
Towards Verifiable FHE in Practice
Proving Correct Execution of TFHE’s Bootstrapping using plonky2

Louis Tremblay Thibault
louis.tremblay.thibault@zama.ai

Zama, France

Michael Walter
michael.walter@zama.ai

Zama, France

Abstract

In this work we demonstrate for the first time that a full FHE bootstrapping operation can be
proven using a SNARK in practice. We do so by designing an arithmetic circuit for the bootstrapping
operation and prove it using plonky2. We are able to prove the circuit on an AWS C6i.metal instance
in about 20 minutes. Proof size is about 200 kB and verification takes less than 10ms. As the basis
of our bootstrapping operation we use TFHE’s programmable bootstrapping and modify it in a few
places to more efficiently represent it as an arithmetic circuit (while maintaining full functionality and
security). In order to achieve our results in a memory-efficient way, we take advantage of the structure
of the computation and plonky2’s ability to efficiently prove its own verification circuit to implement a
recursion-based IVC scheme.

1 Introduction
There are two emerging cryptographic technologies with a host of applications in practice: Fully Homo-
morphic Encryption (FHE) and Succinct Non-interactive Arguments of Knowledge (SNARKs). FHE allows
arbitrary computation on encrypted data, while SNARKs enable proving the correct execution of arbitrary
computation with short proofs and verification time sublinear in the size of the computation. It is not hard
to see the vast number of possible use cases for each of these technologies in practice, but in this work we are
interested in the combination of the two. Specifically, we investigate to what extent it is possible to prove
the correct execution of FHE operations using SNARKs in practice.

Combining FHE with SNARKs is enormously appealing as this has the potential to entirely replace
solutions to secure outsourcing of computing based on hardware modules, which are riddled with practical
attacks and ultimately only achieve a shift of trust to the hardware vendor. In contrast, a verifiable FHE
scheme would allow outsourcing computation and reduce trust to cryptographic, i.e., mathematical, assump-
tions using minimal interaction. Furthermore, such a scheme would thwart CCA-style attacks, to which
FHE schemes are known to be inherently vulnerable [CGG16], which means that in a practical deployment,
one needs to be very prudent in its use of FHE in order not to fall victim to attacks outside of the security
model.

Unfortunately, despite a large amount of research and significant progress over the past one and a half
decades, FHE operations still incur a significant overhead over their cleartext counterparts. Even worse, any
truly fully homomorphic scheme we know of to date relies on a bootstrapping operation to reduce noise in
ciphertexts, which accumulates during homomorphic operations and may lead to incorrect decryption if not
handled correctly. In all current FHE schemes, this bootstrapping is the costliest operation.

On the other hand, SNARKs themselves incur a significant overhead over the computation to prove, with
many practical SNARKs having proving complexity superlinear in the size of the computation.1 Furthermore,
since the proof generation typically requires to keep the entire trace in memory, the memory requirement
of SNARKs grows at least linearly in the computation length, which renders the memory complexity the

1With size we mean here the size of the circuit used to perform the computation in the arithmetic circuit model.

1

bottleneck for long computations. There are techniques to mitigate this issue for structured computations.
We will come back to this later.

So it is not surprising that the bootstrapping operation represents a formidable challenge for SNARKs.
While some works have considered proving levelled homomorphic operations [VKH23, GNS23], as far as
we are aware, there are no published attempts of applying a SNARK to an FHE bootstrapping operation,
let alone successful attempts. In this work we seek to remedy this state of affairs and demonstrate the
practicality of a fully verifiable bootstrapping.

1.1 Contribution
In this work we use a SNARK for general purpose computation, plonky2 [Pol22], in order to allow the
evaluator of a TFHE bootstrapping [CGGI20] to prove that it did so correctly. Note that the proof is
publicly verifiable, not just by the party holding the decryption key (or some other kind of secret verification
key). In order to use plonky2, we need to rewrite the bootstrapping algorithm in terms of an arithmetic
circuit over a finite field. In this work we present a number of tweaks to TFHE to reduce its circuit size.
Still, the main challenge is the shear size of the bootstrapping circuit, which is too large to be handled in
practice. To address this, we show how to exploit incrementally verified computation (IVC) [Val08] to take
advantage of its inherent structure. We provide an implementation2 and an experimental evaluation.

We compare our experimental results to using general-purpose zero-knowledge virtual machines (zkVMs)
to prove correct execution of the PBS [BGZ23, Suc24]. Such zkVMs promise to be easy to use at the cost of
introducing an overhead. To evaluate the extend of the overhead compared to our specially crafted circuit,
we use a straight-forward implementation of the PBS and apply the zkVMs using a variety of test machines.
The first observation is that neither of the two zkVMs we tested were actually able to prove an entire PBS
due to performance limitations even on powerful machines (and in one case even a computer cluster), while
this was no problem at all for our plonky2-based implementation even on moderate machines. It is plausible
that tweaking the implementation on the zkVMs could solve the issue, but this was out of scope of this
project. To still obtain a quantitative comparison, we performed micro-benchmarks. The results indicate
that our implementation outperforms the zkVMs by at least two orders of magnitude.3

To the best of our knowledge, our results demonstrate for the first time that generating a proof for a
bootstrapping operation is practically feasible: we are able to prove correctness of a TFHE-like bootstrapping
with secure parameters in about 20 minutes on an AWS C6i.metal instance. While this is still likely to
be too costly for many applications, others might already be able to take advantage of a fully verified FHE
scheme. As an example, consider a blockchain protocol that allows smart contracts on encrypted data
[DDD+23, Tea23]. Here, verifiable FHE operations have the potential to replace certain consensus protocols
and thus reduce the computational load of validators. The given proving time could be acceptable in this
setting, if this is deployed akin to hybrid rollups, where a proof is only required in case of a dispute.

1.2 Choice of FHE scheme and SNARK
FHE Scheme Since our goal is fairly ambitious, we try to make our lives as easy as possible. In particular,
we choose as our target the FHE scheme with the lightest known bootstrapping operation, namely TFHE
[CGGI20, CLOT21, BBB+22]. We take the liberty to modify TFHE at a few places to make it more
amendable to our target SNARK. These modifications maintain the functionality of the bootstrap, but
might make it slightly less efficient. If the modifications yield a faster proof generation, this is likely a
worthwhile trade-off depending on the overall system. The most significant modification we apply is to use
a SNARK-friendly prime modulus q ≈ 264 instead of a power of 2, because most efficient SNARKs only
natively support arithmetic circuits over finite fields. This way we avoid emulating the arithmetic in the ring

2https://github.com/zama-ai/verifiable-fhe-paper
3We remark that some zkVMs like [Suc24] have some advanced features, like precomiled circuits, that we did not explore in

this project. We believe it is an interesting open question if more advanced usage of the zkVMs could yield results comparable
to ours in a simpler way.

