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Abstract. Threshold public key encryption (ThPKE) is PKE that can
be decrypted by collecting “partial decryptions” from t (≤ N) out of
N parties. ThPKE based on the learning with errors problem (LWE)
is particularly important because it can be extended to threshold fully
homomorphic encryption (ThFHE). ThPKE and ThFHE are fundamen-
tal tools for constructing multiparty computation (MPC) protocols: In
2023, NIST initiated a project (NIST IR 8214C) to establish guidelines
for implementing threshold cryptosystems. Because MPC often requires
simulation-security (SS), ThPKE schemes that satisfy SS (SS-ThPKE)
are also important. Recently, Micciancio and Suhl (ePrint 2023/1728)
presented an efficient SS-ThPKE scheme based on LWE with a poly-
nomial modulus. However, the scheme requires to use a nonstandard
problem called “known-norm LWE” for the security proof because the
norm ∥e∥ of the error of the public key is leaked from the partial decryp-
tions. This leads to the following two challenges: 1) The construction
based on LWE incurs a security loss of approximately 13 bits for 128-
bit security. 2) No construction based on (standard) Ring-LWE has been
presented. In this paper, we address both of these challenges: we propose
an efficient SS-ThPKE scheme whose security is (directly) reduced from
standard (Ring-)LWE with a polynomial modulus. The core technique
of our construction is what we call “error sharing”. We distribute shares
of a small error ζ via secret sharing, and use them to prevent leakage of
∥e∥ from partial decryptions.

1 Introduction

Threshold public key encryption (ThPKE) is public key encryption (PKE) whose
ciphertexts can be decrypted by collecting “partial decryptions” from t out
of N parties, where N is the total number of parties and t is a threshold.
One of the attractive applications of ThPKE is threshold fully homomorphic
encryption (ThFHE), which can essentially be constructed by replacing the PKE
of ThPKE with fully homomorphic encryption (FHE). ThPKE and ThFHE are
fundamental tools for constructing multiparty computation (MPC) protocols:
In 2023, the National Institute of Standards and Technology (NIST) initiated
a project to establish guidelines and recommendations for implementing those
threshold cryptosystems [14]. ThFHE is a particularly important cryptographic
tool that can be used to construct round optimal MPCs [5, 20, 22] and the
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universal thresholdizer [9], which can be used to add threshold functionality
to many cryptosystems such as CCA-secure PKE, signature schemes, pseudo-
random functions (PRF) and functional encryptions.

The construction of FHE was first realized by Gentry [25] using the ideal
lattice. In particular, constructions based on the learning with errors problem
(LWE, Definition 3.7) [40] and Ring-LWE [29] (Definition 5.1) are efficient,
leading to active research in this field [12, 16, 17]. Thus, ThPKE based on
(Ring-)LWE is especially important because it can be extended to efficient
ThFHE schemes. Moreover, ThPKE schemes with simulation-based security
(SS) [15], which we call SS-ThPKE, are crucial because MPC is often formulated
with SS.

However, existing SS-ThPKE schemes based on (Ring-)LWE, e.g., [4, 7, 9],
are not efficient because they are based on (Ring-)LWE with a superpolynomially
large modulus q; thus, the public key and the ciphertexts are superpolynomially
long. Recently, Boudgoust and Scholl [10] and Chowdhury et al. [18] proposed
ThPKE based on (Ring-)LWE with a polynomial modulus q, but their security
proofs are game-based; thus, SS is not shown. Furthermore, their reductions are
not tight because they are based on the Rényi divergence technique [6,39]. Dahl
et al. [19] also proposed an SS-ThPKE scheme based on (Ring-)LWE with a
polynomial modulus q; however, this scheme is not efficient because its modulus
is switched to be superpolynomially large during decryption.

Micciancio and Suhl [35] recently proposed an efficient SS-ThPKE scheme
based on LWE with a polynomial modulus q. However, the security proof of the
scheme uses a nonstandard assumption called “known-norm LWE” (or “known-
covariance Ring-LWE”), which is a problem to find the secret vector s from given
an LWE sample (A,b := As+ e) and the norm ∥e∥ of the error e, because ∥e∥
in the public key (=an LWE sample) is leaked from the partial decryptions. As
a consequence of using “known-norm LWE”(or “known-covariance Ring-LWE”),
two challenges remain:

Question 1. The SS-ThPKE scheme based on LWE of [35] relies on a nontight
reduction from LWE to “known-norm LWE”, which incurs a security loss of
approximately 13 bits in some typical parameters selected for 128-bit security.
Can we construct SS-ThPKE based on LWE with a polynomial modulus q without
this loss? (See the upper part of Fig. 1.)

Question 2. The authors of [35] also proposed an SS-ThPKE scheme based on
a nonstandard assumption called “known-covariance Ring-LWE”, to which no
reduction from standard assumptions such as Ring-LWE has been shown. Can
we construct SS-ThPKE based on Ring-LWE with a polynomial modulus q? (See
the lower part of Fig. 1.)

Question 1 results in an efficiency loss for the LWE-based scheme. Question 2
is crucial because most practical lattice-based PKE/FHE schemes (e.g., [12, 17,
28]) are constructed based on Ring-LWE.

Our Contributions. We address both Questions 1 and 2 above. We propose:
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Fig. 1. Overview of the challenges (Questions 1 and 2) in ThPKE of [35], and our
ThPKE schemes (Theorems 4.6 and 5.14).

nontight
LWE

Known-norm
LWE

ThPKE of [35]

Theorem 4.6

no reduction
Ring-LWE

Known-covariance
Ring-LWE

ThPKE of [35]

Theorem 5.14

Table 1. Comparison of threshold PKE schemes from (Ring-)LWE

q = poly(λ)
Simulation
Security

Tightness Ring-LWE

[7] ✗ ✓ ✓ ✓

[9] ✗1 ✓ ✓ ✓

[10] ✓ ✗ ✗ ✓

[35] ✓ ✓ ✗ ✗

Theorem 4.6 ✓ ✓ ✓ -
Theorem 5.14 ✓ ✓ ✓ ✓

1 [9, Construction 5.6] (this is ThFHE, which subsumes ThPKE), requires a su-
perpolynomial q to satisfy simulation-security. [8, Construction 8.29] is a generic
construction of compact ThPKE based on the universal thresholdizer, which is
constructed from noncompact ThFHE and NIZK.

• (Theorem 4.6) An SS-ThPKE scheme from LWE with a polynomial modulus
q that does not use “known-norm LWE”, and

• (Theorem 5.14) An SS-ThPKE scheme from Ring-LWE with a polynomial
modulus q (that does not use “known-covariance Ring-LWE”).

In Fig. 1, we illustrate the relations among Questions 1 and 2 and our ThPKE
schemes. We also briefly summarize the differences between the existing schemes
and ours in Table 1.

In addition to the main contributions mentioned above, we provide the
following supplementary contributions, some of which may be of independent
interest:

• Reformulation of the Reused-A-LWE Problem: Micciancio and Suhl [35]
introduced a variant of LWE called the Reused-A-LWE problem, where two
LWE samples (A,b1 = As + e1) and (A,b2 = As + e2) of a common
(i.e., “reused”) A with different error distributions are given. While [35]
showed a reduction from LWE to Reused-A-LWE, the error distribution was
limited to a continuous Gaussian distribution. In this paper, we generalize
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the Reused-A-LWE problem (Definition 3.12) and show a reduction from
LWE to Reused-A-LWE for any (continuous/discrete) error distribution
(Theorem 3.15). Furthermore, we show that the loss of the error parameter
in our reduction is smaller than that in [35] (Corollary 3.18).

• Generalization of the Error Distribution of ThPKE : In the ThPKE of [35],
the error distribution for the LWE of the public key is limited to a continuous
Gaussian distribution. However, discrete error distributions are desirable
for practical implementation: If we implement continuous distributions with
floating-point numbers, we must discuss the (negative) effects of rounding
errors. In this paper, we construct our ThPKE scheme from LWE only
with discrete error distributions. Specifically, we use (the standard) discrete
Gaussian distribution over the integer lattice.

• Generalization of Access Structures: The ThPKE of [35] supports only
(N,N)-threshold access structures (see Definition 2.24), where decryption is
possible only when N out of N parties are involved. In contrast, our ThPKE
supports all possible access structures achievable with binary coefficient
linear secret sharing (BinLSS, see Definition 2.22), which include arbitrary
(t,N)-access structures. This generalization is derived by simply applying
the techniques presented in [9].

Technical Overview. We explain how we improve the LWE-based ThPKE
scheme proposed by Micciancio and Suhl [35]. Because we can improve the
“known-covariance Ring-LWE”-based ThPKE scheme of [35] with essentially
the same approach, we omit the detail here.

The fundamental issue in the LWE-based ThPKE of [35] is that the adversary
conducting chosen plaintext attack (CPA) can derive the norm ∥e∥ of the error in
the public key, which is an LWE sample (A,b = As+e). We address this issue in
our scheme (Algorithm 1) by “error sharing” technique: we distribute the shares
(err1, . . . , errN ) of a short error err := ζ with secret sharing, in addition to the
shares (sk1, . . . , skN ) of the secret key sk := s. This modification is made to secure
the partial decryption process. The partial decryptions of our ThPKE (PartDec:
Line 9 in Algorithm 1) include a randomized value derived from erri in addition
to the conventional “smudging noise” esm. Note that although the standard
deviation of esm was superpolynomially large in the conventional constructions
such as [7,9] (and that is why it is called “smudging”), we set it as polynomially
small as with [10,35].

By this construction, the information exposed to adversaries is changed:
while the scheme of [35] discloses the error norm ∥e∥, our scheme discloses√
∥e∥2 + ∥ζ∥2 (more generally, it discloses the distribution χSim defined in

Eq. (3)). In addition, we choose the short error ζ conditioned the fixed e
generated by KeyGen so that

√
∥e∥2 + ∥ζ∥2 becomes a public constant B that

does not contain any information about ∥e∥ (Theorem 4.6). This technique can
be described as applying “padding” to the value of ∥e∥, which varies depending
on e, to ensure it reaches a constant valueB. In addition, due to the (information-
theoretic) security of secret sharing (Definition 2.21), no information about ζ
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is revealed to adversaries who do not have a valid set of shares that enables
decryption. Therefore, our scheme does not leak information about ∥e∥ (or e
itself) to the adversary. Thus, the security of our scheme is directly reduced
from (standard) LWE with q = poly(n), without using “known-norm LWE”
(Theorem 4.6).

Related Works. Some readers may think we can use multihint extended-LWE
(mheLWE) [2] to improve the reduction from LWE to known-norm LWE, but this
is not trivial. Note that mheLWE is a multihint generalization of extended-LWE
(extLWE) [3, 13, 37], and it is quite different from multisecret generalization of
extended-LWE, i.e., extLWEt in [13]. d-mheLWE(n,m, q, χLWE, χhint) is a problem
to distinguish between

(A,b, {yi, zi}i∈[t], {yi + z⊺i e}i∈[t], ) and (A,u, {yi, zi}i∈[t], {yi + z⊺i e}i∈[t]),

where (A,b := As + e) ← LWE(n,m, q, χLWE) (Definition 3.6), χhint is a (effi-
ciently samplable) distribution specified by the adversary, and (yi, zi) ← χhint.
Note that the above mheLWE is more generalized than that of [3, 13] with the
additional term yi as in [37]. It is shown in [2, Theorem 4] that there is a reduction
from d-LWE(n− t,m, q, χLWE) to d-mheLWE(n,m, q, χLWE, t, χhint) that loses the
advantage by at most 2Ω(t−n). Note that the dimension of d-LWE is n− t. Thus,
we require the number of hints t < n to be a priori bounded. This condition on
t is acceptable for applying mheLWE to some functional encryption schemes as
demonstrated in [2]. In ThPKE of [35], the CPA adversary can obtain

(A,b := As+ e, {esmi + r⊺i e}i∈[t]) for any (unbounded) t = poly(λ), (1)

where (A,b) ← LWE(n,m, q, χLWE), e
sm
i ← Nσsm , and ri ← Nσenc . (Thus, the

adversary can accurately estimate ∥e∥ because esmi + r⊺i e ∼ N√σ2
sm+σ2

enc∥e∥2
.) We

may simulate the distribution of Eq. (1) by mheLWE(n,m, q, χLWE, t, χhint):

(A,b := As+ e, {yi, zi}i∈[t], {yi + z⊺i e}i∈[t]),

where yi ← Nσsm and zi ← Nσenc . However, to obtain a (nontrivial) reduction
from LWE, we require t to be a priori bounded and less than n, which does not
meet the standard definition of the CPA adversary.

