The Last Challenge Attack:
Exploiting a Vulnerable Implementation
of the Fiat-Shamir Transform in a KZG-based SNARK

Oana Ciobotaru!, Maxim Peter!, and Vesselin Velichkov'

1OpenZeppelin

March 4, 2024

Abstract

The Fiat-Shamir transform [1] is a well-known and widely employed technique for converting sound
public-coin interactive protocols into sound non-interactive protocols. Even though the transformation
itself is relatively clear and simple, some implementations choose to deviate from the specifications,
for example for performance reasons. In this short note, we present a vulnerability arising from
such a deviation in a KZG-based PLONK verifier implementation. This deviation stemmed from
the incorrect computation of the last challenge of the PLONK protocol [2], where the KZG batching
proof challenge was computed before, and, hence, independently from the KZG evaluation proofs.
More generally, such a vulnerability may affect any KZG [3] implementation where one uses batched
KZG proof evaluations for at least two distinct evaluation points. We call an attack enabled by
such a deviation a Last Challenge Attack. For concreteness, we show that when a PLONK verifier
implementation presents such a deviation, a malicious PLONK prover can mount a Last Challenge
Attack to construct verifiable proofs of false statements. The described vulnerability was initially
discovered as part of an audit, and has been responsibly disclosed to the developers and fixed. A
proof of concept of the vulnerability, in which a proof is forged for an arbitrary public input, is made
available.

In addition to the above, in this work we also provide a security proof of the knowledge-soundness
of the batched KZG scheme with evaluations for at least two distinct values.

1 Introduction

The Fiat-Shamir (FS) transform [I] is a well-known and widely employed technique for converting
certain sound public-coin interactive protocols into functionally equivalent sound non-interactive pro-
tocols. The security of the F'S transform is proven, in general, in the random oracle model [4} [5] or, in
special cases, relies on the correlation intractability of the hash function used [6], [7].

In practice, the FS transform is instantiated with a hash function and the resulting algorithm is a
heuristic: for the resulting non-interactive protocols, at the moment, there are no known general proofs
of soundness based on the computational intractability of some well-studied mathematical problem
(e.g., discrete logarithm problem). However, the protocols obtained using the FS transform are be-
lieved to be secure in practice.

Intuitively, in standardised implementations of the FS transform, a public-coin interactive protocol
is transformed into a non-interactive protocol by replacing the random challenges at each interactive
round with the hash of the concatenation of all the public parameters of the instance, the public input
of the instance and all the messages exchanged between the interactive parties, up to the current round.

Even though the transformation itself is relatively clear and simple, there are various reasons why
implementations of the FS transform deviate from standard specifications, ranging from misunder-
standings to trying to optimise for efficiency of the implementation. In such cases, the honest parties
have an increased risk of being amenable to various types of potentially disastrous attacks.

In the following, we describe a new type of attack targeting incorrect implementations of the F'S trans-
form, called the Last Challenge Attack. This attack arises in implementations of the KZG polynomial
commitment scheme verifier [3] in which the FS transform is applied to batched KZG evaluation proofs
for at least two distinct evaluation points, but the challenge used to batch the evaluation proofs is
incorrectly computed. In particular, the Last Challenge Attack is likely to affect implementations in
which the proof batching challenge is incorrectly computed prior to and, thus, independently of at
least two individual KZG evaluation proofs. For concreteness, we show an example of a Last Challenge
Attack found in a KZG-based PLONK |[2] verifier implementation which a malicious PLONK prover
could exploit in order to construct verifiable proofs of false statements.

The vulnerability exploited by the Last Challenge Attack and described in this paper was initially
discovered as part of an audit requested by Lineaﬂ This audit was focused on their PLONK verifier
implementation. The vulnerability has been responsibly disclosed to the developers and fixed El

1.1 Related Work

The Fiat-Shamir transform, a technique using a random oracle to obtain non-interactive protocols,
was introduced in [I]. The first formal foundations for the random oracle model were published in [4].
The first security proof for a Fiat-Shamir transform in the random oracle model is part of [5]. In
particular, the authors show how to transform a constant-round interactive zero-knowledge proof into
a secure non-interactive signature scheme in the random oracle model. In practice, the random oracle
model is replaced by a hash function.