2

https://github.com/zama-ai/verifiable-fhe-paper

Z264 within the SNARK field. While there are attempts to construct SNARKs for ring arithmetic [GNS23],
this comes with its own caveats, like designated verifier and relatively poor performance.

SNARK There are a number of SNARK implementations for general purpose computation available and
we selected the SNARK for our work based on the following criteria. In order to enable as many applications
as possible, we target a transparent, publicly verifiable SNARK with sublinear verifier. For efficiency reasons,
we require native support for arithmetic in fields of size≈ 264 and, ideally, support for efficiency improvements
for structured computation like loops, since the core of TFHE’s bootstrapping is essentially a large loop.

With these criteria in mind, plonky2 provides a suitable candidate. It relies on the PLONK arithmetiza-
tion [GWC19] in combination with a polynomial commitment scheme based on hash functions, namely FRI
[BBHR18]. It uses as a base field Fp with p = 264 − 232 + 1, which meets our requirement on the modulus,
and, as an added bonus, is plausibly post-quantum secure, which is also true of TFHE. plonky2 is optimized
for recursion, which allows us to construct incrementally verifiable computation (IVC) [Val08], a technique
to prove loops more efficiently than simply rolling them out in a circuit, which will come in handy.

1.3 Related Work
There is a line of research considering verifiable computation on encrypted data. The first results in this area
[GGP10, GKP+13] are mainly of theoretical interest as they rely on heavy machinery like combining garbled
circuits with FHE or functional encryption. The study of systems combining machanisms for verifiable
computation with FHE, as we do in this work, was initiated in [FGP14] and continued in [FNP20, GNS23,
BCFK21, VKH23]. While these works promise better concrete efficiency than the aforementioned schemes,
they still seem to be impractical and sidestep the complexity of bootstrapping by restricting to levelled HE
schemes.

Finally, a few works have started investigating an approach based on performing the integrity check in the
plaintext space [GGW23, ACGS23, CKPH22, CKP+23], with [ACGS23] and [CKPH22, CKP+23] claiming
practical efficiency. However, this approach has the significant drawback that it requires decryption in order
to verify the computation. This has two highly undesirable consequences: First, only the party with the
secret key can verify the computation. While this might be acceptable in some applications, it does rule out
many others. And second, it leaves the FHE scheme vulnerable to active attacks. Since FHE schemes are
inherently vulnerable to IND-CCA2 attacks, and all known efficient schemes even to IND-CCA1 attacks,
a verifiable FHE scheme holds the potential of massively strengthening the security model. Unfortunately,
this is not the case if the client needs to decrypt the ciphertext before being able to verify.

Future Work As hinted at above, our work makes use of recursion-based IVC. There is a recent line
of work constructing more efficient IVC from folding schemes [BGH19, KST22, BC23]. We chose to focus
on recursion, because folding schemes require the commitment scheme of the SNARK to be homomorphic.
However, until very recently, there was no homomorphic scheme suitable for our application, due to large
field size and/or trusted setup and/or inefficient verifier. This changed very recently with [BC24] and an
exciting open question is if more efficient provers can be obtained using this new lattice-based folding.

2 Preliminaries
Notation Throughout we will use the parameters N, q ∈ Z, where N is a power of 2. If N is clear from
context, we let R = Z[X]/(XN +1) and Rq = R/qR. Note that R = Z and Rq = Zq when N = 1. Elements
in Rq (for any N) are denoted by lower case letters, vectors over Rq by bold lower case letters and for a
vector a ∈ Rk

q we denote by ai its i-th component. Similarly, if a ∈ Rq we refer to ai ∈ Zq as its i-th
coefficient, i.e. we have a =

∑
i aiX

i. For an element a ∈ R we consider its norm |a| to be the∞-norm of its
coefficient vector and we extend the norm to elements of Rq by lifting them to R, picking the representative
with coefficients between −q/2 and q/2.

3

2.1 (G)LWE
Definition 1. Let N, q, k ∈ Z with N a power of 2. Let R = Z[X]/(XN + 1) and Rq = R/qR. Finally,
let X be a “small” distribution over Rq. Then, for a fixed s ∈ Rk

q the GLWE distribution GLWEs
N,q,k,X is

defined as (a, b = 〈a, s〉+ e) where a is chosen uniformly at random from Rk
q and e is chosen from X .

Let S be some distribution over Rk
q . The GLWE problem GLWES

N,q,k,X is to distinguish the distribution
GLWEs

N,q,k,X from the uniform distribution over Rk+1
q , where s← S.

The LWES
q,k,X problem is a special case of the GLWES

N,q,k,X where N = 1. TFHE assumes a secret
distribution S that is uniform over elements in Rk

q with binary coefficients and thus we will assume this
secret distribution throughout. With suitable choice for the error distribution X (e.g. discrete or rounded
Gaussian with sufficient noise) and ring dimension k the corresponding GLWES

N,q,k,X problem is considered
to be hard. It is standard practice to estimate the concrete security of a specific LWE instance using the
lattice estimator [APS15].

2.2 TFHE
TFHE is a secret key FHE scheme based on (G)LWE. In the following we try to give a succinct intuitive
description of TFHE that we hope is detailed enough to follow the rest of the work without cluttering it
with too much formal notation. For a more rigorous description, we refer to [CGGI20] and follow up work,
or the survey [Joy22].

The basic ciphertexts in TFHE are simple LWE ciphertexts, but internally it uses a range of other
ciphertexts based on GLWE. Since we need to represent the entire bootstrapping as a circuit, we make use
of all types of ciphertexts and thus we introduce them next.