Organization. The remainder of this paper is organized as follows: In Section 2,
we provide necessary definitions and lemmas, and describe the construction of
linear secret sharing. In Section 3, we provide several lemmas related to the
hardness of LWE, and then, we generalize the Reused-A-LWE problem and show
the reduction from LWE. In Section 4 (resp. Section 5), we propose our LWE-
based (resp. Ring-LWE-based) ThPKE scheme and prove its correctness and
simulation-based security. Finally, we summarize this paper and discuss future
work in Section 6.



6 H. Okada and T. Takagi

2 Preliminaries

In Section 2.1, we provide the basic notations used in this paper. Then, we
provide necessary definitions and lemmas related to statistics in Section 2.2 and
Gaussian distribution in Section 2.3. Finally, we describe the construction of the
linear secret sharing in Section 2.4.

2.1 Notations

We denote the base 2 logarithm by log. For any natural number N ∈ N, the set
of the first N natural numbers is denoted by [N ] = {1, . . . , N}. We denote the
number of elements in a set S by |S|. When the set {xi}i∈S is given, the index
set S is also given. We define Zq := Z/qZ and Rq := R/qR for a modulus q ∈ N.

We use bold lower-case for vectors and bold upper-case for matrices. For a
vector x = (x1, . . . , xn), we denote the ith component xi by x[i]. The transpose
of x is written as x⊺. We denote the l2-norm and l∞-norm of x by ∥x∥ and
∥x∥∞, respectively. The identity matrix is denoted by In ∈ Zn×n. We write
Σ ≻ 0 if Σ is positive definite. We say that Σ1 ≻ Σ2 if Σ1 − Σ2 ≻ 0. The
largest and smallest singular values of a matrix S are denoted by σmax(S) and
σmin(S). The Frobenius norm of a matrix S is ∥S∥F =

√
tr(S⊺S). Note that we

have σmax(S) ≤ ∥S∥F ≤
√

rank(S)σmax(S).
Unless otherwise specified, we treat λ ∈ N or n ∈ N as a security parameter.

We write negl(n) = n−ω(1) for the set of negligible functions and poly(n) =
nO(1) for the set of polynomial functions. We call the function (1 − negl(n))
overwhelming. The term “probabilistic polynomial time” is abbreviated as PPT.
For problems P1 and P2, we denote the PPT reduction from P1 to P2 by P1 ≤ P2.

2.2 Statistics

We write X1, X2
iid∼ χ when variables X1 and X2 are independent and identically

distributed (i.i.d.) according to χ. For a distribution χ over R, we denote by ⌊χ⌉
the distribution of {⌊X⌉ | X ← χ}. We denote the uniform distribution over a

set S by U(S), and denote the random variable X sampled from U(S) by X
$← S.

We provide the necessary definitions, lemmas, and facts as follows:

Definition 2.1. The statistical distance between χ1 and χ2 is defined as
∆(χ1, χ2) := 1

2

∑
x∈Ω |fχ1

(x) − fχ2
(x)|, where fχ1

(x) and fχ2
(x) are the prob-

ability functions of χ1 and χ2, respectively, and Ω := Supp(χ1) ∪ Supp(χ2).
This definition is naturally extended to continuous distributions.

Definition 2.2 (χ1
stat
≈ χ2). Distributions χ1 and χ2 are statistically indistin-

guishable and denote as χ1
stat
≈ χ2 if we have: ∆(χ1, χ2) = negl(λ)

Definition 2.3 (χ1

comp
≈ χ2). Distributions χ1 and χ2 over the set Ω are

computationally indistinguishable and denoted as χ1

comp
≈ χ2 if |Pr[A(χ1) =

1]− Pr[A(χ2) = 1]| = negl(λ) holds for any PPT algorithm A : Ω → {0, 1}.
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Definition 2.4. The min-entropy of a discrete distribution χ is defined as
H∞(χ) = logminx∈Supp(χ) 1/PrX←χ[X = x].

Lemma 2.5 (Leftover Hash Lemma [11, Lemma 2.1]). Let q be prime and

m,n ∈ N. Let r be a random variable over Zm
q and A

$← Zm×n
q . Then, we have

∆((A, r⊺A), (A,U(Zn
q ))) ≤

√
qn2−H∞(r).

Fact 2.6. For m ≥ n log q + 2λ and r ∼ U({0, 1}m),
√

qn2−H∞(r) ≤ 2−λ holds.

Lemma 2.7 (In [30, Lemma 4.8]). For any m ≥ n+ω(log n), A← U(Zm×n
q )

is nonsingular, i.e., the rows of A generate Zn, with overwhelming probability.

We say that χ is B-bounded if χ < B with overwhelming probability:

Definition 2.8. Let χ be a (continuous / discrete) distribution over R. We say
χ is B-bounded if PrX←χ[|X| ≥ B] = negl(n) holds.

2.3 Gaussians

The continuous Gaussian distribution with a mean of 0 and a standard deviation
σ > 0 is denoted as Nσ.

For a rank-n matrix S ∈ Rn×m, the (centered) ellipsoid Gaussian function
on Rn with the (scaled) covariance matrix Σ = SS⊺ ∈ Rn×n is defined as:
ρS(x) := exp(−πx⊺(SS⊺)−1x). The function ρS(x) is determined exactly by
Σ ≻ 0, and there exist a unique

√
Σ ≻ 0 such that

√
Σ
√
Σ = Σ (see, e.g., [27,

Theorem 7.2.6]). Thus, we have ρS = ρ√Σ. When S = sIn, we write ρS as ρs.
For any set A ⊆ Rn, we define ρS(A) :=

∑
x∈A ρS(x).

A lattice L is the set of all integer linear combinations of linearly independent
vectors b1, · · · ,bn ∈ Rm, i.e., L = {

∑n
i=1zibi | z ∈ Zn}. We say that the rank

of this lattice is n and its dimension is m. If n = m, we call the lattice full
rank. While the integer lattice L := Zn is the primary focus in this paper, we
sometimes describe lemmas with the general lattice L. We define the discrete
Gaussian distribution over the lattice L as follows:

Definition 2.9. For a rank-n matrix S ∈ Rn×m, the (centered) discrete Gaus-
sian distribution with the covariance matrix Σ := SS⊺ is defined as

∀x ∈ Zn,DZn,S(x) = ρS(x)/ρS(Zn).

In particular, when SS⊺ = s2In for some s > 0, we write DZn,S as DZn,s and
call it as the spherical discrete Gaussian distribution.

Note that the n-dimensional vector whose elements are i.i.d 1-dimensional
discrete Gaussian DZ,s follows DZn,s:

Fact 2.10. Let x1, . . . , xn
iid∼ DZ,s and x := (x1, . . . , xn)

⊺; then x ∼ DZn,s.

Proof. The joint distribution function of x is
∏n

i=1(ρs(xi)/
∑

yi∈Z ρs(yi)) =
ρs(x)/

∑
y∈Zn ρs(y) = DZn,s(x).

Given a lattice L and ϵ > 0, we define the smoothing parameter of L as
ηϵ(L) = min{s | ρ1/s(L̂) ≤ 1+ ϵ}. In particular, for any ϵ > 0, we have ηϵ(Zn) ≤



8 H. Okada and T. Takagi

η+ϵ (Zn) :=
√

ln(2n(1 + 1/ϵ))/π. We also define η̃ϵ(·) :=
√
2ηϵ(·) and η̃+ϵ (Zn) :=√

2η+ϵ (Zn) for simplicity of notation. Unless otherwise specified, we set ϵ =

negl(λ). Note that if we set, e.g., ϵ = (−1+ 2
λ
c−1/n)−1(∈ negl(λ)) then we have

η+ϵ (Zn) =
√
λ/cπ for any c = O(1). We also extend the smoothing parameter to

positive definite matrices:

Definition 2.11 ([38, Definition 2.3]). Let Σ ≻ 0 be any positive definite

matrix. For any lattice L, we say that
√
Σ ≥ ηϵ(L) if ηϵ(

√
Σ
−1L) ≤ 1.

The denominator of DZn,s(x) can be approximated as follows:

Fact 2.12 (Special case of [40, Claim 3.8]). For any ϵ > 0 and s ≥ η+ϵ (Zn),
we have ρs(Zn) ∈ (1± ϵ)sn.

The linear sum of DZ,r is statistically close to DZn,r′ for some r′ > r:

Lemma 2.13 ([32, Theorem 3.3]). Let L be an n-dimensional lattice, e ∈ Zm

a nonzero integer vector such that gcd(e) = 1, si ≥ ∥e∥∞η̃ϵ(L), ri ← DZ,si
independently for i = 1, . . . ,m, and define r := (r1, . . . , rm)⊺. Then, the
distribution of ẽ = r⊺e is statistically close to DL,s̃, where s̃ =

√∑m
i=1(siei)

2.
In particular, if s = s1 = · · · = sm, then s̃ = s∥e∥.

In particular, if m = 2 and e = (1, 1)⊺, then the distribution of r1 + r2 is
statistically close to DZ,

√
s21+s22

for s1, s2 ≥ η̃+ϵ (Z).

The linear transformation of a spherical discrete Gaussian is (statistically
close to) a (ellipsoid) discrete Gaussian:

Lemma 2.14 ([21, Lemma 3]). Let ϵ = negl(λ) and s ≥ η+ϵ (Zn). For any

nonsingular matrix T ∈ Zn×n, we have T ·DZn,s
stat
≈ DZn,sT.

It is also known that the sum of two ellipsoid discrete Gaussians is statistically
close to an ellipsoid discrete Gaussian:

Lemma 2.15 (Special case of [24, Theorem 3]). Let ϵ = negl(λ). Let
S1,S2 ∈ Zn×n be nonsingular matrices such that η+ϵ (Zn) ≤ S1 and η+ϵ (Zn) ≤ S2.

Then, we have DZn,S1 +DZn,S2

stat
≈ DZn,

√
S1S

⊺
1+S2S

⊺
2

The tail bound of DZn,S, DZn,s and DZ,s can be obtained as follows:

Lemma 2.16 ([1, Lemma 3]). For a rank-n lattice L, ϵ ∈ (0, 1) and matrix S
s.t. σmin(S) ≥ ηϵ(L), we have Prx←DL,S

[∥x∥ > σmax(S)
√
n] ≤ 1+ϵ

1−ϵ · 2
−n, where

σmax(S) and σmin(S) are the largest and smallest singular values of S.

Lemma 2.17 ([34, Lem. 4.4]). For any n-dimensional lattice L, ϵ ∈ (0, 1) and
s ≥ ηϵ(L), we have Prx←DL,s

[∥x∥ > s
√
n] ≤ 1+ϵ

1−ϵ · 2
−n.

