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1 Introduction

In a quest towards understanding and implementing zero-knowledge(ZK) proof
systems, we are present a tutorial for Lantern [LNP22]. Introduced in 2022,
Lantern proves knowledge of Module-Learning-With-Errors(MLWE) secrets and
other lattice statements in a few kilobytes, which may be used in quantum-
resistant schemes. Lantern’s advantage over existing hash-based schemes like
Aurora [BCR+19] lies in its efficiency for proving lattice statements.

In our tutorial, we provide a comprehensive explanation of the underlying
theory of Lantern and give a full implementation in a Jupyter Notebook us-
ing SageMath. To make the scheme more accessible, Lantern’s more advanced
protocols are split up into multiple smaller subprotocols. For every subprotocol,
we provide an explanation of the protocol and an interactive implementation.
In the implementation, the user can see all the necessary parameters clearly
and change them to their liking. This feature allows users to fully understand
the scheme and its building blocks, providing a valuable resource to understand
both zero-knowledge proofs and lattice cryptography. The tutorial is available
at https://lattice-zk.iaik.tugraz.at/.

As an additional result, we report the first implementation of Lantern in
Sage. Constructing a Module-LWE proof takes around 35 seconds on a con-
sumer laptop. While not optimized for efficiency, our implementation may serve
as a benchmark for future implementations. The proof-of-concept implementa-
tion can be accessed at
https://extgit.iaik.tugraz.at/public-shared/lattice-zk/-/raw/main/
code/lattice-zk.py.

2 Implementation Details and Benchmarks

We provide a general protocol for proving various lattice relations by combining
all the techniques from the original paper. The proof toolbox implemented in the
abdlop_toolbox function in our code can be instantiated to provide proofs for
various schemes like verifiable encryption or group signatures. It allows a user
to prove the following statements about a secret:

1. Quadratic relations over Rq with automorphisms
2. Quadratic relations over Zq with automorphisms

https://lattice-zk.iaik.tugraz.at/
https://extgit.iaik.tugraz.at/public-shared/lattice-zk/-/raw/main/code/lattice-zk.py
https://extgit.iaik.tugraz.at/public-shared/lattice-zk/-/raw/main/code/lattice-zk.py
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3. Shortness in the infinity norm
4. Shortness in the Euclidean norm
5. Approximate Shortness

To prove knowledge of an MLWE secret, we only need the fourth statement.
The abdlop_mlwe function implements only this functionality, while the function
test_abdlop_mlwe sets up the required matrices and acts as an example for how
to construct proofs for a specific application.

2.1 Benchmarks

We benchmarked our implementation on a consumer laptop by measuring cumu-
lative prover and verifier time, and the resulting proof size for various protocols.
The results can be found in Table 1.

Proof Type Time Size
commitment opening + 1 lin. rel. Rq 390 ms 21.5 kB
commitment opening + 1 lin. rel. Rq + 1 lin. rel. Zq 410 ms 23 kB
commitment opening + 1 quad. rel. Rq 510 ms 22 kB
commitment opening + 1 quad. rel. Rq + 1 quad. rel. Zq 830 ms 24 kB
Module-LWE secret 35 s 29 kB

Table 1. Lantern implementation benchmarks on a consumer laptop with a 4.1 GHz
AMD Ryzen 7 PRO 4750U CPU running Linux 6.6, Python 3.11, and SageMath 10.2.

2.2 Runtime

There are several possible ways to make the protocol more efficient. Since our
implementation focuses on verbosity and providing a reference, instead of on
performance, both the polynomial arithmetic and the matrix multiplications are
relatively slow, which in turn slows down the computation of the commitment
matrices (A in the implementation and the paper). This is especially noticeable
in the MLWE secret proof because the approximate shortness technique requires
us to compute more than 256 of these matrices.

The authors of the previously shortest proof scheme [ENS20] applied many
optimization techniques for lattice computation like AVX2 vectorization and fast
polynomial multiplication to their scheme to bring their runtime down to 4ms.
Many of these techniques can also be applied to Lantern.

In practice, the protocols are usually used in their non-interactive form by
applying the Fiat-Shamir transformation [FFS88]. In that case, it is not neces-
sary to repeat the computation of the expensive commitment matrices when the
rejection sampling algorithm rejects. Hence, we measure the runtime of a suc-
cessful protocol execution without repetitions to give a more accurate picture of
the runtime.
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2.3 Proof Size

We did not implement Dilithium compression [BG14,LDK+22], which is why
our proof sizes exceed the 13 KB size given in the original paper.

2.4 Limitations of our Implementation

Since we use the built-in methods of SageMath, the random sampling procedures
of the protocol are not cryptographically secure. In addition, the implementation
is also not hardened to prevent side-channel attacks.

2.5 Practical Considerations when using Lantern

There remain some open problems with Lantern. First, the Gaussian sampling
required by Lantern is difficult to implement efficiently while protecting against
side-channel attacks [HPRR20]. Second, Lantern proofs are not succinct, mean-
ing they grow linearly in the number of committed messages. This means Lantern
is not suited for proving large statements like circuit satisfiability. The hash-
based alternatives for proving lattice statements are asymptotically succinct but
impractical because they are too slow and require infeasible amounts of memory
for more advanced proofs [BCOS20].
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