2.2.1 Ciphertext Types

(G)LWE ciphertext Let N, q, k ∈ Z, X be GLWE (or simply LWE in case N = 1) parameters. For a
message m ∈ Rp, we define its (G)LWE encryption to be (a, b = 〈a, s〉+ e+m), where a ∈ Rk

q is uniformly
random, s ∈ Rk

q is chosen from the uniform binary distribution and e from X . By the hardness of (G)LWE
this is a semantically secure ciphertext. It can be decrypted using s if m represents a suitable encoding of
a message that is robust w.r.t. the error distribution. For example, let p < q ∈ Z be a plaintext modulus
and define ∆ = bq/pe. For a message m ∈ Rp, we may define its encoding as ∆ ·m, which allows to recover
m ∈ Zp by rounding. In the context of LWE ciphertexts we typically denote the dimension by n instead of
k. Note that (G)LWE ciphertext are additively homomorphic and may be multiplied with “small” elements
in Rq, where smallness is determined such that the resulting ciphertext can still be correctly decrypted given
the error distribution and the encoding.

GLev Ciphertext GLev ciphertexts (where the “Lev” stands for levelled) are a way to extend (G)LWE
ciphertexts in order to allow for multiplication with arbitrary constants. It is based on the standard approach
of decomposition: for an element a ∈ Rq and parameters B and `, denote by DecB,`(a) 7→ a the transforma-
tion such that a ∈ R`

q, |ai| ≤ B/2 and
∑`

i=1

⌊
q
Bi

⌉
ai ≈ a. With this decomposition at hand, we define the

GLev encryption of m ∈ Rq with parameters B and ` to be the set of (G)LWE encryptions of (
⌊

q
Bi

⌉
) ·m

for all i ∈ {1 . . . `}. Note that such a ciphertext can be multiplied with an arbitrary element a ∈ Rq by first
decomposing a using parameters B and ` and taking the inner product with the GLev ciphertext. Since
all components of DecB,`(a) are small the result is an (G)LWE encryption of a · m by the homomorphic
properties of the (G)LWE ciphertexts (and assuming suitable parameters).

GGSW Ciphertext While GLev ciphertexts allow to multiply encrypted values with arbitrary constants,
we would also like to be able to efficiently multiply encrypted values with each other. This can be achieved
using GGSW ciphertexts (named after [GSW13]). The idea is to encrypt m as a GLev ciphertext and for

4

each element si of the secret key s ∈ Rk
q , additionally encrypt m · si as a GLev ciphertext. This set of k + 1

GLev ciphertexts forms the GGSW ciphertext. By the properties of GLev ciphertexts, this allows to perform
the multiplication while homomorphically decrypting a ciphertext (a, b = 〈a, s〉+m′+e) by homomorphically
computing b ·m and ai · si ·m and using the additive homomorphism of GLWE ciphertexts. Note that m
should not be too large as this would blow up the error. In TFHE, the message m is usually a key bit and
thus binary, so clearly small. In summary, a GGSW ciphertext allows us to multiply a GLWE ciphertext
with a GLev ciphertext and to obtain a GLWE ciphertext encrypting the product of the two plaintexts (as
long as the plaintext in the GGSW ciphertext is sufficiently small). This operation is typically called the
external product.

2.2.2 Programmable Bootstrapping

The PBS of TFHE receives as input

• the LWE ciphertext (a, b = 〈a, s〉+ e+∆ ·m) ∈ Zn
q to bootstrap, where the corresponding secret key

is s ∈ {0, 1}n,

• an element t ∈ Rq that allows to encode a function4 f : Zp 7→ Zp into the bootstrap,

• the bootstrapping key (bsk) as a collection of GGSW ciphertexts encrypting the individual bits si ∈
{0, 1} of the secret key under a bootstrapping secret key s′ ∈ Rk

q with binary coefficients, and

• a key switching key (ksk) as a collection of GLev ciphertexts encrypting the coefficients of the boot-
strapping key under the secret key s.

It outputs a ciphertext (a′,b′ = 〈a′, s〉+ e′ +∆ · f(m)), where e′ only depends on the bsk and ksk, not on e.
For suitable parameters, we have that |e′| < |e|. Combining this with the additive homomorphism of LWE
ciphertexts we obtain a Fully Homomorphic Encryption scheme.

The PBS consists of the following four steps. See Figure 1 for an illustration.

Mod Switch We embed the input ciphertext into the group 〈X〉 ⊂ Rq, which is of size 2N . So in order
to match up the moduli, we first perform a modulus switch. In particular, this takes as input the ciphertext
(a, b) ∈ Zn+1 and outputs (a′, b′) ∈ Zn+1

2N , where

a′i =

⌊
ai2N

q

⌉
and similar for b′.

Blind Rotation The blind rotation is the core of the PBS. We begin its description by introducing a
homomorphic ciphertext multiplexer (CMUX) operation: given two GLWE ciphertext c0, c1 ∈ Rk+1

q and
a GGSW encryption Cµ of a bit µ ∈ {0, 1}, all under the same key s ∈ Rk

q , we can compute the GLWE
ciphertext

c = (c1 − c0)� Cµ + c0

where � corresponds to the external product described in Section 2.2.1. By the additive homomorphism
and the properties of the external product, c will encrypt the same plaintext as cµ.

We are now ready to describe the blind rotation. Let (a, b) ∈ Zn+1
2N be the ciphertext after the mod

switch. The blind rotation begins by constructing a trivial GLWE ciphertext (0, X−b · t), where 0 ∈ Rk
q

is the all zero vector of size k. Then, it iterates over the elements ai of a, where the output GLWE
ciphertext c from the previous iteration is multiplied element-wise by Xai . The two ciphertexts c and
Xai · c are input to a homomorphic CMUX, with the control bit being the corresponding part of the bsk
which is itself a GGSW ciphertext encrypting si. Accordingly, the result is a ciphertext encrypting the

4There is a requirement for the function to be negacyclic, but we omit details since it is irrelevant for our work.

5

GLWE

Hom.

CMUX

GGSW

Hom.

CMUX

GGSW

Hom.

CMUX

GGSW

Key Switch
+

Sample Extr.

KSK

Figure 1: Illustration of TFHE’s PBS (without mod switch)

same plaintext as Xaisi · c. After executing the full loop, the result is a GLWE ciphertext encrypting
X−b+

∑
i aisi · t = X−b+〈a,s〉 · t = X−m−e · t. Note that in Rq, this corresponds to a negacyclic rotation of t

by m+ e positions. By redundantly embedding the function f into the test polynomial t, we can ensure that
the error e is rounded away and the resulting ciphertext contains an encryption of ∆ · f(m) in its constant
coefficient.

