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Abstract. CRYSTALS-Dilithium is a post-quantum secure digital sig-
nature algorithm currently being standardised by NIST. As a result,
devices making use of CRYSTALS-Dilithium will soon become gener-
ally available and be deployed in various environments. It is thus impor-
tant to assess the resistance of CRYSTALS-Dilithum implementations to
physical attacks. In this paper, we present an attack on a CRYSTALS-
Dilithium implementation in hedged mode in ARM Cortex-M4 using
fault injection. Voltage glitching is performed to skip computation of a
seed during the generation of the signature. We identified settings that
consistently skip the desired function without crashing the device. Af-
ter the successful fault injection, the resulting signature allows for the
extraction of the secret key vector. Our attack succeeds with probabil-
ity 0.582 in a single trace. We also propose countermeasures against the
presented attack.

Keywords: Fault injection · CRYSTALS-Dilithium · ML-DSA · Post-
quantum digital signature · Key recovery attack

1 Introduction

CRYSTALS-Dilithium is a lattice-based digital signature scheme that is strongly
unforgeable under chosen message attack (SUF-CMA)-secure in the classical and
random oracle models [3]. SUF-CMA security means that an adversary with
the public key and access to a signing oracle cannot produce a signature for
a new message nor produce a different signature for a message that they have
already seen. The security of Dilithium is based on the assumed hardness of the
Module Learning-with-Errors (MLWE) and Module Shortest-Integer-Solution
(MSIS) problems.

In 2022, Dilithium was selected by the National Institute of Standards and
Technology (NIST) to be standardised as a new digital signature scheme under
the name ML-DSA [29]. Dilithium was also added to the suite of cryptographic
algorithms recommended for national security systems by the National Security
Agency (NSA) [1]. With the standardisation, NIST introduced a ”hedged” pseu-
dorandom sampling procedure for the private seed ρ′ that replaces the determin-
istic sampling procedure as the default. A deterministic variant of the sampling
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procedure is retained for ML-DSA, but the fully-randomised sampling method
has been removed entirely. A number of fault injection attacks on Dilithium
which allow for the extraction of secret key vectors have been demonstrated in
the past [33,22,35,38,11]. However, to our knowledge, the differences between
CRYSTALS-Dilithium and ML-DSA have not been assessed in this context.

In our digitalised world, devices running cryptographic algorithms are in-
creasingly physically accessible to attackers. Often such devices operate in resource-
constrained scenarios, limiting the available security features. Simultaneously,
adoption of quantum resistant cryptographic algorithms is expected to proceed
rapidly. The 3GPP intends to introduce quantum resistant algorithms to 5G as
soon as final standards are published, while the NSA requires network equipment
operating as part of US national security systems to support quantum resistant
algorithms by 2026, and all other equipment by 2030 [26].

It is therefore important to assess the vulnerability of ML-DSA implemen-
tations to physical attacks, such as fault injection, to give implementers the
opportunity to address security issues.

Contributions: In this paper, we present a fault injection attack on an imple-
mentation of Dilithium in hedged mode. The presented attack requires only a
single faulty signature to recover the secret key vector. Previous approaches mak-
ing use of fault injection have not been applicable to non-deterministic versions
of Dilithium, or required a higher number of signatures and faults, or generated
signatures that do not pass the verification and can thus be detected.

We demonstrate practical key recovery on a modified version of the software
implementation of CRYSTALS-Dilithium by Abdulrahman et al. [2] to which
the hedged mode has been added. A voltage fault injection using the crowbar
technique of [30] is performed to skip absorption of data during the computation
of the hash ρ′. We identified settings that consistently skip the desired function
without crashing the device or disrupting other steps of the signature generation.
From there, the secret key vector can be extracted from the generated signature
directly. Our attack succeeds with recovery of the secret key vector from a single
attempt with a probability of 52.8%.

In Dilithium, recovery of s1 is sufficient to achieve existential forgery [33],
as an adversary may recompute the hint h to create a signature that passes
verification.

