
Bare PAKE: Universally Composable Key
Exchange from just Passwords

Manuel Barbosa, Kai Gellert, Julia Hesse*, and Stanislaw Jarecki

University of Porto
mbb@fc.up.pt

University of Wuppertal
kai.gellert@uni-wuppertal.de

IBM Research Europe - Zurich
jhs@zurich.ibm.com

UC Irvine
stanislawjarecki@gmail.com

Abstract. In the past three decades, an impressive body of knowledge
has been built around secure and private password authentication. In
particular, secure password-authenticated key exchange (PAKE) proto-
cols require only minimal overhead over a classical Diffie-Hellman key
exchange. PAKEs are also known to fulfill strong composable security
guarantees that capture many password-specific concerns such as pass-
word correlations or password mistyping, to name only a few. However, to
enjoy both round-optimality and strong security, applications of PAKE
protocols must provide unique session and participant identifiers. If such
identifiers are not readily available, they must be agreed upon at the
cost of additional communication flows, a fact which has been met with
incomprehension among practitioners, and which hindered the adoption
of provably secure password authentication in practice.
In this work, we resolve this issue by proposing a new paradigm for truly
password-only yet securely composable PAKE, called bare PAKE. We
formally prove that two prominent PAKE protocols, namely CPace and
EKE, can be cast as bare PAKEs and hence do not require pre-agreement
of anything else than a password. Our bare PAKE modeling further al-
lows to investigate a novel “reusability” property of PAKEs, i.e., whether
n2 pairwise keys can be exchanged from only n messages, just as the
Diffie-Hellman non-interactive key exchange can do in a public-key set-
ting. As a side contribution, this add-on property of bare PAKEs leads us
to observe that some previous PAKE constructions relied on unnecessar-
ily strong, “reusable” building blocks. By showing that “non-reusable”
tools suffice for standard PAKE, we open a new path towards round-
optimal post-quantum secure password-authenticated key exchange.

*The author was supported by the Swiss National Science Foundation (SNSF) under
the AMBIZIONE grant “Cryptographic Protocols for Human Authentication and the
IoT.

Table of Contents

Bare PAKE: Universally Composable Key Exchange from just Passwords 1
Manuel Barbosa, Kai Gellert, Julia Hesse, and Stanislaw Jarecki

1 Introduction . 3
2 Preliminaries . 10
3 Bare Password-Authenticated Key Exchage . 10

3.1 Previous UC PAKE models . 10
3.2 The UC Bare PAKE model . 13
3.3 Syntax of Bare PAKE and Structured Protocols 17

4 Transformations between PAKE and Bare PAKE 19
5 Password-Only Encrypted Key Exchange . 20

5.1 Simplified NIKE . 21
5.2 The EKE Construction . 25

6 Password-Only CPace . 28
7 Security under Adaptive Corruptions . 31

7.1 Adaptive Security of EKE-NIKE . 31
7.2 Adaptive Security of CPace . 32

A Details on Structured Protocols . 36
B Computational Assumptions . 40
C Details on Transformations . 41

C.1 Constructing PAKE from Bare PAKE. 41
C.2 Constructing Bare PAKE from PAKE. 45

D Proofs of the theorems in Section 5 . 51
D.1 Proof of Theorem 1 . 51
D.2 Proof of Theorem 2 . 54

E Proof of Theorem 3 . 56
E.1 Relating to previous analyses . 64

1 Introduction

Passwords continue to be a dominant form of user authentication on the inter-
net. While some alternatives to password-based authentication emerge, such as
WebAuthn [W3C17], passwords remain prevalent, primarily due to usability is-
sues (see e.g. [BHvS12]). More broadly, there is no alternative to low-entropy se-
crets in applications where authentication is based on something you know, such
as a Personal Identification Number (PIN). Finally, passwords also play a central
role at the infrastructure level, where they are widely used for device authenti-
cation, e.g., when setting up local wireless networks and IoT devices [HGP+18].

Due to its practical significance, cryptographically secure password authen-
tication is an active area of research that dates back to the seminal paper of
Bellovin and Merritt [BM92], more than thirty years ago. These protocols aim
at ensuring minimal leakage of passwords while still allowing for checking their
correctness. However, despite the impressive body of knowledge that was built
during this time, there has not been much adoption of provably secure pass-
word authentication in the real world. Almost all password-protected login sites
still deploy the privacy elusive “password-over-TLS”, where cleartext passwords
are handed over to service providers, who hash the password and compare it
with their database. For PIN-based authentication, ad-hoc solutions are also
often deployed and are then subject to a-posteriori analyses (e.g., Password
Authenticated Connection Establishment (PACE) [BFK09], and the Client-to-
Authenticator Protocol in FIDO2 [BCZ22, BBCW21]).

One reason for the adoption of provably secure password authentication to
remain scarce is that there are almost no specifications that could serve as
a basis for implementors to adopt this type of cryptography. Writing good
specifications is challenging, and in the case of password authentication, it is
further hindered by a gap between the security models used to formally an-
alyze such protocols and their use in practice. In particular, existing models
[CHK+05, GMR06, DHP+18, Hes20, ABB+20] impose on the implementation
a notion of a unique party identifier and/or a unique session identifier, and it is
often unclear [Can19] how these parameters should be instantiated in practice.
Known ways to correctly instantiate them impose significant protocol costs. The
consequences are either specifications to which proofs in the literature do not
apply or ones that are potentially unnecessarily inefficient.

In this paper, we revise models for secure password authentication to op-
timize for specification simplicity and implementation efficiency. In particular,
we dispense with the need for the above-mentioned identifiers, introduce a se-
curity notion that captures true password-only authentication, and show that
password-only implementations of known protocols meet this notion. Overall,
we simplify and clarify the requirements that an implementer must meet to de-
ploy password-authenticated protocols, leading to standards that are easier to
adopt.

Security Models for Password Authentication. Cryptographic literature
models password authentication as a Password-Authenticated Key Exchange

3

(PAKE) [BM92], which establishes a secure shared key between two participants
if they run the protocol on the same password. PAKE security was first for-
malized in a game-based model by Bellare-Pointcheval-Rogaway (BPR) [BPR00].
The BPR model has been adopted in the analysis of many PAKE proposals, e.g.,
EKE [BPR00], SPEKE [Jab97, Mac01, HS14], SPAKE2 [AP05], TBPEKE [PW17],
and CPace [AHH21]. However, the BPR model provides only limited assurance of
real-world security, most importantly because it analyzes each user in separation,
and assumes that every user chooses their password independently, while in the
real world, password choices are often correlated, e.g. with prior passwords of the
same user, or with passwords used by other family members, etc. To deal with
these (and other) shortcomings of the BPR model, Canetti et al. [CHK+05] pro-
posed a Universally Composable (UC) PAKE model which addresses password
correlations, password mistyping, password information leakage, and arbitrary
interactions between protocol instances. The UC model further ensures security
under arbitrary protocol composition, enabling security arguments for protocols
that use generic PAKE as a subroutine, e.g., generic compilers from symmet-
ric PAKE to asymmetric PAKE (where one party, the server, knows only a
password hash instead of the password itself) [GMR06, HJK+18], or from asym-
metric PAKE to strong asymmetric PAKE (where the server’s password hash is
privately salted) [JKX18]. For these reasons the UC PAKE model has become
a gold standard of PAKE security [GMR06, JKX18, BJX19, Hes20, ABB+20,
GJK21, AHH21, SGJK22, SGJ23].

Limitations of the UC PAKE model. Despite their widely recognized ben-
efits, all previous UC PAKE models1 come with hidden costs and fail to im-
plement password-only authentication. Indeed, according to these models, each
protocol participant P must supply three further inputs: i. a session identifier
sid ii. a party identifier, and iii. a corresponding identifier CP of the intended
counterparty in this protocol instance.2

The UC PAKE requirements on the session identifier are due to general con-
ventions of the UC framework [Can01a], namely that each protocol instance must
be identified by a globally unique session identifier. The standard UC PAKE
model [CHK+05] implies that PAKE participants can successfully establish a
joint session key only if they use the same session identifier sid . Moreover, the
requirement for global uniqueness implies no security guarantees to an honest
party that re-uses the same sid string that was used by some pair of honest par-
ties before. The requirements on party identifiers are similar: The UC framework
assumes that each party that participates in the protocol has a unique identifier,
i.e., that no two honest parties carry the same identifier P.3 The UC PAKE

1We use the term standard UC PAKE to denote the original notion of Canetti et
al. [CHK+05], and UC PAKE for including variants thereof, e.g., [Hes20, ABB+20].

2The same problem appears in the BPR model for party identifiers, but not for
session identifiers, which are protocol outputs rather than inputs.

3For a protocol realizing an ideal functionality that runs an independent session,
with a globally unique session identifier, for a small set of parties, this means only
that each of these participants must have a different party identifier. However, when

4

model enforces the use of these identifiers in the protocol because it allows the
parties to establish a key only if they use matching identifiers, i.e., if one party
uses its own and counterparty identifiers P and CP, then the other must use
respectively P ′, CP ′ s.t. P ′ = CP and CP ′ = P.
Problems caused by requirements on sid ,P, CP identifiers. All of these
inputs are problematic for an implementer, and they cannot be set to “don’t
care” symbols because of the above requirements of the UC PAKE model. Re-
garding the globally unique sid requirement, the standard way of satisfying it, as
suggested in [Can01a], is to precede a PAKE instance by a sid -picking protocol,
where sid is set as a concatenation of two fresh nonces which the parties send
to each other. However, this adds a network flow to the resulting implemen-
tation. Anyone who attempts to implement a PAKE in any application would
surely be annoyed by this requirement, in particular, because the only justifi-
cation that researchers could give is that unique identifiers are required by the
UC PAKE model. While there is no known attack on implementations that ig-
nore the uniqueness of identifiers, or skip them completely, current proofs in the
literature do not carry over to such more efficient and straightforward PAKEs.

The UC PAKE requirement that participants hold unique identifiers for
themselves and their counterparties is also problematic. How should such iden-
tifiers be implemented? Should they be IP addresses? First, it is not clear what
security guarantees the model implies if two honest parties happen to use the
same self-identifier, and IP addresses can be dynamic. Second, if one party is
behind a firewall then their counterparty will not know their IP address. Should
the identifiers be DNS names instead? That is good for servers but not for clients.
In summary, whatever an implementation chooses to use for these identifiers, it
is possible that they turn out not to be unique, or it will tie the implementation
too strongly to a particular networking setting, and it will break if the setting
changes. In this aspect too, an implementer can ask why they need these unique
identifiers at all as an input to the protocol, and a cryptographer’s answer is
currently the same as above, i.e. that current proofs do not imply that a PAKE
is UC secure without them.

Given the troubles of pre-exchanging and agreeing on all these identifiers,
the following research question repeatedly comes up while standardizing or im-
plementing UC PAKE protocols:

Can PAKE protocols enjoy composable security without relying
on pre-agreed unique session- and party identifiers?

Our proposal: The UC bare PAKE model. In this work, we answer the
above question in the affirmative. We propose to shift from standard UC PAKE
to bare PAKE (bPAKE), which models composable key exchange from just pass-
words. Our bPAKE model eliminates all the above implementation dilemmas re-
garding identifier choices, and consequently yields more practical protocols that

analyzing protocols that realize multi-instance versions of ideal functionalities that
may interact with an arbitrary number of honest participants, the uniqueness of party
identifiers becomes a global requirement.

5

do not require the application to pre-agree on anything other than a password:
In our bare PAKE model the only required input is the password. Session iden-
tifiers still appear in our model, albeit only as an output of a protocol. They can
be thought of (and used as such by applications) as a protocol transcript that
uniquely identifies one particular key exchange session.

If two parties want to use PAKE to establish an agreement not only on
their passwords but also on identifiers that might not be pre-agreed before the
protocol starts, bare PAKE allows each party to enter its name as an optional
input, and such name becomes part of their counterparty output. This way an
application can reject a session if it was established with the counterparty whose
name does not match the application’s criteria, but these names do not have
to be pre-agreed, and instead they can be communicated as part of the PAKE
protocol. Furthermore, the name each party supplies is an arbitrary value, does
not have to be unique, and can be set to ⊥.

In summary, our UC bare PAKE functionality is just like the standard UC
PAKE functionality in that it password-authenticates not only a session key but
also a session and counterparty identifiers, but the latter are protocol outputs
instead of inputs. The UC bare PAKE model therefore offers a simpler and
application-friendly PAKE syntax—we argue that it is even friendlier than that
of the BPR model [BPR00]—but it is a variant of the UC PAKE model of Canetti
et al. [CHK+05], hence it assures all the good properties of the UC framework
including security under arbitrary password correlations, concurrent executions,
and arbitrary protocol composition.

