(quantum chosen plaintext attack of [KM10]) and for 4 rounds (quantum chosen
plaintext and cipher text attack [IHM+19]). Thanks to Simon’s quantum algo-
rithm, which consists in searching for a period, the complexity of these quantum
attacks is polynomial (unlike the exponential complexity of non-quantum attacks).
Moreover, for 5 rounds (quantum chosen plaintext and quantum plaintext and
cipher-text attacks of [CPT22]) Zhandry collision algorithm [Zha13] was used.
This algorithm is based on a result of Ambainis [Amb04]. The quantum attacks
obtained are still exponential, but with a smaller exponent than for non quantum
attacks.

KPA CPA CCA QCPA QCCA
Ψ1 1 1 1 1 1
Ψ2 2n/2 2 2 2 2
Ψ3 2n/2 2n/2 3 n 3
Ψ4 2n 2n/2 2n/2 2n/2 n

Ψ5 23n/2 2n 2n 22n/3 22n/3

Ψ6 22n 22n 22n 28n/5(New) 28n/5(New)

Fig. 1: Number of computations to distinguish Feistel schemes (with 1, 2, 3, 4, 5
and 6 rounds) with random internal functions from random permutations.

KPA CPA CCA QCPA QCCA
Ψ1 1 1 1 1 1
Ψ2 2n/2 2 2 2 2
Ψ3 2n(+) 2n/2 3 n 3
Ψ4 2n 2n/2 2n/2 2n/2 n

Ψ5 23n/2 2n 2n 22n/3 22n/3

Ψ6 22n(New) 22n(New) 22n(New) 28n/5(New) 28n/5(New)

Fig. 2: Number of computations to distinguish Feistel schemes (with 1, 2, 3, 4, 5
and 6 rounds) with random internal permutations from random permutations
(best known attacks). We write (+) when the complexity is worse than for Feistel
networks with internal functions.

Quantum Generic Attacks on 6 rounds Feistel Schemes 3

Our contribution. In this article, we will present new results. In fact,

– We showed that the classical (i.e. non-quantum) complexity over 6 rounds
Feistel schemes with internal permutation is in O(22n) and not O(23n) as
mentioned in [TP09].

– We developed the existing attack on 6-round Feistel networks with internal
functions, providing detailed insights.

– To validate the classical attack on both 6-round Feistel schemes with in-
ternal functions and 6-round Feistel schemes with internal permutations,
we performed computer simulations to provide empirical evidence of its
effectiveness.

– We made a detailed time complexity analysis to Childs and Eisenberg’s
algorithm.

– By using Childs and Eisenberg’s quantum algorithm, we improved attack
methods. This allowed us to perform a quantum attack on 6-round Feistel
schemes with internal functions as well as internal permutations with a
complexity of O(28n/5) instead of the previously known classical complexity
of O(22n).

2 Preliminaries

Notations. For n ∈ N, n ≥ 1, {0, 1}n denotes the set of binary strings of length
n. Let Fm,n be the set of all functions from {0, 1}m to {0, 1}n. When m = n, the
set of all functions from {0, 1}n to {0, 1}n will be denoted by Fn. If L and R are
elements of {0, 1}n, we will denote by [L, R] the element of {0, 1}2n which is the
concatenation of L and R. The XOR operator is denoted by ⊕ (bit wise addition
modulo 2).

Security notions. An adversary’s advantage is a measure of how successfully
he can attack a cryptographic algorithm, by distinguishing it from an idealized
version of that type of algorithm.

Consider an oracle, denoted as F , which represents the function being studied,
and another oracle, denoted as G, which simulates an idealized function of the
same type. The adversary, denoted as A, is a probabilistic algorithm that takes
either F or G as input and produces an output of either 1 or 0. The primary
task of adversary A is to differentiate between F and G by making queries to
the oracle provided. We can compute the advantage by using this formula:

Adv(A) = |Pr[A(F) = 1] − Pr[A(G) = 1]| .

A useful lemma. In this paragraph, we state a Chernoff-type bound for binary
random variables that are moderately dependent, and do not necessarily share a
common bound. This result can be seen as a slight variant of [CLL+14, Lemma
5].

4 Chartouny et al.

Lemma 1. Let A = (Ai)1≤i≤q be a sequence of random variables taking value
in {0, 1}. Assume that, for any 1 ≤ i ≤ q, there exists 0 ≤ εi < 1 such that, for
any binary sequence (a1, . . . , ai−1), one has

Pr[Ai = 1 | (A1, . . . , Ai−1) = (a1, . . . , ai−1)] ≤ εi.

Then, for any δ > 0, one has

Pr
[

q∑
i=1

Ai ≥ (1 + δ)m
]

≤ e− δ2
2+δ m,

where m =
q∑

i=1
εi.

The proof of this Lemma can straightforwardly be derived from the one of [CLL+14,
Lemma 5]. For the sake of completeness, we state it in Appendix A.

3 Feistel schemes

In this section, we recall the definition of a classical (aka balanced) Feistel scheme.

First round Feistel scheme. Let f ∈ Fn. The first round balanced Feistel
scheme associated with f , denoted by Ψ(f), is the function in F2n defined by:

∀(L, R) ∈ {0, 1}2n, Ψ(f)
(

[L, R]
)

= [S, T] ⇐⇒

{
S = R,

T = L ⊕ f(R).

For any function f , Ψ(f) is a permutation of {0, 1}2n.
The figure of the Feistel scheme for the first round is given in Figure 3.

L

?i
R

�f�

S = R T = L⊕ f(R)

Fig. 3: First round of Feistel scheme.

Quantum Generic Attacks on 6 rounds Feistel Schemes 5

r−round Feistel scheme. Let f1, f2, . . . , fr be r functions in Fn. The r−round
balanced Fesitel network associated with f1, . . . , fr, denoted by Ψr (f1, . . . , fr),
is the function in F2n defined by:

Ψr (f1, . . . , fr) = Ψr(fr) ◦ · · · ◦ Ψ1(f1).

6−round Feistel scheme. We provide now detailed equations of the Feistel
network for the initial six rounds. Let M = L||R, then

1 round:
{

R,

L ⊕ f1(R) = X.
4 rounds:

{
Z,

Y ⊕ f4(Z) = U.

2 rounds:
{

X,

R ⊕ f2(X) = Y.
5 rounds:

{
U,

Z ⊕ f5(U) = S.

3 rounds:
{

Y,

X ⊕ f3(Y) = Z.
6 rounds:

{
S,

U ⊕ f6(S) = T.

Alternative notation. We will also introduce variables Xi such that for each
round k we have

Xk = Xk−2 ⊕ fk(Xk−1). (1)

Hence, X1 = L , X0 = R, X1 = X, X2 = Y , X3 = Z, X4 = U , X5 = S.

Theorems. Let [Li, Ri] be known inputs with 1 ≤ i ≤ m and let [Si, Ti] =
Ψ6(f1, . . . , f6)([Li, Ri]). We assume that [Li, Ri] values are pairwise distinct, i.e.,
we cannot have Li = Lj and Ri = Rj with i ̸= j.

Theorem 1. If we have internal functions, or internal permutations, and if
i ̸= j we cannot have Xk−1

i = Xk−1
j and Xk

i = Xk
j .

Proof. This theorem can be proved by induction on k using Equation(1).