So far, no general proofs of security are known for the resulting non-interactive protocols without the
random oracle model. Recently, the idea of proving the security of the Fiat-Shamir transform based
on standard cryptographic assumptions, even though applied to restricted types or sets of protocols,
has gained more attention from the research community [8, [, [10] [IT), [T2]. This line of work is centred
around the notion of correlation intractability which was first introduced in [6] and [7]. At a high level
and in the context of replacing the random oracle model with a concrete hash function implementa-
tion, correlation intractability for a hash function formalises the notion that it should be infeasible to
find inputs to the hash function that stand in some rare relationship with their corresponding outputs,
assuming this is also an infeasible property for the random oracle (see [7]). In some concrete cases,
when the random oracle is instantiated with a hash function satisfying the above property, one is
able to prove the soundness of the FS transform in the standard model based on standard security
assumptions.

Finally, the research work that is closest to ours, describes attacks found in implementations of the
Fiat-Shamir transform where the verifier deviates from the prescribed specifications in some way.
One prominent such type of attack (see e.g., [13], [14] or [I5]) stems from omitting all or part of the
public inputs or the public parameters of the protocol when computing the Fiat-Shamir transform.
In contrast, the attack presented in this work is possible due to the omission of a non-input part of
the full transcript when computing the Fiat-Shamir transform.

1.2 Structure

The rest of the paper is organised as follows: in Section[2] we provide the necessary background, includ-
ing the definition of polynomial commitment schemes. In Section [3] we prove knowledge-soundness
of the KZG polynomial commitment scheme [3] applied to batch evaluation proofs for at least two
distinct evaluation points. In Section[d] we describe the Last Challenge Attack applied to the general
KZG scheme and to one of its concrete and widely spread use cases, namely the KZG-based PLONK
protocol. In Section [5] we conclude.

Thttps://linea.build/
%https://github.com/Consensys/gnark/security/advisories/GHSA-7p92-x423-vwj6

https://linea.build/
https://github.com/Consensys/gnark/security/advisories/GHSA-7p92-x423-vwj6

2 Preliminaries

We denote by A the security parameter; for simplicity, we sometimes may omit explicitly mentioning
A. All algorithms used in this work run in polynomial time in A or, simply, poly(A). For short, we
call such algorithms efficient or polynomially bounded. We denote by F a finite field. We consider
only finite fields such that |F| € O(2*), where by |S| we understand the cardinality of some set S. We
denote by F4[X] the set of univariate polynomials of degree less than d over F. By [t], where t is a nat-
ural number, we denote the set {1,...,t}. By negl(\), we understand the set of all negligible functions.

We denote by G1, G2, Gr groups of some prime size ¢ such that e is a secure, efficiently computable
non-degenerate pairing e : G1 x G2 — Gr. We denote by g1, g2, gr some generators of Gi, Ga,
Gr, respectively, chosen uniformly at random such that e(g1,g2) = gr. We use additive notation for
G1 and G2 and multiplicative notation for Gr. We also use the notation [z]1 := z-g1 and [z]2 := z - g2.

Our security proof makes use of the algebraic group model (AGM) [16]. Given a cyclic group G of
prime order p, by algebraic adversary with respect to G we understand an algorithm A such that

whenever A outputs h € G, A also outputs a vector of field elements a = (aa,...,am) € Zy" such
that h = >7" ;- Ls, where (L1, ..., L) are all the group elements given to A during its execution
so far.

2.1 Polynomial Commitment Schemes

We remind the reader the definition of the polynomial commitment scheme as per Section 3 from [2].