Further benefits and new insights: Reusability. The UC bare PAKE model
draws further benefits from the above simplifications. If a PAKE protocol consid-
ers a password as the only necessary input, and the session identifier and coun-
terparty’s optional name are protocol outputs, then it becomes possible for a
bare PAKE protocol participant to reuse their state and create keys with several
counterparties from one password, where each key is accompanied by a separate
session identifier and counterparty’s name. Most PAKE schemes from the liter-
ature are password-encoded variants of the Diffie-Hellman (DH) non-interactive
key exchange (NIKE) [DH76], which is known to enable the exchange of n2 pair-
wise keys between n users. Can these PAKEs, such as EKE [BM92, DHP+18] or
CPace [HL17, AHH21], allow for a similar flavor of reusability, i.e., allow parties
to reuse their state to produce password-authenticated keys from many incoming
messages instead of just one? The standard UC PAKE versions of these protocols
could not do that, because they require each party to specify a unique session
and counterparty identifier as an input for each exchanged key. By contrast, bare
PAKE allows us to investigate if PAKEs can be reusable.

As an application example, consider a client C who does not remember which
password she should use with server S, but holds n password candidates, while
server S has a single password registered for this user. With a reusable bare
PAKE, C can run n PAKE instances, one for each password candidate, while S
runs a single instance on its single password. If S’s PAKE message is processed by
each of C’s instances, the client computes n session keys, and when S’s instance

6

processes each of the n messages sent by C’s instances, the server also computes
n session keys, and then they can learn if any of C’s passwords is correct using a
key confirmation protocol. One could use n independent instances of UC PAKE
in the same application, but a reusable bare PAKE reduces the costs because S
initializes only one PAKE instance and sends only one PAKE message to C.4

In another example, consider an Internet of Things (IoT) setting [Wik23],
where each IoT device at home or office is initialized with the same password.
With a reusable bare PAKE, each device can broadcast a single message to
the network and then establish a password-authenticated pairwise key with any
other device after processing that device’s PAKE message. Concretely, if EKE
or CPace are secure UC bare PAKEs, then all devices will be able to establish
password-authenticated pairwise keys at the cost of a single broadcast per party!

Our Contributions. Besides the formal modeling of the new bare PAKE
paradigm, our paper contains several contributions that we summarize below.

(1) The UC bare PAKE model. We define a UC bare PAKE model which
reformulates the standard UC PAKE notion of Canetti et al. [CHK+05] to make
PAKEs truly password-only. A PAKE scheme secure in the UC bare PAKE
model does not need pre-established unique session or party identifiers, which
removes unnecessary hurdles for implementers. We stress that we achieve this
without sacrificing any composability guarantees: our definitional work guaran-
tees that the standard UC composition theorem implies that any usage of bare
PAKE in an application can be replaced with the bare PAKE ideal function-
ality in the security analysis. Furthermore, the bare PAKE model allows UC
PAKEs to be reusable, i.e., it allows for a single PAKE instance to establish
password-authenticated session keys with an arbitrary number of parties. In our
presentation we rely on the notion of structured UC protocols [Can01b, eprint
2020 version] to clarify the subtle syntactical issues of what it means for a UC
protocol not to depend on the local party and session identifiers, even though
these technical artifacts are inherent to a security analysis in the UC framework.

(2) Compilers. Notably, the input/output interfaces of our bare PAKE model
and previous models differ, e.g., standard UC PAKE requires a new password
input for each key exchange while bare PAKE can exchange many keys from
one input password. It is hence not possible to say that the UC model of bare
PAKE is stronger than the one for standard PAKE, or vice versa. To demon-
strate the usefulness of our bare PAKE notions, we thus give generic and simple
compilers between them. First, we show that any UC bare PAKE can be gener-
ically converted to a standard UC PAKE, by simply running the bare PAKE
on p̄w = pw ||sid ||P||CP. This compiler justifies our bare PAKE approach in
the sense that our model is strong enough to realize standard PAKE, essentially
without a performance penalty. The compiler further offers a smooth migration
path towards the bare PAKE paradigm: applications that for some reason do

4This application appeared in [KM15], which give a BPR-model analysis of a solu-
tion assuming pseudorandomness of PAKE protocol messages. Note that S can limit
guessing attempts by upper-bounding the number n of C’s instances it processes.

7

have unique session- and party identifiers at hand get the expected standard
PAKE interface from a bare PAKE as well! Second, we show that any secure
standard UC PAKE implies a one-time UC bare PAKE, where one-time means
that a party terminates a password instance after producing one key from it.
The compiler lets parties exchange unique session- and party identifiers before
executing the standard UC PAKE with them. In settings where no external
uniqueness guarantee on party identifiers is available, our compiler reflects the
overhead that implementations need to account for if only standard UC PAKE
protocols are available.

(3) CPace is secure without identifiers, and reusable. We then inves-
tigate which PAKEs from the literature can be cast as bare PAKEs, i.e., can
be deployed without unique session or party identifiers and establish keys from
pre-agreed passwords alone. Of course, with our second compiler above, every
standard UC PAKE can be converted into a bare PAKE, albeit at the cost of
one additional round of nonce exchanges. We are instead looking for round-
preserving bare versions of Diffie-Hellman-based PAKEs, i.e., that only take one
round. We start with CPace [HL17], a PAKE that won the recent symmetric
PAKE selection process [CFR20] of the IRTF and which is currently undergo-
ing standardization [AHH20]. CPace lets parties perform a Diffie-Hellman key
exchange with a group generator g ← H(pw ||sid ||P||CP) that encodes the pass-
word and all identifiers. We prove that “bare CPace” securely realizes our new
notion with a generator g ← H(pw) that just encodes the password. Our proof
relies on the same assumptions taken in the analysis of its (sid ,P, CP)-dependent
version [AHH21]. Our result implies reusability and composable security guar-
antees of the Internet-Draft version of CPace [AHH20] with sid ,P, CP all set to
⊥. We recommend that the specification switches to bare CPace, as this would
enable the authenticated transmission of party names without any uniqueness
requirements.

(4) EKE is secure without identifiers, and reusable. We continue with
the seminal Encrypted Key Exchange (EKE) protocol of Bellovin and Mer-
rit [BM92, BPR00], which was the first in line of the many PAKE protocols
built upon the non-interactive Diffie-Hellman key exchange. The idea of EKE is
to password-encrypt the DH public keys, i.e., using a symmetric cipher and the
password as the encryption key. In our work, we consider a general “bare EKE
compiler” which starts from any non-interactive key exchange (NIKE) and any
symmetric cipher, to obtain a PAKE that requires only pre-agreed passwords
and doesn’t need any additional sid ,P, CP inputs. We prove that this compiler
can transform any NIKE that satisfies the standard notion of security for these
protocols [CKS08, FHKP13] into a reusable bare PAKE in the ideal cipher (IC)
model. Our result shows that EKE can enjoy composability without unique iden-
tifiers, and it can be used to exchange an arbitrary number of keys from just
one password. As a corollary of this result we get a modular proof that Hashed
Diffie-Hellman (Hashed DH) NIKE—i.e., a Diffie-Hellman NIKE where the pair-
wise key is computed as Ki,j = H(gxi·xj) where H is a hash function—can be

8

compiled into a reusable bare PAKE using EKE. The resulting protocol is tightly
secure under gap-CDH in the Ideal Cipher and Random Oracle Models.

(5) Towards post-quantum secure PAKE from NIKE. An interesting
side observation of our work on the bare version of EKE is that the reusability
aspect crucially relies on the fact that secret keys of the underlying NIKE must
be secure to reuse. Because standard UC PAKE does not allow for such reuse, an
immediate question is whether we can relax the assumptions on the NIKE when
aiming for the non-reusable standard UC PAKE notion. Indeed, we can show
that a “one-time” version of NIKE is enough to realize standard UC PAKE and,
furthermore, that “one-time” NIKE follows from passively secure NIKE in the
Random Oracle Model. As a corollary, we derive that Hashed DH NIKE is one-
time secure under CDH in the ROM, a result that explains previous CDH-based
EKE security proofs [DHP+18] with a nice flavor of modularity. These results
also open a path for round-optimal post-quantum secure EKE instantiations
based on, for example, the passively secure version of Swoosh [GdKQ+23].

Other Related work. Shoup [Sho20] carries out an analysis of a concrete
PAKE protocol in a variant of the UC model that addresses some of the concerns
we also address in this paper. In particular, globally unique session identifiers
are already replaced by locally unique instance identifiers, and session identifiers
are seen as protocol outputs. However, the protocols in this model are still not
password-only due to the use of party identifiers.

Küsters and Tuengerthal [KT11] identify conditions on protocols under which
single-session security implies security in the local-sid multi-session setting. For
the case of PAKE the latter is like our bPAKE functionality, except it still re-
quires globally unique party identifiers and does not support re-use. However,
their results assume multi-round protocols, since the simulator for the single-
session protocol must compute each party’s first message by following their pro-
tocol. Moreover, the joint-state cryptographic tools they consider do not include
Ideal Ciphers or Random Oracles, which are essential in resp. EKE and CPace.

The NIST post-quantum competition and the upcoming standardization of
Kyber KEM have driven several proposals of black-box constructions of PAKE
protocols from KEM [BCP+23, SGJ23]. The modularity of these constructions
is aligned, and indeed closely related to, our analysis of EKE-NIKE. One sub-
stantial difference, however, is that we focus on reusable single-simultaneous-flow
PAKEs, which we show to be easy to construct from sNIKE. KEM-based con-
structions seem to allow only one-sided reusability by the party who generates
the KEM public key; indeed, the other party is carrying out KEM encryption
and stores no reusable state. We do not explore one-sided reusability in this
paper, but our definitions already cater to this possibility for future work.

Dos Santos et al. [SGJ23] propose an alternative to the use of the Ideal Cipher
in EKE variants that they call a randomized Half-Ideal-Cipher. This proposal
solves an important problem in EKE, which is how to instantiate an Ideal Cipher
over a structured data type such as a KEM public key, or a group element
in DH-based systems. The Half-Ideal Cipher is essentially a two-round Feistel
network, where a small part of the input (of size twice the security parameter) is

9

generated uniformly at random and encrypted using an Ideal Cipher that works
over this small domain. The remaining (potentially large) part of the input, e.g.,
the KEM public key, is simply masked using a group operation according to
the structure of the Feistel construction. We believe that the proof of the EKE-
NIKE construction we present in this paper can be easily adapted to rely on the
same half-ideal cipher construction, thereby simplifying its instantiation with
post-quantum secure NIKEs such as Swoosh [GdKQ+23].

2 Preliminaries

Notation. We denote the security parameter as κ. We denote [ℓ] = {1, . . . , ℓ}.
We write x ←R S for sampling x from uniform distribution over set S. For a
probabilistic polynomial-time (PPT) algorithm A we write y ←R A(x1, . . . , xℓ)
for assigning to y an output of a randomized execution of A on input x1, . . . , xℓ.
For any variable a, by record ⟨a, [b]⟩ we denote a 2-tuple of values, where the
first value is equal to a, and we assign variable name b to the second entry. We
use {a, b}ord to denote string a||b if a ≤lex b and string b||a otherwise.

2.1 Computational Assumptions

We recall several standard computational assumptions we use in our security
proofs. The last assumption, sim-gapCDH is used in the security analysis of
CPace, both by us and in prior works on CPace [HL17, AHH21].

Definition 1 (Pseudorandomness). Let F : {0, 1}κ × {0, 1}κ → {0, 1}κ be
an efficiently computable function. We call F pseudorandom if for all PPT A
there exists a negligible function µ, such that for all κ ∈ N we have

Advrandom
A,F (κ) :=

∣∣∣∣ Pr
k←R{0,1}κ

[AF (k,·)(1κ) = 1]− Pr
f←RFuncκ

[Af(·)(1κ) = 1]

∣∣∣∣ ≤ µ(κ),

where Funcκ is the set of all functions of input and output length κ.

Definition 2 (Computational Diffie-Hellman (CDH)). Let G be a family
of cyclic groups indexed by the security parameter, each of some prime order
q and with generator g. Then we say that the Computational Diffie-Hellman
assumption holds in G if for every PPT adversary A there exists a negligible
function µ, such that for all κ ∈ N it holds

AdvCDH
A,G (κ) := Pr

[
A(Gκ, g, g

a, gb) = gab | a, b←R Zq

]
≤ µ(κ).