Sample Extraction The goal of sample extraction is to convert a GLWE ciphertext into an LWE ci-
phertext encrypting the constant coefficient of the GLWE ciphertext, and where the key is a vector of bits
corresponding to the concatenation of coefficient vectors in the GLWE secret key. We describe the spe-
cial case of k = 1, since the generalization is straight-forward. So, given (a, b) ∈ R2

q we seek to construct
(a′, b′) ∈ ZN+1

q such that (b− a · s)0 = b′ − 〈a′, s′〉, where s′ is as described above. We note that

a · s =
∑
i

a · siXi =
∑
i

(
Xia

)
si .

Since addition in Rq is elementwise, we may set a′i = (Xia)0 and b′ = b0 in order to achieve our goal.

Key Switch The key switch is a classic LWE type operation that follows from the observation that GLev
ciphertexts can be used to homomorphically decrypt a GLWE ciphertext. Let (a, b) ∈ Rk+1

q be a GLWE
ciphertext with corresponding secret key s ∈ Rk

q . We would like to obtain a ciphertext (a′, b′) ∈ Rk′+1
q

encrypting the same message as (a, b) but under the secret key s′ ∈ Rk′

q . We can do so by constructing a
key switching key (ksk) that consists of GLev encryptions of si under s′. Then, using the fact that we can
multiply these ciphertexts with arbitrary constants using decomposition, we can homomorphically compute
a ciphertext encrypting b− 〈a, s〉 under s′, which yields the desired ciphertext. In the context of TFHE this
operation has classically been applied to the LWE ciphertexts resulting from the sample extraction, but we
remark that it may also be applied to GLWE ciphertexts.

Finally, we describe a slight modification of a GGSW ciphertext that also allows to perform a key switch,
as already noticed in [BCL+23]. Recall that a GGSW ciphertext consists of a set of GLev ciphertexts of
messages m ·si, where the si are the elements of the secret key s. This allows to multiply a GLWE ciphertext
and a GGSW ciphertext (both under secret key s) to obtain a GLWE encrpytion of the product of the two
messages under the same secret key s. Now assume that we have a GLWE ciphertext encrypted under s
and construct a GGSW ciphertext using GLev encryptions of the elements m · si but under a different key
s′. We can still apply the external product to obtain a GLWE ciphertext of the product, but the resulting
ciphertext will be an encryption under s′. In other words, by modifying the GGSW encryption and setting
m = 1, we can also use the external product to perform a GLWE key switch. This will be useful in Section
4.2.

6

2.3 Parameters
As is plain from above description, there are a lot of parameters involved that impact the security, correctness
and performance of TFHE. We do not go into details just yet but we remark that TFHE is typically
instantiated with the ciphertext modulus q = 264 (see e.g. [CGGI16, Zam22]). The other parameters are the
result of a complex optimization procedure, but for concreteness the reader may consider Table 2.

3 Blind Rotation
Since the blind rotation is the core of the PBS, we begin by describing our circuit for this part of the PBS.
We start out with a circuit for one iteration and then explain how we scale to a full blind rotation.

3.1 One Step of the Blind Rotation
One of the bottleneck operations during a step of the blind rotation is polynomial multiplication in Rq. Im-
plementations like [Zam22] or the one accompanying [CGGI16] use an FFT on floating point numbers, which
are very inefficient to realize in the arithmetic circuit model. Luckily, the choice of modulus q = 264−232+1
admits performing this multiplication using the NTT, so here we diverge from common implementations and
use an NTT circuit instead.

The second main operation is multiplication by the monomial Xa, where a ∈ Z2N is an input. This
corresponds to a negacyclic rotation by a in the ring Rq, which is a rather trivial (and linear) operation on a
CPU. However, in the circuit model it is not quite as easy, since a is not known during circuit construction
and we cannot “rewire” a circuit during evaluation. Note that this operation would be trivial in the circuit
model, if a was a fixed constant. So our solution to this problem is to implement subcircuits for negacyclic
rotations by powers of two. Then we apply each of the subcircuits and each time select the rotated or not
rotated polynomial using a CMUX and the corresponding bit of the binary decomposition of a as control bit.
See Figure 2 for an illustration. This is a circuit of size O(N logN) and thus significantly more expensive
than on a CPU. All other operations (addition, decomposition) are readily available in plonky2 and are
easily generalized to polynomials.

3.2 Scaling to Full Blind Rotation
The obvious way to scaling the blind rotation step to n steps is to build a large circuit with n subcircuits
performing one step each. While this works in theory, the circuit size blows up, since n is very large. In fact,
in our experiments we were only able to do this for small n, cf. Section 5.2. For larger n, our test machines
ran out of memory, which quickly becomes the bottleneck.

Another easy approach to scaling the blind rotation is to simply prove each step individually and send
the proofs and intermediate results to the verifier. The verifier can check each of the proofs. This achieves a
proving time that is linear in the number of steps and can be performed with memory equivalent to one step.
The issue with this approach is the proof size and verifier complexity: the proof now consists of n smaller
proofs and n GLWE ciphertexts (the intermediate results) and the verifier needs to check all individual
proofs. In other words, the proof and verifier are not succinct as they are linear in the circuit size. With our
example parameters (cf. Table 2), each ciphertext has size about 4 kB, so n > 29 ciphertexts alone amount
to about 2MB, without even considering the substantially larger proofs.5 In some applications this might
be acceptable, but typically this is considered too large and the burden on the verifier too costly.

Clearly, we can use a hybrid strategy to reduce the proof size and verifier complexity. If we are working
on a machine that is able to prove t steps of the blind rotation at a time, we may take advantage of this and
cut the number of intermediate results and inner proofs down by a factor t.

5We remark that it might be possible to compress the set of proofs into a single smaller proof using recursion, but this will
certainly not work for the intermediate results, which need to be sent and checked in any case.

7

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Binary Decomposition

Figure 2: Circuit for multiplication of polynomial p=
∑

i piX
i ∈ Zq[X]/(X4 + 1) by Xa

3.2.1 Blind Rotation Based on IVC

As noted in Section 1, plonky2 supports recursion and thus allows constructing IVC. The general idea of
IVC to prove the correct execution of a loop is the following. Let F be the function describing the step
function of the loop, i.e., we want to prove y = Fn(x), where Fn(x) corresponds to applying F successively
n times to x. We may augment F to obtain a function F ′ that takes as input the (public) initial value x, a
private prover input yi, and, also as a private witness, a proof πi. F ′ outputs yi+1 while also verifying that
the proof πi is valid with respect to F ′ itself (for input x and output yi). For an illustration of a circuit F′

computing F ′ see Figure 3. A proof for this circuit attests to the correctness of the combined statement: 1)
yi+1 = F (yi) and 2) the verifier accepts πi as a proof of yi = F (x). The prover may now successively prove
yi = F ′(yi−1, πi−1) to obtain πi and obtain the output yn along with a succinct proof πn. See e.g. [Tha22]
for more details and references.