Organisation of the paper: The rest of this paper is organised as follows.
Section 2 describes previous work. Section 3 provides background information
on the ML-DSA algorithm and voltage fault injection. Section 4 describes the ad-
versary model and attack scenario. Section 5 describes the experimental setup.
Section 6 describes the fault attack. Section 7 describes the secret key recov-
ery method. Section 8 summarises the experimental results. Section 9 discusses
possible countermeasures against the attack. Section 10 concludes the paper.



2. PREVIOUS WORK 3

2 Previous work

In this section we provide an overview over previous attacks on Dilithium making
use of fault injection or side-channel analysis.

Bindel et al. [8] presented a number of fault injection attacks against lattice-
based signature schemes. One of their approaches is a randomisation attack
changing individual coefficients of s1, allowing for the recovery from multiple
signatures. They also propose skipping the addition during the computation
of z = y + cs1, thus allowing for the recovery of s1 from the same signature.
However, their attacks do not target Dilithium and have not been experimentally
verified against it. It therefore remains unclear how applicable their approaches
are in practice.

In a subsequent work, Ravi et al. [33] demonstrated that skipping the entire
addition of y is not necessary. Instead, they present a fault injection attack
targeting the addition of single coefficients. This allows for recovery of the full
vector s1 in around 1-2k faulty signatures (corresponding to the same number
of traces, as they report a fault probability of 100%).

Most recently, Krahmer et al. [22] extended this addition-skipping attack to
randomised Dilithium and additionally presented an attack targeting the ma-
trix Â. As both approaches perturb single coefficients in the computation of
z = y + cs1 in the signing procedure, they are able to use the verification to
exhaustively search and correct the perturbation, thus allowing for recovery of
a single coefficient. They practically demonstrate recovery of the full vector s1
using clock glitching in 22952 traces.

Separately, Ravi et al. [35] proposed a fault attack exploiting zeroisation of
twiddle constants in the Number Theoretic Transform (NTT). They presented
two different attacks targeting deterministic and randomised Dilithium. The
first zeroises the NTT of c, thus allowing for recovery of y, which can be used
to extract s1 from a different signature. The second attack requires computation
of the signature in the NTT domain and zeroises most of the coefficients of y,
directly allowing recovery from the signature. They report recovery of the full
secret key vector s1 from 13 respective 3 faulted signatures. While they do not
report the number of traces required to gather the necessary signatures, they
report a fault probability of 26% respective 51% for the attacks.

Espitau et al. [14] proposed a fault injection attack targeting the generation
of y in a number of Fiat-Shamir with Aborts-based signature schemes. Their ap-
proach works by aborting the loop that performs the sampling of y, thus leaving
a number of coefficients uninitialised. A signature generated from such a faulty
vector will likely directly contain several of the coefficients of the product cs1,
allowing for the recovery of the secret key vector. This approach was extended
by Ulitzsch et al. [38] to an implementation of Dilithium with fault countermea-
sures. They show that using an Integer Linear Program, they are able to recover
the full vector s1 using 5 faulted signatures gathered from 53 traces using clock
glitching.

Bruinderink et al. [11] demonstrated a differential fault attack against the
deterministic version of Dilithium. After generating a signature z for a message,
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they use fault injection to induce nonce-reuse to obtain a second signature z′

computed for the same y, but a different c. The secret key vector can then be
recovered from the difference of the signatures z− z′. While they do not report
the number of traces necessary for exploitation, their attack works with faults
anywhere in a large range of the execution, thus making it very likely the faulty
signature could be obtained from a single attempt, thus allowing for recovery of
the full key s1 from only two signatures.

There have also been several side-channel attacks on Dilithium that target
recovery of the secret key [32,15,12,27,20,18,25,7,31]. These attacks are generally
characterised by a larger number of traces required for successful key recovery.
One noteworthy exception is the recent work by Wang et al. [39] who demon-
strated recovery of the secret key vector s1 in a single trace through side-channel
power analysis. They exploit leakage of the coefficients of secret key vectors s1
and s2 during the unpacking of the secret key at the beginning of the signing
procedure, thus their attack is also applicable to implementations using hedged
mode. By recovering half of these coefficients, they are able to solve a system of
linear equations that enables recovery of the full vector s1 with probability of
9% from a single trace.