Definition 3 (Gap Computational Diffie-Hellman (gapCDH)). Let G
be a family of cyclic groups, each with some prime order q. Then we say that
the Gap Computational Diffie-Hellman assumption holds in G if for every PPT
adversary A there exists a negligible function µ, such that for all κ ∈ N it holds
that

AdvgapCDH
A,G (κ) := Pr

[
ADDHx(·,·)(G, g, ga, gb) = gab

∣∣∣∣ g ←R Gκ

a, b←R Zq

]
≤ µ(κ) ,

10

where oracle DDHx(Y,Z) returns 1 if Z = Y x and 0 otherwise, for x = a, b.

Definition 4 (Simultaneous Gap Computational Diffie-Hellman (sim-
gapCDH)). Let G be a family of cyclic groups, each with some order q. Then
we say that the Simultaneous Gap Computational Diffie-Hellman assumption
holds in G if for every PPT adversary A there exists a negligible function µ,
such that for all κ ∈ N it holds that Advsim−gapCDH

A,G (κ) :=

Pr

[
ADDHx(·,·)(Gκ, g, g

r, gr
′
, ga) = (B,Ba/r, Ba/r′)

∣∣∣∣ g ←R Gκ

a, r, r′ ←R Zq

]
≤ µ(κ),

where oracle DDHx(Y,Z) returns 1 if Z = Y a/x and 0 otherwise, for x = r, r′.
In other words, A wins if it provides B,K,K ′ such that DDH(gr, ga, B,K) =
DDH(gr

′
, ga, B,K ′) = 1.

3 Bare Password-Authenticated Key Exchage

3.1 Previous UC PAKE models

We briefly recall the original UC PAKE model of [CHK+05] and its multi-
session [CR03] and lazy-extraction [ABB+20] extensions, all captured in Fig-
ure 1, and then we introduce our UC Bare PAKE model, shown in Figure 2, and
we explain its mechanics.

UC PAKE notion Canetti et al. The single-session PAKE functionality
FPAKESS of [CHK+05], see Figure 1, defines how an ideal PAKE scheme should
behave if each pair of participants uses a pre-agreed globally unique session
identifier sid (and matching party and counterparty identifiers). The NewSession
interface models the first party P using a given session identifier sid to initial-
ize PAKE on password pw , with counterparty identifier CP, and role specifying
whether P plays an initiator or a responder role.5 All inputs except for the pass-
word can be leaked, hence the ideal-world adversary A learns (sid ,P, CP, role).
Functionality FPAKESS assumes that only two parties ever run the protocol us-
ing a given sid , and that these two parties respectively use identifiers (P, CP)
and (P ′, CP ′) s.t. (P ′, CP ′) = (CP,P), and any other NewSession requests are
dropped.

When a session is initialized it is marked fresh, and the adversary has two
options: (1) First, it can passively connect the two sessions using the matching
sid ,P, CP inputs by passing the message between them, which is modeled by a
session-termination command (NewKey, sid ,P, ·) issued when P is fresh: If this
is the first party to terminate then FPAKESS makes it output a random key K
(step 3 in NewKey). If it is the second party to terminate then FPAKESS makes
it output the same key if the two parties used equal passwords (step 2), or an
independent key if the two passwords were unequal (step 3). Alternatively, (2)
the adversary can mount an active attack against either session, modeled by the

5Field role can be set to ⊥ if the protocol is symmetric.

11

Session initialization, single session [CHK+05]

On (NewSession, sid ,P, CP, pw , role) from P, send (NewSession, sid ,P, CP,
role) to A, and if this is the first NewSession query, or it is the second one
and record ⟨CP,P, [pw ′]⟩ exists, then record ⟨P, CP, pw⟩ marked fresh.

Session initialization, multi session [CR03]

On (NewSession, sid ,P, ssid , CP, pw , role) from P send (NewSession, sid ,P, ssid ,
CP, role) to A. If this is the first NewSession query for this ssid , or it is the second

one and record ⟨CP, ssid ,P, [pw ′]⟩ exists, record ⟨P, ssid , CP, pw⟩ marked fresh.

Active attack

On (TestPwd, sid ,P, ssid , pw∗) from A, if ∃ record ⟨P, ssid , [CP, pw]⟩ marked
fresh then:

– If pw∗ = pw then change the mark to compromised and reply “correct guess”.

– Otherwise change the mark to interrupted and reply “wrong guess”.

Lazy password extraction [ABB+20]

– On (RegisterTest, sid , ssid ,P) from A, if ∃ record ⟨P, ssid , . . . ⟩ marked fresh

then change the mark to interrupted and flag it Tested;

– On (LateTestPwd, sid , ssid ,P, pw∗) from A, if ∃ record ⟨P, ssid , [CP, pw ,K]⟩
with flag Tested then remove this flag and return K′ to A s.t.:

• If pw∗ = pw then set K′ := K else pick K′ ←R {0, 1}κ.

Key generation

On (NewKey, sid ,P, ssid ,K∗) from A, if ∃ record rec = ⟨P, ssid , [CP, pw]⟩ not
marked completed then do:

1. If the record is compromised, or either P or CP is corrupted, then set K := K∗.
2. If rec is marked fresh and ∃ record ⟨CP, ssid ,P, pw , [K′]⟩ marked completed

which was marked fresh when CP output (sid , ssid ,K′) then set K := K′.
3. In all other cases pick K ←R {0, 1}κ.

Finally, appendK to rec, change its mark to completed, output (sid , ssid ,K) to P.

Fig. 1. The original single-session PAKE functionality FPAKESS of Canetti et
al. [CHK+05], with single-use session identifiers sid , includes dashed boxes and ex-

cludes light gray parts. Crossed-out code corresponds to subsequent patches [AHH21].
Excluding dashed boxes and including light gray parts creates a multi-session variant
of the same functionality [CR03], denoted FPAKEMS (or FPAKE for short), with global

session identifier sid and single-use subsession identifiers ssid . Adding dark gray parts
to FPAKE defines FPAKELE , which allows lazy extraction from active attacks [ABB+20].

Adding the solid boxes defines a leaky variant of either functionality, which the default
version excludes.

12

TestPwd interface, which restricts each such attack to a unique password guess
pw∗. If this guess is correct, the session’s mark is changed to compromised,6 oth-
erwise it becomes interrupted.7 Moreover, if P’s session is compromised then A’s
session-termination query (NewKey,P, sid ,K∗) causes P to output an adversar-
ially chosen key K∗ (step 1), while if it is interrupted then P outputs a random
key (step 3), but unlike in option (1) this key cannot be transferred to party P ′
because FPAKESS ensures that two parties can output the same key only if they
use the same passwords and both terminate as fresh (see step 2).

Multi-session and lazy-extraction extensions of UC PAKE. Canetti
and Rabin [CR03] showed that each single-session functionality can be cast
as a multi-session one, where individual protocol instances are differentiated
by unique sub-session identifiers ssid , and the session identifier sid designates
global parameters e.g. a CRS, or an instance of a “globally available” function-
ality which all parties can rely on, e.g. a Random Oracle hash or an Ideal Cipher
encryption. In Figure 1 we show this multi-session form of the UC PAKE func-
tionality, denoted FPAKEMS . As shown in [CR03], if a protocol realizes FPAKESS

then it also realizes FPAKEMS , as long as the environment ensures that tuples
(ssid ,P, CP) satisfy the same requirements posed above on tuples (sid ,P, CP).
In the remainder of this work we will treat the multi-session version of the
PAKE functionality, i.e. FPAKEMS , as the definition of UC PAKE, denoted FPAKE

for short.
Abdalla et al. [ABB+20] introduced a lazy-extraction extension of the UC

PAKE functionality, which we show as functionality FPAKELE in Figure 1. In
this extension the adversary can use interface RegisterTest to actively attack
a session on a committed but hidden password guess. Such session becomes
interrupted and outputs a random key K when it is terminated via the NewKey
query, but the adversary can then reveal a unique password guess pw∗ used in
this attack via interface LateTestPwd, and FPAKELE responds with the correct
key K if the guess is correct, or an independent value if the guess is wrong. We
include this extension because [ABB+20] showed it is necessary and sufficient
to capture several round and computation-efficient PAKE protocols, including
CPace [HL17, AHH21], which in this work we generalize to the UC bare PAKE
model.

3.2 The UC Bare PAKE model

In Figure 2 we describe an ideal functionality FbPAKE which defines our pro-
posed UC bare PAKE (bPAKE) model. It is a multi-session functionality, where
identifier sid identifies global common parameters, e.g. an instance of an Ideal
Cipher or a Random Oracle. However, our bPAKE functionality FbPAKE makes
several major departures from the multi-session PAKE functionality FPAKE. First

6In [CHK+05] the PAKE functionality leaks if this case occures to the adversary,
but our default notion omits that leakage since it is not present in the protocols we
analyze.

7Either mark prevents A from issuing another TestPwd query for the same session.

13

and foremost, functionality FbPAKE models PAKE as a password-only protocol,
where the functionality does not enforce that the participants have pre-agreed
unique subsession identifiers ssid or party identifiers P, CP. Indeed, interface
NewSession in FbPAKE does not take inputs (P, ssid , CP) which were present in
FPAKE, and when sessions are passively connected, via interfacePassiveNewKey,
functionality FbPAKE allows two sessions to output the same session key K only
if their passwords pw are the same (see step 2 in PassiveNewKey in Fig. 2).

In addition to the password input pw , the other inputs of bPAKE (see the
NewSession interface in Fig. 2) include an instance identifier i , and fields id
and role. Input role plays the same function of distinguishing protocol initiators
and responders as in UC PAKE. The instance identifier i plays no security
role, and is used only to distinguish between many bPAKE instances which
one party can execute, hence i ’s must only be locally unique. 8 Finally, id is a
party identifier which party P uses in that instance. It is an arbitrary string,
might not be unique, can be set to ⊥, and P’s counterparty does not need prior
knowledge of it. Its security property is that if the PAKE instances of P and
P ′ are passively connected then P outputs cpid used by P ′ as its counterparty
name cpid , and vice versa. In particular, in bPAKE party P outputs an identifier
of its counterparty instead of specifying that identifier in its inputs.9

The bPAKE functionality supports (sub)session identifiers ssid , but it treats
ssid also as a protocol output rather than input. The session identifiers ssid are
public and their only semantic implication is that each ssid output is globally
unique except for a pair of instances which are passively connected. Functional-
ity FbPAKE enforces this by storing previously used ssid ’s in set S, and ensuring
that any new ssid satisfies ssid ̸∈ S.10 Note that this implies that each session
key corresponds to a globally unique public ssid , and that different ssid ’s are
associated with independent random session keys. In more details, let Pi and
P ′j be two bPAKE instances which are initialized by P and P ′ on respective

inputs (i, pw , id , role) and (j, pw ′, id ′, role′), and which are passively connected
by the adversary, and let (K, ssid , cpid) and (K ′, ssid ′, cpid ′) be their outputs.
Rules of FbPAKE imply that if pw ̸= pw ′ or ssid ̸= ssid ′ then K and K ′ are
independent. Indeed, unless two random keys picked by FbPAKE collide, two pas-
sively connected instances output the same keys if and only if they use the same
passwords and they are passively connected. Furthermore, if ssid = ssid ′ then
(cpid , cpid ′) = (id ′, id), i.e. shared ssid implies correct counterparty names.
Taken together, FbPAKE rules imply that event K = K ′ can occur if and only

8The model can be extended to allow P to terminate i-th instance and re-use the
same i for a new one, and we omit this only for the sake of notational simplicity.

9Note that if a PAKE application wants its counterparty identifier to satisfy some
access control predicate then it can apply it to the identifier cpid specified in the session
outputs, and reject the session if that output fails to satisfy the predicate.

10FbPAKE rules allow the ideal-world adversary to set ssid ’s at will when a session
terminates, but each of our protocols implements ssid as a protocol transcript, and the
global ssid uniqueness is assured by the entropy of protocol messages.

14

Functionality initiation: set S := {}.

Session initiation

On (NewSession, sid , i , pw , id , role) from P, send (NewSession, sid ,P, i , id , role) to
A. If record ⟨P, i , ...⟩ does not exists, record ⟨P, i , pw , id⟩.

Key generation

On (ActiveNewKey, sid ,P, i , pw∗,K∗, ssid , cpid) fromA, if ∃ record ⟨P, i , [pw , id]⟩:
– // Repeat ssid means repeat output.

If ∃ record ⟨sesact,P, i , ssid , cpid , [K]⟩ output (sid , i ,K, ssid , cpid) to P.
– // Actively attacked parties still get ssid uniqueness guarantee.