Definition 1 (Polynomial Commitment Scheme). Let Ppcs and Vpes respectively be a prover and a
verifier. A d-polynomial commitment scheme consists of

e a generation algorithm gen(d) that outputs a structured reference string srs.

e a commitment algorithm com(f,srs) that given a polynomial f(X) € F<q[X] outputs a commit-
ment cm to f(X).

e a public-coin opening algorithm open between Ppcs and Vpcs. Ppcs is given
f1(X), . fi(X) € Fea[X]

and Ppcs and Vpcs are both given integer ¢ = poly(\), cmi,...,cm; (the alleged commit-
ments to f1(X),..., ft(X)), z1,...,2¢ € F and s1,...,s¢+ € F (the alleged correct openings
fi(z1),..., fe(z:)). At the end of the protocol Vpcs outputs either acc or rej

such that completeness and knowledge soundness in the algebraic group model hold, where these prop-
erties are defined as follows:

Completeness: Fix integer t, scalars z1,...,z: € F and polynomials f1(X),..., f¢(X) € Feq[X]. Let
cm; = com(fi,srs) for all i € [t]. Then if open is run correctly with values t,{cmi, zi,si = fi(2i)}icly,
Vpcs outputs acc with probability 1.

Knowledge soundness in the algebraic group model: There exists an efficient extractor E such
that for any algebraic adversary A the probability of A winning the following game is negl(\) over the
randomness of A and gen.

1. Given srs, A outputs t, cmy, ..., cmy.

2. E, given access to the messages of A during the previous step, outputs
J1(X), .o fiu(X) € Feg[X

3. A outputs z1,...2¢ €F, s1,...,8: € F.
4. A takes the part of Ppcs in the protocol open with inputs t, cmi,...,CMy, 21,...,2t, S1y...,St.
5. A wins if both

e Vpcs outputs acc at the end of the protocol and
e For some i € [t], s; # fi(zi).

Note that step 2 in Definition [I]is well-defined because, in the AGM model, for every group element cm;
that the adversary A outputs, the same adversary outputs as well a vector of scalars (a1, .., m)
such that cm; = 7™ i - Lj, where (Li,..., L) are all the group elements given to A in its
execution so farE| Once provided with these vectors of scalars {(a;1,...,a:,m)}—1, E is able to
obtain via Lagrange interpolation the corresponding polynomials f1(X), ..., f:(X) mentioned above.

3 Security Considerations

In this section we detail the security proof for the KZG scheme [3] for multiple evaluation points (KZG
MES). This is the generalisation of the scheme described on page 13 from PLONK [2] to any number
of distinct evaluation points. We first give the instantiation of the scheme, and then provide a security
proof using the well-known Schwartz-Zippel Lemma and the fact that the KZG scheme is secure in
the AGM for one evaluation point as, for example, shown in Section 3.1 of PLONK [2].

3.1 Security Proof for KZG MES

We begin with some specific notation. We denote the distinct evaluation points by z1, ..., z, and the
number of polynomials to be evaluated at z1,...,2z, by t1,...,t,. We denote by {f1,:(X)}iciti]s---»
{fn,i(X)}icp,) the sets of polynomials to be evaluated at z1,...,2n, respectively. In the rest of the
paper, we denote by I the prime field of characteristic ¢ introduced in Section

Instantiation 2 (KZG Multipoint Evaluation Scheme). The KZG polynomial commitment scheme
for multipoint evaluation assumes parties Pxzc and Vikza and proceeds as follows
e gen(d) :
Choose uniform x € F. Output srs = ([1]1, [2]1, ..., [=?]1, [1]2, [2]2).
e com(f,strs) :
Using the srs, compute and output cm = [f(z)]1.

o open({cmui}icit]>-- > {CMniticitn]s {215 - Znts {1 ticrt]s - - > {Snyificltn])
Round 1: Vkza sends random ~i,...,vn € F to Pkza.

Round 2: Pkza computes the polynomials:

h(X) =3 A" fri(X) — fri(z1)

; X—-—=
=1

() = 30 L) =)

=1

and using srs computes and sends W := [h1(z)]1,. .., Wn = [hn(2)]1 to Vkzc.
We denote txze = (Wsi)iz, and we call it a proof for KZG MES.

Round 3: Vikza chooses uniformly random u € F.

Vkza computes curve points Fi,. .., F, where
F = Z M emyi — Z 7T s e Fa= Z Yo't emp i — Z Yo' S
i€[ty] i€lt1] 1 i€[tn] i€[tn] 1
Vkza outputs acc if and only if the following holds:
6(F1+. . .+un_1 Btz Wi+ -—‘run_l < Zn - Wh, [1]2)'6(—W1 —.. .—un_l -Wh, [.T]z) =1 (1)

3The initial list given to A includes the structured reference string srs.