3 Background

This section describes the notation used in the remainder of this work, the ML-
DSA algorithm specification, and the voltage fault injection method.

3.1 Notation

We will denote the ring of integers modulo q as Zq, the ring of polynomials
Zq[X]/(Xn+1) as Rq and the ring Zn

q as Tq. Regular font letters denote elements
in Zq or Rq, bold font letters denote vectors with coefficients in Rq, the hat
symbol denotes elements in Tq and upper-case letters are used for matrices. We
use wi to denote the ith coefficient of the polynomial w = w0 + w1X + · · · +
w255X

255 and v[i] to denote the ith entry of a vector v. The infinity-norm is
given by || · ||∞, the concatenation of bit/byte strings a and b is given by a||b. To
denote boolean evaluation of an expression, we use J·K. The multiplication in Tm

is denoted by ◦ and the multiplication in Zq or Rq is denoted by ·. Assignment
from the result of a function or sampling from a set are denoted by ←. The
blank symbol ⊥ is used to indicate lack of an output.

3.2 ML-DSA algorithm

ML-DSA is derived from the latest version of CRYSTALS-Dilithium [3], and dif-
fers in an increased length for parameters tr and ĉ in parameter sets ML-DSA-
65 and ML-DSA-87, as well as the introduction of a ”hedged” pseudorandom
sampling procedure for the private seed ρ′ that replaces the deterministic sam-
pling procedure as the default. A modified variant of the deterministic sampling
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Table 1. ML-DSA parameter sets from [29].

Parameter set n q d τ γ1 γ2 (k, l) η β ω

ML-DSA-44 256 8380417 13 39 217 (q − 1)/88 (4, 4) 2 78 80

ML-DSA-65 256 8380417 13 49 219 (q − 1)/32 (6, 5) 4 196 55

ML-DSA-87 256 8380417 13 60 219 (q − 1)/32 (8, 7) 2 120 75

procedure is, however, retained for ML-DSA, while the previously present fully-
randomised sampling method has been removed entirely. This paper focuses on
the specifics of ML-DSA. Going forward, we will use the term Dilithium to refer
to both CRYSTALS-Dilithium and ML-DSA, the term CRYSTALS-Dilithium
to refer to the pre-standardisation submission to the NIST PQC project, and
the term ML-DSA to refer to the variant currently being standardised.

An overview over the possible sets of parameters is given in Tab. 1. For
further details we refer to the specification [29]. We will be focusing on ML-
DSA-44 (respective Dilithium-2) in this paper, though other variations can be
approached similarly.

Dilithium is considered secure in the (Quantum) Random Oracle model based
on the assumed hardness of the Module Learning-with-Errors (MLWE) and Mod-
ule Shortest-Integer-Solution problems [23,19]. The scheme uses the Fiat-Shamir
with Aborts approach [24] in which an identification scheme is transformed into
a signature scheme and rejection sampling is applied to sample a mask that
prevents the secret key from being revealed through the signature.

The main components of the Dilithium scheme are the key generation pro-
cedure, the signing procedure and the verification procedure.

Algorithm 1 ML-DSA.KeyGen() [3,29]

Output: Public key pk, private key sk
1: ξ ← {0, 1}256
2: (ρ, ρ′,K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 ← H(ξ, 1024)
3: Â← ExpandA(ρ)
4: (s1, s2)← ExpandS(ρ′)
5: t← NTT−1(Â ◦ NTT(s1)) + s2
6: (t0, t1)← Power2Round(t, d)
7: pk ← pkEncode(ρ, t1)
8: tr ← H(BytesToBits(pk), 512)
9: sk ← skEncode(ρ,K, tr, s1, s2, t0)
10: return (pk, sk)

Key generation (Alg. 1) The key generation samples the matrix A and
private key polynomial vectors s1 and s2 by generating and expanding a random
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seed using SHAKE256. The coefficients of s1 and s2 are short, i.e. are in the
range [−η, η]. It then computes t = As1+s2, which forms part of the public key.
Dilithium applies compression to t by dropping the d least significant bits to
reduce its size, but an attacker is assumed to be able to recover the full value of
t. The most significant bits t1 and the seed ρ used for expanding the matrix A
form the public key. The private key includes the seed ρ, in addition to a private
random seed K and the hash tr of the public key for use during signing, as well
as vectors s1 and s2 and the d least significant bits t0.