Otherwise, if ssid ̸∈ S:
• Add ssid to S
• If pw∗ = pw then set K := K∗ else pick K ←R {0, 1}κ

• If pw∗ = ⊥ then save ⟨latetest,P, ssid , pw ,K⟩
• Save ⟨sesact,P, i , ssid , cpid ,K⟩
• Output (sid , i ,K, ssid , cpid) to P.

On (PassiveNewKey, sid ,P, i ,P ′, i ′, ssid) from A, if ∃ record ⟨P, i , [pw , id]⟩:
– // Repeat ssid means repeat output.

If ∃ rec. ⟨seshbc,P, i , [P ′, i ′], ssid , [cpid ,K]⟩ output (sid , i ,K, ssid , cpid) to P.
– // If peer was not created, request is ignored.

Otherwise, if ∃ record ⟨P ′, i ′, [pw ′, id ′]⟩ then set cpid := id ′ and do:

1. // Complete protocol for the first-to-terminate participant.
If ssid ̸∈ S:

Add ssid to S
Pick K ←R {0, 1}κ.
Save ⟨seshbc,P, i ,P ′, i ′, ssid , cpid ,K⟩
Output (sid , i ,K, ssid , cpid) to P.

2. // Complete protocol for the second-to-terminate participant.
If ∃ record ⟨seshbc,P ′, i ′,P, i , ssid , id , [K′]⟩:

If pw ′ = pw then set K := K′ else pick K ←R {0, 1}κ.
Save ⟨seshbc,P, i ,⊥,⊥, ssid , cpid ,K⟩
Output (sid , i ,K, ssid , cpid) to P.

3. // Re-use of ssid but with mismatched remaining data
Otherwise, ignore PassiveNewKey request

Late Password Test Attack

On (LateTestPwd, sid ,P, i , ssid , pw∗) from A, if ∃ record ⟨latetest,P, ssid , [pw ,K]⟩
then delete this record and return K′ to A s.t.:

– If pw∗ = pw then set K′ := K else pick K′ ←R {0, 1}κ.

Fig. 2. The bare PAKE functionality FbPAKE. Including dark grey text defines a lazy
extraction version of this functionality, denoted FbPAKELE .

15

(except for negligible probability of collision among random keys) if either of the
following two conditions hold:

1. (pw , ssid , id , cpid) = (pw ′, ssid ′, cpid ′, id ′), moreover this case can occur
only if Pi and P ′j are passively connected.

2. Both Pi and P ′j are actively attacked, via the ActiveNewKey interface, and
both attacks are successful, i.e. the attack against Pi used pw∗ = pw and
the attack against P ′j used pw∗ = pw ′. In this case cpid , cpid ′ are arbitrary

but ssid , ssid ′ are globally unique, i.e. ssid ̸= ssid ′ and ssid and ssid ′ are
not output as session identifiers on any other session (by any party).

Functionality FPAKE guarantees item (1) with regards to passively connected
parties, but it requires ssid , id , cpid to be pre-agreed, it requires id , cpid (denoted
P,P ′ therein) to be globally unique, and it requires the environment to create a
globally unique ssid , while FbPAKE does not impose such requirements on inputs,
and instead enforces property (1) on its outputs. Moreover, functionality FPAKE

does not enforce guarantee (2), in particular ssid = ssid ′ can hold in all attack
cases because these are FPAKE inputs instead of outputs.

The global uniqueness of ssid ’s implies that ssid output by FbPAKE is a chan-
nel binder, see e.g. [HJKW23], which uniquely identifies a channel defined by
key K, and which can be used to authenticate it with secondary means, e.g.
with a public key, using the SIGMAC method [Kra03, HJKW23]. By contrast,
the fact that FPAKE does not enforce guarantee (2) implies that FPAKE’s ssid ’s
cannot play that role.11

Non-leaky and “free dating” aspects of bare PAKE functionality. Func-
tionality FbPAKE handles active attacks and session outputs differently from
FPAKE. First, note that if functionality FPAKE is non-leaky, i.e. Fig. 1 omitting
the fragments in solid boxes, the adversary A doesn’t learn if pw∗ = pw in
an active attack, therefore w.l.o.g. A can postpone an attack until the creation
of the session output. This is why in FbPAKE we combine an active attack and
session-output fixing into query ActiveNewKey that takes both a password pw∗

and a key K∗. This has the same effect as sending TestPwd with pw∗ followed
by NewKey with K∗ to FPAKE. On the other hand, if a session concludes without
an active attack, A can emulate that using query PassiveNewKey.

Another FbPAKE feature is that the pair of protocol instances which can be
matched, i.e. which share a key if they are passively connected and use the
same passwords, is not fixed before the protocol starts, and instead can be
adaptively chosen in protocol execution. In FPAKE instances can match only
if they use the same ssid , and the environment can give the same ssid to at
most two instances. By contrast, matching in FbPAKE is based only on pass-
words, and a given instance can be potentially matched with any other which

11The protocols of [GMR06, HJK+18] run PAKE as subprotocol and need a binder
to a PAKE-created key. To support this [GMR06] extended functionality FPAKE to
export protocol transcript as such binder. The ssid output by FbPAKE can support the
same function.

16

uses the same password. Hence query PassiveNewKey identifies the target in-
stance Pi together with the counterparty instance P ′i′ it connects with. If id [Pi]
is the name used by instance Pi in NewSession, functionality FbPAKE reacts
to (PassiveNewKey,P, i ,P ′, i ′, ssid) by picking random key K, setting cpid :=
id [P ′i′], storing ⟨seshbc,P, i ,P ′, i ′, ssid , cpid ,K⟩ and sending (K, ssid , cpid) to
Pi . The adversary then has an option to also connect P ′i′ to Pi by querying
(PassiveNewKey,P ′, i ′,P, i , ssid) with the same session identifier ssid . (If ssid is
a protocol transcript this happens if the last message of Pi is sent to P ′i′ .) Since
ssid is not new, i.e. ssid ∈ S, and ∃ record ⟨seshbc,P, i ,P ′, i ′, ssid , id [P ′i′],K⟩,
instance P ′i′ will output (K ′, ssid , cpid

′ = id [Pi]) for K
′ = K if pw [Pi] = pw [P ′i′]

and random K ′ otherwise.12

Re-use of bare PAKE instances. If instance-matching in bPAKE is adaptive,
then can it happen more than once? Indeed, if a PAKE protocol each party sends
only one message,13 party Pi sends its messagemi and holds a local state sti, and
when it receives message mj from counterparty Pj , it uses (sti,mj) to compute
session output (K, ssid , cpid). But could Pi not terminate at that point, continue
holding state st i, and when Pi receives a second message, let’s say message mt

from party Pt, then could Pi compute another session output (K ′, ssid ′, cpid ′),
this time on input (sti,mt)?

Functionality FbPAKE allows for such re-use of bPAKE session state: After
bPAKE instance Pi is created via NewSession, and e.g. if Pi is an initiator a
real-world Pi would send its first message, every time a real-world adversary
forwards to Pi a message from some other session P ′i′ , the ideal-world adversary
A sends (PassiveNewKey,P, i ,P ′i′ , ssid) with some ssid , and this query is pro-
cessed as explained above, but this can happen unlimitted number of times for
the same Pi . Likewise, if the real-world adversary sends his own message instead
of one produced by some honest instance, its ideal-world counterpart A will send
(ActiveNewKey,P, i , pw∗,K∗, ssid , cpid), and since some messages the real-world
Pi can be forwarded from honest parties and some created by the adversary, the
ideal-world adversary A can send messages of the form (PassiveNewKey,P, i , ...)
and messages of the form (ActiveNewKey,P, i , ...) interspered in an arbitrary
sequence. Each command creates a new session information on Pi , each one
identified by a unique ssid : Some of them can represent passively connected
sessions, some actively attacked ones, but FbPAKE rules imply that there is no
difference between re-using the state of a single bPAKE instance Pi and running
multiple independent PAKE instances on the same password. 14

12See step (2) in PassiveNewKey in Figure 2, although it can be difficult to pattern-
match the above with Figure 2 because in this second PassiveNewKey instances P ′

i′ and
Pi play the opposite roles compared to the notation in that step in the figure.

13As e.g. in EKE [BPR00], SPEKE [Jab97, Mac01, HS14], SPAKE2 [AP05],
TBPEKE [PW17], and CPace [AHH21].

14If party Pi wants to use state sti to process only n sessions then it can process
only the first n session triples output by Pi . This is equivalent to terminating a bPAKE
instance, and one can extend FbPAKE to explicitly support such feature.

17

Finally, if Pi reuses its bPAKE state to process responses from multiple
counterparties, then Pi might process the same response twice. Since this would
make Pi’s transcript the same in these two interactions, this corresponds to A
re-using the same ssid in two key-generation queries, either PassiveNewKey or
ActiveNewKey. In that case real-world Pi has identical session outputs in response
to such queries, hence FbPAKE assures the same happens in the ideal world, by sav-
ing respectively ⟨seshbc,P, i , ..., ssid , cpid ,K⟩ or ⟨sesact,P, i , ssid , cpid ,K⟩, and
whenever PassiveNewKey and ActiveNewKey query is made for some P, i , ssid ,
FbPAKE checks if the corresponding record exists, and if so then FbPAKE resends
to Pi tuple (K, ssid , cpid) stored in that record.

3.3 Syntax of Bare PAKE and Structured Protocols

The way we defined FbPAKE allows us to think of a unique global instance of the
bare PAKE ideal functionality/protocol to which a party can resort at any time
to establish a key with a counterparty that uses the same password. Indeed, a
party can create an arbitrary number of sessions using the input parameter i,
and these will behave independently of each other. In what follows we discuss
the syntax of such protocols in the real-world and clearly separate what is the
code of a bare PAKE protocol from the boiler-plate infrastructure that manages
communications, network addresses and other pieces of information that have
no bearing on correctness and security.

A structured protocol [Can01b, 2020 version on eprint, Section 5] consists of
a protocol shell and a protocol body. We leverage this terminology to resolve
the conundrum of formalizing interactive protocols where message recipients are
unknown: as proposed by Canetti, we use this formalism to syntactically restrict
real-world protocol access to session identifiers and party identifiers that are a
UC framework artifact and should not be required by the practical protocol. The
idea is to let a shell, which is a modelling component in the security analysis
that abstracts the operation of a maliciously controlled network, to manage the
sending of outgoing messages and the assignment of incoming ones. The body
runs the “cryptographic core”, i.e., it executes the bare PAKE code oblivious of
any addressing information and session identification that could be provided from
the outside. In this section we give only the minimum terminology that should
allow the reader to follow the rest of the paper, without being overwhelmed with
the details. For completeness, Appendix A contains the full terminology and
reasoning underlying structured protocols.

The Body: Syntax of a Bare PAKE. A bare PAKE protocol is a five-tuple of ppt
algorithms (Setup,StartIni,StartRsp,EndIni,EndRsp).15

– Setup(1κ) takes as input the security parameter and produces some param-
eters prm that are (locally) shared between multiple protocol instances.

15This limits our analysis to two-pass protocols, which we do in this paper for the
sake of simplicity. Our approach can be extended to protocols with additional rounds.

18

– StartIni(prm, pw , id) takes as input the parameters prm, a password pw and
a party name id and it outputs a first message m1 and a state stI .

– StartRsp(prm, pw , id) takes as input the parameters prm, a password pw
and a party name name and it outputs a state stR.

– EndRsp(stR,m1) takes as input a state stR and a message m1 and, if it
completes successfully, it outputs a key K, a session identifier ssid , a coun-
terparty name cpid and a message m2. Otherwise it outputs ⊥.

– EndIni(stI ,m2) takes as input a state stI and a message m2 and, if it com-
pletes successfully, it outputs a key K, a subsession identifier ssid and a
counterparty name cpname. Otherwise it outputs ⊥. This algorithm is de-
terministic.

In the case of single-simultaneous-flow (SSF) protocols, only StartIni and EndIni
need to be specified, and we assume that m1 produced by StartIni can be used
as an input to EndIni.

Correctness of the protocol requires that an honest execution results in both
parties agreeing on the the same key K, session identifier ssid and obtain the
counter-party name that was initially provided by their peer. Formally, the fol-
lowing should hold for all idI , idR, pw :

Pr


(idI , cpidI) = (cpidR, idR)

∧
(ssidI ,KI) = (ssidR,KR)

∣∣∣∣∣∣∣∣∣∣
prm←R Setup(1κ)
(m1, stI)←R StartIni(prm, pw , idI)
stR ←R StartRsp(prm, pw , idR)
(KI , ssidI , cpidI ,m2)←R EndRsp(m1, stR)
(ssidR, cpidR,KR)← EndIni(m2, stI)

 = 1 .