Theorem 2. If we have internal permutations, and if i ̸= j we cannot have{
Xk−2

i = Xk−2
j , (∗)

Xk
i = Xk

j . (∗∗)

Proof. By definition, we have that (∗∗) is equivalent to Xk−2
i ⊕ fk(Xk−1

i) =
Xk−2

j ⊕ fk(Xk−1
j) and so fk(Xk−1

i) = fk(Xk−1
j) (thanks to Equation (∗)). Since

fk is a permutation, fk is injective, we get Xk−1
i = Xk−1

j . Hence, we have:{
Xk−2

i = Xk−2
j ,

Xk−1
i = Xk−1

j .

From Theorem(1) this is not possible.

6 Chartouny et al.

4 Classical attacks on 6 rounds Feistel schemes

In this section, we described a four points classical attack on 6 rounds Feistel
schemes with internal permutations. We identified an attack as detailed below with
a complexity of O(22n). Moreover, we made a detailed analysis of a four points
classical attack on 6−round Feistel schemes with internal functions presented
in [Pat01].

The Attack. Let [Li, Ri] ∈ {0, 1}2n. We generate m messages [Li, Ri] with
1 ≤ i ≤ m and m = O(22n). We then compute [Si, Ti] = Ψ6(f1, . . . , f6)([Li, Ri]).
We look if among these values we can find four pairwise distinct indices denoted
by 1, 2, 3, 4 such that these eight equations are satisfied:

(S)

R1 = R3,
R2 = R4,
S1 = S2,
S3 = S4,
L1 ⊕ L4 = L2 ⊕ L3,
L1 ⊕ S1 = L3 ⊕ S3, (⇐⇒ L2 ⊕ S2 = L4 ⊕ S4)
R1 ⊕ T1 = R2 ⊕ T2,
R3 ⊕ T3 = R4 ⊕ T4. (⇐⇒ T1 ⊕ T4 = T2 ⊕ T3)

We also have R1 ̸= R2, S1 ̸= S3 and T1 ̸= T2. We give a visual representation of
these 8 equations in Figure (4).

3 S, R⊕ T 4

R, L⊕ S

2S, R⊕ T1

R, L⊕ S

Fig. 4: Representation of the 8 equations of the System (S). The small square in
the right-hand corner below represents L1 ⊕ L2 ⊕ L3 ⊕ L4 = 0.

For a 6−round Feistel scheme with internal permutations, we will show that
we have about two times more such collision than for truly random permutations.
Similarly, for a 6-round Feistel scheme with internal functions, we show that we
have 12 times more such collisions than for a truly random permutation. This
will give us an attack of O(22n) in order to distinguish a random permutation
from a 6−round Feistel scheme with internal functions or permutations.

Quantum Generic Attacks on 6 rounds Feistel Schemes 7

Remark 1. This result was already known for internal functions [Pat01]. In fact,
when we have internal functions, different kinds of attacks are known with a
complexity of O(22n) : ’four points’ attacks as described in this paper, or ’two
points’ attacks. However, this result is new for internal permutations. Note also
that for internal permutations four points attacks are in O(22n) but ’two points’
attacks are in O(23n).

Case of 6−round Feistel with internal permutations.

Theorem 3. Let us assume that

(1)

R1 = R3,
R2 = R4,
S1 = S2,
L1 ⊕ L4 = L2 ⊕ L3.

Let us also assume that

(2)

X1 = X4,
Y1 = Y2,
Z1 = Z3,
U1 = U4.

Then, we will necessary have for a 6−round Feistel schemes with internal functions
(and hence also for internal permutations):

(3)

S3 = S4,
L1 ⊕ S1 = L3 ⊕ S3,
R1 ⊕ T1 = R2 ⊕ T2,
R3 ⊕ T3 = R4 ⊕ T4.

Note that the equations of System (2) are compatible with Theorem (1) and
Theorem (2) of Section (3).

Proof. Suppose we have System (1) and System (2), let us show that System (3)
is verified.

From X1 = X4 we get X2 = X3. In fact, X1 = X4 is equivalent to L1 ⊕
f1(R1) = L4 ⊕ f1(R4). Since R1 = R3, R4 = R2 and L1 ⊕ L4 = L2 ⊕ L3, we get,
L2 ⊕ f1(R2) = L3 ⊕ f1(R3), i.e., X2 = X3.

Similarly, from Y1 = Y2 we get Y3 = Y4. Indeed, Y1 = Y2 means R1 ⊕
f2(X1) = R2 ⊕ f2(X2). Since R1 = R3, R2 = R4, X1 = X4 and X2 = X3, we get
R3 ⊕ f2(X3) = R4 ⊕ f2(X4), i.e., Y3 = Y4.

Also, from Z1 = Z3 we get Z2 = Z4. In fact, Z1 = Z3 means X1 ⊕ f3(Y1) =
X3 ⊕ f3(Y3). Since X1 = X4, X3 = X2, Y1 = Y2, and Y3 = Y4, we obtain
X2 ⊕ f3(Y2) = X4 ⊕ f3(Y4), i.e., Z2 = Z4.

Moreover, from U1 = U4 we obtain U2 = U3. In fact, U1 = U4 is equivalent to
Y1 ⊕ f4(Z1) = Y4 ⊕ f4(Z4). Since Z1 = Z3, Z4 = Z2, Y1 = Y2 and Y4 = Y3, we
get Y2 ⊕ f4(Z2) = Y3 ⊕ f4(Z3), i.e., U2 = U3.

8 Chartouny et al.

3 4

R

2S, Y1

R, Z

X,U

Fig. 5: Representation of our 8 starting equations. The small square in the right-
hand corner below represents L1 ⊕ L2 ⊕ L3 ⊕ L4 = 0.

Similarly, from S1 = S2 we get S3 = S4. Indeed, S1 = S2 means Z1 ⊕
f5(U1) = Z2 ⊕ f5(U2). Since Z1 = Z3, Z2 = Z4, U1 = U4 and U2 = U3 we get
Z3 ⊕ f5(U3) = Z4 ⊕ f5(U4) which means S3 = S4.

Now from S1 = S2 we get:

U1 ⊕ U2 = T1 ⊕ T2, (2)

because T1 = U1 ⊕ f6(S1) and T2 = U2 ⊕ f6(S2).

Similarly from S3 = S4 we get U3 ⊕ U4 = T3 ⊕ T4, i.e.,

T3 ⊕ T4 = U1 ⊕ U2, (3)

because U4 = U1 and U3 = U2.

Similarly from U1 = U4 we get S1 ⊕ S4 = Z1 ⊕ Z4, i.e.,

S1 ⊕ S3 = Z1 ⊕ Z2, (4)

since S4 = S3 and Z4 = Z2.

Similarly from Z1 = Z3 we get U1 ⊕ U3 = Y1 ⊕ Y3, i.e.,

U1 ⊕ U2 = Y1 ⊕ Y3, (5)

since U3 = U2.

Similarly from Y1 = Y2 we get:

Z1 ⊕ Z2 = X1 ⊕ X2. (6)

Similarly from X1 = X4 we get Y1 ⊕ Y4 = R1 ⊕ R4, i.e.,

Y1 ⊕ Y3 = R1 ⊕ R2, (7)

because Y4 = Y3 and R4 = R2.

Quantum Generic Attacks on 6 rounds Feistel Schemes 9

Similarly from R1 = R3 we get X1 ⊕ X3 = L1 ⊕ L3, i.e.,

X1 ⊕ X2 = L1 ⊕ L3, (8)

because X3 = X2.

From Equations (2), (5) and (7) we obtain:

T1 ⊕ T2 = R1 ⊕ R2 (= Y1 ⊕ Y3).

From Equations (3),(5) and (7) we obtain R1 ⊕ R2 = T3 ⊕ T4. Since R1 = R3
and R2 = R4 we get:

R3 ⊕ R4 = T3 ⊕ T4.