Algorithm 2 ML-DSA.Sign(sk,M) [29]

Input: Private key sk, message M
Output: Signature σ
1: (ρ,K, tr, s1, s2, t0)← skDecode(sk)
2: ŝ1 ← NTT(s1)
3: ŝ2 ← NTT(s2)
4: t̂0 ← NTT(t0)
5: Â← ExpandA(ρ)
6: µ← H(tr||M, 512)
7: rnd← {0, 1}256 ▷ In deterministic mode: rnd← {0}256
8: ρ′ ← H(K||rnd||µ, 512)
9: κ← 0
10: (z,h)← ⊥
11: while (z,h) = ⊥ do
12: y← ExpandMask(ρ′, κ)
13: w← NTT−1(Â ◦ NTT(y))
14: w1 ← HighBits(w)
15: c̃ ∈ {0, 1}2λ ← H(µ||w1Encode(w1), 2λ)
16: (c̃1, c̃2) ∈ {0, 1}256 × {0, 1}2λ−256 ← c̃
17: c← SampleInBall(c̃1)
18: ĉ← NTT(c)
19: cs1 ← NTT−1(ĉ ◦ ŝ1)
20: cs2 ← NTT−1(ĉ ◦ ŝ2)
21: z← y + cs1
22: r0 ← LowBits(w − cs2)
23: if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β then (z,h)← ⊥
24: else
25: ct0 ← NTT−1(ĉ ◦ t̂0)
26: h← MakeHint(−ct0,w − cs2 + ct0)
27: if ||ct0||∞ ≥ γ2 or # of 1’s in h > ω then (z,h)← ⊥
28: κ← κ+ l
29: σ ← sigEncode(c̃, z mod± q,h)
30: return σ

Signing (Alg. 2) The signing procedure computes the message representative µ
by hashing the hash of the public key and the message using SHAKE256. It then
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computes an additional private random seed ρ′ by hashing the private random
seed K, a 256-bit random value rnd (or in deterministic mode, the value {0}256)
and the message representative µ. The seed ρ′ is used to sample the nonce y from
which the signer commitment w1 is computed as the high bits of w = Ay. The
commitment hash c̃ is derived from w1 and µ and used to sample the challenge
c. The signer’s response is calculated as z = y + cs1 and its validity is checked
to restart if necessary (i.e. the signing is aborted as per the Fiat-Shamir with
Aborts approach [24]). Finally, the hint h is computed, which allows a verifier
to reconstruct the entire value of w1. The values c̃, z and h form the signature
σ.

Algorithm 3 ML-DSA.Verify(pk,M, σ) [3,29]

Input: Public key pk, message M , signature σ
Output: Boolean

1: (ρ, t1)← pkDecode(pk)
2: (c̃, z,h)← sigDecode(σ)
3: if h = ⊥ then return false
4: Â← ExpandA(ρ)
5: tr ← H(BytesToBits(pk), 512)
6: µ← H(tr||M, 512)
7: (c̃1, c̃2 ∈ {0, 1}256 × {0, 1}2λ−256 ← c̃
8: c← SampleInBall(c̃1)
9: w′

Approx ← NTT(Â ◦ NTT(z)− NTT(c) ◦ NTT(t1 · 2d))
10: w′

1 ← UseHint(h,w′
Approx)

11: c̃′ ← H(µ||w1Encode(w′
1), 2λ)

12: return J||z||∞ < γ1 − βK and Jc̃ = c̃′K and J # of 1’s in h ≤ ωK

Verification (Alg. 3) The verification procedure derives the challenge c from
the signature and computes w′

Approx = Ay− ct1 ·2d. Using the hint h, the value
w′

1 is reconstructed from w′
Approx and the commitment hash c̃′ is derived. The

verification passes if the commitment hashes match and the additional validity
criteria are fulfilled.