The Shell: handling instances and communications. The above body of a bare
PAKE is completed with a “wrapper” that models communication and session
handling, called a shell. The shell resolves questions such as “Which of Alice’s
passwords is used to compute a key from an incoming message?”. Various such
wrappers could be defined: one that always compute the maximum number of
keys from incoming messages, or one that allows pointing at a particular pass-
word instance to compute a key with. In this work, we mostly work with the
latter option, as we believe most applications will be working in this scenario.
We call this shell πSh and formally state its code in Figure 13. For the sake of
this overview, we illustrate its workings in Figure 3. πSh propagates messages to
the “malicious network”, which in UC terminology is represented by the adver-
sary. This captures the non-determinism of where messages are sent to, i.e., all
possible scenarios of who is using a message that the shell propagates.

4 Transformations between PAKE and Bare PAKE

From a theoretical point of view, one might ask how the two primitives relate,
e.g., “Is PAKE stronger than bPAKE?” or vice versa, but one cannot say that
either functionality directly implies the other in the UC-emulation sense, since
their input/output behaviors are trivially distinguishable. Instead, we consider
more interesting practical questions of whether we can build one protocol from
the other:

19

Z

Alice’s bare PAKE usage

Instances:
4: Port42, st1
8: Port99, s̄t1

2: StartIni(pw ,Alice)→ m1, st1
6: StartIni(p̄w ,Alice)→ m̄1, s̄t1

10: EndIni(st1,m2,Bob)→ K
13: EndIni(st1, m̃2,Charlie)→ K̃

network

1: i = Port42, pw
5: ī = Port99, p̄w

11: Port42, K, Bob
14: Port42, K̃, Charlie

3: Port42, m1, Alice
7: Port99, m̄1, Alice

9: Port42, m2, Bob
12: Port42, m̃2, Charlie

Fig. 3. Illustration of the shell πSh handling multiple passwords of Alice (omitting
interface names and session- and subsession identifiers from inputs, outputs and mes-
sages for brevity, and showing a single-simultaneous flow protocol). Upon NewSession
input (1:) with instance identifier Port42 and password pw , the shell (2:) calls the body
to produce a message, (3:) propagates it to the network and stores the instance state
(4:). The same happens for another input password p̄w with instance identifier Port99
(5:,6:,7:,8:). An incoming message (9:) is inspected by the shell for its instance identi-
fier. The shell finds a corresponding instance, (10:) invokes the body with the incoming
message and the instance state and (11:) outputs the key. Another incoming message
(12:) for the same instance is treated the same way (13:,14:), resulting in Alice sharing
keys with Bob and Charlie on instance Port42.

– Suppose we have an implementation of a UC PAKE, but we do not know how
to guarantee global session identifier uniqueness, nor are we sure what kind
of party identifiers to use. Can we use it to agree on a key based only on a
password? In other words, can we build a bare PAKE from a PAKE?

– Conversely, suppose we have an implementation of a bare PAKE, and we want
to integrate it into a higher level protocol that expects the PAKE interface.
Can we build a PAKE from a bare PAKE?

We see the first question as a formal clarification of the often raised question
of how to fix session identifiers and party identifiers in practice. We see the
second question as a way to formalize several choices for secure deployment that
PAKE standards can offer to end-users: starting from a bare protocol taking
only the password, but explaining how to cater to applications that need to
fix session identifiers and/or party identifiers externally and bind them to the
agreed key. We provide two compilers that transform a PAKE into a bare PAKE,
and vice versa. The intuition of both compilers is given in Figure 4. Because of
space constraints, the detailed protocol description in the UC terminology can
be found in Appendix C as well as their formal security proofs. Here we only

20

state the main result in form of the following corollary, which follows directly
from our Theorems 4 and 5.

Corollary 1. There exists a non-interactive protocol that tightly realizes FPAKE

in the FbPAKE-hybrid model, and there exists a 1-round protocol that tightly real-
izes FbPAKE in the FPAKE-hybrid model.

Party P Party P ′

Upon input P ′, ssid , pw Upon input P, ssid , pw ′

p̄w ← {P,P ′}ord||ssid |pw p̄w ′ ← {P ′,P}ord||ssid |pw ′

-pw � p̄w ′

FbPAKE
� K -K′

Output (ssid ,K) Output (ssid ,K′)

Party P Party P ′

Upon input pw , A Upon input pw ′, B
Sample N ←R {0, 1}κ Sample N ′ ←R {0, 1}κ

-N , A
�

N ′, Bssid ← {N ,N ′}ord ssid ′ ← {N ′,N }ord
p̄w ← {A,B}ord||pw p̄w ′ ← {B,A}ord||pw ′

-N ′, ssid , p̄w �N , ssid ′, p̄w ′

FPAKE� K -K′

Output (ssid ,K) Output (ssid ,K′)

Fig. 4. Left: BarePAKE-to-PAKE compiler. Parties use the bare PAKE with their
password, appended by all identifiers, without the optional name input. Right: PAKE-
to-barePAKE compiler. Parties exchange nonces which serve both as their unique party
identifier as well as subsession identifier for the PAKE. Their clear-text transmitted
names are appended to the password, to ensure authenticity.

5 Password-Only Encrypted Key Exchange

In this section we present a black-box construction of a bare PAKE from a non-
interactive key exchange (NIKE) protocol. This modular construction shows that
the standard notion of security for NIKE implies, with small computational and
bandwidth overhead, a reusable bare PAKE. The construction can be instanti-
ated with a post-quantum NIKE, such as SWOOSH [GdKQ+23], which opens
the way for new PAKE constructions based on lattice-based components and
possibly post-quantum-secure PAKEs. 16 Furthermore, plugging in the result-
ing bare PAKE protocol into the bPAKE-to-PAKE transformation allows us to
recover some well known results for some Diffie-Hellman-based PAKE protocols
that have appeared in the literature.

16We do not carry out a security analysis against quantum adversaries because it
is not well understood, to the best of our knowledge, on how to deal with quantum
adversaries in the ideal cipher model. Nevertheless, we note that the ideal cipher is only
relevant when protecting against active attacks, which means that passive security
(even with a posteriori password compromise) follows directly from the security of
the underlying NIKE. This means that our protocol is suitable for applications that
are concerned with preserving the confidentiality of data exchanged in the presence
of passive attackers today, which may log the data and have access to a quantum
computer in the future.

21

5.1 Simplified NIKE

We start from the notion of a simplified NIKE (sNIKE), as introduced in [FHKP12].
In contrast to the standard notion of NIKE, where party identities are an input
to the protocol, simplified NIKE has only public keys. This notion is well suited
to our goal of constructing PAKE protocols that are agnostic of party identities.

Definition 5. An sNIKE scheme is a collection of three efficient algorithms
sNIKE.Setup, sNIKE.Keygen, and sNIKE.ShKey, together with a shared key space
SK.17

– sNIKE.Setup: On input the security parameter, this randomized algorithm
outputs system parameters prm.

– sNIKE.Keygen: On input prm, this randomized algorithm outputs a key pair
(sk , pk).

– sNIKE.ShKey: On input a secret key sk and a public key pk, this algorithm
outputs either a shared key in SK for the two keys, or a failure symbol ⊥. This
algorithm is assumed to always output ⊥ if sk is the secret key corresponding
to pk.

We say an sNIKE is δ-correct if

Pr

 sNIKE.ShKey(sk1, pk2) =
sNIKE.ShKey(sk2, pk1)

∣∣∣∣∣∣
prm←$ sNIKE.Setup(1κ)
(sk1, pk1)←$ sNIKE.Keygen(prm)
(sk2, pk2)←$ sNIKE.Keygen(prm)

 ≥ 1−δ(κ) .

An sNIKE scheme is perfectly correct if this holds for δ(κ) = 0.

Security. Later in this section we will give a new generic construction of bare
PAKE from sNIKE and show that its security follows from the vanilla security
notion for sNIKE, which we recall here. Figure 5 shows the security game for
sNIKE. The notion was originally introduced by Cash, Kiltz and Shoup [CKS08]
and hence we call it (CKS). The same figure shows, in blue, additional restrictions
that define one-time CKS security (OT-CKS). This leads to a weaker version of
sNIKE security, which we will show is sufficient to construct one-time (non-
reusable) bare PAKE, and hence also PAKE. We will further show that this
weaker version of one-time sNIKE security can be achieved in the random oracle
model starting from a passive one-way secure sNIKE, of which a prominent case
is the textbook Diffie-Hellman protocol under the CDH assumption. A corollary
of these results is a modular restating of previous results showing that UC PAKE
can be constructed directly from CDH in the joint ideal-cipher and random oracle
model.

Remark 1. Any sNIKE that is not correct with overwhelming probability cannot
satisfy either security notion: an attacker will observe an inconsistency of keys
if b = 0 that is not present when b = 1.

17In practice, SK will be the set of bit strings of fixed length ℓ for some ℓ ≥ κ. We
consider the more general case to cover core protocols such as Diffie-Hellman, where
keys are elements of a group with order at least 2κ.

22

Game CKSsNIKE
A (1κ, b)

hoks, coks← {}
shk[x]← ⊥ for all x
otused← {}
prm←R sNIKE.Setup(1κ)
b′ ←R AO(prm)
Return b′

Oracle RegHonest()

(sk , pk)←R sNIKE.Keygen(prm)
hoks[pk]← sk
Return pk

Oracle RegCorrupt(pk)

If pk /∈ hoks ∪ coks
coks← coks ∪ {pk}

Oracle CorrReveal(pk1, pk2)

If pk1 /∈ hoks ∨ pk2 /∈ coks Return ⊥
If pk1 ∈ otused Return ⊥
otused← otused ∪ {pk1}
sk1 ← hoks[pk1]
Return sNIKE.ShKey(sk1, pk2)

Oracle Test(pk1, pk2)

If pk1 /∈ hoks ∨ pk2 /∈ hoks Return ⊥
If pk1 ∈ otused Return ⊥
otused← otused ∪ {pk1}
sk1 ← hoks[pk1]
K0 ← sNIKE.ShKey(sk1, pk2)
If {pk1, pk2}ord /∈ shk

shk[{pk1, pk2}ord]←R SK
K1 ← shk[{pk1, pk2}ord]
Return Kb

Fig. 5. CKS-style security game for an sNIKE scheme [CKS08,
FHKP12]. Oracle O provides adversary A with access to oracles
RegHonest,RegCorrupt(·),CorrReveal(·, ·),Test(·, ·). Variables hoks and coks repre-
sent the sets of respectively honest and corrupt keys, and shk is a table of shared
keys assigned to a pair of honest keys. Blue code enforces one-time-use restrictions
on secret keys, and it corresponds to a weaker notion of CKS security which we call
OT-CKS.

Remark 2. Also note that we do not deal with reflexive attacks by assuming
(see above note on the sNIKE.ShKey algorithm) that a party checks that it is
not deriving a key with itself and outputs ⊥ on such key derivation queries. In
general, proving security when these checks are not made (e.g., for performance
reasons) requires additional computational assumptions. However, the theorems
in this section can be extended to this case to show that EKE transforms a
secure sNIKE that omits those checks and withstands reflexive attacks into a
UC-secure bare PAKE protocol.

Definition 6. We say that sNIKE is (m,n)-CKS, or CKS-secure for m honest
keys and n corrupt keys if, for every ppt adversary A placing at most m queries
to RegHonest and n queries to RegCorrupt, the following advantage function is
negligible in the security parameter κ.

Adv
(m,n)-CKS
A,sNIKE (κ) := |Pr[CKSsNIKEA (1κ, 1)⇒ 1]− Pr[CKSsNIKEA (1κ, 0)⇒ 1]| .

We say that sNIKE is (m,n)-OT-CKS, or one-time CKS-secure, for m,n as above,
if this holds when the one-time restrictions are in place.

23

We also define a minimal security notion for sNIKE, namely a one-way (OW)
counterpart of (2, 0)-CKS, where there are only two honest keys, there are no
corrupt keys, and the adversary must explicitly compute the session key agreed
between the two honest keys. We specify this security experiment in Figure 6.
Note that in this experiment a secret key is used at most once, and so the
one-time restriction is redundant.

Game OWsNIKE
A (1κ)

prm←R sNIKE.Setup(1κ)
(sk1, pk1)←R sNIKE.Keygen(prm)
(sk2, pk2)←R sNIKE.Keygen(prm)
(i, j,K′)←R A(prm, pk1, pk2)
K ← sNIKE.ShKey(sk i, pk j)
Return 1 if K′ = K ̸= ⊥ and 0 otherwise

Fig. 6. One-wayness game for an sNIKE scheme.