Observation 3. In Round 3 of Instantiation@ the honest Vkza verifier implicitly checks that

W; € G1,Vi € [n] (2)

cmij € G1,Vi € [TL]?J S [tz] (3)
If check (@ passes, then by the definition of F;, that in turn, implies

F, € Gy,Vie [’I’L] (4)

In order to prove the security of Instantiation |2| we require the following assumption:

Definition 4 (Q-DLOG Assumption). For a fized integer Q, the Q-DLOG assumption for (Gi,Gz)
states that given

[1]17 [x]la SRR [th’ [1}27 [x]27) [xQ]Qv
for uniformly chosen x € F, the probability of an efficient A outputting x is negligible in .

We will also make use of the following well-known result:

Lemma 5 (Schwartz-Zippel Lemma). Let P(Xq,...,X%) € F[X1,...,Xk]| be a non-zero polynomial
of total degree d over the finite field F. Let S be a finite subset of F and let r1,...,7% € S be selected
uniformly at random. Then the probability that P(r1,r2,...,7%) = 0 is at most %.
Finally, we state and prove the main result of this section:

Lemma 6 (Security of KZG Multipoint Evaluation Scheme). Assume the Q-DLOG for (G1,Gz). Let
n be an integer such that n € poly(\). Then the KZG polynomial commitment scheme for multipoint
evaluation as described in Instantiation[q has completeness and knowledge-soundness in the algebraic
group model as per Definition .

Proof. The completeness property is easy to verify. For the knowledge-soundness property, we proceed
as follows. Let:
air = €(F17 [1]2)70‘2 = €(F2v [1]2)3 sy Qn = e(F’ﬂ7 [1]2)

Analogously, let:
b1 = 6(W1, [l’ — 21]2), b2 = 6(W2, [x — 22]2), ey bn = 6(Wn, [x — Zn]z).

Let us now assume Vikzg has output acc. That means property holds. Given the definition of
{ai, bi}ic[n), property is equivalent to

n—1 n—1

ar-(a2)" ... (an)" =bi-(b2)" ... (be)" (5)

Due to the fact that properties and hold (see Observation and by the definition of the pairing
function e, it implies that
ai,bi € Gr,Vi € [n] (6)

Since Gr is cyclic with generator gr, property @ implies that there exist
ci,diEZmﬂ:Zq:F,ai:g;"’,bi:giﬂWe[n] (7)

Due to property and again, since Gr is cyclic with generator gr, equation becomes

ici cutt = idi -4 mod ¢ (8)
i=1 i=1

Since u has been chosen uniformly at random after a;, b; have been fixed (and, hence, after c;, d; have
been fixed), applying the Schwartz-Zippel Lemma to equality which holds over F, we obtain that
¢i = d;i, Vi € [n], except with negligible probability in A, and hence

a; = bi,Vi S [n] (9)

Substituting the definition of {a:};c[n) and {b:}ic[n), @[) implies e(Fi, [1]2) = e(Ws, [z — zi]2), Vi € [n].
Each such equality, in fact, represents the final Vikza check in a KZG single evaluation point scheme
as described in Section 3.1 in PLONK [2]. However, due to the security analysis performed in the same

section, assuming the AGM model, this in turn implies, except with negligible probability in A, the
existence of a universal extractor E that can extract polynomials {f1,:(X)}icier]s---» {fni(X) }icitn]
such that the following holds:

f17»;(21) = Slyi,Vi S [tl]

fn,z(zn) - sn,i7v7: S [tn]

This is exactly what we have set ourselves to prove.

3.2 Discussion

In order to conclude the security proof for Lemma [§, we made explicit use of the Schwartz-Zippel
Lemma. If not all of its preconditions are met i.e.,

e if either the degree of the polynomial considered is not negligible over the size of the field F or
e if u is not chosen uniformly at random from F,

then the security proof may not hold anymore. Note that in the proof of Lemmalf] the degree of the
polynomials for which we apply the Schwartz-Zippel Lemma is at most n — 1 while, by assumption,
n € poly(\) and |F| € O(2%).