Also from Equations (4),(6) and (8) we obtain:

S1 ⊕ S3 = L1 ⊕ L3 (= Z1 ⊕ Z2 = X1 ⊕ X2).

Therefore, we have proved that the System (3) is verified.

From Theorem (3), we see that we will have at least about 2 times more
solutions of the System (S) when we have a 6-round Feistel scheme with internal
permutations than when we have a random permutation. In fact, for a 6−round
Feistel scheme, the System (S) can appear randomly or from the equations of
Figure (5). In both cases we have 8 equations on 4 indices. This gives an attack

in O
(

q4

28n

)
, i.e., when q ≈ O(22n).

Case of 6−round Feistel with internal functions. This attack also works on
6−round Feistel with internal functions. In fact, instead of about 2 more times
solutions we will have here about 12 more times solutions. These solutions come
from random solution of the System (S) plus these 11 families listed below. In
fact, in Theorem (3), we can replace the System (2) by any system of these 11
families and still prove in a similar way that System (3) is verified. This still
gives an attack in O(22n).

Family 1:

X1 = X2,
Y1 = Y3,
Z1 = Z2,
U1 = U3.

Family 2:

X1 = X2,
Y1 = Y3,
Z1 = Z2,
U1 = U4.

Family 3:

X1 = X2,
Y1 = Y3,
Z1 = Z4,
U1 = U3.

Family 4:

X1 = X2,
Y1 = Y4,
Z1 = Z2,
U1 = U3.

Family 5:

X1 = X2,
Y1 = Y4,
Z1 = Z2,
U1 = U4.

Family 6:

X1 = X2,
Y1 = Y4,
Z1 = Z3,
U1 = U4.

10 Chartouny et al.

Family 7:

X1 = X4,
Y1 = Y2,
Z1 = Z3,
U1 = U4.

Family 8:

X1 = X4,
Y1 = Y2,
Z1 = Z4,
U1 = U3.

Family 9:

X1 = X4,
Y1 = Y3,
Z1 = Z2,
U1 = U3.

Family 10:

X1 = X4,
Y1 = Y3,
Z1 = Z2,
U1 = U4.

Family 11:

X1 = X4,
Y1 = Y3,
Z1 = Z4,
U1 = U3.

Note that these families are compatible with Theorem (1) of Section (3). Note
also that Family (7) is the same as System (2).

Remark 2. Family (7) is the only family that is compatible with the case of
6−round Feistel schemes with internal permutations because of Theorem (3).

Remark 3. We found an even number of solutions since if we exchange indices
1 and 3 and indices 2 and 4, we also obtain a solution of (S). Alternatively, it
would have been possible to impose that index 1 is strictly less than index 3.

Remark 4. Insted of the 8 equations of (S) we may want to compute solutions
such that

(S ′)

R1 = R2,
R3 = R4,
S1 = S3,
S2 = S4,
T1 ⊕ T4 = T2 ⊕ T3,
T1 ⊕ R1 = T3 ⊕ R3,
S1 ⊕ L1 = S2 ⊕ L2,
L1 ⊕ L2 ⊕ L3 ⊕ L4 = 0.

We use here the fact that the inverse of a Feistel scheme is another Feistel
scheme when we permute the left and right part, i.e., there is a symmetry R/S
and L/T . However (S ′) is just the same as (S) when we permute the indices 1
and 2.

5 Complexity of classical attacks on 6 rounds Feistel
schemes

In this section, we will show that the complexity of the attack for 6-round Feistel
schemes with random functions or with random permutations is in O(22n).

Quantum Generic Attacks on 6 rounds Feistel Schemes 11

First, we select indices 1 and 2 such that:{
S2 = S1,
R2 ⊕ T2 = R1 ⊕ T1.

We expect to find m2

22n
possibilities with m = 22n. Indeed, it’s possible to do this

in O(m) computations and O(m) memory by storing all the m values (Si, Ri ⊕Ti)
in a hash table and looking for collisions.

Moreover, we find index 3 such that:{
R3 = R1,
L3 ⊕ S3 = L1 ⊕ S1.

We expect to find m

22n
possibilities with m = 22n. In fact, it is possible to do this

in O(1) computations and O(m) memory by storing all the m values (Ri, Li ⊕Si)
in a hash table and looking for (R1, L1 ⊕ S1).

Finally, we look for index 4 such that:{
R4 = R2,
L4 = L1 ⊕ L2 ⊕ L3.

It is possible to do this in O(1) and in this case we don’t need a hash table.
At the end we have at most m choices of pairwise distinct indices (1, 2, 3, 4).

Among these we keep those that give R1 ̸= R2 and L1 ̸= L3. Therefore, the total
complexity is in O(22n) computations and O(22n) memory.

6 Computer Simulations

Let N0 be the number of solutions of the System (S) for random permutations on
2n bits and σ0 be the corresponding standard deviation. Let N1 be the number
of solutions of the System (S) for random 6−round Feistel schemes with internal
permutations on 2n bits and σ1 be the corresponding standard deviation. Let
N2 be the number of solutions of the System (S) for random 6−round Feistel
schemes with internal functions on 2n bits and σ2 be the corresponding standard
deviation. Let Adv1 be the advantage to distinguish a random permutation from
a 6−round Feistel scheme with internal permutations. Let Adv2 be the advantage
to distinguish a random permutation from a 6−round Feistel scheme with internal
functions. We did computer simulations for 10 000 permutations.

Simulations for n=7. We have obtained the following results:
N0 ≈ 0.486 and σ0 ≈ 0.9853,
N1 ≈ 0.999 and σ1 ≈ 1.4116,
N2 ≈ 5.9566 and σ2 ≈ 3.6751.
As expected, N1 ≈ 2 N0 and N2 ≈ 12 N0. More precisely, we found for 10 000

12 Chartouny et al.

trials the following:

Number of Random Feistel with Feistel with
solutions permutations internal permutations internal functions

0 7 839 6 081 580
2 1 915 2 994 1 634
4 225 787 2 192
6 19 126 2 167
8 2 11 1 539
10 0 1 952
12 0 0 508
14 0 0 235
16 0 0 119
18 0 0 47
20 0 0 19
22 0 0 6
24 0 0 2

Moreover, we have Adv1 = 0.1758 and Adv2 = 0.754.

Simulations for n=8. We have obtained the following results:
N0 ≈ 0.5062 and σ0 ≈ 1.0024,
N1 ≈ 1.0126 and σ1 ≈ 1.4259,
N2 ≈ 6.0098 and σ2 ≈ 3.5957.
As expected N1 ≈ 2 N0 and N2 ≈ 12 N0. More precisely, we found for 10 000

trials:

Number of Random Feistel with Feistel with
solutions permutations internal permutations internal functions

0 7 756 6 023 530
2 1 980 3 069 1 570
4 242 754 2 198
6 21 133 2 154
8 1 19 1 670
10 0 1 980
12 0 1 510
14 0 0 224
16 0 0 99
18 0 0 40
20 0 0 17
22 0 0 5
24 0 0 3

Moreover, we have Adv1 = 0.1733 and Adv2 = 0.7636

Quantum Generic Attacks on 6 rounds Feistel Schemes 13

Remark 5. We don’t use here the property that Ψ6 are even permutations. Hence,
our advantages are also the advantages for distinguishing Ψ6 from random
even permutations (or from random odd permutations). Testing whether a
permutation is even requires knowing all the inputs/outputs (or all but one),
whereas our advantage attacks change a little bit if we don’t know a small number
of inputs/outputs.