Definition 7. We say that sNIKE is OW, or one-way secure, if for every ppt
adversary A, the following advantage function is negligible in the security pa-
rameter κ.

AdvOW
A,sNIKE(κ) := Pr[OWsNIKE

A (1κ)⇒ 1] .

We now show that the above one-wayness notion implies general one-time
secure sNIKE in the Random Oracle Model. For any sNIKE scheme let H[sNIKE]
be the same scheme except the shared key output is “post-processed” using
a hash function H, i.e., H[sNIKE].ShKey(sk , pk) = H(sNIKE.ShKey(sk , pk)). In
what follows, we will call sNIKE.ShKey(sk , pk) a pre-key. The proof of the fol-
lowing theorem is given in Appendix D.1. It is a direct reduction, where we
leverage the fact that one can correctly program the Random Oracle to justify a
single corrupt reveal query by guessing which point in the Random Oracle table
could allow the adversary to detect an inconsistent simulation.

Theorem 1 (OW⇒ OT-CKS). Let sNIKE be a δ-correct and OW-secure simpli-
fied NIKE with shared key space SK. Then, if we model hash function H : SK →
{0, 1}κ as a random oracle, for every attacker A against the (m,n)-OT-CKS se-
curity of H[sNIKE], making at most qH queries to H and placing at most qT
queries to Test, there exists an attacker B in OW security game of sNIKE such
that

Adv
(m,n)-OT-CKS
A,H[sNIKE] (κ) ≤ qT · δ(κ) +m2 · (qH + 1)2 ·AdvOW

B,sNIKE(κ) ,

One-time NIKE from CDH. We now consider the classical construction of a
NIKE known as hashed Diffie-Hellman (HDH):

24

– sNIKE.Setup: On input the security parameter, outputs prm = (G, g, q,H),
the description of a cyclic group G of prime order q and generator g, along
with a hash function mapping G to {0, 1}κ.

– sNIKE.Keygen: On input prm, this randomized algorithm outputs a key pair
(ga, a), where a is generated as a←R Zq.

– sNIKE.ShKey: On input a public key pk1 and a secret key sk2 = a, this
algorithm outputs H(pka

1) if pk1 ̸= ga and ⊥ otherwise.

Corollary 2. Hashed Diffie-Hellman is a (m,n)-OT-CKS secure sNIKE under
the CDH assumption, when we model H as a random oracle. More precisely,
for every one-time sNIKE attacker A against HDH making at most qH queries
to H and qT queries to the Test oracle, there exists an algorithm B running in
essentially the same time as A such that

AdvOT-CKS
A,HDH (κ) ≤ m2 · (qH + 1)2 ·AdvCDH

B,G (κ).

Proof. The corollary follows by observing that the classic unauthenticated Diffie-
Hellman protocol a perfectly correct sNIKE and its one-way security is exactly
the CDH problem.

Remark 3. We present this corollary here because, combined with the results
that will follow in the rest of this section, it provides a clear and modular ex-
planation of why one can prove that EKE-HDH is a UC-secure PAKE assuming
only CDH (in the combined ideal-cipher and random-oracle model). It also opens
the way for constructing PAKE from one-way secure lattice-based NIKE, which
may eliminate the need for costly NIZK computations and bandwidth.

Remark 4. In the particular case of HDH, it is well known that much tighter
reductions can be obtained using so-called strong DH assumptions. In particu-
lar, HDH is a tightly CKS-secure sNIKE assuming Gap DH: a direct reduction
can be constructed that generates all honest key pairs by randomizing the Gap
DH challenge, and answers corrupt-reveal queries using the gap oracle. Note,
however, that the reduction in this case makes significantly more work than run-
ning the adversary and O(q2H) queries to the gap oracle. This overhead in the
reduction can be reduced by including the public keys in the input to the key
derivation hash, in which case the number of gap oracle queries is linear in qH .

5.2 The EKE Construction

Figure 7 shows the canonical “non-interactive” (SSF) bare PAKE using the EKE
blueprint, generalized from Diffie-Hellman to any sNIKE. The protocol is de-
fined in the Fcrs -hybrid model, where the common-reference-string distribution
is defined by the sNIKE global parameter generation algorithm sNIKE.Setup.18

Throughout the discussion, for conciseness, we will keep Fcrs implicit and assume
that all parties have access to prm.

18The Fcrs -hybrid model assumes that all parties have access to a functionality that
publishes a common reference string (CRS) sampled from some distribution. In our
work this CRS does not need to be programmed by the simulator, and hence this
functionality can be global.

25

algorithm StartIni(prm, pw , id):

(sk , pk)←R sNIKE.Keygen(prm)
c← ICpw (pk)
m ← (c, id)
st ← (sk , pw ,m)
Return (m, st)

algorithm EndIni(m ′, st):

Parse (sk , pw ,m)← st
Parse (c′, id ′)← m ′

pk ′ ← IC−1
pw (c

′)
K̄ ← sNIKE.ShKey(pk ′, sk)
ssid ← {m,m ′}ord
K ← KDF(K̄, ssid)
Return (ssid , id ′,K)

Fig. 7. Protocol EKE-NIKE: A bare password-encrypted key exchange (EKE) based on
sNIKE and an ideal cipher IC over the domain of NIKE public keys. The protocol is sin-
gle simultaneous flow (SSF). The setup algorithm run by Fcrs is Setup = sNIKE.Setup.

Theorem 2 (Security of EKE-NIKE). Let π be the bPAKE protocol that
results from combining EKE-NIKE in Figure 7 with wrapper code πSH (cf. Sec-
tion 3.3). Then π UC-emulates FbPAKE under static corruptions, assuming IC is
an ideal cipher on domain C = PK, sNIKE is CKS-secure, and the distribution of
public keys produced by sNIKE.Keygen is computationally close to uniform over
PK and has min-entropy at least κ bits.

More precisely, the UC emulation bound is given by

Dπ,{FbPAKE,Sim}
Z (κ) ≤

Adv
(qIC,qIC)-CKS
B,sNIKE (κ)+qK ·ϵKDF+qIC ·ϵsNIKE.Keygen+2·q2IC ·(1/|PK|+1/2κ)

where Dπ,{FbPAKE,Sim}
Z (κ) is the distinguishing advantage of environment Z be-

tween the real world execution of π and the simulation presented by Sim interact-
ing with FbPAKE, qIC is an upper bound on the total number of IC computations,
qK is an upper bound on the number of session keys derived by honest parties,
ϵKDF is the maximum distinguishing advantage of ppt adversaries against the
PRF property of KDF, and ϵsNIKE.Keygen is the maximum distinguishing advan-
tage of ppt adversaries in distinguishing public-keys produced by sNIKE.Keygen
from uniform values in PK.

Proof. (Sketch.) The full proof is given in Appendix D.2. Here we give only a
sketch. We present the simulator that justifies our protocol in Figure 8. The
simulator generates random IC ciphertexts as the outgoing messages of honest
parties, so as not to commit to an input key-pair (it does not know under which
password to encrypt it). This is undetectable to the attacker unless it guesses one
of these public keys, which we exclude using the assumption that they are high-
entropy. The inverse operation of the ideal cipher is simulated by generating key
pairs, whenever the adversary tries to decrypt a fresh ciphertext—in particular
the ones that honest parties produced—hence the assumption that public keys
look uniform. This will allow the simulator to a-posteriori recover the secret key
of an honest party, when it extracts a correct password guess from the adversary
(see below).

26

Messages from FbPAKE:

On (NewSession, sid ,P, i , id , role):
– Ignore if record ⟨P, i , ∗⟩ exists or if role ̸= ⊥
– c← ICS()
– m ← (c, id)
– st ← (⊥,⊥,m)
– Store ⟨P, i , st⟩
– Send (i ,m) to A

Messages from A:

On message (sid , i ,m′) from A towards honest P:
– Ignore if record ⟨P, i , [st]⟩ does not exist
– Parse (⊥,⊥,m)← st
– Parse (c, id)← m
– Parse (c′, id ′)← m ′

– ssid ← {m,m ′}ord
– If record ⟨[P ′], [i ′], (·, ·,m′)⟩ exists:
• Call (PassiveNewKey, sid ,P, i ,P ′, i ′, ssid)

– If record ⟨[P ′], [i ′], (·, ·, (c′, ·))⟩ exists:
• Call (ActiveNewKey, sid ,P, i ,⊥,⊥, ssid , id ′)

– If L[c′] = ⊥: // covers (·, ·, ·, c′) /∈ T
• Call (ActiveNewKey, sid ,P, i ,⊥,⊥, ssid , id ′)

– (pw , pk ′)← L[c′]
– (sk ′, pk)← IC−1

S (pw , c)
// sk ′ ̸= ⊥ as c was generated by simulator

– K̄ ← sNIKE.ShKey(sk ′, pk ′)
– K ← KDF(K̄, ssid)
– Call (ActiveNewKey, sid ,P, i , pw ,K, ssid , id ′)

Ideal cipher calls:

On ICS():
– c←R {c′ ∈ C | (·, ·, ·, c′) /∈ T}
– Append (⊥,⊥,⊥, c) to T
– Return c

On IC−1
S ():

– If (pw , [pk], [sk], c) ∈ T , return (pk , sk)
// may return sk = ⊥

– (sk , pk)←R sNIKE.Keygen(prm)
– Abort if (pw , pk , ·, ·) ∈ T
– Append (pw , pk , sk , c) to T
– Return (sk , pk)

On ICpw (pk):
– If (pw , pk , ·, [c]) ∈ T , return c
– c←R {c′ ∈ C | (·, ·, ·, c′) /∈ T}
– Append (pw , pk ,⊥, c) to T
– L[c]← (pw , pk)
– Return c

On IC−1
pw (c):

– (sk , pk)← IC−1
S (pw , c)

– Return pk

Fig. 8. Simulator for the proof of Theorem 2. The simulator runs sNIKE.Setup on start-
up and provides the resulting prm to the adversary as the output of Fcrs . These are
also used throughout the simulation.

When an adversary delivers an encrypted key to an honest party, we have
two options: either 1) the ciphertext was honestly generated, or 2) it was ma-
liciously generated. If 1) occurred, then the adversary is launching a passive
attack (this may be only partially passive if the adversary alters the rest of the
message) and will not know the associated session key down to the security of
the underlying sNIKE scheme; in this case the simulator calls the functional-
ity on PassiveNewKey or ActiveNewKey without a password guess, depending
on whether the attack is passive, or partially passive. If 2) occurred, then the
simulator still needs to deal with two subcases: i) it can extract the password
associated with that ciphertext; or ii) it cannot extract the password. In the
first subcase the simulator constructs a plausible protocol execution for a possi-
ble correct password guess (as described above) and calls ActiveNewKey. In the
second subcase we show that the adversary simply has no control of the public
key that the honest party would recover from that ciphertext. In all cases where
the functionality chooses a random session key, we show that the attacker cannot
distinguish this from the real-world down to sNIKE security. In the cases that

27

the password is extracted and it is correct, the simulator perfectly mimics the
behavior of the honest party.

Remark 5. Suppose EKE-sNIKE is used as a PAKE as proposed in Figure 14,
i.e., each instance of the protocol is used to process at most one incoming mes-
sage. Then, the proof above still works, but the reduction to sNIKE security is
now a valid reduction to one-time sNIKE security. Combined with the results on
HDH sNIKE given in the beginning of this section, this gives us an alternative
proof that EKE-HDH is a UC-secure PAKE down to CDH. Furthermore, it also
allows us to plug-in a passively secure lattice-based sNIKE such as the core of
SWOOSH [GdKQ+23], which may open the way for post-quantum secure PAKE
from lattices without relying on costly NIZK components.

Remark 6. These results (see also the discussion on adaptive corruptions in Sec-
tion 7) give strong evidence that reusable bPAKE is harder to construct than
standard PAKE. This does not stand in contention with the results we gave in
Section C wrt to being able to construct PAKE from bare PAKE and vice-versa.
Indeed, although the construction of PAKE from bare PAKE is really showing
an implication, the construction of bare PAKE from PAKE is running many
independent instances of the PAKE protocol for the same password, rather than
reusing components previously computed by the party for the same password.

Tightness of Theorem 2. Note that the reduction of NIKE security to to bPAKE
is tight. Nevertheless, the NIKE advantage may depend on qIC, which may be
of the order of 2κ, and this maps to the number of NIKE public keys. This
means that the tightness of EKE-NIKE depends crucially on the security bound
for the underlying NIKE. In particular, if the NIKE bound does not depend
on this number, then neither does the EKE-NIKE bound. This is the case, for
example, for HDH NIKE that has a tight reduction to gap-CDH. Moreover,
if EKE-NIKE is used as a non-reusable bPAKE, security requires only a one-
time NIKE, which allows for NIKE instantiations with tighter reductions and/or
weaker assumptions.