Regarding the second precondition and, in order to protect himself from a malicious KZG prover, the
verifier Vkze has two options:

1. In an ideal world, Vkze should follow all the steps in Instantiation [2| as prescribed. In partic-
ular, Vkze should choose u uniformly at random from F. However, that is not always efficient
to implement in practice. For example, in certain real-world scenarios (e.g., in the context
of blockchains), interactivity is expensive and secure non-interactive versions of protocols are
preferred. In such cases, the next option should be implemented in practice.

2. In practice and in support of an efficient implementation, the Vikz¢ verifier only simply needs to
compute the value u as the hash of the entire transcript. The transcript includes all the public
parameters, all the public inputs and all the communication up to that point between Pxzc
and Vgzg. This is, in fact, the FS transform of the three-round interactive protocol open (see
Instantiation , where a part of the third round is the computation by Vkzg of a public-coin
random challenge u.

4 The Last Challenge Attack

In the previous section we have shown that the interactive KZG multipoint evaluation scheme (KZG
MES) is secure if the challenge used for batching KZG evaluations proofs is chosen uniformly at ran-
dom after all the other transcript values are fixed. In this section we show that the above condition is
not only sufficient, but a variation of it is also necessary in order for the knowledge-soundness property
of non-interactive KZG MES to hold in the context of the F'S transform.

Concretely, in Section [£.I] we describe a hypothetical attack strategy that exploits an incorrect ap-
plication of the FS transform which, in turn, results in a vulnerable verifier. More specifically, our
hypothetical attack demonstrates that if the challenge used for batching KZG evaluation proofs is
computed before at least two individual KZG evaluation proofs, then a malicious prover can break,
with high probability, the knowledge-soundness of the respective variation of non-interactive KZG
MES. In Section we describe a concrete instantiation of the above attack strategy encountered
while auditing a vulnerable KZG-based PLONK verifier implementation.

We choose to first describe the hypothetical attack as opposed to directly describing its special case
variant encountered in practice. We believe by following this order, we enhance the clarity of the
presentation and, also, we highlight that the practical vulnerability described in Section |4.2|is inherent
to any KZG implementations that deviate in a specific way from correct specifications.

4.1 A Hypothetical Attack on a Variation of KZG MES

The hypothetical attack described below applies to a variation of the non-interactive version of KZG
MES with at least two evaluation points. We recall that the interactive version of KZG MES described
in Instantiation [2|is converted to non-interactive by the means of the F'S transform. According to the
FS transform, the challenges (vi)ic[n] and u sent by Vkze in Round 1 and Round 8, respectively, are
computed by an FS-compliant non-interactive verifier as the hash of the communication transcript
up to the corresponding round in the protocol. Intuitively, our hypothetical attack assumes that the
challenge v in Round & of the open procedure is incorrectly computed by a deviating verifier as the
hash of only part of the transcript. As a result, a malicious prover is able to forge a non-interactive
KZG MES proof that is accepted as valid by the deviating verifier.

4.1.1 The Setting

In order to be able to describe the attack, we introduce four new entities. Let Pxzony and Vizen be
the non-interactive versions of Pxzg and Vikzg, respectively, obtained by applying the F'S transform.
Also, let Pgycy be a malicious prover trying to construct a proof 7 of a false statement, as described
in the rest of this section. Pk,qy is interacting with Vi oy which works the same as Vikzeny with
the only difference that Vi oy is computing u as the hash of the full transcript but excluding values
W1 and Ws. In the following, we assume that n > 2, where n was introduced in Section

4.1.2 The Attack

The attack proceeds as follows:

Step 1. The malicious prover Pg,oy computes some group elements A, B € Gy satisfying
(A, [z]2) -e(=B,[1]2) =1 (10)

In order to achieve that, Pj,cy honestly simulates one instance of a single-point evaluation KZG
scheme for some polynomial f(X) evaluated at some arbitrary point z. Pj,qy does that by taking
the roles of both prover and verifier in the KZG instance. Hence, at the end of the simulation, Pj,aon
is in possession of group elements A, B € G; such that relation holds.