7 Quantum attack

In this section, we start by recalling in Section 7.1 Ambainis’ quantum collision
finding algorithm given in [Amb04]. We then recall the quantum algorithms
for subset finding in Section 7.2 and carefully give the time complexity of
the algorithm. We describe the data structures from Ambainis’ algorithm in
Section 7.3. Finally, we apply it to the problem of distinguishing 6-round Feistel
schemes from a random permutation in Section 7.4.

7.1 Recalling Ambainis’ algorithm

In this section, we explain how to solve the k-distinctness problem for a fixed
value of k. Specifically, given N values x1, . . . , xN that belong to a set X of size
M , are there k distinct indices 1 ≤ i1, . . . , ik ≤ N such that xi1 = · · · = xik

?
In [Amb04], Ambainis proves the following result.

Theorem 4 ([Amb04]). Let r ≥ k, r = o(N). There is a quantum algo-
rithm that solves element k-distinctness in time Õ

(
max

(
Nk/2

r(k−1)/2 , r
))

, with

O
(

max
(

Nk/2

r(k−1)/2 , r
))

queries, using Õ(r) qubits of memory.

We will give a rough overview of the algorithm and the necessary conditions
that are required to prove Theorem 4, and in particular with respect to the time
complexity of the algorithm.

Remark 6. We will only describe the quantum algorithm that solves the k-
distinctness problem in the specific case where there only exists a single k-collision.
Ambainis gives a generic method to derive an algorithm that solves the general
problem using the restricted one as a subroutine, and without changing the
complexity.

From now on, we assume that our goal is to find the unique tuple of indices
that forms a k-collision. From a high-level, the algorithm considers the set T of
tuples of the form (S, xS, y) where:

– S = {y1, . . . , yr} is a subset of {1, . . . , N} of size r,
– xS = (xy1 , . . . , xyr

) ∈ X r,
– y ∈ {1, . . . , N} \ S.

It then works as a quantum walk over the set of all these tuple by taking the
following steps:

14 Chartouny et al.

1. Build a uniform superposition of all tuples (S, xS, y).
2. Repeat the following procedure t1 = O

(
(N/r)k/2

)
times:

(a) If there exists k distinct indices i1, . . . , ik in S such that xi1 = · · · = xik
,

apply the conditional phase flip.
(b) Perform t2 = O (

√
r) times the following quantum walk step:

i. Apply a diffusion operator that will create a superposition of all y
values such that y ∈ {1, . . . , N} \ S3.

ii. Add y to S and modify the corresponding xS vector accordingly.
iii. In order to map the current vector back to T , we need to remove an

element from S and to shrink the vector x accordingly. This is done
by creating a superposition, over all possible values of y′ ∈ S, of all
tuples of the form (S \ {y′}, xS\{y′}, y′)3.

3. Measure the final state and check if S contains a collision.

Theorem 4 states that this algorithm indeed finds a collision with constant proba-
bility. Moreover, it has a query complexity of r to create the initial superposition,
and t1 × t2 for the second part of the algorithm, which leads to an optimal value
of r = O

(
Nk/(k+1)). In the following sections, we discuss the time complexity of

the algorithm in more details.

7.2 Childs and Eisenberg algorithm

We start by noting that Ambainis’ algorithm does not necessarily deal with
collisions. Indeed, it is a quantum search algorithm that finds a k-tuple of
elements in a set that satisfy a specific relation. Moreover, it does so by relying
on a quantum walk over a r-tuple of elements in this same set. In particular, the
query complexity of Ambainis’ algorithm could be generalized to any relation that
involves exactly k indices, using exactly the same procedure, and with the same
query complexity [CE05]. A critical part of the analysis from [Amb04] is that
the time complexity of the collision-finding algorithm actually matches its query
complexity. In order to achieve this, Ambainis relies on a clever combination of
data structures in order to satisfy the following constraints:

– all manipulation of the data structures can be made in a reversible way,
– the time complexity of search, insertion and deletion has to be (poly-

)logarithmic,
– the time complexity of checking if the relation is satisfied has to be smaller

than t2 = O(
√

r).

The last point stems from the fact that step 2.a of the algorithm (the conditional
phase flip) should not be more time-consuming than step 2.b (t2 iterations of the
quantum walk). This remark calls for the following definition.
3 We stress that this superposition is not uniform, which is critical in the proof of

Theorem 4. However, the corresponding amplitudes will not be relevant for our
discussion, which is why we chose to ignore them for the sake of simplicity.

Quantum Generic Attacks on 6 rounds Feistel Schemes 15

Definition 1. A k-ary relation R over X k is said to be (f, g, r)-testable if there
exists a data structure to represent subsets of {1, . . . , |X |} such that the following
properties hold:

– it uses Õ(s) qubits of memory to store a subset of elements of size s ≤ r + 1,
– insertion and deletion of an element is (poly)-logarithmic and requires a single

query,
– testing if there exists a tuple (i1, . . . , ik) of k distinct elements in a set of

size r such that (xi1 , . . . , xik
) ∈ R takes a time at most f(r), and requires at

most g(r) queries.

Then, one has the following result.

Theorem 5. [CE05] Let r ≥ k, r = o(N), and let R be a (f, g, r)-testable k-ary
relation over X k for some functions f and g. There is a quantum algorithm that
outputs a k-tuple (i1, . . . , ik) of distinct elements such that (xi1 , . . . , xik

) ∈ R
with O

(
max

((
N
r

)k/2 (
√

r + g(r)), r
))

queries using Õ(r) qubits of memory.

Proof. Childs and Eisenberg proved this theorem in [CE05].

Corollary 1. This quantum algorithm takes Õ
(

max
((

N
r

)k/2 (
√

r + f(r)), r
))

in time.

Remark 7. In [Amb04], Ambainis proves that the k- collision relation is actually(
Õ(1), 0, r

)
-testable when r = o(N).

7.3 On data structures

In [Amb04], Ambainis’ shows that actual running time of the quantum algorithm
is in Õ(Nk/k+1). We will recall in this section the data structures that Ambainis
relies on for the k-distinctness problem to achieve this running time.

Required operations. The required operations are the following:

1. Adding y to S and storing xy.
2. Removing y from S and erasing xy.
3. Checking if S contains the solution to perform the conditional phase flip.
4. Applying the diffusion operator.
5. Storing the same set S in the same way independently of how S was created.
6. Using classical subroutines that must terminate in fixed time t.

The data structures used is a combination between hash table and a skip list.
In the following, v is set as a variable that tracks the count of distinct x ∈ [M]
for which the set S contains i1, . . . , ik such that xi1 = · · · = xik

.

16 Chartouny et al.

Hash table. The hash table is used for storing pairs (i, xi) and retrieving them
when searching for xi corresponding to a given i.

The hash table consists of r buckets, each equipped with memory for ⌈log N⌉
entries and ⌊log r⌋ counters. To determine the placement of entries, the set
{1, . . . , N} is hashed into the r buckets using the function h(i) = ⌊i · r/N⌋ + 1.
The j-th bucket organizes pairs (i, xi) for i ∈ S such that h(i) = j, in ascending
order of i. In cases where there are more than ⌈log N⌉ entries with h(i) = j,
only ⌈log N⌉ of them are stored in the bucket. Ambainis demonstrates that the
probability of this occurrence is small.

As for the counters, denoted as d1, . . . , d⌊log r⌋, the counter d1 in the j-th
bucket counts the number of i ∈ S such that h(i) = j. Additionally, dl for l > 1
is used only if j is divisible by 2l. In such instances, it counts the number of i ∈ S
satisfying j − 2l + 1 ≤ h(i) ≤ j.