Lemma 2.18. For any ϵ ∈ (0, 1), s ≥ η+ϵ (Z) and t ∈ N, we have Prx←DZ,s [|x| ≥
t] ≤ s

(1−ϵ)πte
−πt2/s2 . In particular, for any t = s·Ω(

√
λ), we have Prx←DZ,s [|x| ≥

t] = negl(λ), i.e., DZ,s is s ·Ω(
√
λ)-bounded (Definition 2.8).
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Proof. We complete the proof by Fact 2.12 and routine calculation:

Prx←DZ,s [|x| ≥ t] = 2Prx←DZ,s [x ≥ t] = 2
∑∞

y=tρs(y)/
∑

y∈Zρs(y)

≤ 2
1−ϵ

∑∞
y=t

1
se
−πy2/s2 ≤ 2

(1−ϵ)t
∑∞

y=t
y
s e
−πy2/s2 ≤ 2

(1−ϵ)t
∫∞
t

y
s e
−πy2/s2dy

2.4 Linear Secret Sharing (LSS)

In this subsection, we describe the construction of linear secret sharing used in
our proposed scheme based on the construction presented in [9], along with the
related definitions.

Definition 2.19 (Monotone Access Structure). The power set of a set S
is P(S) = {A | A ⊆ S}. Let P = {P1, . . . , PN} be a set of parties. A collection
A ⊆ P(P ) is monotone if we have B ∈ A =⇒ C ∈ A for any sets B ⊆ C(⊆ P ).
A monotone access structure on P is a monotone collection A ⊆ P(P )\∅.

In this paper, we consider only monotone access structures. Hence, we simply
refer to them as “access structures.”

Definition 2.20 ((In)valid party set). Let P = {P1, . . . , PN} be a set of
parties and A be a monotone access structure on P . The sets S ∈ A are called
the valid sets and the sets S ∈ P(P )\A are called the invalid sets. Furthermore,
we define the maximal invalid party set as {S ̸∈ A | ∀Pi ∈ P\S, S ∪ {Pi} ∈ A},
and the minimal valid party set as {S ∈ A | ∀S′ ⊊ S, S′ ̸∈ A}.

We define the syntax of secret sharing and necessary conditions as follows:

Definition 2.21 (Secret Sharing (SS)). Let P = {P1, . . . , PN} be a set of
parties. A secret sharing scheme SS for a secret space K and an access structure
A is a tuple of PPT algorithms SS = (SS.Share,SS.Combine) defined as follows:

• SS.Share(k ∈ K,A) → (s1, . . . , sN ): On the input of a secret k ∈ K and an
access structure A, the sharing algorithm returns a set of shares s1, . . . , sN
for each party P1, . . . , PN .

• SS.Combine({si}i∈S) → k: On the input of a set of shares {si}i∈S, the
combining algorithm outputs a secret k ∈ K.

Furthermore, SS schemes must satisfy correctness and privacy:

• Correctness: For all S ∈ A, k ∈ K, (s1, . . . , sN ) ← SS.Share(k,A), we have
SS.Combine({si}i∈S) = k.

• Privacy: For all S ̸∈ A, and k0, k1 ∈ K, (sb,1, . . . , sb,N )← SS.Share(kb,A) for
b ∈ {0, 1}, the following distributions are identical: {s0,i}i∈S ≈ {s1,i}i∈S .

We describe the construction of linear secret sharing of [9], which we use in
our ThPKE schemes, as follows3:

3 Note that we consider only the binary coefficients linear secret sharing scheme, while
[9] constructs linear secret sharing with general coefficients.
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Definition 2.22 (BinLSS: Binary Coefficients Linear Secret Sharing). Let
P = {P1, ..., PN} be a set of parties and S be a class of efficient access structures
on P . A secret sharing scheme BinLSS with secret space K = Zp for some prime
p is called a binary coefficients linear secret sharing scheme1 if the following
properties are satisfied:

• BinLSS.Share(k ∈ Zp,A ∈ S)→ (s1, . . . sN ): There exists a matrix M ∈ Zl×N
p

called the share matrix, and each party Pi is associated with a partition
Ti ⊆ [l]. To create the shares on a secret k, the sharing algorithm first samples

random values r2, . . . , rN
$← Zp, and calculate w := (w1, . . . , wl)

⊺ defined as

w = M · (k, r2, . . . , rN )⊺.

Then, outputs si := {wj}j∈Ti
as the share for Pi.

• BinLSS.Combine({si}i∈S): Any valid set of parties S ∈ A can efficiently find
the binary coefficients {cj ∈ {0, 1}}j∈⋃i∈S Ti

satisfying
∑

j∈
⋃

i∈S Ti
cj ·M[j] =

(1, 0, . . . , 0). Thus, the secret is recovered by computing k =
∑

j∈
⋃

i∈S Ti
cjwj.

We define an analogue of Definition 2.20 for the set of shares as follows:

Definition 2.23 ((In)valid Share Set). Let P = {P1, . . . , PN} be a set of
parties, S a class of efficient access structures on P , and SS be a BinLSS for
S with share matrix M ∈ Zl×N

q . For a set of indices T ⊆ [l], we say that T
is a valid share set if there exist binary coefficients {cj ∈ {0, 1}}j∈T satisfying∑

j∈T cj ·M[j] = (1, 0, . . . , 0). Otherwise, T is an invalid share set. We also
define the following:

• Maximal invalid share set: {Invalid T ⊆ [l] | ∀i ∈ [l]\T, (T ∪ i) is valid }
• Minimal valid share set: {Valid T ⊆ [l] | ∀T ′ ⊊ T, T is invalid }

The access structure used in threshold cryptosystems is defined as follows:

Definition 2.24 (Threshold Access Structures). Let P = {P1, . . . , PN} be
a set of parties. An access structure A(t,N) is called a (t,N)-threshold access
structure if for every set of parties S ⊆ P , we have S ∈ A(t,N) if |S| ≥ t.

The following Theorem 2.25 proves that BinLSS (Definition 2.22) corresponds
to any threshold access structure. Therefore, constructing PKE with a decryption
access structure following BinLSS is sufficient for constructing ThPKE.

Theorem 2.25 ([9, Theorem 4.15]). There exists an efficient BinLSS for
any (t,N)-threshold access structure.

For ease of understanding the construction of BinLSS, we provide the follow-
ing simple example:

Example 2.26. A BinLSS for the (N,N)-threshold access structure can be
constructed as follows:

1 This is called {0, 1}-linear secret sharing scheme in [9]. While [9] defines {0, 1}-
LSSS as the class of access structure that is supported by {0, 1}-linear secret sharing
scheme, we define BinLSS as {0, 1}-linear secret sharing scheme itself.



Simulation-Secure Threshold PKE from Standard (Ring-)LWE 11

• SS.Share(k ∈ Zp)→ (s1, . . . sN ): Let l := N and define the share matrix as:

M =


1 −1 · · · −1
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


Sample uniformly random values r2, . . . , rN

$← Zp, and define a vector w =
(w1, . . . , wN )⊺ as w := M(k, r2, . . . , rN )⊺. Then, we have{

w1 = k−
∑N

i=2 ri, and

wi = ri for i = 2, . . . , N.

Let the partition for Pi be Ti = {i}; output the share si := wi for each Pi.

• SS.Combine({si}i∈S): The valid party set is S = {P1, . . . , PN}, and the valid
share set is T = [N ] ⊆

⋃
i∈[N ] Ti. On input {si}i∈[N ], recover the secret by

computing
∑

j∈Twj =
∑N

j=1wj = (k−
∑N

i=2 ri) +
∑N

i=2 ri = k.

Secret Sharing Vectors. Although we described only how to share a single scalar
in Zp, we can also share a vector s ∈ Zn

p by sharing each entry of the vector
using independent randomness. It is easy to see that correctness and privacy
hold even when we share a vector.

3 Reformulation of Reused-A-LWE

Micciancio and Suhl [35] introduced the Reused-A-LWE problem, but the error
distribution used in the problem is restricted to the continuous Gaussian distri-
bution. In this section, the error distribution of the Reused-A-LWE problem
is generalized (Definition 3.12) and the reduction from LWE with arbitrary
error distributions is shown (Theorem 3.15). This reduction is used in Section 4
to prove the security of our ThPKE scheme from LWE with arbitrary error
distributions. Furthermore, in Corollary 3.18, we demonstrate that the loss of
error parameters in this reduction is smaller than that in [35].

We first define a quasi order between probability distributions in Section 3.1.
Then, in Section 3.2, we define the LWE problem [40] and present Lemma 3.11
and Lemma 3.10 by using the quasi order. The lemmas are used to prove the
security of our ThPKE scheme in Section 4. Finally, we reformulate the Reused-
A-LWE problem in Section 3.3.

3.1 Quasi Order between Distributions

The purpose of this subsection is to provide Definition 3.2, which is used to prove
Lemmas 3.10 and 3.11 in Section 3.2. First, we describe the standard definition
of order as follows:
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Definition 3.1 (Order). Let ≤ be a binary relation on a set S, and define 4
conditions as follows:

1. Reflexive: For any a ∈ S, a ≤ a holds
2. Transitive: For any a, b, c ∈ S, if a ≤ b and b ≤ c, then a ≤ c holds
3. Antisymmetric: For any a, b ∈ S, if a ≤ b and b ≤ a, then a = b holds
4. Comparable: For any a, b ∈ S, a ≤ b or b ≤ a holds

The binary relation ≤ is quasi order if it satisfies Items 1 and 2, partial order
if it satisfies Items 1 to 3, and total order if it satisfies Items 1 to 4.

In addition, for any distributions χ1 and χ2, we denote by χ1+χ2 the distri-
bution {X1 +X2 | X1 ← χ1, X2 ← χ2, X1 and X2 are mutually independent}.
Then, we define a binary relation ≤ on probability distributions and show that
it is a quasi order:

Definition 3.2 (Quasi Order between Distributions). Let n ∈ N. For
(continuous or discrete) distributions χ1 and χ2 over Rn, if there exists a

distribution χδ such that (χ1 + χδ)
stat
≈ χ2, we write χ1 ≤ χ2.

Fact 3.3. The binary relation ≤ defined in Definition 3.2 is quasi order but not
partial order.

Proof. We show that “≤” defined in Definition 3.2 is reflexive (Item 1) and
transitive (Item 2) but is not antisymmetric (Item 3), as follows:

Reflexive: Let χδ be a distribution such that PrX←χδ
[X = 0] = 1, then, for

any χ, χ ≤ χ+ χδ = χ holds.
Transitive: Let χ1, χ2, and χ3 be distributions such that χ1 ≤ χ2 and χ2 ≤ χ3

hold; then, there exist χδ1 and χδ2 such that χ1 +χδ1

stat
≈ χ2 and χ2 +χδ2

stat
≈ χ3

hold. Thus, χ1 ≤ χ3 holds because χ1 + χδ1 + χδ2

stat
≈ χ2 + χδ2

stat
≈ χ3.

Not Antisymmetric: We show that there exist some χ1 ̸= χ2 such that χ1 ≤
χ2 and χ2 ≤ χ1 hold. Let χδ and χ′δ be distributions such that χδ ̸= χ′δ and
PrX←χδ

[X = 0] = 1 − negl(λ), PrX←χ′
δ
[X = 0] = 1 − negl(λ). Let χ1 be an

arbitrary distribution and define χ2 := χ1+χδ, then χ2 ̸= χ1 and χ1 ≤ χ2 hold.

We also have χ2 ≤ χ1 because χ2 + χ′δ = χ1 + χδ + χ′δ
stat
≈ χ1.

As a typical example, the quasi order between (continuous / discrete)
Gaussians is determined by the order of the parameter σ or s in R.
Fact 3.4. For any 0 < σ1 < σ2, we have Nσ1

≤ Nσ2
.

Proof. For e1 ← Nσ1
and eδ ← N√σ2

2−σ2
1

, we have (e1 + eδ) ∼ Nσ2
.

Fact 3.5. Let ϵ = negl(λ). For any η̃+ϵ (Z) < s1 < s2 such that η̃+ϵ (Z) <√
s22 − s21, we have DZ,s1 ≤ DZ,s2 .