Step 2. Piyen sets the inputs of the non-interactive version of the KZG open procedure to any
values of its choiceEl Additionally, Pjycy sets all KZG MES proof components except for W1 and Wa
(i.e., group elements W3, ..., W,, as per Round 2 of the open procedure of Instantiation to any
values of its choice in G;’_Q. This is done by Pkyqy in preparation to create a proof m o for a false
statement.

Step 3. From the inputs of the KZG open procedure, Pj,cy computes group elements Fi,. .., F,
following the same logic as Vkze described in Round 3 of Instantiation

Step 4. As areminder, Vj,oy does not follow the F'S transform and deviates from it by computing
the final challenge u as the hash of the full transcript excluding values Wi and Wa. Pkyan exploits
the fact that the challenge u can be computed and, hence, fixed before Wi and W, are computed.
Hence, Pj,cy solves the following linear system of equations with Wy, Wa as the only unknowns. The
system arises from the KZG MES pairing check and also using the quantities A, B computed by
Pl,cn in Step 1, the group elements W, ..., W, chosen by Pkzcy in Step 2, the group elements
Iy, ..., F, computed in Step 3 and the value u:
W1+U-W2+u2»W3+...+u"_1-Wn:A (11)
Fi+. .. +u" Fodz - Witu-zo- Wotu? zz-Wat--Fu"' 2, - W,,=B

The linear system has a solution for W7, W5 if and only if u # 0 and 21 # z2.

4Note that this includes the special case when both the prover Pl oy and the verifier Vi, .\ need to agree on the
inputs of the open procedure.

Step 5. Pjcn appropriately fills in the corresponding slots of proof ¢ with the above-computed
values W7 and Whs.

Step 6. If this step of the attack has been reached, then the vulnerable verifier Vj oy accepts
proof 7, as valid with probability 1.

We call the attack described above the Last Challenge Attack (LCA), as it exploits an incorrect com-
putation of the last challenge u in the F'S transform of the KZG MES for the verifier. More concretely,
the attack exploits the fact that u is computed as the hash of only a part of the communication tran-
script between the interactive honest prover and honest verifier. This, in turn, invalidates option 2.
from the security discussion in Section by leaving certain elements of the resulting proof to be
independent from the last challenge u. Ultimately, this allows a malicious prover to forge proofs of
false statements that are, however, accepted with high probability by a vulnerable verifier.

4.2 The Last Challenge Attack on a PLONK Implementation

In this section we describe an instance of the attack presented in Section [£-I] observed in an actual
implementation of a KZG-based PLONK verifier.

4.2.1 The PLONK Prover and Verifier Simplified

First, we summarise below the PLONK prover Ppronk and PLONK verifier Vpronk, as per [2
Sect. 8.1], highlighting only the details necessary to understand the steps of our attack.

The PLONK argument system uses the non-interactive version (i.e., the FS transform) of KZG MES
for two evaluation points z; = 3 € F and z2 = jw € F respectively, and two sets of polynomials of size
t1 = 6 and t2 = 1, respectively:

{/1i(X) e =e) = {r(X),a(X), b(X), c(X), Se1 (X), Sop (X)}, {f2,i(X) }icpta=1) = {z(X)}.

The evaluations of the polynomials {f1,;}; and {f2,1} at z1 = 3 and 22 = jw are, respectively:
{s1,itieftr=6) = {7, @, b,C, 501,800}, {52,i}ic(tam1) = {Zw}-
Prover. The PLONK prover Ppronk produces a proof mpronk of the following form:
mpronk = ([a1, [b]1, [c1, [2]1, [t]1, Wi, Wa, @, b, €501, 502, Zw) (12)

where [t]1 is the commitment to the quotient polynomial t(X) obtained by dividing all batched con-
straints by the vanishing polynomial Zg (X) with its roots represented by the elements of the multi-
plicative subgroup H. Note that for the components of mpronk corresponding to slots 6 and 7, we
use the notation established in Section [3] i.e., W1 and Wa.

Verifier. The PLONK verifier Vpronk takes as input the public parameters, the public inputs and
a proof mpronk and outputs accept or reject. It works in 12 steps, the last of which consists of
verifying a pairing check which is the special case of the check for n = 2.