Skip list. The skip list is used for organizing the xi in ascending order. Conse-
quently, when adding a new element i to S, we can verify whether xi matches
any of the xj values for j ∈ S. For a more detailed understanding of how this
skip list operates, please refer to [Pug90],[Amb04].

Each element i ∈ S is assigned a random level li ranging from 0 to lmax =
⌈log N⌉. To chose the level independently for each i, we define the levels using
lmax functions h1, h2, ..., hlmax : [N] → {0, 1}. If h1(i) = . . . = hl(i) = 1 but
hl+1(i) = 0 then i ∈ [N] is associated to level l. If h1(i) = . . . = hlmax(i) = 1, it
implies that the element i ∈ [N] is associated with level lmax. The reason for
assigning the level in this manner is due to a drawback in the straightforward
implementation.

Insertion and deletion. To include i in the set S, we first query the value xi.
Then, we calculate h(i) and add (i, xi) into the h(i)-th bucket. If the bucket
already contains some entries, we may move some of them to ensure that, after
the insertion of (i, xi), the entries are still in the order of increasing i. Following
this, we increment the counter d1 for the h(i)-th bucket and the counter dl for the

(⌈h(i)
2l

⌉ · 2l)-th bucket, for each l ∈ {2, . . . , ⌊log r⌋}. Following that, we modify
the skip list as follows: first, run a search to locate the last element preceding i.
Then, for every level l ∈ {0, ..., li} assign jl to be the level-l pointer of il. Set the
level-l pointer of i to be equal to jl and the level-l pointer of il to be equal to i.
Once the update is finished, we use the skip list to identify the smallest j where
xj = xi. We then use level-0 pointers to determine whether the count of j with
xj = xi is less than k, exactly k, or exceeds k. If there are exactly k such j, we
increase v by 1.

An element i can be deleted from S by running this procedure in reverse.

Checking for k-collisions. To find k-collisions in S, we simply verify whether
v > 0.

Diffusion transform. Based on Grover’s result [Gro96], Ambainis demonstrates
that the algorithm requires approximately Õ(1) time for the diffusion process.

Quantum Generic Attacks on 6 rounds Feistel Schemes 17

Uniqueness. S is always stored in the same way. The values i ∈ S are consistently
hashed to buckets by h, and within each bucket, the entries are arranged in
increasing order of i. The counters, responsible to count the number of entries in
the buckets, are uniquely defined by the set S. Similarly, the configuration of the
skip list is also uniquely established.

Guaranteed running time. Ambainis demonstrates that the probability of lookup,
insertion, or deletion of an element taking more than Õ(1) steps is negligible for
any set S. In such instances, the algorithm is adjusted for lookup, insertion, or
deletion, causing them to abort after Õ(1) steps. It is highlighted in [Amb04]
that this modification has no significal impact on the entire quantum search
algorithm.

7.4 Application to the case of Feistel networks

We use the same type of data structure mentioned in the Section 7.3, but with a
few small adjustments.

In the following, v is set as a variable that tracks the count of distinct solutions
of the System (S) that are included in S.

Skip list. For a Feistel scheme with 6 rounds, we need two skip lists instead of
one. Specifically, the first one is used to store S||R ⊕ T . The second skip list
stores R||L ⊕ S.

Insertion and deletion. To include i in the set S, we first query the value
O(L, R)4. Then, we calculate h(i) and add (i, (Si, Ti)) into the h(i)-th bucket.
After that, we update the skip list and then we update the value of v by adding
the value of tuple of indices that satisfy the System (S) and include the new
index i. This can take the form of (i, j, k, l) ∈ S4 that satisfies the System (S), or
(j, i, k, l) ∈ S4 that satisfies the System (S), or (j, k, i, l) ∈ S4 that satisfies the
System (S), or (j, k, l, i) ∈ S4 that satisfies the System (S). For example, to verify
if (i, j, k, l) is a solution, it suffices to check whether Sj ||Rj ⊕Tj = Si||Ri ⊕Ti and
Rk||Lk ⊕ Sk = Ri||Li ⊕ Si and Rl||Ll = Rj ||Li ⊕ Lj ⊕ Lk. Another instance is
checking if (j, i, k, l) is a solution, for which the verification involves ensuring that
Si||Ri⊕Ti = Sj ||Rj⊕Tj and Rl||Ll⊕Sl = Rj ||Lj⊕Sj and Sk||Tk = Sl||Ti⊕Tj⊕Tl.

An element i can be deleted from S by running this procedure in reverse.

Checking for k-collisions. To find collisions in S, we simply verify whether v > 0.

Guaranteed running time. We need a guaranteed running time when testing if
a new entry can be query 1, 2, 3, of a tuple of solution. Let ℓ1 (resp. ℓ2) be the
length of the longest [S, R ⊕ T] (resp. [R, L ⊕ S]) line5, where we say that we
4 The oracle O is implemented either with a uniformly random permutation P or a

6-round Feistel scheme Ψ .
5 This is defined over the full message space.

18 Chartouny et al.

have a [A, B] line of length ℓ if there exists pairwise distinct indices i1, . . . , iℓ

such that (Ai1 , Bi1) = · · · = (Aiℓ
, Biℓ

). In this case, the complexity of checking if
a new entry triggers the completion of a new tuple is Õ(ℓ1ℓ2). However, for our
attack to work, we need to be able to guarantee that the insertion or deletion of
an element runs in time Õ(1), except with a small probability over the uniformly
random sampling of the 2n-bit permutation or the 6 n-bit random functions. In
Appendix B, we provide a complete proof of the fact that ℓ1, ℓ2 = Õ(1) with a
probability that is close to 1, which is sufficient to conclude the analysis of our
quantum attack. While Appendix B is quite long, the ideas behind the proof
are quite simple, and we briefly outline them here. In the case of a random
permutation, the experiment is close to the classical balls-into-bins problem (with
a moderate dependence between throws), which explains why the length of a line
is logarithmic with overwhelming probability. In the case of a Feistel network,
collisions can come from two possible avenues:

– purely random collisions that occur from a degree of freedom during the
evaluation of the Feistel network;

– structural collisions that are forced due to internal collisions with previous
queries.

The first category behaves close to a standard balls-into-bins problem, and also
yield lines of logarithmic length with overwhelming probability. The second type
of collisions, although less numerous, are more difficult to analyze. However, the
intuition behind our result is that, in such a structural collision brings at least
two independent equations per query involved in the collision. Hence, the average
number of such collisions is close to 1, which means that it will be logarithmic
with a probability that is also close to 1. This is sufficient to ensure that Child and
Eisenberg’s algorithm will find solutions to the System (4) with a non-negligible
probability, and with a query complexity of O(28n/5) and a time complexity of
Õ(28n/5).

References

Amb04. Andris Ambainis. Quantum walk algorithm for element distinctness. In 45th
FOCS, pages 22–31. IEEE Computer Society Press, October 2004.

CE05. Andrew M. Childs and Jason M. Eisenberg. Quantum algorithms for subset
finding. Quantum Inf. Comput., 5(7):593–604, 2005.

CLL+14. Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P.
Steinberger. Minimizing the two-round Even-Mansour cipher. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 39–56. Springer, Heidelberg, August 2014.

CPT22. Maya Chartouny, Jacques Patarin, and Ambre Toulemonde. Quantum crypt-
analysis of 5 rounds feistel schemes and benes schemes. IACR Cryptol. ePrint
Arch., page 1015, 2022.

Gro96. Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219, 1996.