Proof. For e1 ← DZ,s1 and eδ ← DZ,
√

s22−s21
, we have (e1 + eδ)

stat
≈ DZ,s2 by

Lemma 2.13.
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3.2 Learning with Errors (LWE)

The goal of this subsection is to present Lemmas 3.10 and 3.11, by utilizing
the quasi order that we defined in Section 3.1. Interestingly, these lemmas
can be applied to any continuous / discrete error distributions, which may be
of independent interest. First, we define the LWE distribution and the LWE
problem.

Definition 3.6 (LWE). Let n ∈ N be a security parameter and m = poly(n) and
the modulus q = q(n) ≥ 2 be integers. Let Xq be Zq or Rq, and χ be an error

distribution over Xq. The LWE distribution for a fixed secret vector s
$← Zn

q is de-

fined as follows: LWEs(n,m, q, χ) :=
{
(A,As+ e) | A $← Zm×n

q , e← χm
}
.We

omit some arguments when they are clear from the context.

Definition 3.7 (Decision-LWE). d-LWEs(n,m, q, χ) is the problem to dis-
tinguish LWEs(n,m, q, χ) from the uniform distribution U(Zm×n

q × Xm
q ). The

advantage of an algorithm A : Zm×n
q ×Xm

q → {0, 1} for solving d-LWE is defined

as Advd-LWE
A = |Pr[A(LWEs(n,m, q, χ)) = 1] − Pr[A(U(Zm×n

q × Xn
q )) = 1]|. We

say that d-LWE is hard if Advd-LWE
A = negl(n) for any PPT algorithm A (i.e.,

LWEs(n,m, q, χ) is pseudorandom).

Definition 3.8 (Search-LWE). s-LWEs(n,m, q, χ) is the problem to find the
vector s from a sample (A,b) ← LWEs(n,m, q, χ). We say that s-LWE is hard
if the success probability of any PPT algorithm for solving it is negl(n).

It was shown in [40] that s-LWE and d-LWE are hard if the error distribution
χ is a continuous or discretized Gaussian distribution under the hardness
assumption of worst-case lattice problems (e.g., approximate shortest vector
problem (GapSVP)). Note that the hardness of s-LWE/d-LWE with a discrete
Gaussian distribution (Definition 2.9) is also shown by the LWE self-reduction
presented in, e.g., [24, 38].

The reduction from d-LWE to s-LWE is trivial, but we provide the proof for
completeness.

Fact 3.9 (d-LWE ≤ s-LWE). If there exists a PPT algorithm A that solves s-
LWEs(n,m, q, χ), then there exists a PPT algorithm A′ that solves d-LWEs(n,m,
q, χ).

Proof. Let (A,b) be a sample drawn from LWEs(n,m, q, χ) or U(Zm×n
q × Xm

q ).
Using A, we can construct A′(A,b) as follows: compute s ← A(A,b) and
determine whether the distribution of b −As is χm or U(Xm

q ) using statistical
tests.

The reverse reduction, i.e., s-LWE ≤ d-LWE has been shown in, e.g., [30,
40]. The following lemma shows that, if LWE is hard, the probability of the
error being extremely small, such as e = 0, is negligible. This lemma is used in
Theorem 4.5 to prove the security of our ThPKE scheme.

Lemma 3.10. If d/s-LWEs(n,m, q, χ) is hard, then, for any m ≥ n+ ω(log n),
the probability P := Pre←χm [∀e ∈ e, e ∈ [0, 1)] is negligible.
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Proof. We prove this by contradiction. First, we show that, if P is nonnegligible,
there exists a PPT algorithm that solves s-LWE. Let (A,b = As+e)← LWEs(n,
m, q, χ), then, we have ∀e ∈ e, e ∈ [0, 1) with probability P . We calculate b′ as
follows: When Xq = Rq, define b′ := ⌊b− 1/2 · 1⌉ (1 := (1, . . . , 1)⊺ ∈ Zm), then
we have b′ = ⌊As+ e− 1/2 · 1⌉ = As. When Xq = Zq, ∀e ∈ e, e ∈ [0, 1) simply
means e = 0. Thus, define b′ := b = As. By Lemma 2.7, with probability of
1−negl(n), there exists a matrix A′ ∈ Zn×m

q such that A′A = In. Calculate such

A′, then output A′b′ = s. Hence, d-LWEs(n,m, q, χ) is not hard by Fact 3.9.
Because this contradicts the hypothesis, we complete the proof.

There exists a reduction from LWE with a “small” error distribution to LWE
with a “large” error distribution, where “small” and “large” are defined by the
quasi order defined in Definition 3.2:

Lemma 3.11. If d/s-LWEs(n,m, q, χ1) is hard, then for any χ2 ≥ χ1, d/s-
LWEs(n,m, q, χ2) is also hard.

Proof. By the definition of χ2 ≥ χ1, there exists a distribution χδ such that

χ2
stat
≈ χ1+χδ. Let (A,b)← LWEs(n,m, q, χ1), then sample e′ ← χm

δ and define

b′ := b+ e′. Then, (A,b′)
stat
≈ LWEs(n,m, q, χ2) holds. Note that b′ := b+ e′ ∼

U(Xm
q ) when (A,b)← U(Zm×n

q ×Xm
q ). If d/s-LWEs(n,m, q, χ2) is not hard, d/s-

LWEs(n,m, q, χ1) is also not hard by the transformation described above. This
contradicts the hypothesis; thus, we complete the proof.

3.3 Reused-A-LWE

We reformulate the Reused-A-LWE problem [35] in Definition 3.12. Then, we
show a reduction from LWE to Reused-A-LWE for any error distributions
(Theorem 3.15). Furthermore, we show in Corollary 3.18 that this reduction
incurs a smaller loss in the error parameter than the reduction shown in [35].

Definition 3.12 (Reused-A-LWE (generalized from [10, Definition 5])). Let
n, m, q ∈ N. Let Xq be either Zq or Rq, and let χ1 and χ2 be distributions on Xq.

For a fixed s
$← Zn

q , we define the Reused-A-LWE distribution Reused-A-LWEs(n,
m, q, χ1, χ2) as follows:{

(A,b1 := As+ e1,b2 := As+ e2)

∣∣∣∣ A ∼ U(Zm×n
q ), e1 ∼ χm

1 , e2 ∼ χm
2

b1 − b2 = e1 − e2

}
Definition 3.13 (d-Reused-A-LWE). The d-Reused-A-LWE(n,m, q, χ1, χ2) is a
problem to distinguish Reused-A-LWEs(n,m, q, χ1, χ2) from the following distri-
bution:

V :=

{
(A,u,v)

∣∣∣∣ A ∼ U(Zm×n
q ),u,v ∼ U(Xm

q ), e1 ∼ χm
1 , e2 ∼ χm

2

u− v = e1 − e2

}
The advantage of an algorithm A : Zm×n

q × Xm
q × Xm

q → {0, 1} for solving

d-Reused-A-LWE is defined as Advd-Reused-A-LWE
A = |Pr[A(Reused-A-LWEs(n,m,
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q, χ1, χ2)) = 1] − Pr[A(V) = 1]|. We say that d-Reused-A-LWE is hard if
Advd-Reused-A-LWE

A = negl(n) for any PPT algorithm A.
Definition 3.14 (s-Reused-A-LWE). s-Reused-A-LWE(n,m, q, χ1, χ2) is a prob-
lem to find s given a sample from Reused-A-LWEs(n,m, q, χ1, χ2). We say that s-
Reused-A-LWE is hard if the success probability of any PPT algorithm for solving
it is negl(n).

We show a reduction from d-LWE to d-Reused-A-LWE for arbitrary error
distributions χ1, χ2 in the following Theorem 3.15. Note that the counterpart of
this theorem, [35, Corollary 3], is limited to the continuous Gaussian distribution.

Theorem 3.15 (d-LWE ≤ d-Reused-A-LWE). If both d-LWE(n,m, q, χ1) and d-
LWE(n,m, q, χ2) are hard; then d-Reused-A-LWE(n,m, q, χ1, χ2) is also hard.

Proof. The proof is performed using a straightforward hybrid argument. For
simplicity of notation, let X1 := LWE(n,m, q, χ1), X2 := LWE(n,m, q, χ2), and
X3 := Reused-A-LWE(n,m, q, χ1, χ2). For each Xi (i ∈ {1, 2, 3}), we denote by
AdvXi

A the advantage of an algorithm A for solving the decision problem of Xi,
i.e., d-Xi. We also define the following hybrid distribution H:

H :=

{
(A,u,b2)

∣∣∣∣ A ∼ U(Zm×n
q ),u ∼ U(Xm

q ), e1 ∼ χm
1 , e2 ∼ χm

2

u− b2 = e1 − e2

}
Then, we obtain

|Pr[A(X3) = 1]− Pr[A(H) = 1]| = AdvX1

A , and

|Pr[A(H) = 1]− Pr[A(V) = 1]| = AdvX2

A ,

where V is defined as in Definition 3.12. Therefore, we have

AdvX3

A = |Pr[A(X3) = 1]− Pr[A(V) = 1]| ≤ AdvX1

A +AdvX2

A . (2)

Because AdvX1

A ,AdvX2

A = negl(n) by hypothesis, we complete the proof.

The above theorem means that if the d-LWE problems of (A,b1) and (A,b2)
are both hard, then it is computationally hard to obtain any information other
than that b2−b1 = e2−e1 holds even if the Reused-A-LWE sample (A,b1,b2)
is given.

Furthermore, if χ1 ≤ χ2 (Definition 3.2) holds, we can show that Theo-
rem 3.15 is a tight reduction:

Corollary 3.16. Let χ1 and χ2 be distributions such that χ1 ≤ χ2. If there
exists an algorithm that solves d-Reused-A-LWE(n,m, q, χ1, χ2) with advantage
ϵ, then there exists an algorithm that solves d-LWE(n,m, q, χ1) with advantage
of at least ϵ/2.

Proof. Define AdvXi

A as in the proof of Theorem 3.15. By Lemma 3.11 and χ1 ≤
χ2, we have AdvX1

A ≥ AdvX2

A for any algorithm A. Hence, by Eq. (2), we obtain

ϵ = AdvX3

A ≤ AdvX1

A +AdvX2

A ≤ 2AdvX1

A .
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We also show a reduction from s-LWE to s-Reused-A-LWE as follows (although
we do not require this for our construction of ThPKE):

Theorem 3.17 (s-LWE ≤ s-Reused-A-LWE). Let χ1 and χ2 be distributions
such that χ1 ≤ χ2 holds (where ≤ is the quasi order defined in Definition 3.2).
If s-LWE(n,m, q, χ1) is hard, then s-Reused-A-LWE(n,m, q, χ1, χ2) is also hard.

Proof. Because χ1 ≤ χ2 by hypothesis, there exists χδ such that χ1 + χδ
stat
≈

χ2. Given a sample (A,b1) ← LWE(n,m, q, χ1), define b2 := b1 + eδ, where

eδ ← χm
δ . Then, we have (A,b2)

stat
≈ LWE(n,m, q, χ2); thus, (A,b1,b2)

stat
≈

Reused-A-LWE(n,m, q, χ1, χ2). Therefore, if there exists a PPT algorithm that
solves s-Reused-A-LWE(n,m, q, χ1, χ2), there exists a PPT algorithm that solves
s-LWE(n,m, q, χ1),

Note that the above theorem requires the relation χ1 ≤ χ2, while Theo-
rem 3.15 does not require the relation. Additionally, note that χ1 ≤ χ2 does
not necessarily hold for any pair of distributions χ1 and χ2, i.e., ≤ defined in
Definition 3.2 is a quasi order and does not satisfy Item 4 in Definition 3.1.

Finally, we demonstrate that Theorem 3.15 and Theorem 3.17 instantiated
with the continuous Gaussian distribution subsume and slightly improve [35,
Corollary 3]:

Corollary 3.18. Let 0 < σ1, σ2 and define σmin := min(σ1, σ2). If d-LWE(n,m,
q,Nσmin

) is hard, then d-Reused-A-LWE(n,m, q,Nσ1
,Nσ2

) is also hard. Similarly,
if s-LWE(n,m, q,Nσmin

) is hard, then s-Reused-A-LWE(n,m, q,Nσ1
,Nσ2

) is also
hard.