3.3 Fault injection techniques

Among the different techniques for fault injection, four main techniques for per-
forming low-cost, minimally invasive fault injection can be identified in the form
of software-based glitching, Electromagnetic (EM) glitching, clock glitching and
voltage glitching [6,30].

Software-based glitching exploits properties of the executing hardware avail-
able through software. The various approaches differ from each other substan-
tially, but include, for example, use of the Dynamic Voltage and Frequency
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Scaling feature to induce byte-corruption faults through overclocking, as in the
CLKscrew attack [37], or bit flips caused by repeated row access in a DRAM
chip, as in the RowHammer attacks [21].

EM glitching involves precise placement of a probe from which an electromag-
netic pulse is emitted. This pulse can affect clock signals or inject additional
power into the chip [10]. Several fault injection attacks on Dilithium [35,34,36]
employ EM glitching, making use of both its ability to skip instructions by af-
fecting the clock and its ability to flip/zero bits in memory.

Clock glitching exploits manipulation of the clock signal by injecting or with-
holding rising edges, thus altering the execution of instructions [10,30]. Clock
glitching has been employed in several attacks on Dilithium [11,16,38,22], which
make use of its ability to skip instructions.

Voltage fault injection uses manipulation of the power to a processor to cause
faults. Some approaches [5,4] use uniform underpowering to slow down logic
gates to cause faults. These approaches do not require precise timing control,
but also offer limited control over affected instructions and the resulting fault.
Other approaches [30,9] instead use a precisely timed spike in the voltage to
cause faults. While these approaches thus require greater timing control, they
also allow specific instructions to be affected.

In this paper, we use the voltage fault injection technique of O’Flynn [30].
This technique uses a crowbar circuit to short the power rails of the processor,
which induces oscillations in the target circuit, thus causing faults.

Fault model Using the previously described voltage fault injection technique,
the resulting faults will include both (single/multiple) instruction skipping and
instruction corruption. While our attack does not make use of instruction cor-
ruption, we empirically observed instances of corrupted instructions mentioned
here for completeness.

4 Adversary model and attack scenario

In this section we define assumptions about the adversary, their capabilities and
goals in accordance with the adversary model in [13].

Assumptions: We assume that the adversary has physical access to the device
under attack and access to equipment that allows for fault injection to be per-
formed during the execution of the signing procedure. We further assume the
adversary to be an outsider without access to privileged information that has a
high-level understanding of the implementation of Dilithium used on the device
under attack (e.g. from reverse-engineering).
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Capabilities: The adversary is capable of triggering execution of the signing
procedure on the device under attack and inject a precise voltage fault during
the execution of the procedure, as well as observe its output. Note that the
adversary does not have to be able to control the message being signed, only
triggering the signing and observing its output are necessary.

Goals: The goal of the adversary is to perform existential forgery, i.e. to gen-
erate a signature σ for an adversary-chosen message M that passes verification
using the public key of the device under attack. Note that it has been demon-
strated that knowledge of secret key vector s1 is sufficient to achieve existential
forgery [33].

4.1 Attack scenario

The attacker triggers execution of the ML-DSA.Sign procedure on the device
under attack. During the computation of the private random seed ρ′, a fault is
injected to fix its value to a known constant. The attacker then observes the
generated signature σ and extracts from it the secret key vector s1. Note that
fixing the value of ρ′ does not cause the generated signature to be invalid, thus
circumventing any countermeasure that checks the validity of the signature after
signing, as proposed by [8,16].

Fig. 1. ChipWhisperer-Husky, CW313 adapter board and CW308T-STM32F4 board
used in the experiments.
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1 /* Compute message representative µ ... */

2

3 # ifdef DILITHIUM_USE_HEDGED_MODE

4 randombytes(rnd, SEEDBYTES);

5 # else

6 memset(rnd, 0, SEEDBYTES);

7 # endif

8 /* Compute ρ′ */

9 shake256(rhoprime, CRHBYTES, key, 2*SEEDBYTES + CRHBYTES);

10

11 /* Expand matrix A ... */

Listing 1.1. The modified C code of the signing procedure of the CRYSTALS-
Dilithium implementation of [2] with hedged mode added.