4.2.2 Implementation-based Attack Description

In the vulnerable implementation of the KZG-based PLONK verifier Vi, oyx that we have examined,
the last challenge v is not computed as the hash of the full transcript up to that point as the group
elements W1, Wa are omitted. This makes the hypothetical attack described in Section 1] directly
applicable to the KZG-based PLONK verifier implementation we have examined. Below we describe
the detailed attack on the vulnerable PLONK implementation following the steps defined in Section [d-1]
and pointing out differences where necessary.

Step 1. From a well-formed PLONK proof computed correctly using any circuit of its choice, a
malicious prover Pp;oyx produces A, B such that (10) holds. Alternatively, Pp,ongx can produce
appropriate values A and B following Step 1. described in Section

Step 2. Ppronk sets the public input Pl and all PLONK proof components except for Wi and Wa
to any arbitrary values of its choice in preparation to produce a proof wp,oyx Of a false statement.
Tpronkx Will have the same number and type of components as mpronk described by relation .

Step 3. From the components of 7, onk, except for Wi and Wa, and using steps 9, 10 and 11
of the PLONK verifier Vpronk [2) Sect. 8.1]), Ppronkx computes Fi, Fa. Note that Wi and W are
indeed not needed in order for Pp,oyx to complete this computation.

Step 4. Pp.onk exploits the fact that u can be computed, and hence, fixed before W1 and W are
computed. This is analogous to Step 4. in Section[4.1]and is a direct implication of the fact that the
non-interactive deviating verifier Vj,onx does not include Wi and Wa as part of the full transcript
to be hashed for deriving u. Thus, whenever a solution exists, Pp,oni solves the following system of
two linear equations with unknowns Wy, Wa.
Wi+u-We=A (13)
Fi4+u-Fo+3-Witu-3-w-Wa=B8B

The linear system has a solution if and only if 3 - u # 0.

Step 5. Ppronk appropriately fills in the corresponding slots of proof mpoykx With the above-
computed values W1 and Wa.

Step 6. If this step of the attack has been reached, the vulnerable verifier V},onx accepts the false
proof mponk as valid with probability 1.

4.2.3 Proof of concept

A proof of concept (POC) of the vulnerability found and explained above is made publicly available ﬂ
This Solidity POC is based on a PLONK verifier implementation, and follows the steps described in
Section It forges a proof for an arbitrary public input selected by the prover.

4.2.4 Implications

In the case of a ZK rollup on Ethereum, the honest PLONK prover’s circuit simulates the Ethereum
Virtual Machine (EVM). An honest prover can thus prove that blocks of transactions were executed
correctly, and a certain state transition is valid. However, a verifier implementation vulnerable to the
Last Challenge Attack makes it possible for a malicious prover to forge with probability 1 a proof
for an invalid state transition. That would allow the malicious prover, for example, to set itself as
the owner of all the assets that exist in the rollup. Thus, deviations in KZG-based SNARK verifier
code that lead to a Last Challenge Attack can have disastrous consequences for the security of the
blockchains on which they run.

5 Conclusions

In this work we have introduced the Last Challenge Attack, a new type of attack applicable to certain
incorrect implementations of the FS transform. Our main contribution is the description of a Last
Challenge Attack against a concrete vulnerable KZG-based PLONK verifier implementation. This at-
tack was possible because the last challenge defined by the F'S transform of the PLONK specification
has been replaced with a field element that does not depend on the entire transcript. In turn, if such
a PLONK verifier implementation were to be deployed in production code, it would allow a malicious
prover to construct proofs of false statements which can lead to disastrous consequences. A proof of
concept of the described attack was implemented and made publicly available.

We have also shown that the applicability of the Last Challenge Attack goes beyond the PLONK
protocol. More specifically, the Last Challenge Attack can be a threat to any batched KZG-based

Shttps://github.com/OpenZeppelin/publications/tree/main/papers/the-last-challenge-attack/
proof-of-concept

https://github.com/OpenZeppelin/publications/tree/main/papers/the-last-challenge-attack/proof-of-concept
https://github.com/OpenZeppelin/publications/tree/main/papers/the-last-challenge-attack/proof-of-concept

protocol in which the FS transform has not been implemented correctly with respect to the KZG
proof batching challenge. Therefore, one of the requirements for avoiding the Last Challenge Attack
is to ensure that all verifier challenges derived using the FS transform are always computed correctly
as prescribed by standard specifications. Mind your Fiat-Shamir-s!