Proof. Because Nσmin ≤ Nσ1 ,Nσ2 holds by Definition 3.2, we obtain the
reduction from d-LWE(n,m, q,Nσmin) to d-Reused-A-LWE(n,m, q,Nσ1 ,Nσ2) by
Lemma 3.11 and Theorem 3.15. The reduction from s-LWE(n,m, q,Nσmin

) to s-
Reused-A-LWE(n,m, q,Nσ1

,Nσ2
) follows from Theorem 3.17.

[35, Corollary 3] requires the hardness assumption of d/s-LWE(n,m, q,Nσb
),

where σb = (σ−21 + σ−22 )−1/2, for showing the hardness of d/s-Reused-A-LWE(n,
m, q,Nσ1 ,Nσ2). In contrast, our Corollary 3.18 only requires the hardness of d/s-
LWE(n,m, q,Nσmin), which is a slightly weaker assumption than d/s-LWE(n,m,
q,Nσb

) because σb ⪇ min(σ1, σ2).
We can also show the counterpart of Corollary 3.18 for discrete Gaussians.

Corollary 3.19. Let ϵ = negl(λ), η̃+ϵ (Z) < s1 < s2 and η̃+ϵ (Z) <
√

s22 − s21. If
d-LWE(n,m, q,DZ,s1) is hard, then d-Reused-A-LWE(n,m, q,DZ,s1 , DZ,s2) is also
hard. Similarly, if s-LWE(n,m, q,DZ,s1) is hard, then s-Reused-A-LWE(n,m, q,
DZ,s1 , DZ,s2) is also hard.

Proof. We have DZ,s1 ≤ DZ,s2 by Fact 3.5. Hence, the proof is identical to that
of Corollary 3.18.
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Algorithm 1: Our LWE-based ThPKE := (Params,KeyGen,Setup,Enc,
PartDec,FinDec)

Params(1λ, 1N )→ pp:

1 Choose public parameters pp := (n,m, q, χpk, χerr, χenc, χsm).
Note: The following functions implicitly take pp as an argument.

KeyGen()→ (pk, sk, err, χSim):

2 sk := s
$← Zn

q , pk := (A,b := As+ e)← LWEs(n,m, q, χpk)
3 err := ζ ← χm

err

4 Define a distribution χSim(e, ζ, χsm, χenc) as follows:

χSim(e, ζ) := {esm + r⊺1ζ − r⊺2e | e
sm ∼ χsm, r1, r2

iid∼ χm
enc} (3)

Example: χSim
stat
≈ DZ,

√
s2sm+s2enc(∥e∥2+∥ζ∥2) if χenc := DZ,senc , χsm := DZ,ssm .

Setup(sk, err,A)→ (sk1, . . . , skN , err1, . . . , errN ):

5 BinLSS.Share((s, ζ),A)→ {(ski, erri) := {(sj , ζj)}j∈Ti}i∈[N ] (Definition 2.22)

Enc(pk, µ ∈ {0, 1})→ ct:

6 Define msg := ⌊ q
2
⌋ · µ, and sample r, raux ← χm

enc

7 Define (a′, b′) := (r⊺A, r⊺b+msg) and output a ciphertext ct := (a′, b′, raux)
Note: raux is auxiliary information which will be used in PartDec.

PartDec(ct, ski, erri)→ pdi:

8 Parse ski = {sj}j∈Ti and erri = {ζj}j∈Ti

9 for j ∈ Ti do Sample esmj ← χsm, and define pj := (a′)⊺sj + esmj + r⊺auxζj

10 Output a partial decryption pdi := {pj}j∈Ti

FinDec({pdi}i∈S)→ µ ∈ {0, 1} or ⊥:
11 if S ̸∈ A then Output ⊥ and break
12 Otherwise, parse {pdi}i∈S = {{pj}j∈Ti}i∈S

13 Calculate a minimal valid share set T ⊆
⋃

i∈S Ti (Definition 2.23)
14 Output µ := ⌊(b′ −

∑
i∈Tpi)/⌊

q
2
⌋⌉

4 Simulation-Secure ThPKE from LWE

We describe the construction of our scheme in Section 4.1. Then, we define and
prove the correctness and security in Section 4.2 and Section 4.3, respectively.
Finally, we provide an instantiation that simultaneously satisfies correctness and
security in Section 4.4.

4.1 Construction

Our ThPKE scheme is presented in Algorithm 1. This scheme is constructed
based on the ThPKE of [35] instantiated with the Regev-like PKE [40]. We
modify the scheme by distributing shares (err1, . . . , errN ) of a small error err :=
ζ ← χm

err for “masking” the partial decryption to the parties with secret sharing,
in addition to the shares (sk1, . . . , skN ) of the secret key sk := s. Then, we add a
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randomized value of erri (specifically, r
⊺
auxζj) in the partial decryption (PartDec,

Line 9), in addition to the conventional “smudging noise” (esm ∼ χsm).
Furthermore, we generalize the error distribution χpk of the public key and

the distribution χenc for encryption to arbitrary (continuous/discrete) distribu-
tions. In addition, our construction supports any access structure A that can
be constructed using BinLSS as defined in Definition 2.22, which includes any
threshold access structures, as shown in Theorem 2.25.

4.2 Correctness

We define the correctness of ThPKE in Definition 4.1, and show that our scheme
is correct in Lemma 4.2.

Definition 4.1 (Correctness). We say that the ThPKE scheme defined in
Algorithm 1 is correct if FinDec({pdi}i∈S) = µ holds with overwhelming proba-
bility for any S ∈ A for an overwhelming proportion of (pk, sk, err) generated by
KeyGen().

As preparation, we define a distribution χSim,t(e, ζ) with a parameter t ∈ N
(t ≤ N), which is a generalization of χSim that is defined in Eq. (3):

χSim,t(e, ζ) :=
{∑t

i=1e
sm
i + r⊺1ζ − r⊺2e

∣∣∣ esm1 , . . . , esmt
iid∼ χsm, r1, r2

iid∼ χm
enc

}
(4)

Then, we derive the sufficient condition for Algorithm 1 to be correct:

Lemma 4.2. The ThPKE scheme defined in Algorithm 1 is correct if we have
Prx←χSim,t

[
|x| < ⌊ q4⌋

]
= 1 − negl(λ) for an overwhelming proportion of (pk :=

(A,As+e), sk := s, err := ζ) generated by KeyGen(), where χSim,t := χSim,t(e, ζ)
is defined as in (4) and t = |T |(≤ N).

Proof. At Line 14 in Algorithm 1, we have:

b′ −
∑

i∈Tpi = b′ − (a′)⊺s−
∑

i∈T e
sm
i − r⊺auxζ

= msg + r⊺e−
∑

i∈T e
sm
i − r⊺auxζ (5)

By hypothesis, |r⊺e−
∑

i∈T e
sm
i − r⊺auxζ| < ⌊

q
4⌋ holds with overwhelming proba-

bility. Thus, µ := ⌊(b′−
∑

i∈Tpi)/⌊
q
2⌋⌉ = µ+⌊(r⊺e−

∑
i∈T e

sm
i −r⊺auxζ)/⌊

q
2⌋⌉ = µ

also holds with overwhelming probability.

For reference, we provide a typical example of parameter setting that satisfies
the correctness.

Example 4.3. Let χpk and χerr be the Bpk-bounded and Berr-bounded (Defini-
tion 2.8) distribution over Zq, respectively. Let χenc := DZ,senc and χsm := DZ,ssm
for senc ≥ max(Bpk, Berr)η̃

+
ϵ (Z) and ssm ≥ η̃+ϵ (Z). The ThPKE scheme defined

in Algorithm 1 is correct for any N , m = poly(n), q, Bpk, Berr, senc and ssm

such that
√

λ(Ns2sm +B2s2enc) < ⌊
q
4⌋, where B := B(m) :=

√
m(B2

pk +B2
err).
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Proof. Define χSim,|T | as in (4). Because χpk and χerr are bounded by Bpk and
Berr, respectively, and m = poly(n), we have

∥e∥ < Bpk

√
m and ∥ζ∥ < Berr

√
m (6)

with overwhelming probability over the choice of pk := (A,As+e) and err := ζ.

By Lemma 2.13, χSim,|T |
stat
≈ DZ,

√
|T |s2sm+s2enc(∥e∥2+∥ζ∥2)

holds. Furthermore, by

Eq. (6) and Fact 3.5 and |T | ≤ N , χSim,|T | ≤ DZ,
√

Ns2sm+B2s2enc
holds, where ≤

is the quasi order defined in Definition 3.2. By the tail bound of the Gaussian
distribution, i.e., Lemma 2.18, Prx←D

Z,
√

Ns2sm+B2s2enc

[x <
√
λ(Ns2sm +B2s2enc)] =

1 − negl(λ). Thus, we also have Prx←χSim,|T | [x <
√
λ(Ns2sm +B2s2enc)] = 1 −

negl(λ), thereby we complete the proof.

4.3 Simulation Security

We define the simulation security of our ThPKE scheme:

Definition 4.4 (Simulation Security (SS)). We say that the ThPKE scheme
is simulation secure if, for any PPT distinguisher D, for any stateful4 PPT
algorithm A := (A1,A2,A3), there exists a PPT algorithm Sim such that

AdvSS-ThPKED,A,Sim (1λ) :=

∣∣∣∣ Pr[D(ExptA,Real(1
λ)) = 1]

− Pr[D(ExptA,Sim,Ideal(1
λ)) = 1]

∣∣∣∣ = negl(λ), (7)

where the experiments ExptA,Real(1
λ) and ExptA,Sim,Ideal(1

λ) are defined as in
Algorithm 2. Additionally, for fixed outputs of Line 1-3 of Algorithm 2, the
adversary can repeat Line 4 and subsequent steps for arbitrary poly(λ) times.

Here, we prove the security or our ThPKE scheme under a strong assumption
that χSim(e, ζ) defined in Eq. (3) does not leak any information about the fixed e
and ζ generated by KeyGen. This assumption is removed with the instantiation
described in subsequent Theorem 4.6.

Theorem 4.5. Let m ≥ n log q + 2λ, and assume that d-LWE(n,m, q, χpk), d-
LWE(n,m, q, χenc), and d-LWE(n,m, q, χsm) are all hard. In addition, assume that
it is hard to obtain any information about e and ζ (other than that e ∼ χpk and
ζ ∼ χerr) from (the probability function of) χSim(e, ζ) defined in Eq. (3), where
e← χpk and ζ ← χerr. Then, Algorithm 1 satisfies SS (Definition 4.4).

Proof. We show that, for any PPT distinguisher D, for any stateful PPT
algorithm A, there exists some PPT algorithm Sim such that Eq. (7) holds. In
addition to ExptA,Real and ExptA,Sim,Ideal, we also define an intermediate hybrid

experiment ExptA,Sim,Hybrid(1
λ) → {0, 1} as described in Algorithm 2. Then, to

4 means that Ai inherits the inputs, outputs, and internal state of A1, . . . ,Ai−1 for
i = 2, 3.
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Algorithm 2: Experiments (ExptA,Real and ExptA,Sim,Ideal) that define
the simulation security (Definition 4.4) of our ThPKE and the hybrid
experiment (ExptA,Sim,Hybrid). Note that A := (A1,A2,A3) is a stateful
algorithm although we omit the writing state in the the inputs/outputs.