5 Experimental Setup

This section describes the equipment used for the fault injection, as well as the
target software implementation of ML-DSA.

5.1 Equipment

For our experiments, we use a ChipWhisperer-Husky, a CW313 adapter board
and a CW308T-STM32F4 target device (see Fig. 1).

The target device contains an ARM Cortex-M4-based STM32F415RGT6,
which we run at a frequency of 16 MHz.

To avoid having to make any changes to the source code to trigger the fault
injection, we use ARM CoreSight ETM/DWT watchpoints. In a real attack
scenario, alternative trigger sources such as reference waveforms of the power
consumption or communication of the processor with peripheral devices can be
used.

5.2 Target implementation

In our experiments, we use a modified version of the CRYSTALS-Dilithium
implementation by Abdulrahman et al. [2], in which the hedged mode for sam-
pling ρ′ is added to the crypto sign signature procedure, as shown in Listing
1.1. We believe this implementation to be representative for other implementa-
tions of the hedged mode, as it follows directly from the specification. Note that
our attack targets the implementation of the shake256 procedure, which we did
not modify.

The implementation is compiled using arm-none-eabi-gcc with the highest
optimization level -O3 (recommended default).
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1 size_t keccak_inc_absorb(uint64_t *state, size_t bytes_not_permuted,

2 uint8_t *m, size_t mlen) {

3 while (mlen + bytes_not_permuted >= 136) {

4 KeccakF1600_StateXORBytes(state, m, bytes_not_permuted);

5 mlen -= 136 - bytes_not_permuted;

6 m += 136 - bytes_not_permuted;

7 bytes_not_permuted = 0;

8 KeccakF1600_StatePermute(state);

9 }

10

11 KeccakF1600_StateXORBytes(state, m, bytes_not_permuted, mlen);

12 return bytes_not_permuted + mlen;

13 }

Listing 1.2. The C code of the keccak inc absorb procedure. The function targeted
by the fault injection is highlighted in green.

6 Fault Injection Attack

This section describes the fault injection attack method and the implementation
of the SHAKE256 algorithm.

6.1 SHAKE256 algorithm

SHAKE256 is an extendable output function based on the Keccak family of
permutations [28]. Keccak employs a so-called sponge construction [17] to realise
a function with arbitrary output length. In a sponge construction, input data is
first absorbed into a state, after which the state can be squeezed to generate the
output of the function.

In the implementation of [2], the SHAKE256 algorithm is implemented us-
ing four high-level functions. The keccak inc init function zero-initialises the
Keccak state (an array of 200 bytes). The keccak inc absorb function (see
Listing 1.2) absorbs an arbitrary number of input bytes into the sponge. The
keccak inc finalize function finalises the absorption of data and prepares for
the extraction of output by applying a padding. Finally, the keccak inc squeeze

function extracts an arbitrary number of output bytes from the state. A typical
use case involves calling all of these functions in the order listed here.

6.2 Main idea

The attack targets the absorption of data into the sponge during the hash cal-
culation of ρ′. Specifically, a single voltage fault is used to skip the branching
to the KeccakF1600 StateXORBytes function (see line 11 of Listing 1.2). Note
that the loop in lines 3 to 9 is never executed in our case, because the message
length of 64 bytes for the message K||rnd||µ is less than the 136 bytes required
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to trigger a permutation. As such, skipping the KeccakF1600 StateXORBytes

function is sufficient for the sponge to be left empty. This allows an attacker to
predict the output ρ′ of the hashing procedure.

7 Secret key recovery

This section describes the method used to recover the secret key vector s1 from
a successfully faulted signature.

Recovering the secret key vector s1 from a signature for a known value of
ρ′ is straightforward. A potential approach is shown in Alg. 4 and works by
reconstructing the commitment hash c̃′ using ρ′ and a guess for the value κ. If
the commitment hashes match, the challenge c is reconstructed and the secret
key vector s1 can be computed as s1 = (z− y) · c−1, where c−1 is the inverse of
c in Tq.