6 Password-Only CPace

In Figure 9 we cast the CPace PAKE protocol [HL17, AHH21] as a bare PAKE.
The differences to “basic CPace” (referred to as “CPace” in the below) of Abdalla
et al. [AHH21] are as follows.

– Bare CPace derives the group generator only from pw , while CPace derives
the generator from pw and both party identifiers. If multiple keys need to
be exchanged, or more than two parties use the protocol, CPace also needs
to additionally make the generator computation dependent on the session
identifier sid [AHH21].

– Bare CPace lets parties send their own name alongside their DH message,
while in CPace parties retrieved the counterparty name from the application
(i.e., as input).

28

– CPace computes the session key as a hash of the Diffie Hellman value and
the DH public keys. Bare CPace requires to additionally include the party
names into the final key derivation hash, to achieve the desired authenti-
cation properties of the party names (matching output keys imply that parties
reliably received the name of their respective counterparty).

– Bare CPace lets a party output the counterparty’s name, while CPace
required it as input to derive the password as described above.

– Bare CPace lets parties output a subsession (key exchange) identifier
ssid which is composed of the two party names and messages, and which is
unique with overwhelming probability if output by an honest party. Basic
CPace required such a unique session identifier as input.

We now specify the algorithms for the body of bare CPace: SetupbCPace,
StartInibCPace, EndInibCPace. Because CPace is a single-simultaneous flow proto-
col, we can omit the receiver algorithms StartRsp and EndRsp. The protocol is
defined in the Fcrs -hybrid model, where the common-reference-string distribu-
tion is defined by the parameter generation algorithm SetupbCPace.

– SetupbCPace(1
κ) takes as input the security parameter and produces public

parameters prm, containing a group G of order q and hash functions H :
{0, 1}∗ → {0, 1}κ, HG : {0, 1}∗ → G.

– StartInibCPace(prm, pw , id) takes as input prm, a password pw and a party
name id . It then computes g ← HG(pw), samples a←R Zq, sets A← ga and
outputs m1 ← (A, id) and stI ← (pw , id , g, a, A).

– EndInibCPace(stI ,m2) takes as input a state stI := (pw , id , g, a, A) and a mes-
sage m2 := (B, cpid). It then sets ssid ← {(A||id), (B||cpid)}ord, computes
K ← H(Ba, {A,B}ord) and outputs K, ssid, and cpid .

We denote with ΠbCPace the structured protocol with the shell executing the
wrapper code πSH (cf. Section 3.3), calling the body’s algorithms SetupbCPace,
StartInibCPace, EndInibCPace specified above. For clarity, we state ΠbCPace below,
marking in gray the protocol parts that run in the body. Because CPace is
single-simultaneous flow and hence does not have initiator and responder roles,
we assume wlog that parties retrieve inputs with role = ⊥.

Theorem 3 (Security of bare CPace). Protocol ΠbCPace UC-emulates the
lazy-extraction version of the bare PAKE functionality, FbPAKELE , shown in Fig-
ure 2, in the Fcrs-hybrid model, with HG, H modeled as random oracles, if the
gapCDH and sim-gapCDH assumptions hold in G, and with respect to static
party corruption.

That is, for any efficient adversary A against ΠbCPace, there exists an efficient
simulator Sim that interacts with FbPAKELE and produces a view such that for all
efficient environments it holds that

DΠbCPace,{FbPAKELE
,Sim}

Z (κ) ≤
(qH2G+qvar)

2+q2ns
2·2κ + qvarqpwAdvgapCDH

G + q2H2GqpwAdvsim−gapCDH
G

29

Structured protocol ΠbCPace

On creation, do:

◦ generate group G of order q //SetupbCPace

◦ pick functions H : {0, 1}∗ → {0, 1}κ, HG : {0, 1}∗ → G //SetupbCPace

◦ store prm← (G, q,H,HG)

On (NewSession, sid , i , pw , id ,⊥), do:
◦ ignore this query if record ⟨[i], ...⟩ exists
◦ g ← HG(pw), sample a←R Zq, set A← ga //StartInibCPace(prm, pw , id)

◦ set st ← (pw , id , g, a, A)

◦ store ⟨i , st⟩
◦ send message (sid , i , (A, id)) to A

When A delivers message (sid , i , (B, cpid)), do:
◦ retrieve record ⟨[i], (pw , id , g, a, A)⟩, ignore message otherwise

◦ ssid ← {(A||id), (B||cpid)}ord, K ← H(Ba, ssid) //EndInibCPace(st , (B, cpid))

◦ output (sid , i ,K, ssid , cpid)

Fig. 9. Bare CPace as structured protocol ΠbCPace. Gray parts are run in body, the rest
is the wrapper code πSH executed in the shell.

where DΠbCPace,{FbPAKELE
,Sim}

Z (κ) is the distinguishing advantage of environment Z
between the real world execution of ΠbCPace and the simulation presented by Sim
interacting with FbPAKELE , and where qvar is the overall number of passwords in
the system, qH2G is the number of HG queries issued by A, qns is the number
of NewSession queries issued by A, and qpw is the maximum number of parties
receiving the same password through a NewSession input.

Proof Sketch. The high level idea of the proof is as follows. Starting from the
real execution where environment Z interacts with parties running ΠbCPace and
a dummy adversary A, we subsequently change the execution until we end up
with Z interacting with functionality FbPAKELE and a simulator Sim. The two
main challenges are as follows: the simulator needs to produce message indistin-
guishable from real ones without knowing the passwords of honest parties, and
we have to randomize the output keys of parties. The simulation approach is to
use a common “simulation” generator gSim to generate all group elements. The
simulator maintains trapdoors r ←R Zq from queries HG(pw) = grSim for adver-
sarial password hashes, and uses these trapdoors to identify password guesses.
In a bit more detail, output keys in CPace are computed from hashing Diffie-
Hellman keys, e.g., H(K, ssid), where K := HG(pw)ab and a and b are the
secret keys of Alice and Bob sharing the key. Since Sim does not know HG(pw)
when simulating Alice’s message A := gsSim, Sim does not explicitly know Al-
ice’s secret key a. Hence Sim cannot compute K = Ba from Bob’s message
B. However, after learning Alice’s password pw , Sim’s knowledge of trapdoor r

30

with HG(pw) = grSim lets Sim compute Alices “correct” secret key as s/r, since
A = gsSim = (grSim)

s/r = HG(pw)s/r.
Our proof proceeds as follows. First, we switch the simulation to the common

simulation base gSim and let Sim remember trapdoors for all group elements, i.e.,
HG queries, and simulated messages of honest parties. Then, we randomize the
output keys of parties. For honest sessions, keys are pseudorandom under the
gapCDH assumption, since keys output by parties are hashed Diffie-Hellman
keys (requiring the environment to solve for these DH keys if it aims at detect-
ing the randomization). However, the reduction requires a DDH oracle (hence
the security of CPace relies on gap-type assumptions) to consistently simulate
other keys output by the parties. For attacked parties, the randomization of
keys is more complex, because the simulator has to extract password guesses
from adversarial messages reaching the attacked party. Here, we can show that
if the sim-gapCDH assumption holds in G, the adversary cannot manufacture
adversarial messages that constitute a guess for two different passwords. Sim
can then extract the unique guess from the adversarial queries to HG and H.
After randomizing all output keys, randomizing the protocol transcript can sim-
ply leverage the entropy of secret keys, since no other simulated values depend
on the password anymore. Because G is cyclic, HG(pw) is a generator and the
(whp) uniqueness of secret keys is enough to argue a uniform distribution of
honest parties’ messages.

With outputs being determined by FbPAKELE and the transcript being sampled
at random from the group, the simulation does not depend on the passwords
anymore and the ideal execution is reached, concluding the proof. The detailed
proof is in Appendix E, and we depict the simulator in Figure 19.

Tightness of Theorem 3. The proof of Theorem 3 established the security of
CPace in amulti-session setting, where sessions are allowed to be re-used and can
output multiple keys. Compared to the standard and non-reusable CPace [AHH21],
we have an additional cost of a factor qpw for sim-gapCDH and a factor approxi-
mately linear in the number of new sessions for gap-CDH. The latter is attributed
to the 1-to-n nature of reusable PAKE (i.e., every input password can result in
the output of n keys), while standard PAKE is 1-to-1. This also means that a
1-to-1 bare CPace, where a party only outputs one key per password, is almost
as tight as CPace with session identifiers [AHH21]: If everybody uses a differ-
ent password (as in the PAKE built from bare CPace via the bPAKE-to-PAKE
transform in Figure 4) then qpw = 1 and the bounds of our proof and the proof
of [AHH21] would be exactly equal.

7 Security under Adaptive Corruptions

Adaptive corruptions refer to party corruptions that occur at a point in time
where that a party already executed some parts of the protocol honestly. Upon
corruption, the whole internal state produced up to this point is revealed to
the adversary, and from that point on, the adversary controls all actions of the
corrupted party.

31

Adaptive corruptions are a challenging but realistic attack scenario, and in
this section we argue that some of the protocols we consider in this work maintain
their guarantees even when adaptive corruptions are allowed. In a nutshell, the
challenge of simulating adaptive corruptions lies in manufacturing secret values
of the corrupted party that “explain” both its inputs and its sent messages up
to the point of corruption. Here, note that the messages were simulated without
knowledge of the secret inputs, i.e., the passwords.

On (AdaptiveCorruption, sid ,P) from A:
– Initialize an empty array state
– For each record ⟨P, [i, pw , id]⟩:
• For each record ⟨sesinf,P, i, [ssid , id ′, k]⟩:

* set state[ssid]← (i, pw , id , id ′, k)
– Send state to A

Fig. 10. Interface for adaptive corruptions in FbPAKE (or variants thereof).

7.1 Adaptive Security of EKE-NIKE

We considered the possibility of proving security of EKE-NIKE under adaptive
corruptions assuming that the underlying sNIKE offers the standard notion of
key corruption where the game reveals the long term secret key of an honest
party, provided that no Test query has been made related to this key. However,
the proof fails because in the UC setting adaptive corruption means that the
internal state of a party may be revealed even if it has computed a key in the
past.

For the particular case of standard PAKE discussed above, the proof can be
extended for the adaptive corruption case, assuming that parties erase the secret
keys after use. (This is good practice in general to achieve forward security in
practice.) To see this, note that the reduction to one-time sNIKE would either
be 1) simulating an honest party before corruption, in which case it can use Test
and CorrReveal and it will never need to reveal the underlying secret key; 2) or
simulating the honest party after corruption, in which case it already obtained
the secret key from the sNIKE game.

7.2 Adaptive Security of CPace

We demonstrate that bare CPace is adaptively secure, i.e., Theorem 3 holds
with respect to adaptive party corruptions. In the real world, upon adaptively
corrupting a party, the shell hands the internal state consisting of all of the shell’s
records ⟨i , (pw , id , g, a, A)⟩ to the adversary, where HG(pw) = g and A = ga

is the message produced upon input (NewSession, sid , i , pw , id ,⊥) to the party
while it was not yet corrupted.

32

On (AdaptiveCorruption, sid ,P) from A:
– Send (AdaptiveCorruption, sid ,P) to FbPAKELE and receive back state
– For each ssid in state:
• Parse state[ssid] as (i , pw , id , id ′, k)
• Parse ssid := {(A||id), (B||id ′)}ord, i.e., (sid , i , (B, id ′)) is the message

that led P to output k
• Retrieve record (P, i , [s, S], id , [keysi])
• Do once for every i :

* If there is a record (HG, pw , [r,R]) then set yi ← sr−1 // yi is the
secret key!

* If there is no such record, sample r ←R Zq, set yi ← sr−1, set R ←
grSim and store (HG, pw , r, R)

• Record (H,Byi , ssid , k) // Programming H to the output key
• Send (⟨i , (pw , id , R, yi, B)⟩)i ∈ state to A

Fig. 11. Simulation of adaptive corruptions for ΠbCPace.