Quantum Generic Attacks on 6 rounds Feistel Schemes 19

IHM+19. Gembu Ito, Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki, and Tetsu
Iwata. Quantum chosen-ciphertext attacks against feistel ciphers. In Mitsuru
Matsui, editor, Topics in Cryptology - CT-RSA 2019 - The Cryptographers’
Track at the RSA Conference 2019, San Francisco, CA, USA, March 4-8,
2019, Proceedings, volume 11405 of Lecture Notes in Computer Science, pages
391–411. Springer, 2019.

KM10. Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher between the
3-round feistel cipher and the random permutation. In IEEE International
Symposium on Information Theory, ISIT 2010, June 13-18, 2010, Austin,
Texas, USA, Proceedings, pages 2682–2685. IEEE, 2010.

NVP13. Valérie Nachef, Emmanuel Volte, and Jacques Patarin. Differential attacks
on generalized Feistel schemes. In Michel Abdalla, Cristina Nita-Rotaru,
and Ricardo Dahab, editors, CANS 13, volume 8257 of LNCS, pages 1–19.
Springer, Heidelberg, November 2013.

Pat01. Jacques Patarin. Generic attacks on Feistel schemes. In Colin Boyd, ed-
itor, ASIACRYPT 2001, volume 2248 of LNCS, pages 222–238. Springer,
Heidelberg, December 2001.

Pat08. Jacques Patarin. Generic attacks on feistel schemes. IACR Cryptol. ePrint
Arch., page 36, 2008.

Pug90. William Pugh. Skip lists: a probabilistic alternative to balanced trees. Com-
munications of the ACM, 33(6):668–676, 1990.

TP09. Joana Treger and Jacques Patarin. Generic attacks on feistel networks with
internal permutations. In Bart Preneel, editor, Progress in Cryptology -
AFRICACRYPT 2009, Second International Conference on Cryptology in
Africa, Gammarth, Tunisia, June 21-25, 2009. Proceedings, volume 5580 of
Lecture Notes in Computer Science, pages 41–59. Springer, 2009.

Wag99. David Wagner. The boomerang attack. In Lars R. Knudsen, editor, FSE’99,
volume 1636 of LNCS, pages 156–170. Springer, Heidelberg, March 1999.

Zha13. Mark Zhandry. A note on the quantum collision and set equality problems.
CoRR, abs/1312.1027, 2013.

A Proof of Lemma 1

Let B = (Bi)1≤i≤q be independent random variables such that

Pr[Bi = 1] = εi and Pr[Bi = 0] = 1 − εi,

which is to say that Bi ∼ Berεi
, where Berp denotes the Bernoulli distribution of

parameter p.
Following [CLL+14], we will use a coupling argument to prove that, for any

r, one has

Pr
[

q∑
i=1

Ai ≥ r

]
≤ Pr

[
q∑

i=1
Bi ≥ r

]
.

Let us consider the sampling process outlined in Algorithm 1. By construction,
one has (a1, . . . , aq) ∼ A. Moreover, we also have (b1, . . . , bq) ∼ B. Indeed, let us

20 Chartouny et al.

Algorithm 1 Sampling procedure for the coupling argument of the proof of
Lemma 1

for i = 1 to q do
p← Pr[Ai = 1 | (A1, . . . , Ai−1) = (a1, . . . , ai−1)]
ai ← Berp

if ai = 1 then
bi ← 1

else
p′

i ← εi−p
1−p

bi ← Berp′
i

end if
end for
return ((a1, . . . , aq), (b1, . . . , bq))

fix any i = 1, . . . , q and any binary sequence (b1, . . . , bi−1). Then, one has

Pr[bi = 1] = Pr[ai = 1] + Pr
[
(ai = 0) ∧ Berp′

i
= 1

]
= p + (1 − p)εi − p

1 − p

= εi.

Moreover, since we assume εi < 1, then p ≤ εi < 1, and Berp′
i

is well-defined.
We now remark that, in the sampling process, if ai = 1, then bi is also set to

1. This implies that, for any r, we indeed have
q∑

i=1
ai ≤ r =⇒

q∑
i=1

bi ≤ r,

which in turn gives

Pr
[

q∑
i=1

Ai ≥ r

]
≤ Pr

[
q∑

i=1
Bi ≥ r

]
.

Remark that B is a tuple of independent Bernoulli random variables, that are
not necessarily identically distributed. Thus, applying a classical Chernoff bound
tailored to this case yields

Pr
[

q∑
i=1

Ai ≥ (1 + δ)m
]

≤ Pr
[

q∑
i=1

Bi ≥ (1 + δ)m
]

≤ e− δ2
2+δ m

for any δ > 0.

B On the maximum line length

B.1 Permutation case.
In this section, we consider the random variable ℓ which corresponds to the
length of the longest [R, L ⊕ S] line (the other case can be treated similarly by

Quantum Generic Attacks on 6 rounds Feistel Schemes 21

symmetry). Let us start by fixing any arbitrary ordering over {0, 1}n such that

{0, 1}n = {L1, . . . , L2n}.

For any A, B ∈ {0, 1}n, let ℓA,B be the number of indices i ∈ {1, . . . , 2n} such
that P (Li||A) = (B ⊕ Li)||∗. Then, one has ℓ = maxA,B(ℓA,B) and, for any c,

Pr[ℓ ≥ c] ≤
∑
A,B

Pr[ℓA,B ≥ c].

Let us fix any A, B ∈ {0, 1}n and, for all i = 1, . . . , 2n, let Yi be the random
variable that is equal to 1 if P (Li||A) = (B ⊕ Li)||∗, and to 0 otherwise. It is
easy to see that

ℓA,B =
2n∑

i=1
Yi.

Let us fix any i ∈ {1, . . . , 2n}, and any (y1, . . . , yi−1) ∈ {0, 1}i−1. Then, one has

Pr[Yi = 1 | (Y1, . . . , Yi−1) = (y1, . . . , yi−1)] ≤ εi,

where
εi = 2n

22n − i + 1 = 1
2n

+ i − 1
23n − (i − 1)2n

.

Hence, one has

1 ≤ 1 + (2n − 1)
22n+1 ≤

2n∑
i=1

εi ≤ 1 + 1
2n+1 − 2 ≤ 3

2 .

Let us now apply Lemma 1 to (Yi)1≤i≤2n . One has

Pr
[
ℓA,B ≥ 3

2(1 + δ)
]

≤ Pr
[

ℓA,B ≥ (1 + δ)
2n∑

i=1
εi

]
≤ e− δ2

2+δ

∑2n

i=1
εi ≤ e− δ2

2+δ .

Using the fact that n ≥ 1 and e ≥ 2, and taking δ = 9n
2 , we get

Pr [ℓA,B ≥ 9n] ≤ Pr
[
ℓA,B ≥ 3

2(1 + 9n

2)
]

≤ e−3n ≤ 2−3n.

Hence, after summing over all possible values for A, B, we finally have

Pr[ℓ ≥ 9n] ≤ 1
2n

.

B.2 Feistel case.

Let us fix n ≥ 14. We will split the study in two parts, depending on the number
of fresh inputs of the queries that appear in the line. Let ℓ′ be the length of

22 Chartouny et al.

the longest free line in [R, L ⊕ S] (i.e. a line such that, for each involved query,
the intermediate input of at least one function among f3, f4 and f5 is fresh).
Let N be the number of queries that are part of a [R, L ⊕ S] line and whose
intermediate inputs of f3, f4 and f5 all collide with another query from the
same line. It is clear that ℓ ≤ ℓ′ + N . We will prove that Pr[ℓ′ ≥ 4n] ≤ 1

23n , and
Pr[N ≥ 4n] ≤ 1+ 6

2n

4n . Overall, this will prove that

Pr[ℓ ≥ 8n] ≤ Pr[ℓ′ ≥ 4n] + Pr[N ≥ 4n] ≤ 1
23n

+
1 + 6

2n

4n
.