This approach seems like the ideal tool to prove a blind rotation. The overhead for the prover of proving
the verifier circuit for each iteration is relatively small compared to our function F implementing a step of
the blind rotation, due to plonky2’s focus on optimization of recursion. There is one caveat, in that in our
description above there is no public input beyond the initial x. In particular, the individual loop iterations
do not receive any public input specific to the iteration. In contrast, in our application of blind rotation,
every loop iteration receives a different part of the bootstrapping key and ciphertext element. One way to
solve this is by passing the entire bootstrapping key as input to the step function and use a counter that
keeps track of the loop iteration. Then we could use a selector subcircuit that picks out the correct part of
the key and the LWE mask for the current iteration. Note that this subcircuit grows linearly with the size
of the bootstrapping key, which consists of n(k + 1)2`N elements in Zq. For small n this circuit is smaller
than the circuit for our step function and thus does not incur too large of an overhead, but as n grows it
quickly becomes the bottelneck.

So we opt for another solution based on hashing: since plonky2 is optimized for recursion and its verifier
needs to perform hashing operations, it necessarily supports efficient proofs for evaluating hash functions.
Accordingly, we let the elements of the bootstrapping key and LWE ciphertext be private prover inputs,
which may differ across iterations, and extend the circuit computing the loop to compute a running hash

8

Figure 3: Illustration of recursion-based IVC. F is the circuit computing the loop iteration, V is the verifier
circuit verifying a proof for F′, the illustrated circuit itself. The public input is x0 along with the public
outputs xi+1 and the verifier output, the other two inputs are prover inputs.

chain over them. The final hash is part of the output and the verifier may recompute the hash in order to
verify that the prover used the correct bootstrapping key and LWE ciphertext in the correct order. In fact,
we split the hash over the bootstrapping key and the ciphertext into two seperate hash chains. This has
the advantage that for a fixed bootstrapping key the verifier needs to compute the corresponding hash chain
only once, e.g. during key generation. Since the bootstrapping key is orders of magnitude larger than the
ciphertext, this significantly speeds up the verifier in case multiple PBS operations per bootstrapping key are
to be evaluated. Note that the verifier does not even need to store the bootstrapping key after computing
this hash and may perform verification with the hash only. We remark that we do not claim novelty for the
idea of replacing a large public input with a large private input and a small public hash value. This seems
to be folklore in the zkVM literature and even plonky2 already employs this technique itself. The novelty
here is in the observation that it provides an elegant solution to our problem of different, and potentially
very large, inputs to each loop iteration.

4 Extension to Full PBS
We now outline how we extend the IVC-based prover to a full PBS. In contrast to a regular, non-recursive
prover, this is not trivial and we cannot simply plug together the circuits and obtain a prover for the
combined functionality. However, we will see that we can still extend the prover efficiently to the full PBS.
The resulting IVC circuit is illustrated in Figure 4.

4.1 Mod Switch
Recall that we need to switch the modulus of the input ciphertext c = (a, b) ∈ Zn+1

q to turn it into a
ciphertext c′ = (a′, b′) ∈ Zn+1

2N . The resulting elements of c′ are used as input to the negacyclic rotation
operation (cf. Section 3.1), where they are binary decomposed and the individual bits are used as control
bits of CMUX operations that pick the shifted or unshifted polynomial, where the shift is fixed. It follows
that an easy way to perform the mod switch is to consider the element ai in each iteration (or −b in the first
iteration), perform a bit decomposition and use the logN+1 most significant bits as input to the polynomial
rotation. In fact, in order to round to the closest integer, we use the logN + 2 most significant bits and the
final shift by one position is performed twice, once with the (logN +1)st most significant bit and again with

9

the (logN +2)nd bit (the latter leading to the correct rounding). While this approach does not perform the
mod switch exactly as described in Section 2.2, it is a close enough approximation as we quantify next.

For an element a ∈ Zq, the mod switch operation would require to perform the operation a 7→ ba · 2N/qe.
The circuit we describe above instead performs the operation a 7→

⌊
a · 2N/264

⌉
.

Lemma 1. Let c = (a, b) ∈ Zn+1
q be an LWE ciphertext with binary key s ∈ {0, 1}n and let p ∈ Z such that

q/p = (1 − ε). Then performing the mod switch to 2N using p instead of q increases the error by at most
ε · 2N .

Proof. Let εb =
b·2N
p −

⌊
b·2N
p

⌉
and εi =

ai·2N
p −

⌊
ai·2N

p

⌉
. Then we have⌊

b · 2N
p

⌉
−
∑
i

⌊
ai · 2N

p

⌉
si =

2N

p
(b− 〈a, s〉) + εb −

∑
i

εisi

=
q

p
· 2N

q
(b− 〈a, s〉) + εb −

∑
i

εisi

=
2N

q
(b− 〈a, s〉)− ε

2N

q
(b− 〈a, s〉) + εb −

∑
i

εisi .

The lemma follows, since (b− 〈a, s〉) /q < 1 and the rounding errors εb and εi have a similar distribution as
they would when mod switching using q.

4.2 Key Switch
The biggest challenge in extending the blind rotation to a full PBS is the key switch as it is structurally
quite different from the blind rotation. There are essentially two options to add the key switch in a straight-
forward manner. First, one could extend the circuit to perform the full key switch in each round on the
accumulator value in parallel to the blind rotation step and select the output value depending on the loop
counter using a CMUX. The drawback of this solution is that the circuit for a full key switch is quite large
compared to a step of the blind rotation and thus would slow down each step significantly.

The second approach would be to perform just one of the k · N + 1 steps of the key switch in every
iteration and again select the output depending on the loop counter. The overhead in each iteration would
be very small and thus each iteration would be just as fast to prove as without the key switch. However, we
now need to perform n + k · N steps of the loop iteration instead of just n. Since k · N is typically larger
than n, this incurs a slowdown of at least a factor 2.