Note that it is possible for c to have entries with value 0 in the NTT domain.
Those entries are not invertible in Tq and the corresponding entries of s1 in NTT
domain thus cannot be determined. Empirically, we found this to rarely be the
case (sampling 1M random challenges c, we found 21 tuples, all of which con-
tained exactly one entry with value 0). As such, we propose to simply enumerate
the possible values of s1 in NTT domain (i.e. enumerate all possible values of
the entry in Zq) when encountering this case. For the sake of simplicity, this
enumeration procedure is omitted from Alg. 4. Note further that the choice of
parameters for Dilithium is such that the expected number of iterations in the
enumeration of κ is low (around 4) [3], thus this approach is generally efficient.

Algorithm 4 RecoverSecretKey(pk, σ, ρ′, κmax)

1: (ρ, t1)← pkDecode(pk)
2: Â← ExpandA(ρ)
3: (c̃, z,h)← sigDecode(σ)
4: κ← 0
5: while κ < κmax do
6: y← ExpandMask(ρ′, κ)
7: w← NTT−1(Â ◦ NTT(y))
8: w1 ← HighBits(w)
9: c̃′ ∈ {0, 1}2λ ← H(µ||w1Encode(w1), 2λ)
10: if Jc̃ = c̃′K then
11: (c̃1, c̃2) ∈ {0, 1}256 × {0, 1}2λ−256 ← c̃
12: c← SampleInBall(c̃1)
13: ĉ← NTT(c)
14: s1 ← NTT−1((NTT(z)− NTT(y)) ◦ ĉ−1)
15: return s1
16: κ← κ+ l
17: return ⊥
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8 Experimental Results

This section describes the results of our fault injection attack and subsequent
secret key recovery.

8.1 Glitch settings

We identified settings that consistently skip the desired function without crash-
ing the device or disrupting other steps of the signature generation by conducting
a grid search over the set of parameters offered by the ChipWhisperer-Husky.
The results here were achieved by using the ‘enable only’ mode to insert a
glitch lasting five clock cycles using both the high-power and low-power crowbar
MOSFETs at an offset of 700 units3 Using these settings, we managed to suc-
cessfully skip execution of the KeccakF1600 StateXORBytes function in 52.8%
of 1000 attempts. We believe that it is possible to further increase the success
rate of the fault injection through additional optimisation of parameters.

8.2 Secret key recovery

We applied Alg. 4 on the signatures generated during the first phase of the attack.
As a guess for ρ′, we use the output of SHAKE256 generated by applying the
finalisation step on an empty state, which is a constant value easily derived by
an attacker. Note that Alg. 4 handles cases in which the fault injection was
unsuccessful by limiting the number of iterations using the bound κmax, thus no
additional processing of the signatures is required. We managed to successfully
recover the secret key vector s1 for all 52.8% of cases where the fault injection
was successful. We did not encounter the scenario in which c is not invertible for
any of these signatures.

9 Countermeasures

The presented attack would be infeasible if the individual steps of the Keccak
algorithm were inlined into the SHAKE256 routine instead of being separated
into multiple subroutines. In fact, because the length of the parameters used in
the calculation of ρ′ is fixed, it would even be possible to eliminate control flow
operations entirely, though such an implementation may not be practical.

Implementations of the SHAKE256 routine should also verify that after ab-
sorbing data into the sponge and before squeezing output from the sponge, the
state is not empty. If this is not the case, the signing procedure should be aborted,
thus offering protection against this particular fault attack. Care should then be
taken to ensure that the verification is not itself vulnerable to fault injection

3 These units are dimensionless and depend on the internal frequency of the
ChipWhisperer-Husky, but the offset corresponds to the distance between the rising
edge of the clock cycle and the beginning of the glitch.



14 S. Jendral

attacks. For the hedged mode itself, another alternative would be to randomly
initialise the state. The presented fault attack would then be insufficient to re-
cover the value of ρ′. This countermeasure is not applicable to the deterministic
mode, as it introduces non-determinism. Additionally it should be noted that
the specification of SHAKE256 makes no claims about the properties of the con-
struction with a randomly initialised state.