ExptA,Real(1
λ):

1 pp← Params(1λ, 1N ), (sk, err, pk, χSim)← KeyGen()
2 (sk1, . . . , skN , err1, . . . , errN )← Setup(sk, err,A)
3 Plaintext µ ∈ {0, 1} and a maximal invalid party set (corrupted by A)

Smal ⊊ [N ] ← A1(pp, pk, χSim)
4 ct← Enc(pk, µ)
5 A (valid) party set S ⊆ [N ]← A2({ski, erri}i∈Smal , ct)
6 {pdi}i∈S ← {PartDec(pk, ct, ski, erri)}i∈S

7 return {0, 1} ← A3({pdi}i∈S)

ExptA,Sim,Hybrid(1
λ): Identical to ExptA,Real(1

λ) except for that Line 6 is

replaced with:
8 {pdi}i∈S ← Sim({ski, erri}i∈Smal , χSim, ct, µ)

ExptA,Sim,Ideal(1
λ): In addition, Line 2 in ExptA,Real(1

λ) is changed as follows:

9 (sk1, . . . , skN , err1, . . . , errN )← Setup(0,0,A)

prove Eq. (7), it is sufficient to show that there exists Sim such that the following
equations hold:

ExptA,Real

comp
≈ ExptA,Sim,Hybrid (8)

ExptA,Sim,Hybrid

comp
≈ ExptA,Sim,Ideal (9)

Eq. (9) follows by definition of the privacy of BinLSS (Definitions 2.21 and 2.22).
Additionally, Theorem 2.25 shows that BinLSS supports any threshold access
structure (Definition 2.24). Therefore, satisfying Eq. (8) is sufficient. We show
how to construct a simulator Sim that satisfies Eq. (8) in the following.

The adversary A can calculate a maximal invalid share set Tmal (Defini-
tion 2.23) from given

⋃
i∈Smal

Ti because Smal ⊊ {P1, . . . , PN} in Line 2 is a
maximal invalid party set (Definition 2.20). Now, we (conservatively) assume
that A2 chooses a valid party set S in Line 5 and analyze the distribution of pj

in {pdi}i∈S = {{pj}j∈Ti
← PartDec(pk, ct, ski, erri)}i∈S such that j ̸∈ Tmal. Let

T := Tmal ∪ {j}; then, T is a minimal valid share set because Tmal is a maximal
invalid share set. Thus, from the correctness of BinLSS (Definition 2.21), we
have

∑
i∈T si =

∑
i∈Tmal

si + sj = smal + sj = s and
∑

i∈T ζi =
∑

i∈Tmal
ζi + ζj =

ζmal + ζj = ζ, where smal :=
∑

i∈Tmal
s and ζmal :=

∑
i∈Tmal

ζ. Then, by Eq. (5),

b′ − (a′)⊺s−msg = r⊺e

⇔ b′ − (a′)⊺smal −msg = (a′)⊺sj + r⊺e (10)
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holds. The left-hand side of this equation can be computed from smal, ct, and µ,
which are given to the adversary. We define this as:

Atkj := Atkj(s
mal, ct, µ) := b′ − (a′)⊺smal −msg = (a′)⊺sj + r⊺e (11)

Furthermore, we define the sum of pj = (a′)⊺sj + esmj + r⊺auxζj and r⊺auxζ
mal as

Realj , where r⊺auxζ
mal can be computed by the adversary:

Realj := pj + r⊺auxζ
mal = (a′)⊺sj + esmj + r⊺auxζ (12)

Combining Eqs. (11) and (12) yields:

(a′,Realj ,Atkj) = (a′, (a′)⊺sj + esmj + r⊺auxζ, (a
′)⊺sj + r⊺e)

We have a′
stat
≈ U(Zn

q ) from Lemma 2.5 and Fact 2.6, and sj ∼ U(Zn
q ) from

Definition 2.22. Thus, we have

Realj
stat
≈ LWEsj (n, 1, q, χReal), (13)

Atkj
stat
≈ LWEsj (n, 1, q, χAtk), and (14)

(a′,Realj ,Atkj)
stat
≈ Reused-A-LWEsj (n, 1, q, χReal, χAtk), (15)

where Reused-A-LWE is defined as in Definition 3.12 and

χReal := χReal(ζ, χenc, χsm) := {esm + r⊺auxζ | esm ∼ χsm, raux ∼ χm
enc} , and

χAtk := χAtk(e, χenc) := {r⊺e | r ∼ χm
enc} .

Note that the adversary can obtain fresh Realj , Atkj , and (a′,Realj ,Atkj)
from any m′ = poly(λ) ciphertexts for a fixed pk. In this case, we have

{a′k,Realkj ,Atk
k
j }k∈[l]

stat
≈ Reused-A-LWEsj (n,m

′, q, χReal, χAtk); the rest of proof
follows similarly.

We show that both d-LWEsj (χReal) in Eq. (13) and d-LWEsj (χAtk) in Eq. (14)
are hard. By Lemma 3.10, at least one element in e is larger than 1 with
overwhelming probability over the choice of (pk, sk, err, χSim)← KeyGen(). Thus,
we have χenc ≤ χAtk (Definition 3.2). In addition, d-LWEsj (n,m, q, χenc) is
hard by hypothesis. Hence, d-LWEsj (χAtk) is hard by Lemma 3.11. We have
χsm ≤ χReal because esm ← χsm is sampled independently on r⊺auxζ. In addition,
d-LWEsj (n,m, q, χsm) is hard by hypothesis. Thus, d-LWEsj (χReal) is also hard
by Lemma 3.11, even though raux is known to the adversary (and ζ is possibly
dependent on e, as in subsequent Theorem 4.6).

Therefore, from Theorem 3.15 and Eq. (15), we have

(a′,Realj ,Atkj)
comp
≈ V :=

{
(a′,u,v)

∣∣∣∣ u,v ∼ U(Xm
q ),

u− v = esmj + r⊺auxζ − r⊺e.

}
Because pj = Realj − r⊺auxζ

mal by Eq. (12), we also have:

(a′,pj ,Atkj − r⊺auxζ
mal)

comp
≈ V ′ :=

{
(a′,u′,v′)

∣∣∣∣ u′,v′ ∼ U(Xm
q ),

u′ − v′ = esmj + r⊺auxζ − r⊺e

}
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This means that, from pj and Atkj−r⊺auxζ
mal, it is computationally hard to obtain

any information other than that we have pj−Atkj−r⊺auxζ
mal = esmj +r⊺auxζ−r⊺e.

Note that the right-hand side of this equation is a variable that follows χSim,
which is defined in Eq. (3). Hence, we sample esim ← χSim and define

Sim′j := Atkj(s
mal, ct, µ)− r⊺auxζ

mal + esim.

Then, Sim′j and pj are identically distributed. Therefore, if we generate each pj

of {pdi}i∈S = {{pj}j∈Ti
}i∈S in Line 8, Algorithm 2, as

Simj({si, ζi}i∈Tmal
, χSim, ct, µ) :=

{
pj (j ∈ Tmal)

Sim′j (j ̸∈ Tmal)
, (16)

then {pdi}i∈S in Line 6 and Line 8 are identically distributed. Thus, we obtain
Eq. (8) for Sim, which is constructed as in Eq. (16).

4.4 Instantiation: ThPKE without Known-norm LWE

In this subsection, we show in Theorem 4.6 that there exist instances that
simultaneously satisfy correctness (Lemma 4.2) and security (Theorem 4.5).

We disclose χSim (Eq. (3)) to the adversary A and Sim in Algorithm 2 because
the adversary can observe variables that follow χSim repeatedly for any poly(λ)
iterations by calculating Realj−Atkj , where Atkj and Realj are defined in Eq. (11)
and Eq. (12), respectively.

In the construction of [35], χSim corresponds to N√
σ2
sm+σ2

enc∥e∥2
. Hence, the

adversary can accurately estimate ∥e∥ by calculating the variance of χSim.
Therefore, the ThPKE scheme of [35] require to use “known-norm LWE” to
prove the security of the underlying PKE.

In contrast, our scheme discloses (the probability function of) χSim as defined
in Eq. (3), and it is assumed that no information about e can be obtained
from χSim in Theorem 4.5. We show in subsequent Theorem 4.6 that there exist
distributions χpk, χerr, χenc and χsm that satisfy this assumption. We select χpk

as a Bpk-bounded distribution. As a näıve attempt, we may define χerr as a Berr-
bounded distribution. We also select χenc := DZ,senc and χsm := DZ,ssm ; then, by

Lemma 2.13, we have χSim
stat
≈ D√

s2sm+s2enc(∥e∥2+∥ζ∥2)
for some senc and ssm. Thus,

we disclose ∥e∥2+∥ζ∥2 to the adversary. In this case, unfortunately, ∥e∥2+∥ζ∥2
discloses a (nontrivially) small upper-bound ∥e∥ ≤

√
∥e∥2 + ∥ζ∥2 <

√
mBpk

when
√
∥e∥2 + ∥ζ∥2 <

√
mBpk, which occurs with nonnegligible probability.

Similarly, when
√
∥e∥2 + ∥ζ∥2 > Berr, a lower-bound is revealed as follows:√

∥e∥2 + ∥ζ∥2 −Berr ≤ ∥e∥. The possibility of other information leaking cannot
be denied.

In Theorem 4.6, we avoid these leakages by selecting ζ ← χerr := χerr(e, B)
conditioned on a fixed e ← χpk generated in the KeyGen algorithm so that√
∥e∥2 + ∥ζ∥2 becomes a public parameter B that is defined from χpk. Then,
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we have χSim
stat
≈ D√

s2sm+s2encB
2 ; thus, χSim contains no information about e

(other than e ∼ χpk). Note that we instantiate χpk := DZ,spk in Theorem 4.6
for concreteness. Some other bounded distributions over Z can also be used.

Theorem 4.6. Select parameters N , n, q, m ≥ n log q + 2λ, spk ≥ η̃+ϵ (Z),
ssm ≥ η̃+ϵ (Z), and senc ≥

√
λspkη̃

+
ϵ (Z) such that

√
λ(Ns2sm +B2s2enc) < ⌊ q4⌋,

where B :=
√
⌈2ms2pk⌉. Let χpk = DZ,spk , χenc = DZ,senc and χsm = DZ,ssm . In

KeyGen(), we generate and fix pk := (A,b := As+ e), and then, define

χerr := χerr(e, B) as a distribution over {ζ ∈ Zm
q | ∥ζ∥2 = B2 − ∥e∥2}

such that ∥ζ∥∞ < 2spk. (17)

Assume that d-LWEs(n,m, q,DZ,spk), d-LWEs(n,m, q,DZ,senc), and d-LWEs(n,m,
q,DZ,ssm) are all hard. Then, Algorithm 1 instantiated (and modified) as above
satisfies SS (Definition 4.4) and correctness (Definition 4.1).

Proof. By Lemma 2.17, ∥e∥ ≤
√
mspk holds with overwhelming probability over

the choice of e ← (DZ,spk)
m. Note that (DZ,spk)

m = DZm,spk by Fact 2.10.

Thus, R :=
√

B2 − ∥e∥2 =
√
⌈2ms2pk⌉ − ∥e∥2 ∈ (

√
mspk,

√
2mspk) and β :=

⌊R/
√

m
2 ⌋ < 2spk holds with overwhelming probability. Hence, there exists χerr

that satisfies Eq. (17) by Lemma 4.7 (which is shown subsequently).

By Lemma 2.13, we have χSim
stat
≈ D√

s2sm+(∥e∥2+∥ζ∥2)s2enc
= D√

s2sm+B2s2enc

(Eq. (3)). This has no information about e because B2 = ⌈2ms2pk⌉. By hypothesis

described in Eq. (17), the probability of recovering ζ ∼ χerr is less than 2−λ.
Therefore, this instantiation satisfies SS by Theorem 4.5.

The correctness can be proven in a manner similar to that in Example 4.3.
By Lemma 2.18, we have Prx←χSim,|T | [x <

√
λ(Ns2sm +B2s2enc)] = 1 − negl(n),

where χSim,|T | is defined as in (4). Thus, the correctness holds when we select n,

m, q, senc, ssm such that
√
λ(Ns2sm +B2s2enc) < ⌊

q
4⌋ by Lemma 4.2.