Clearly, one could attempt to mitigate above issues by implementing a hybrid, but we chose a different
path. Inspired by [BCL+23] we do not perform sample extraction and then an LWE key switch, but rather
first perform a GLWE key switch to a partial key of size n and then perform a trivial sample extraction on
the verifier side (cf. Section 4.3). The advantage is that the GLWE key switch has the same structure as the
external product but with a key switching key instead of a GGSW encryption as input. This means, we can
re-use the largest part of the blind rotation circuit, the external product, for the key switch. The additional
logic of selecting the input and output to the external product circuit is small in comparison and does not
affect prover time, and this increases the overall number of loop iterations only by one. The drawback is that
the key switch needs to use the same parameters (decomposition base and level, ring and GLWE dimension)
as the blind rotation, but the key switching key needs to carry larger noise for security due to the key
being partial. So this requires tweaking the parameters. Looking ahead, we note that we use the parameter
optimization approach from [BCL+23] but restricting the search space such that the bootstrapping and the
key switch use the same parameters.

4.3 Sample Extraction
Sample extraction takes as input a GLWE ciphertext and outputs an LWE ciphertext of dimension n = kN
where the key of the resulting ciphertext is the (concatenation of the) coefficient vector(s) of the GLWE

10

Figure 4: IVC Circuit for TFHE’s PBS. This corresponds to the subcircuit F from Figure 3. We omit the
hash chains over the bootstrapping key and ciphertext (a, b). The mod switch is not depicted since we
consider it integrated into the polynomial rotation as described in Section 4.1.

secret key. This conversion consists of a simple, fixed re-ordering and negation of a few elements and is
thus very cheap and easy to perform. Hence, we may assume that the verifier performs it itself, i.e. we may
assume the prover sends the GLWE ciphertext resulting from the PBS and GLWE key switch to the verifier
and the verifier will perform the sample extraction itself. In the following we note that we can trivialize
the sample extraction even further by modifying the key switching key, ensuring that the LWE sample is
obtained by literally copying a subset of the coefficients from the GLWE sample.

In the following we assume k = 1 for simplicity, but the generalization to k > 1 is straight-forward.
Let s′ ∈ Zn be the target LWE key, i.e. the key under which the output ciphertext of the PBS should be
encrypted. (Typically, this is the same key under which the input ciphertext to the PBS is encrypted.) Let
s ∈ Rq be the key of the GLWE ciphertext that is the result of the key switch. For a GLWE ciphertext
(a, b), write m̃ = b− a · s. Then we have

m̃0 = b0 − (a · s)0 = b0 −

((∑
i

ai ·Xi

)
· s

)
0

= b0 −
∑
i

ai · (Xi · s)0 .

So if we set s such that (Xi ·s)0 = s′i, we see that the coefficient vector of a together with b0 forms a valid
LWE ciphertext encrypting m̃0 under s′. So by modifying the key switching key to switch to s as defined
above, we may think of this modification as integrating the usual sample extraction into the key switch.
This also works for n < N , since we can view s ∈ {0, 1}n as an N -dimensional vector, where the last N − n
elements are 0. This also means we can drop the corresponding elements of the extracted mask a.

5 Experimental Results
In this section, we describe our experimental results. The easiest approach to proving a PBS would be to
implement it in a zkVM. While easy to use, such zkVMs introduce a significant overhead and designing a
circuit for a SNARK is typically much more efficient, especially in terms of proving time. To quantify how
much exactly we are gaining from the latter approach, we first give some results on our implementation in
existing zkVMs and then proceed to experimental results of our design in plonky2.

11

Prover time (min) Verifier time (s)
RISC Zero 23 2.3

SP1 2.5 1.1

Table 1: Performance of proving and verifying a single step of the blind rotation using zkVMs on an AWS
C6i.metal machine.

5.1 Zero Knowledge Virtual Machines
Modern general purpose zkVMs are computing platforms based on STARKs [BSBHR18] and the RISC-V
instruction set architecture. To use such a zkVM, one must write the program whose execution they would like
to prove in a general purpose programming language such as Rust, which supports RISC-V as a compilation
target. The compiled program is then given as input to the zkVM, which executes it and produces a
proof of correct execution. Notice the subtle difference between this approach and more common verifiable
computation techniques: the circuit for which the proof is generated is not that of the compiled program,
but that of the virtual machine which receives the compiled program as input.

The generality of zkVMs makes them a powerful tool by allowing users unfamiliar with arithmetic circuit
generation or domain specific languages [BIM+23, Sta20, Azt23] to easily generate proofs for any program
they have already built. However, the overhead caused by the VM logic is significant and as such, there is a
trade-off between ease of use and performance.

To set a baseline, we use general purpose zkVMs such as RISC Zero [BGZ23] and SP1 [Suc24] to generate
proofs of correct execution for a part of TFHE’s PBS with similar parameters as previously described. Since
we are not able to prove a complete PBS in one go due to performance limitations, we extrapolate from
micro-benchmarks to estimate real performance.

RISC Zero RISC Zero [BGZ23] is a zkVM that provides a complete developer toolbox to test and measure
proof generation performance. This includes a web API for generating proofs using a higly parallelized GPU-
assisted compute cluster (Bonsai) as well as developer tools to measure the RISC-V instruction count of a
given program. Using the zkVM’s tools, we are able to measure that one step of the blind rotation takes
about 34 million instructions to complete. With the help of the Bonsai compute cluster, the time taken
to generate a proof of this computation is about 2 minutes on average. This measurement increases to
approximately 23 minutes on average on an AWS C6i.metal machine.

SP1 SP1 [Suc24] is a zkVM that functions similarly to RISC Zero. On this zkVM, we measure that one
step of the blind rotation takes about 29 million RISC-V instructions to complete. Even though SP1 does not
provide a compute cluster to help with proof generation, we are able to measure a timing of approximately
2.5 minutes per step of the blind rotation on average on an AWS C6i.metal machine.

A performance comparison between the two zkVMs is presented in Table 1. Note that the timings
included in this table represent a single step of the blind rotation (cf. Section 2.2.2). It is reasonable to
expect that the time taken to prove a full PBS using a zkVM increases by a factor approximately equal to
the parameter n (cf. Table 2). This linear increase of the proving time is due to the fact that modern zkVMs
use proof composition and recursion techniques to allow the proving time to grow approximately linearly in
the size of the circuit. The linear growth in n means that the real performance of zkVMs when used to prove
the correct execution of a full PBS greatly depends on the choice of parameters, which can be optimized for
this specific use case.