First scenario. Let us fix any A, B ∈ {0, 1}n, i ∈ {1, . . . , 2n} and any (y1, . . . , yi−1) ∈
{0, 1}i−1. For any set I = {i1, . . . , ik} of 4n pairwise distinct indices in {1, . . . , 2n},
we let ℓA,B(I) denote the event

Ψ6(Lij
||A) = (B ⊕ Lij

)|| ∗ for i = 1, . . . , 4n.

If we rewrite this equality in terms of the intermediate variables Xij
and Yij

, this
equality becomes

f3
(
Yij

)
⊕ f5

(
Yij ⊕ f4

(
Xij ⊕ f3

(
Yij

)))
= B ⊕ f1(A). (9)

Let us fix j ∈ {1, . . . , 4n}, and let us assume that Eq. (9) holds for all j′ < j.
The event “Eq. (9) holds for the j-th query” is included in the following set of
events:

1. the input to function f5 is fresh (i.e. it is does not collide with any previous
inputs to f5), and Eq. (9) holds;

2. there exists j′ < j such that

Yij
⊕ f4

(
Xij

⊕ f3
(
Yij

))
= Yij′ ⊕ f4

(
Xij′ ⊕ f3

(
Yij′

))
,

f3(Yij) = f3(Yij′) (from Eq. (9)),

but Xij
⊕ f3

(
Yij

)
is fresh;

3. there exists j′, j′′ < j such that

Yij ⊕ f4
(
Xij ⊕ f3

(
Yij

))
= Yij′ ⊕ f4

(
Xij′ ⊕ f3

(
Yij′

))
,

Xij ⊕ f3
(
Yij

)
= Xij′′ ⊕ f3

(
Yij′′

)
,

f3(Yij
) = f3(Yij′) (from Eq. (9)),

but Yij
is fresh.

Overall, in all cases, at least one value will be chosen uniformly at random in
{0, 1}n. Indeed, one has Xij = Lij ⊕ f1(A) and Yij = A ⊕ f2(Xij). This means
that the Xi values are always pairwise distinct6, and the Yi values are chosen
6 Recall that Xi = Li ⊕ f1(Ri) = Li ⊕ f1(A). This means, in a [R, L⊕ S] line, all L

and X values have to be pairwise distinct.

Quantum Generic Attacks on 6 rounds Feistel Schemes 23

uniformly and independently at random. We now consider all the probabilities of
all three cases occurring.
Case 1: Since the input to f5 is fresh, this case occurs with a probability lower
than

1
2n

.

Case 2: There are at most j − 1 possible choices for j′. Since the input to f4 is
fresh, the first equation holds with a probability 2−n. For the second equation,
two cases can occur: either Yij is fresh (which means that the second equation
occurs with a probability 2−n), or Yij

is not fresh, which occurs with a probability
at most (j − 1)/2n. Overall, the probability of this case occurring is lower than

(j − 1) + (j − 1)2

22n
≤ 2(4n)2

22n
≤ 1

2 · 2n
,

since 2(4n)2 ≤ 2n/2 when n ≥ 14.
Case 3: One has Xij

⊕ f3
(
Yij

)
= Xij′′ ⊕ f3

(
Yij′′

)
. This means that the first

equation can be rewritten as

Yij
⊕ f4

(
Xij′′ ⊕ f3

(
Yij′′

))
= Yij′ ⊕ f4

(
Xij′ ⊕ f3

(
Yij′

))
,

which happens with a probability 2−n over the choice of Yij . Since Yij is fresh,
the third equation will also occur with a probability at most 2−n. Overall, this
case happens with probability smaller than

(j − 1)2

22n
≤ 1

2 · 2n
.

Hence, the probability that Eq. (9) holds for the j-th query is smaller than 2/2n.
Thus, taking a product over j yields

Pr[ℓA,B(I) ≥ 4n] ≤ 24n

24n2 .

Summing over all possible choices for I, A, B yields

Pr[ℓ′ ≥ 4n] ≤ 2(4n+2)n+4n

(4n)! · 24n2 = 26n

(4n)! .

One has (4n)! ≥ (2n)2n · (2n)! ≥ 22nn3n, which gives

Pr[ℓ′ ≥ 4n] ≤ 24n

n3n
≤

(
3
n

)3n

≤ 1
23n

since n ≥ 14.

24 Chartouny et al.

Second scenario. Here, we want to upper-bound the probability that there exist
4 indices i1, i2, i3, i4 such that:

– all indices belong to the same [R, L ⊕ S] line;
– Yi4 = Yi3 ;
– Xi4 ⊕ f3(Yi4) = Xi2 ⊕ f3(Yi2) (i.e. Zi4 = Zi2);
– Yi4 ⊕ f4(Xi4 ⊕ f3(Yi4)) = Yi1 ⊕ f4(Xi1 ⊕ f3(Yi1)) (i.e. Ui4 = Ui1).
– all indices are the first indices (for an arbitrary ordering of the queries) that

satisfies these conditions; this means that all queries i1, i2, i3 have at least
one input to f3, f4, or f5 that is fresh.

In particular, these conditions imply that

– i4 ̸= i3, i2, i1;
– f3(Yi4) = f3(Yi3) = f3(Yi1) (since Ui4 = Ui1 and Li4 ⊕ Si4 = Li1 ⊕ Si1 , which

corresponds to Eq (9);
– i3 ≠ i2 and i2 ≠ i1 since otherwise the queries would be identical due to

the bijectivity of Feistel networks and the fact that the collision of two
successive intermediate values imply a full-state collision (but it may happen
that i3 = i1);

– Yi4 ̸= Yi2 , since otherwise Xi4 = Xi2 , which is impossible as i4 ̸= i2.

We now divide our analysis in several subcases.

1. All 4 indices are pairwise distinct. The equality Yi4 = Yi3 happens with
probability 2−n due to the fact that all queries belong to the same line,
which implies that all X values are pairwise distinct, and thus all Y values
are uniformly random and independent. Now, the equality Xi4 ⊕ f3(Yi4) =
Xi2 ⊕ f3(Yi2) becomes Xi4 ⊕ f3(Yi3) = Xi2 ⊕ f3(Yi2) and three possible cases
can occur:
(a) Yi3 is fresh, which means that the equality occurs with probability 2−n.

Since Yi4 = Yi3 ̸= Yi1 , the equality f3(Yi4) = f3(Yi1) occurs with a
probability 2−n. Let us now study the equality Yi4 ⊕ f4(Xi4 ⊕ f3(Yi4)) =
Yi1 ⊕ f4(Xi1 ⊕ f3(Yi1)), which is equivalent to Yi3 ⊕ f4(Xi2 ⊕ f3(Yi2)) =
Yi1 ⊕ f4(Xi1 ⊕ f3(Yi1)). Due to the fact that Yi3 ̸= Yi2 , this is impossible
in the case where both inputs to f4 are equal. Hence, the inputs have to
be different (i.e. Zi1 ̸= Zi2) and the collision happens with a probability
smaller than 2−n. Finally, we need to consider the condition Li1 ⊕ Si1 =
Li2 ⊕ Si2 = Li3 ⊕ Si3 . We start by studying the equality

f3(Yi1) ⊕ f5(Ui1) = f3(Yi2) ⊕ f5(Ui2).