References

[1] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification and signature
problems,” in CRYPTO’ 86, pp. 186-194, 1987.

[2] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “PLONK: Permutations over Lagrange-bases for
oecumenical noninteractive arguments of knowledge.” ePrint 2019/953, 2019. https://eprint.
iacr.org/2019/953.

[3] A. Kate and I. G. Gregory M Zaverucha, “Constant-size commitments to polynomials and their
applications,” in ASTACRYPT10, pp. 177-194, 2010.

[4] M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm for designing efficient
protocols,” in CCS’93, pp. 62-73, 1993.

[5] D. Pointcheval and J. Stern, “Security proofs for signature schemes,” in EUROCRYPT ’96,
pp. 387398, 1996.

[6] T. Okamoto, “Provably secure and practical identification schemes and corresponding signature
schemes,” in Annual International Cryptology Conference, 1992.

[7] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle methodology, revisited.” Cryptology
ePrint Archive, Paper 1998/011, 1998. https://eprint.iacr.org/1998/011.

[8] Y. T. Kalai, G. N. Rothblum, and R. D. Rothblum, “From obfuscation to the security of
fiat-shamir for proofs,” in Advances in Cryptology-CRYPTO 2017: 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II 37,
pp- 224-251, Springer, 2017.

[9] R. Canetti, Y. Chen, L. Reyzin, and R. D. Rothblum, “Fiat-shamir and correlation intractability
from strong kdm-secure encryption,” in Advances in Cryptology-EUROCRYPT 2018: 37th An-
nual International Conference on the Theory and Applications of Cryptographic Techniques, Tel
Awviv, Israel, April 29-May 3, 2018 Proceedings, Part I 87, pp. 91-122, Springer, 2018.

[10] M. Ciampi, R. Parisella, and D. Venturi, “On adaptive security of delayed-input sigma protocols
and fiat-shamir nizks,” in Security and Cryptography for Networks: 12th International Confer-
ence, SCN 2020, Amalfi, Italy, September 14-16, 2020, Proceedings 12, pp. 670-690, Springer,
2020.

[11] Z. Brakerski, V. Koppula, and T. Mour, “Nizk from lpn and trapdoor hash via correlation in-
tractability for approximable relations,” in Annual International Cryptology Conference, pp. 738—
767, Springer, 2020.

[12] A. Lombardi and V. Vaikuntanathan, “Fiat-shamir for repeated squaring with applications to
ppad-hardness and vdfs,” in Annual International Cryptology Conference, pp. 632—651, Springer,
2020.

[13] J. Miller, “Coordinated disclosure of vulnerabilities affecting Girault, Bulletproofs,
and Plonk.” Trail of Bits Blog, 2022. https://blog.trailofbits.com/2022/04/13/
part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/.

[14] D. Bernhard, O. Pereira, and B. Warinschi, “How not to prove yourself: Pitfalls of the Fiat-
Shamir heuristic and applications to Helios.” Cryptology ePrint Archive, Paper 2016/771, 2016.
https://eprint.iacr.org/2016/771.

[15] E. McMurtry, O. Pereira, and V. Teague, “When is a test not a proof?.” Cryptology ePrint
Archive, Paper 2020/909, 2020. https://eprint.iacr.org/2020/909.

[16] G. Fuchsbauer, E. Kiltz, and J. Loss, “The algebraic group model and its applications,” in
CRYPTO 2018, pp. 33-62, 2018.

10

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/1998/011
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://eprint.iacr.org/2016/771
https://eprint.iacr.org/2020/909

	Introduction
	Related Work
	Structure

	Preliminaries
	Polynomial Commitment Schemes

	Security Considerations
	Security Proof for KZG MES
	Discussion

	The Last Challenge Attack
	A Hypothetical Attack on a Variation of KZG MES
	The Setting
	The Attack

	The Last Challenge Attack on a PLONK Implementation
	The PLONK Prover and Verifier Simplified
	Implementation-based Attack Description
	Proof of concept
	Implications

	Conclusions