5.2 Our plonky2 based Implementation
Parameters There are a multitude of parameters of TFHE’s PBS that may be tweaked and optimized, all
of which impact the correctness, security and performance of the PBS. This optimization is very complex.
Indeed, it is a subject of scientific research in its own right [BBB+23]. As pointed out in Section 4.2, we need

12

q n N k B `

264 − 232 + 1 728 210 1 25 4

Table 2: TFHE parameters suitable for our circuit. The noise parameters are set such that we may claim
128 bits of security relying on the lattice estimator. This parameterization allows for a plaintext space of
size 4.

CPU Cores Memory (GB) Prover time (min) Verifier time (ms)
M2 MacBook Pro 8 24 48 4.8

C6i.8xlarge 32 64 39 9.5
C6i.16xlarge 64 128 27 9.5

C6i.metal 128 256 21 9.5
Hpc7a.96xlarge 192 768 18 8

Table 3: Performance of proving and verifying a PBS operation using our plonky2 based implementation.

to tweak parameters to ensure correctness and security. For this, we follow the approach of [BCL+23] (which
in turn uses an adaptation of [BBB+23]), since some of the proposed algorithms are similar to our circuit
design. In order to obtain a usable and performant set of paramters, we tweaked the optimization code
from [BCL+23] by restricting the search space to fit our needs (cf. Section 4.2). We show the corresponding
parameters in Table 2. We remark though that the optimization targets a computational model that is
different from the arithmetic circuit model, and, as we saw in Section 3.1, some of the operations have
significantly different cost in different computational models. It follows that the parameters we obtained
might not minimize the circuit for the PBS and might not be optimal. However, fully optimizing parameters
for our setting is out of scope of this work and we believe our results already demonstrate the progress of
our approach towards practical verifiable FHE.

Results We experimented with our plonky2-based implementation on a few different machines: a modern
consumer laptop (M2 MacBook Pro) and a few AWS EC2 compute-optimized instances (C6i.8xlarge,
C6i.16xlarge, C6i.metal and Hpc7a.96xlarge). Proof size is obviously independent of the machine and
was a little less than 200kb. In our tests with a non-recursive approach (cf. Section 3.2) even AWS instances
with large amounts of memory struggled to prove even a small-ish number of steps (n ≈ 50) due to the
memory requirement. As expected, this was not the case in our experiments with the recursive IVC approach,
where memory consumption is independent of the number of loop iterations n. In fact, even an older laptop
with just 8GB of memory was able to run the prover, albeit taking significantly longer than the more modern
machines we report timings for in Table 3.

Ackowledgement
We would like to thank Samuel Tap for help with the parameter optimization and the RISC Zero team for
assistance with their zkVM.

References
[ACGS23] Diego F. Aranha, Anamaria Costache, Antonio Guimarães, and Eduardo Soria-Vazquez. HE-

LIOPOLIS: verifiable computation over homomorphically encrypted data from interactive oracle
proofs is practical. IACR Cryptol. ePrint Arch., page 1949, 2023.

13

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with
errors. J. Math. Cryptol., 9(3):169–203, 2015.

[Azt23] Aztec. The noir programming language. https://noir-lang.org/, 2023. Accessed: 2024-03-
01.

[BBB+22] Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien Ligier, Jean-Baptiste
Orfila, and Samuel Tap. Parameter optimization & larger precision for (T)FHE. Cryptology
ePrint Archive, Report 2022/704, 2022. https://eprint.iacr.org/2022/704.

[BBB+23] Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien Ligier, Jean-Baptiste
Orfila, and Samuel Tap. Parameter optimization and larger precision for (T)FHE. Journal of
Cryptology, 36(3):28, July 2023. doi:10.1007/s00145-023-09463-5.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive
oracle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,
and Donald Sannella, editors, ICALP 2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss
Dagstuhl, July 2018. doi:10.4230/LIPIcs.ICALP.2018.14.

[BC23] Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumulation/folding for special
sound protocols. Cryptology ePrint Archive, Paper 2023/620, 2023. https://eprint.iacr.
org/2023/620. URL: https://eprint.iacr.org/2023/620.

[BC24] Dan Boneh and Binyi Chen. Latticefold: A lattice-based folding scheme and its applications to
succinct proof systems. Cryptology ePrint Archive, Paper 2024/257, 2024. https://eprint.
iacr.org/2024/257. URL: https://eprint.iacr.org/2024/257.

[BCFK21] Alexandre Bois, Ignacio Cascudo, Dario Fiore, and Dongwoo Kim. Flexible and efficient verifi-
able computation on encrypted data. In Juan Garay, editor, PKC 2021, Part II, volume 12711 of
LNCS, pages 528–558. Springer, Heidelberg, May 2021. doi:10.1007/978-3-030-75248-4_19.

[BCL+23] Loris Bergerat, Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, Adeline Roux-Langlois,
and Samuel Tap. Faster secret keys for (t)fhe. Cryptology ePrint Archive, Paper 2023/979,
2023. https://eprint.iacr.org/2023/979. URL: https://eprint.iacr.org/2023/979.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without a
trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019. https://eprint.iacr.
org/2019/1021.

[BGZ23] Jeremy Bruestle, Paul Gafni, and RISC Zero. Risc zero zkvm: Scalable, transparent argu-
ments of risc-v integrity. https://dev.risczero.com/proof-system-in-detail.pdf, 2023.
Accessed: 2024-02-29.

[BIM+23] Marta Bellés-Muñoz, Miguel Isabel, Jose Luis Muñoz-Tapia, Albert Rubio, and Jordi Baylina
Melé. Circom: A circuit description language for building zero-knowledge applications. IEEE
Trans. Dependable Secur. Comput., 20(6):4733–4751, 2023. doi:10.1109/TDSC.2022.3232813.

[BSBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Paper 2018/046, 2018.
https://eprint.iacr.org/2018/046. URL: https://eprint.iacr.org/2018/046.

[CGG16] Ilaria Chillotti, Nicolas Gama, and Louis Goubin. Attacking FHE-based applications by software
fault injections. Cryptology ePrint Archive, Report 2016/1164, 2016. https://eprint.iacr.
org/2016/1164.