If Ui1 ̸= Ui2 , this equality happens with a probability 2−n. On the
contrary, it means that Zi2 ≠ Zi1 , i.e. and Ui1 = Ui2 becomes Yi1 ⊕ Yi2 =
f4(Zi1) ⊕ f4(Zi2), which is also equal to Yi3 ⊕ Yi1 . This would imply that
Yi2 = Yi3 , which is impossible. For the equality

f3(Yi1) ⊕ f5(Ui1) = f3(Yi3) ⊕ f5(Ui3),

we need to consider three sub-cases.

Quantum Generic Attacks on 6 rounds Feistel Schemes 25

i. If Ui3 is fresh, it occurs with probability 2−n.
ii. Ui3 = Ui1 : this is equivalent to Yi3 ⊕ f4(Zi3) = Yi1 ⊕ f4(Zi1), and in

that case Li1 ⊕ Si1 = Li3 ⊕ Si3 is automatically satisfied as f3(Yi3) =
f3(Yi4) = f3(Yi1). Note that Zi3 = Xi3 ⊕f3(Yi3) ̸= Xi1 ⊕f3(Yi1) = Zi1

since f3(Yi4) = f3(Yi3) = f3(Yi1) and Xi1 ̸= Xi3 (because i1 ̸= i3).
Moreover, one has Xi4 ⊕Xi2 = f3(Yi3)⊕f3(Yi2) = Zi3 ⊕Xi3 ⊕Zi2 ⊕Xi2 ,
which implies that Zi3 ≠ Zi2 since i3 ̸= i4. Thus, this case also
happens with probability 2−n.

iii. Ui3 = Ui2 : as in the previous case, it happens with a probability
smaller than 2−n.

(b) Yi3 = Yi2 : this implies that Yi4 = Yi2 , which is impossible.
(c) Yi3 = Yi1 : this happens with probability 2−n, and also implies that

f3(Yi4) = f3(Yi1), which automatically yields Li4 ⊕Si4 = Li1 ⊕Si1 . More-
over, since Yi1(= Yi4) ̸= Yi2 , the equality Xi4 ⊕ f3(Yi3) = Xi2 ⊕ f3(Yi2)
becomes Xi4 ⊕ f3(Yi1) = Xi2 ⊕ f3(Yi2) and happens with probability 2−n.
Let us now study the equality Yi4 ⊕ f4(Xi4 ⊕ f3(Yi4)) = Yi1 ⊕ f4(Xi1 ⊕
f3(Yi1)), which is equivalent to f4(Xi2 ⊕ f3(Yi2)) = f4(Xi1 ⊕ f3(Yi1))
(i.e. f4(Zi1) = f4(Zi2)). Due to the previous equality, one necessarily has
Xi2 ⊕ f3(Yi2) ̸= Xi1 ⊕ f3(Yi1), since otherwise we would have Xi1 = Xi4 .
Hence, the equality also occurs with probability 2−n. Since Yi1 ̸= Yi2 ,
the equality f4(Xi2 ⊕ f3(Yi2)) = f4(Xi1 ⊕ f3(Yi1)) gives Zi1 ̸= Zi2 . Let
us now consider the equality f3(Yi1) ⊕ f5(Ui1) = f3(Yi2) ⊕ f5(Ui2). If
Ui1 ̸= Ui2 , this happens with probability 2−n. On the contrary, it means
that Yi1 ⊕ Yi2 = f4(Zi1) ⊕ f4(Zi2) = 0, which is impossible. For the
equality

f3(Yi1) ⊕ f5(Ui1) = f3(Yi3) ⊕ f5(Ui3),

we need to consider three sub-cases.
i. If Ui3 is fresh, it occurs with probability 2−n.
ii. Ui3 = Ui1 : this is equivalent to f4(Zi3) = f4(Zi1), and in that case

Li1 ⊕ Si1 = Li3 ⊕ Si3 is automatically satisfied. Note that Zi3 =
Xi3 ⊕ f3(Yi3) ̸= Xi1 ⊕ f3(Yi1) = Zi1 since f3(Yi4) = f3(Yi3) = f3(Yi1)
and Xi1 ̸= Xi3 (because i1 ̸= i3). Moreover, one has Xi4 ⊕ Xi2 =
f3(Yi3)⊕f3(Yi2) = Zi3 ⊕Xi3 ⊕Zi2 ⊕Xi2 , which implies that Zi3 ̸= Zi2

since i3 ̸= i4. Thus, this case also happens with probability 2−n.
iii. Ui3 = Ui2 : as in the previous case, it happens with a probability

smaller than 2−n.
2. One has i3 = i1. Then, the equality Yi4 = Yi3 happens with probability 2−n.

However, in this case, f3(Yi4) = f3(Yi1) is automatic. As in the previous
case, the equality Xi4 ⊕ f3(Yi4) = Xi2 ⊕ f3(Yi2) becomes Xi4 ⊕ f3(Yi1) =
Xi2 ⊕ f3(Yi2), with Yi1 ̸= Yi2 due to the fact that Yi1 = Yi3 = Yi4 ̸= Yi2 .
Hence, this equality occurs with a probability 2−n. Let us now study the
equality Yi4 ⊕ f4(Xi4 ⊕ f3(Yi4)) = Yi1 ⊕ f4(Xi1 ⊕ f3(Yi1)), which is equivalent
to f4(Xi2 ⊕ f3(Yi2)) = f4(Xi1 ⊕ f3(Yi1)) (i.e. f4(Zi1) = f4(Zi2)). Due to the
fact that Xi4 ⊕ Xi2 = f3(Yi1) ⊕ f3(Yi2), both inputs to f4 have to be different

26 Chartouny et al.

(i.e. Zi1 ̸= Zi2) and the collision happens with a probability smaller than
2−n. Finally, we need to consider the condition Li1 ⊕ Si1 = Li2 ⊕ Si2 . Since
f4(Zi1) = f4(Zi2) and Yi1 ̸= Yi2 , one has Ui1 ̸= Ui2 , which means that this
equation happens with probability 2−n.

Final bound. Overall, the number of possible choices for the indices of the first
case is at most 22n × 23n: there are 2n choices for i1, and then 2n choices for
the three remaining indices since the R value has to be constant. Hence, the
probability of the first case adds a query to a free line is at most 6/2n, which is
also the average number of such a tuple of indices. Similarly, for the second case,
there are at most 22n × 22n possible choices for the indices, which means that the
average number of such triples of queries is at most 1. Markov’s inequality yields

Pr[N ≥ 4n] ≤
1 + 6

2n

4n
.

Remark 8. Although the current bound on ℓ in the Feistel case is sufficient to
prove that the attack works, we point out that the actual bound should be
much sharper. Using a careful analysis of N , it should be possible to prove
that Pr[N ≥ 4n] ≤ Õ

(1
2n

)
. We support this conjecture by providing computer

simulations in Table 1. As expected, the number of occurrences of the three-point
structure from case 2 never grows beyond 2n. In fact, for n = 7 we have an
average of 0.9638 and a standard deviation of 1.0334. For n = 8 we have an
average of 1.0034 and a standard deviation of 1.0226.

Number of n=7 n=8
solutions

0 3 982 3 743
1 3 521 3 594
2 1 660 1832
3 616 608
4 157 174
5 54 39
6 7 9
7 1 1
8 2 0

Table 1: Number of occurrences of the 3-point structure from case 2, for n = 7, 8,
and 10 000 trials.

	Classical and Quantum Generic Attacks on 6-round Feistel Schemes