More robust countermeasures would require changes to the signing procedure.
One such approach may be to move the computation of ρ′ into the rejection sam-
pling loop. In that case, an attacker would either be required to predict or affect
(through e.g. additional fault injection) the number of times that the rejection
sampling is run to inject a single fault during the computation of a signature
that is not rejected, or have to inject faults into multiple iterations. This would
increase the complexity of an attack. Given the generally high probability of suc-
cess of the fault injection in this attack and the choice of parameters in Dilithium
that inherently keep the number of iterations in the rejection sampling low (see
[3]), it is unclear if this approach would be sufficient to prevent an attack.

A different approach is to increase the complexity in recovering the private
key after a successful fault injection during the computation of ρ′. Here it may
be possible to make the value of κ used during the sampling of y unpredictable
(e.g. by increasing its size and initialising it randomly), which would require
additional randomness or extension of existing random values. Alternatively, it
may be possible to include the attacker-unknown value K (or in hedged mode,
rnd or a combination of both) in the sampling of y, as proposed by [11]. This
eliminates the single point-of-failure around the computation of ρ′ at the cost of
increasing the input size to the hash function during the sampling of y.

10 Conclusion

We presented a practical fault injection attack on a hedged implementation of
Dilithium. We identified settings that consistently skip the desired function with-
out crashing the devices or disrupting other steps of the signature generation.
The attack can be applied to other parameter sets of ML-DSA (i.e. other variants
of Dilithium).

Our work demonstrates that it is possible to recover the secret key vector
in a single attempt with high probability, with the generated signature pass-
ing verification. This highlights the importance of protecting the calculations
of the private random seed ρ′, especially when using the hedged mode. Previ-
ous work on fault attacks against Dilithium has focused exclusively on the pre-
standardisation variant CRYSTALS-Dilithium, while the changes introduced by
the ML-DSA variant currently being standardised have not been adequately
assessed.

Future work includes developing stronger countermeasures against fault at-
tacks on implementations of PQC algorithms.
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G., Stehlé, D.: CRYSTALS-Dilithium. NIST Post-Quantum Cryptography Stan-
dardization Round 3 (2021)

4. Barenghi, A., Bertoni, G., Breveglieri, L., Pellicioli, M., Pelosi, G.: Low voltage
fault attacks to AES and RSA on general purpose processors. IACR Cryptol. ePrint
Arch. p. 130 (2010), http://eprint.iacr.org/2010/130

5. Barenghi, A., Bertoni, G., Parrinello, E., Pelosi, G.: Low voltage fault attacks on
the RSA cryptosystem. In: Breveglieri, L., Koren, I., Naccache, D., Oswald, E.,
Seifert, J. (eds.) Sixth International Workshop on Fault Diagnosis and Tolerance
in Cryptography, FDTC 2009, Lausanne, Switzerland, 6 September 2009. pp. 23–
31. IEEE Computer Society (2009). https://doi.org/10.1109/FDTC.2009.30, https:
//doi.org/10.1109/FDTC.2009.30

6. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: Theory, practice, and countermeasures. Proceedings of the
IEEE 100(11), 3056–3076 (2012)

7. Berzati, A., Viera, A.C., Chartouny, M., Madec, S., Vergnaud, D., Vigilant, D.:
Exploiting intermediate value leakage in dilithium: a template-based approach.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2023(4),
188–210 (2023)
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39. Wang, R., Ngo, K., Gärtner, J., Dubrova, E.: Single-trace side-channel attacks on
crystals-dilithium: Myth or reality? Cryptology ePrint Archive, Paper 2023/1931
(2023), https://eprint.iacr.org/2023/1931

https://doi.org/10.46586/tches.v2023.i4.367-392
https://tches.iacr.org/index.php/TCHES/article/view/11170
https://eprint.iacr.org/2023/1931

	A Single Trace Fault Injection Attack on Hedged CRYSTALS-Dilithium