14

https://noir-lang.org/
https://eprint.iacr.org/2022/704
https://doi.org/10.1007/s00145-023-09463-5
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2024/257
https://eprint.iacr.org/2024/257
https://eprint.iacr.org/2024/257
https://doi.org/10.1007/978-3-030-75248-4_19
https://eprint.iacr.org/2023/979
https://eprint.iacr.org/2023/979
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://dev.risczero.com/proof-system-in-detail.pdf
https://doi.org/10.1109/TDSC.2022.3232813
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2016/1164
https://eprint.iacr.org/2016/1164

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homo-
morphic encryption: Bootstrapping in less than 0.1 seconds. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 3–33. Springer, Hei-
delberg, December 2016. doi:10.1007/978-3-662-53887-6_1.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully
homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–91, January 2020.
doi:10.1007/s00145-019-09319-x.

[CKP+23] Sylvain Chatel, Christian Knabenhans, Apostolos Pyrgelis, Carmela Troncoso, and Jean-Pierre
Hubaux. Poster: Verifiable encodings for maliciously-secure homomorphic encryption evalua-
tion. In CCS, pages 3525–3527. ACM, 2023.

[CKPH22] Sylvain Chatel, Christian Knabenhans, Apostolos Pyrgelis, and Jean-Pierre Hubaux. Verifiable
encodings for secure homomorphic analytics. CoRR, abs/2207.14071, 2022.

[CLOT21] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Improved programmable
bootstrapping with larger precision and efficient arithmetic circuits for TFHE. In Mehdi Ti-
bouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages
670–699. Springer, Heidelberg, December 2021. doi:10.1007/978-3-030-92078-4_23.

[DDD+23] Morten Dahl, Clément Danjou, Daniel Demmler, Tore Frederiksen, Petar Ivanov, Marc Joye,
Dragos Rotaru, Nigel Smart, and Louis Tremblay Thibault. fhEVM: Confidential EVM Smart
Contracts using Fully Homomorphic Encryption. https://github.com/zama-ai/fhevm/blob/
main/fhevm-whitepaper.pdf, 2023. Accessed: 2023-11-22.

[FGP14] Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable computation on en-
crypted data. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages
844–855. ACM Press, November 2014. doi:10.1145/2660267.2660366.

[FNP20] Dario Fiore, Anca Nitulescu, and David Pointcheval. Boosting verifiable computation on en-
crypted data. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors,
PKC 2020, Part II, volume 12111 of LNCS, pages 124–154. Springer, Heidelberg, May 2020.
doi:10.1007/978-3-030-45388-6_5.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of
LNCS, pages 465–482. Springer, Heidelberg, August 2010. doi:10.1007/978-3-642-14623-7_
25.

[GGW23] Sanjam Garg, Aarushi Goel, and Mingyuan Wang. How to prove statements obliviously? IACR
Cryptol. ePrint Arch., page 1609, 2023.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. How to run Turing machines on encrypted data. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 536–553. Springer, Heidelberg,
August 2013. doi:10.1007/978-3-642-40084-1_30.

[GNS23] Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. Rinocchio: SNARKs for ring
arithmetic. Journal of Cryptology, 36(4):41, October 2023. doi:10.1007/s00145-023-09481-3.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, Heidelberg,
August 2013. doi:10.1007/978-3-642-40041-4_5.

15

https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-92078-4_23
https://github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf
https://github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf
https://doi.org/10.1145/2660267.2660366
https://doi.org/10.1007/978-3-030-45388-6_5
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/s00145-023-09481-3
https://doi.org/10.1007/978-3-642-40041-4_5

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953.

[Joy22] Marc Joye. SoK: Fully homomorphic encryption over the [discretized] torus. IACR TCHES,
2022(4):661–692, 2022. doi:10.46586/tches.v2022.i4.661-692.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge argu-
ments from folding schemes. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part IV, volume 13510 of LNCS, pages 359–388. Springer, Heidelberg, August 2022. doi:
10.1007/978-3-031-15985-5_13.

[Pol22] Polygon. Plonky2. https://github.com/mir-protocol/plonky2, 2022. Accessed: 2023-11-22.

[Sta20] Starknet. The cairo programming language. https://www.cairo-lang.org/, 2020. Accessed:
2024-03-01.

[Suc24] Succinct. Sp1. https://github.com/succinctlabs/sp1/, 2024. Accessed: 2024-02-29.

[Tea23] The Fhenix Team. Fhe-rollups: Scaling confidential smart contracts on ethereum and beyond.
https://www.fhenix.io/wp-content/uploads/2023/11/FHE_Rollups_Whitepaper-v0.
1-1.pdf, 2023. Accessed: 2023-11-22.

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. Found. Trends Priv. Secur., 4(2-
4):117–660, 2022.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 1–18. Springer,
Heidelberg, March 2008. doi:10.1007/978-3-540-78524-8_1.

[VKH23] Alexander Viand, Christian Knabenhans, and Anwar Hithnawi. Verifiable fully homomorphic
encryption, 2023. arXiv:2301.07041.

[Zam22] Zama. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean and Integer
Arithmetics Over Encrypted Data, 2022. https://github.com/zama-ai/tfhe-rs.

16

https://eprint.iacr.org/2019/953
https://doi.org/10.46586/tches.v2022.i4.661-692
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://github.com/mir-protocol/plonky2
https://www.cairo-lang.org/
https://github.com/succinctlabs/sp1/
https://www.fhenix.io/wp-content/uploads/2023/11/FHE_Rollups_Whitepaper-v0.1-1.pdf
https://www.fhenix.io/wp-content/uploads/2023/11/FHE_Rollups_Whitepaper-v0.1-1.pdf
https://doi.org/10.1007/978-3-540-78524-8_1
https://arxiv.org/abs/2301.07041
https://github.com/zama-ai/tfhe-rs

	Introduction
	Contribution
	Choice of FHE scheme and SNARK
	Related Work

	Preliminaries
	(G)LWE
	TFHE
	Ciphertext Types
	Programmable Bootstrapping

	Parameters

	Blind Rotation
	One Step of the Blind Rotation
	Scaling to Full Blind Rotation
	Blind Rotation Based on IVC

	Extension to Full PBS
	Mod Switch
	Key Switch
	Sample Extraction

	Experimental Results
	Zero Knowledge Virtual Machines
	Our plonky2 based Implementation