We complete the proof of Theorem 4.6 by proving deferred Lemma 4.7: We
show an example of the distribution χerr that satisfies Eq. (17):

Lemma 4.7. Let m ≥ 2λ, q ∈ N and R be a real number such that R2 ∈ N,
10
√

m
2 < R <

√
mq and R <

√
m
2 · 2

m
4 −6. Define a set SR := {ζ ∈ Zm

q | ∥ζ∥2 =
R2}. Then, there exists a (efficiently samplable) distribution χerr over SR that
satisfies ∥ζ∥∞ ≤ β := ⌊R/

√
m
2 ⌋ for any ζ ← χerr.

Proof. We define χerr as the distribution formed by ζ sampled by Algorithm 3.

The algorithm first samples binary random numbers ζ1
$← {(β − 1), β}m

2 .Then

it deterministically selects ζ2 ∈ Zm/2
q such that ζ := (ζ1 ∥ ζ2) satisfy ∥ζ∥2 = R2

and ∥ζ∥∞ ≤ β.
As you can see from the comments written in Algorithm 3, we can show that

r1 ≤ β holds at Line 8 by construction. Here, we show that rt+7 = 0 holds at
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Algorithm 3: An algorithm to sample ζ ∈ SR

Input : R ∈ R s.t. R2 ∈ N, 10
√

m
2
≤ R <

√
mq and R <

√
m
2
· 2

m
4
−6

Output : ζ ∈ SR := {ζ ∈ Zm
q | ∥ζ∥2 = R2} s.t. ∥ζ∥∞ ≤ β

1 Define β := ⌊R/
√

m
2
⌋ ≥ 10 // β

√
m
2
≤ R < (β + 1)

√
m
2

2 Sample ζ1
$← {(β − 1), β}

m
2 // ∥ζ1∥2 ≥ (β − 1)2 m

2

3 R :=
√

R2 − ∥ζ1∥2 ∈ R // R
2 ≤ R2 − (β − 1)2 m

2
< 2βm

4 m′ := ⌊R2
/⌈
√
8β⌉2⌋ // m′ ≤ R

2
/8β < m

4

5 u1, . . . , um′ := ⌈
√
8β⌉ //

∑m′

i=1 u
2
i = ⌈

√
8β⌉2m′ ≤ R

2
< ⌈
√
8β⌉2(m′ + 1)

6 r1 :=

√
R

2 −
∑m′

i=1 u
2
i ∈ R // 0 ≤ r1 < ⌈

√
8β⌉ ≤ β

7 t := ⌊log r1⌋ − 1 // t ≤ log r1 < log β < m
4
− 6

8 for i = 2 to t+ 7 do ri :=
√

r2i−1 − ⌊ri−1⌋2

9 ζ2 := (u1, . . . , um′ , ⌊r1⌋, . . . , ⌊rt+6⌋, 0, . . . , 0) ∈ Zm/2
q // rt+7 = 0, ∥ζ2∥2 = R

2

10 return ζ := (ζ1 ∥ ζ2) ∈ Zm
q , which is the concatenation of ζ1, ζ2 ∈ Zm/2

q

Line 9. For any t ≥ 2,

rt :=
√

r2t−1 − ⌊rt−1⌋2 <
√
2rt−1 (18)

holds because we have x2 − ⌊x⌋2 = x2 − (x − ξ)2 = 2xξ − ξ2 < 2x (ξ :=
x− ⌊x⌋ ∈ [0, 1)) for any x ∈ R>0. Hence, because

√
2x ≤ x/2 for any x ≥ 8, we

have rt <
√
2rt−1 ≤ 1

2rt−1 < 1
2

√
2rt−2 ≤ 1

22 rt−2 < · · · ≤ 1
2t−1 r1, when rt−1 ≥ 8.

Therefore, let t := ⌊log r1⌋ − 1, then we have rt <
1

2t−1 r1 < 8 because log r1 <
t + 2 ⇔ r1 < 2t+2. Furthermore, again by Eq. (18), we have rt < 8, rt+1 <
4, rt+2 <

√
8. Additionally, note that r2t ∈ Z holds for any t by Eq. (18) because

r21 is an integer. Thus, r2t+2 ∈ {0, 1, . . . , 7}. Furthermore, rt < rt−1 holds for any

rt−1 ≥ 1 because we have: rt :=
√

r2t−1 − ⌊rt−1⌋2 < rt−1 ⇔ 1 ≤ rt−1. Thus, we

have rt+3 <
√
7, rt+4 <

√
6, rt+5 <

√
5, rt+6 <

√
4 = 2. Hence, r2t+6 ∈ {0, 1},

i.e., rt+6 ∈ {0, 1} holds, and this implies that rt+7 = 0. Because
√

m
2 · 2

m
4 −6

by hypothesis, we have t + 6 < log r1 + 6 < log β + 6 < log 2
m
4 −6 + 6 = m

4 .

Thus, we have m′ + t + 6 < m
2 ; this ζ2 defined as in Line 9 is in Zm/2

q . By

r2t := r2t−1 − ⌊rt−1⌋2,
∑t−1

i=1⌊ri⌋2 = r21 − r2t holds. Hence, we have
∑t+6

i=1⌊ri⌋2 =

r21 − r2t+7 = r21 and ∥ζ2∥2 = r21 +
∑m′

i=1u
2
i = R

2
. Note that every element in ζ is

≤ β, i.e., ∥ζ∥∞ ≤ β.

5 Simulation-Secure ThPKE from Ring-LWE

We construct our ThPKE from the Ring-LWE-based PKE presented by Lyuba-
shevsky, Peikert and Regev [29].

We first provide definitions and preliminaries related with the Ring-LWE
problem in Section 5.1. Then, we present our Ring-LWE-based ThPKE in Sec-
tion 5.2 (with general error distributions). We define and prove the correctness



Simulation-Secure Threshold PKE from Standard (Ring-)LWE 25

and simulation-security of the (general) ThPKE scheme in Section 5.3 and
Section 5.4, respectively. Finally, in Section 5.5, we provide a concrete scheme
instantiated with discrete Gaussian distributions and prove the correctness and
simulation-security.

5.1 Preliminaries for Ring-LWE

We first define the Ring-LWE problem as follows:

Definition 5.1 (Ring-LWE). For security parameter λ, let n = n(λ) be a
power of 2, and let q = q(λ) ≥ 2 be an integer, and let R = Z[X]/(Xn + 1) and
Rq = Zq[X]/(Xn +1). Let χ = χ(λ) be an error distribution over R. The Ring-
LWE distribution for a fixed secret s← χ (note that s is not uniformly random,
but sampled from χ) is defined as follows:

RLWEs(n, q, χ) := {(a, b) | a
$← Rq, b = s · a+ e, e← χ}

Definition 5.2 (Decision Ring-LWE). d-RLWEs(n, q, χ) is a problem to
distinguish RLWEs(n, q, χ) and U(Rq ×Rq).

We omit the search version of Ring-LWE because we do not use it. coefficient
vector, coefficient matrix, and coefficient Gram matrix of a ∈ R:
Definition 5.3. Let a =

∑n−1
i=0 aiX

i ∈ R. We define the coefficient vec-
tor of a as a := (a0, a1, . . . , an−1)

⊺. Define a signed permutation matrix

P :=

(
0 −1

In−1 0

)
∈ Zn×n and define the coefficient matrix of a as A :=(

a Pa · · · Pn−1a
)
∈ Zn×n. The coefficient Gram matrix of a is defined as

Σa := AA⊺ ∈ Zn×n.

For a ∈ R, we define ∥a∥∞ := ∥a∥∞, where a is the coefficient vector of a.
We extend the notation a ∼ χ for distributions χ over Zn and a ∈ R:
Definition 5.4. For a ∈ R and a distribution χ over Zn, we write a ∼ χ (resp.
a← χ) to mean a ∼ χ (resp. a← χ), where a is the coefficient vector of a.

The coefficient matrix is useful to derive the coefficient vector of a product:

Fact 5.5. For r, e ∈ R, the coefficient vector of re ∈ R is Er, where E is the
coefficient matrix of e and r is the coefficient vector of r.

We sometimes use a (slight) variant of RLWE where s
$← Rq instead of s← χ,

which is denoted by RLWEs∼U(Rq). Note that d-RLWEs∼U(Rq)(n, q, χ) is at least
as hard as d-RLWEs(n, q, χ):

Lemma 5.6. If d-RLWEs(n, q, χ), then d-RLWEs∼U(Rq)(n, q, χ) is also hard.

Proof. Given (a, b) ← RLWEs(n, q, χ), sample s̃
$← Rq and output (a, b′) :=

(a, b+ as̃). Then, (a, b′) ∼ RLWEs′∼U(Rq)(n, q, χ).

We also have the counterpart of Lemmas 3.10 and 3.11 for Ring-LWE:

Corollary 5.7. If d-RLWEs(n, q, χ) is hard, the probability P := Pre←χ[e = 0]
is negligible.
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Corollary 5.8. If d-RLWEs1(n, q, χ1) is hard, then for any χ2 ≥ χ1, d-
RLWEs2(n, q, χ2) is also hard.

Proof. By Definition 3.2, there exists χδ such that χ2
stat
≈ χ1+χδ. Given (a, b)←

RLWEs1(n, q, χ1), sample sδ, eδ
$← χδ and output (a, b′) := (a, b+asδ+eδ); then,

(a, b′)
stat
≈ RLWEs2(n, q, χ).

We define the “Reused-A” variant of RLWE, which is a counterpart of
Definition 3.12. Note that here we sample uniformly random s.

Definition 5.9 (Reused-A-RLWE). Let n, q ∈ N. Let χ1, χ2 be distributions over

R. For a fixed s
$← Rq, we define Reused-A-RLWEs(n, q, χ1, χ2) as follows:{

(a, b1 := as+ e1, b2 := as+ e2)

∣∣∣∣ a ∼ U(Rq), e1 ∼ χ1, e2 ∼ χ2

b1 − b2 = e1 − e2

}
Definition 5.10 (d-Reused-A-LWE). The d-Reused-A-LWE(n, q, χ1, χ2) is a
problem to distinguish Reused-A-LWEs(n, q, χ1, χ2) distribution from V :=
{(a, u, v) | a, u, v ∼ U(Rq), e1 ∼ χ1, e2 ∼ χ2, u− v = e1 − e2} .

We have a counterpart of Corollary 3.16 by Lemma 5.6: and Corollary 5.8

Corollary 5.11 (d-RLWE ≤ d-Reused-A-LWE). Let χ1 and χ2 be distribu-
tions over R such that χ1 ≤ χ2. If there exists an algorithm that solves d-
Reused-A-RLWE(n, q, χ1, χ2) with advantage ϵ, then there exists an algorithm
that solves d-RLWE(n, q, χ1) with advantage at least ϵ/2.

5.2 Construction

We present our construction of ThPKE from Ring-LWE in Algorithm 4. This
is essentially equivalent to Algorithm 1, except for that the underlying PKE is
replaced with the Ring-LWE-based PKE presented by Lyubashevsky, Peikert
and Regev [29].

Because the syntax of Algorithm 4 is identical to that of Algorithm 1,
we can define the correctness and the simulation security of Algorithm 4 by
Definition 4.1 and Definition 4.4, respectively.

5.3 Correctness

As preparation, we define a distribution χSim,t(s, e, ζ) with a parameter t ≤ N ,
which is a generalization of χSim that is defined in Eq. (19):

χSim,t(s, e, ζ) :=

{∑t
i=1e

sm
i + rauxζ − re− e1s− e2

∣∣∣∣∣ esm1 , . . . , esmt
iid∼ χsm

r, raux, e1, e2
iid∼ χpk

}
(20)

Then, we show the sufficient condition for Algorithm 4 to be correct, i.e., the
counterpart of Lemma 4.2:
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Algorithm 4: Our RLWE-based ThPKE := (Params,KeyGen,Setup,Enc,
PartDec,FinDec)

Params(1λ, 1N )→ pp:

1 Output public parameters pp := (n,m, q, χpk, χerr, χsm).
Note: The following functions implicitly take pp as an argument.

KeyGen()→ (pk, sk, err, χSim):

2 sk := s← χpk, pk := (a, b := sa+ e)← RLWEs(n, q, χpk)
3 err := ζ ← χerr, and define a distribution χSim as follows:

χSim(s, e, ζ) := {esm+rauxζ−re−e1s−e2 | esm ∼ χsm, r, raux, e1, e2
iid∼ χpk} (19)

Setup(sk, err,A)→ (sk1, . . . , skN , err1, . . . , errN ):

4 Perform BinLSS.Share((s, ζ),A)→ {(ski, erri) := {(sj , ζj)}j∈Ti}i∈[N ]

Note: BinLSS is performed for the coefficient vectors

Enc(pk, µ ∈ R2)→ ct:

5 Sample raux, r, e1, e2 ← χpk, and define msg := ⌊ q
2
⌋ · µ

6 (a′, b′) := (ar − e1, br + e2 +msg)
7 Output ct := (a′, b′, raux)

PartDec(ct, ski, erri)→ pdi:

8 Parse ski = {sj}j∈Ti , erri = {ζj}j∈Ti

9 for j ∈ Ti do Sample esmj ← χsm, and define pj := a′sj + esmj + rauxζj
10 Output pdi := {pj}j∈Ti

FinDec({pdi}i∈S)→ µ ∈ {0, 1} or ⊥:
11 if S ̸∈ A then Output ⊥ and break
12 Otherwise, parse {pdi}i∈S = {{pj}j∈Ti}i∈S

13 Calculate minimal valid share set T ⊆
⋃

i∈S Ti (Definition 2.23)
14 Output µ := ⌊(b′ −

∑
i∈T pi)/⌊

q
2
⌋⌉

Lemma 5.12. The ThPKE scheme defined in Algorithm 4 is correct if we
have Prx←χSim,t

[
∥x∥∞ < ⌊ q4⌋

]
= 1 − negl(λ) for an overwhelming proportion

of (pk, sk, err) ← KeyGen(), where χSim,t := χSim,t(e, ζ) is defined as in (4) and
t = |T |(≤ N).

Proof. At Line 14 in Algorithm 4, we have:

b′ −
∑

i∈T pi = b′ − a′s−
∑

i∈T e
sm
i − rauxζ

= msg − (
∑

i∈T e
sm
i + rauxζ − re− e1s− e2) (21)

By hypothesis, ∥
∑

i∈T e
sm
i +rauxζ−re−e1s−e2∥∞ < ⌊ q4⌋ holds with overwhelming

probability. Thus, µ := ⌊(b′ −
∑

i∈T pi)/⌊
q
2⌋⌉ = µ also holds with overwhelming

probability.
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5.4 Simulation Security

We provide the proof of the security of Algorithm 4, which is a counterpart of
Theorem 4.5:

Theorem 5.13. Assume that both d-RLWE(n, q, χpk) and d-RLWE(n, q, χsm) are
hard. In addition, assume that it is hard to obtain any information about e, s from
(the probability function of) χSim(s, e, ζ) defined in Eq. (19), where s, e ← χpk

and ζ ← χerr. Then, Algorithm 4 satisfies SS (Definition 4.4).

Proof. The proof is identical to that of Theorem 4.5 from the beginning to
Eq. (10). Thus, we start from the counterpart of Eq. (10). We denote the share
of s and ζ as {si}i∈T and {ζi}i∈T and recall that we have

∑
i∈T si = s and∑

i∈T ζi = ζ holds. We also define
∑

i∈Tmal
si = smal and

∑
i∈Tmal

ζi = ζmal. By

Eq. (21) and s = smal + sj , we have

b′ − a′s−msg = re+ e1s+ e2

⇔ b′ − a′smal −msg = a′sj + re+ e1s+ e2 (22)

We define the left-hand side of Eq. (22) as:

Atkj := Atkj(s
mal, ct, µ) := b′ − a′smal −msg = a′sj + re+ e1s+ e2 (23)

Furthermore, we define:

Realj := pj + rauxζ
mal = a′sj + esmj + rauxζ (24)

Combining Eq. (23) and Eq. (24) yields:

(a′,Realj ,Atkj) = (a′, a′sj + esmj + rauxζ, a
′sj + re+ e1s+ e2)

We have a′ := ar − e1
comp
≈ U(Rq) because d-RLWEr(n, q, χpk) is hard by

hypothesis (we use d-RLWE assumption instead of the ring version of Lemma 2.5,
as in [29]). We also have sj ∼ U(Rq) from Definition 2.22. Thus, we have

Realj
comp
≈ RLWEsj∼U(Rq)(n, q, χReal), (25)

Atkj
comp
≈ RLWEsj∼U(Rq)(n, q, χAtk), and (26)

(a′,Realj ,Atkj)
comp
≈ Reused-A-RLWEsj (n, q, χReal, χAtk), (27)

where Reused-A-RLWE is defined as in Definition 5.9 and

χReal := χReal(ζ, χpk, χsm) := {esm + rauxζ | esm ∼ χsm, raux ∼ χpk} , and

χAtk := χAtk(s, e, χpk) := {re+ e1s+ e2 | r, e1, e2 ∼ χpk} .

We show both d-RLWEsj∼U(Rq)(χReal) in Eq. (25) and d-RLWEsj∼U(Rq)(χAtk)
in Eq. (26) are hard. It is easy to see that we have χpk ≤ χAtk (Definition 3.2)
because e2 ∼ χpk. In addition, d-RLWEsj∼U(Rq)(n, q, χpk) is hard by hypothesis
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and Lemma 5.6. Hence, d-RLWEsj∼U(Rq)(χAtk) is hard by Corollary 5.8. We
have χsm ≤ χReal because esm ← χsm is sampled independently on rauxζ. In
addition, d-RLWEsj∼U(Rq)(n, q, χsm) is hard by hypothesis and Lemma 5.6. Thus,
d-RLWEsj (χReal) is also hard by Lemma 3.11, even though raux is known to the
adversary (and ζ is possibly dependent on e as in subsequent Theorem 5.14).

Therefore, from Corollary 5.11 and Eq. (27), we have

(a′,Realj ,Atkj)
comp
≈ V :=

{
(a′, u, v)

∣∣∣∣ u, v ∼ U(Rq),
u− v = esmj + rauxζ − re

}
.

Because pj = Realj − rauxζ
mal by Eq. (24), we also have

(a′, pj ,Atkj − rauxζ
mal)

comp
≈ V ′ :=

{
(a′, u′, v′)

∣∣∣∣ u′, v′ ∼ U(Rq),
u′ − v′ = esmj + rauxζ − re

}
.

The rest of the proof is identical to that of Theorem 4.5.

5.5 Instantiation: ThPKE without Known-covariance Ring-LWE

Finally, we show the counterpart of Theorem 4.6: we show that there exist
parameters and distributions that satisfy SS and correctness:

Theorem 5.14. Let χpk = DZn,spk and χsm = DZn,ssm . We denote by Σζ ,
Σe and Σs the coefficient Gram matrices (Definition 5.3) of ζ, e, s ∈ Rq,
respectively. Let βpub ∈ R be a fixed public polynomial whose coefficient
Gram matrix Σβpub

satisfies Σβpub
≻ 2(Σe + Σs) for any s, e ← χpk, and

tr(Σβpub
) = poly(λ). Select parameters N , n, q, spk ≥ η̃+ϵ (Zn), ssm ≥ η̃+ϵ (Zn)

such that σmax(S)
√
n < ⌊ q4⌋, where σmax(S) denotes the largest singular value of

S :=
√

(Ns2sm + s2pk)In + s2pkΣβpub
. Conditioned on fixed s, e← χpk generated by

KeyGen, we define χerr := χerr(s, e,Σβpub
) as a distribution over {ζ ∈ Rq | Σζ =

Σβpub
−Σe −Σs}.

Assume that both d-RLWEs(n, q,DZn,spk) and d-RLWEs(n, q,DZn,ssm) are hard.
Then, Algorithm 4 instantiated (and modified) as above satisfies SS (Defini-
tion 4.4) and correctness (Definition 4.1).

Proof. By subsequent Lemma 5.15, we obtain χSim(s, e, ζ) = χSim,1(s, e, ζ)
stat
≈

DZn,
√

(s2sm+s2pk)In+s2pkΣβpub

, which has no information about e nor s. Note that

there exist efficient (PPT) algorithms to sample ellipsoid discrete Gaussian, e.g,
[21, 23,26,31,36,38]. Hence, we can prove SS by Theorem 5.13.

Let x ← χSim,t(s, e, ζ) for any t ≤ N and denote its coefficient vector by x.
Then, we have ∥x∥∞ = ∥x∥∞ ≤ ∥x∥ ≤ σn(S)

√
n with overwhelming probability

by Lemma 2.16. Thus, correctness holds by Lemma 5.12. (Note that we have

σmax(S) ≤ ∥S∥F =
√
n(Ns2sm + s2pk) + s2pk tr(Σβpub

) = poly(λ); thus, we can

select q = poly(λ).)
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We prove the deferred Lemma 5.15: we analyze the distribution of χSim,t

defined in Eq. (20) when we instantiate χsm := DZn,ssm and χpk := DZn,spk :

Lemma 5.15. Let χsm := DZn,ssm and χpk := DZn,spk for ssm, spk ≥ η̃+ϵ (Zn). Let
Σζ ,Σe and Σs are the coefficient Gram matrices (Definition 5.3) of ζ, e, s ∈ Rq,
respectively. Then, for χSim defined in Eq. (20), we have:

χSim,t(s, e, ζ)
stat
≈ DZn,

√
(ts2sm+s2pk)In+s2pk(Σζ+Σe+Σs)

.

Proof. By definition of χSim,t, Definition 5.3, and Fact 5.5, we have

χSim,t(s, e, ζ) :=

{∑t
i=1e

sm
i + rauxζ − re− e1s− e2

∣∣∣∣∣ esm1 , . . . , esmt
iid∼ DZn,ssm

r, raux, e1, e2
iid∼ DZn,spk

}
= {

∑t
i=1e

sm
i + Zraux −Er− Se1 − e2},

where Z,E,S are the coefficient matrices of ζ, e, s and esmi , raux, r, e1, e2 are

the coefficient vectors of esmi , raux, r, e1, e2. By Lemma 2.14, we have Zraux
stat
≈

DZn,spkZ, Er
stat
≈ DZn,spkE, and Se1

stat
≈ DZn,spkS. Then, we complete the proof by

Lemma 2.13 and Lemma 2.15.

6 Conclusion and Future Works

In this paper, we proposed efficient ThPKE schemes whose simulation-security
are (directly) reduced from LWE or Ring-LWE with a polynomial modulus q. We
introduced a core technique that we call “error sharing” to prevent leakage of the
norm or covariance of the error (and secret) in the public key. In our schemes, we
use the shares of a small error err := ζ distributed with secret sharing to mask
the partial decryptions in addition to the conventional “smudging noise”. Using
this technique, we improved the ThPKE schemes proposed in [35] by eliminating
the need to use “known-norm LWE” or “known-covariance Ring-LWE”, which
are nonstandard problems.

Our scheme can be easily extended to ThFHE by replacing the underlying
PKE in ThPKE with FHE. Thus, we can construct an efficient SS-ThFHE from
(Ring-)LWE with a polynomial modulus q. This implies that the applications of
ThFHE can also be improved. For example, the round optimal MPC [5, 20, 22]
and the universal thresholdizer [9] with simulation-security can be constructed
from (Ring-)LWE with a polynomial modulus q. Additionally, the universal
thresholdizer can be used to construct many threshold cryptosystems such as
CCA-secure ThPKE, threshold signature, threshold PRF and threshold func-
tional encryption. It is a future work to provide the specific details of constructing
ThFHE from our ThPKE.
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