The simulation of adaptive corruptions is given in Figure 11. In a nutshell, the
strategy of the simulator is to (1) adjust the secret keys of adaptively corrupted
party P to the passwords of all previous NewSession inputs, and to (2) adjust
the random oracle H() to the previous output keys of P. For (1), the simulator
leverages theHG trapdoors as follows: letHG(pw) = R denote the generator that
P should have computed upon input (NewSession, ..., pw , ...), and let S := gsSim
denote the simulated message of P upon that input. Note that, upon adaptive
corruption, it is possible that Sim already handed R to A, since A is allowed to
query HG on arbitrary values. Sim now needs to figure out which secret key yi
“explains” the message S, i.e., for which yi it holds that HG(pw)yi = S. We have
HG(pw)yi = (grSim)

yi = gsSim for yi = sr−1, and hence Sim can claim sr−1 to be
the secret key of P computed upon receiving pw as input. For (2), we then use
secret key yi to compute the Diffie-Hellman value k = Byi computed by P upon
receiving message B.

In our security proof, we can insert the simulation strategy for (1) directly be-
fore game G11, which is the first game in which Sim skips hashing the passwords
of the parties. We can insert the simulation strategy for (2) directly before game
G8, which is the first game in which output keys are kept from Sim. Note that
the programming is guaranteed to succeed because in game G7 it is excluded
that A had previously submitted k to oracle H.

References

[ABB+20] Michel Abdalla, Manuel Barbosa, Tatiana Bradley, Stanislaw Jarecki,
Jonathan Katz, and Jiayu Xu. Universally composable relaxed password
authenticated key exchange. In Daniele Micciancio and Thomas Risten-
part, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 278–
307. Springer, Heidelberg, August 2020.

33

[AHH20] Michel Abdalla, Bjorn Haase, and Julia Hesse. CPace, a balanced com-
posable pake. IRTF CFRG draft, 2020.

[AHH21] Michel Abdalla, Björn Haase, and Julia Hesse. Security analysis of CPace.
In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021,
Part IV, volume 13093 of LNCS, pages 711–741. Springer, Heidelberg,
December 2021.

[AP05] Michel Abdalla and David Pointcheval. Simple password-based encrypted
key exchange protocols. In Alfred Menezes, editor, CT-RSA 2005, volume
3376 of LNCS, pages 191–208. Springer, Heidelberg, February 2005.

[BBCW21] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warin-
schi. Provable security analysis of FIDO2. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part III, volume 12827 of LNCS, pages 125–156,
Virtual Event, August 2021. Springer, Heidelberg.

[BCP+23] Hugo Beguinet, Céline Chevalier, David Pointcheval, Thomas Ricosset,
and Mélissa Rossi. Get a CAKE: generic transformations from key en-
caspulation mechanisms to password authenticated key exchanges. In
Mehdi Tibouchi and Xiaofeng Wang, editors, Applied Cryptography and
Network Security - 21st International Conference, ACNS 2023, Kyoto,
Japan, June 19-22, 2023, Proceedings, Part II, volume 13906 of Lecture
Notes in Computer Science, pages 516–538. Springer, 2023.

[BCZ22] Nina Bindel, Cas Cremers, and Mang Zhao. FIDO2, CTAP 2.1, and We-
bAuthn 2: Provable security and post-quantum instantiation. Cryptol-
ogy ePrint Archive, Report 2022/1029, 2022. https://eprint.iacr.org/
2022/1029.

[BFK09] Jens Bender, Marc Fischlin, and Dennis Kügler. Security analysis of the
PACE key-agreement protocol. In Pierangela Samarati, Moti Yung, Fabio
Martinelli, and Claudio Agostino Ardagna, editors, ISC 2009, volume 5735
of LNCS, pages 33–48. Springer, Heidelberg, September 2009.

[BHvS12] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Sta-
jano. The quest to replace passwords: A framework for comparative evalua-
tion of web authentication schemes. In 2012 IEEE Symposium on Security
and Privacy, pages 553–567. IEEE Computer Society Press, May 2012.

[BJX19] Tatiana Bradley, Stanislaw Jarecki, and Jiayu Xu. Strong asymmetric
PAKE based on trapdoor CKEM. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 798–825. Springer, Heidelberg, August 2019.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange:
Password-based protocols secure against dictionary attacks. In 1992 IEEE
Symposium on Security and Privacy, pages 72–84. IEEE Computer Society
Press, May 1992.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 139–155. Springer, Heidelberg,
May 2000.

[Can01a] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

[Can01b] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In IEEE Symposium on Foundations of Computer
Science – FOCS 2001, pages 136–145. IEEE, 2001.

34

[Can19] Ran Canetti. Sids in uc-secure pake and ke. IRTF CFRG mail archive,
2019.

[CFR20] CFRG. Cfrg pake selection. IRTF website, 2020.
[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D.

MacKenzie. Universally composable password-based key exchange. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
404–421. Springer, Heidelberg, May 2005.

[CKS08] David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman prob-
lem and applications. In Nigel P. Smart, editor, EUROCRYPT 2008, vol-
ume 4965 of LNCS, pages 127–145. Springer, Heidelberg, April 2008.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In
Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 265–281.
Springer, Heidelberg, August 2003.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[DHP+18] Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin,
and Sophia Yakoubov. Fuzzy password-authenticated key exchange. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 393–424. Springer, Heidelberg,
April / May 2018.

[FHKP12] Eduarda S.V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Pa-
terson. Non-interactive key exchange. Cryptology ePrint Archive, Report
2012/732, 2012. https://eprint.iacr.org/2012/732.

[FHKP13] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Pater-
son. Non-interactive key exchange. In Kaoru Kurosawa and Goichiro
Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 254–271.
Springer, Heidelberg, February / March 2013.

[GdKQ+23] Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta, and
Peter Schwabe. Swoosh: Practical lattice-based non-interactive key ex-
change. Cryptology ePrint Archive, Report 2023/271, 2023. https:

//eprint.iacr.org/2023/271.
[GJK21] Yanqi Gu, Stanislaw Jarecki, and Hugo Krawczyk. KHAPE: Asymmetric

PAKE from key-hiding key exchange. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 701–730,
Virtual Event, August 2021. Springer, Heidelberg.

[GMR06] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for
making password-based key exchange resilient to server compromise. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 142–
159. Springer, Heidelberg, August 2006.

[Hes20] Julia Hesse. Separating symmetric and asymmetric password-
authenticated key exchange. In Clemente Galdi and Vladimir Kolesnikov,
editors, SCN 20, volume 12238 of LNCS, pages 579–599. Springer, Heidel-
berg, September 2020.

[HGP+18] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus
Dürmuth, Earlence Fernandes, and Blase Ur. Rethinking access control
and authentication for the home internet of things (IoT). In 27th USENIX
Security Symposium (USENIX Security 18), pages 255–272, Baltimore,
MD, August 2018. USENIX Association.

[HJK+18] Jung Yeon Hwang, Stanislaw Jarecki, Taekyoung Kwon, Joohee Lee, Ji Sun
Shin, and Jiayu Xu. Round-reduced modular construction of asymmetric

35

password-authenticated key exchange. In Dario Catalano and Roberto De
Prisco, editors, SCN 18, volume 11035 of LNCS, pages 485–504. Springer,
Heidelberg, September 2018.

[HJKW23] Julia Hesse, Stanislaw Jarecki, Hugo Krawczyk, and Christopher Wood.
Password-authenticated TLS via OPAQUE and post-handshake authenti-
cation. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part V, volume 14008 of LNCS, pages 98–127. Springer, Heidelberg, April
2023.

[HL17] Björn Haase and Benôıt Labrique. Making password authenticated key
exchange suitable for resource-constrained industrial control devices. In
Wieland Fischer and Naofumi Homma, editors, CHES 2017, volume 10529
of LNCS, pages 346–364. Springer, Heidelberg, September 2017.

[HS14] Feng Hao and Siamak F. Shahandashti. The SPEKE protocol revisited.
Cryptology ePrint Archive, Report 2014/585, 2014. https://eprint.

iacr.org/2014/585.
[Jab97] David P. Jablon. Extended password key exchange protocols immune

to dictionary attacks. In 6th IEEE International Workshops on En-
abling Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE 1997), pages 248–255, Cambridge, MA, USA, June 18–20, 1997. IEEE
Computer Society.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmet-
ric PAKE protocol secure against pre-computation attacks. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, vol-
ume 10822 of LNCS, pages 456–486. Springer, Heidelberg, April / May
2018.

[KM15] Franziskus Kiefer and Mark Manulis. Oblivious pake: Efficient handling
of password trials. In Information Security, pages 191–208, 2015.

[Kra03] Hugo Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenti-
cated Diffie-Hellman and its use in the IKE protocols. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 400–425. Springer,
Heidelberg, August 2003.

[KT11] Ralf Küsters and Max Tuengerthal. Composition theorems without pre-
established session identifiers. In Yan Chen, George Danezis, and Vitaly
Shmatikov, editors, ACM CCS 2011, pages 41–50. ACM Press, October
2011.

[Mac01] Philip MacKenzie. On the security of the SPEKE password-authenticated
key exchange protocol. Cryptology ePrint Archive, Report 2001/057, 2001.
https://eprint.iacr.org/2001/057.

[PW17] David Pointcheval and Guilin Wang. VTBPEKE: Verifier-based two-basis
password exponential key exchange. In Ramesh Karri, Ozgur Sinanoglu,
Ahmad-Reza Sadeghi, and Xun Yi, editors, ASIACCS 17, pages 301–312.
ACM Press, April 2017.

[SGJ23] Bruno Freitas Dos Santos, Yanqi Gu, and Stanislaw Jarecki. Randomized
half-ideal cipher on groups with applications to UC (a)PAKE. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume
14008 of LNCS, pages 128–156. Springer, Heidelberg, April 2023.

[SGJK22] Bruno Freitas Dos Santos, Yanqi Gu, Stanislaw Jarecki, and Hugo
Krawczyk. Asymmetric PAKE with low computation and communication.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part II, volume 13276 of LNCS, pages 127–156. Springer, Heidelberg,
May / June 2022.

36

[Sho20] Victor Shoup. Security analysis of spake2+. Cryptology ePrint Archive,
Paper 2020/313, 2020.

[W3C17] W3C. Web authentication working group. https://www.w3.org/groups/
wg/webauthn/, 2017.

[Wik23] Wikpedia. Internet of things. https://en.wikipedia.org/wiki/

Internet_of_things/, 2023.

A Details on Structured Protocols

We provide more details on the execution model for bare PAKE protocols that we
use in this work, namely the concept of structured protocols [Can01a]. We briefly
recall here the relevant aspects of the real and ideal world execution models,
highlighting the aspects in which they differ from the typical presentation of UC
proofs. We refer the reader to Section 3.3 for an overview.

Real world execution model. An environment Z is first invoked and, through its
actions, creates a set of parties that will jointly execute a protocol, as well as an
adversary A. Parties, which are globally addressed by an extended identifier, are
created when they receive a message/input for the first time.19 The extended
identifier is of the form (sid ,P, π), where sid is a session identifier, P is a party
identifier, and π is the protocol code. The action of creating the first party with
extended identifier (sid ,P, π) fixes the session identifier sid that defines the
target session of the security analysis: all security notions are defined wrt to the
behavior of parties carrying this session identifier. As usual, the environment
is able to directly control the inputs and observe the outputs of parties. The
environment can also communicate arbitrarily with adversary A that controls
the communications between parties.20

We adopt the UC execution model for structured protocols, where the code
of a party has two parts: a shell and a body. Intuitively, the body executes
the cryptographic protocol, while the shell serves as a wrapper to that crypto-
graphic protocol, dealing with session and state management, message passing,
party addressing, etc. Such separation on the framework level perfectly serves
the purpose of this work, namely analyzing key exchange from passwords only.
Looking ahead, we will keep information such as party and session identifiers
and tasks such as password instance management, the sending of messages, and
the handling of incoming messages within the shell. The body then runs the
bare PAKE protocol, accepting as input only a password at the beginning, and
a message (or potentially multiple messages for multiple-round protocols) sub-
sequently, and finally producing an output key. This strict separation allows us
to analyze the security of key exchange from only passwords, ensuring on the

19The extended identifiers of environment Z and adversary A are restricted to values
that exclude ambiguity and give rise to meaningful security notions. We omit the
details.

20Without loss of generality we can assume that A is the dummy adversary that
passes messages to/from parties from/to the environment Z.

37

framework level that none of the PAKE’s guarantees depend on, e.g., unique-
ness of session identifiers or common knowledge of party names. We now recap
the formalism of separation into body and shell, which gives rise to so-called
structured protocols.

Structured Protocols. The UC execution model for structured protocols, de-
termines that the shell, which runs a wrapper around the bare PAKE protocol,
receives inputs/messages under an extended identifier (sid ,P, π) where session
identifier, party identifier and code are each split into two parts, one correspond-
ing to the body and the other corresponding to the shell.21 Concretely we have
sid = (sidSh, sidB), P = (PSh,PB) and π = (πSh, πB). The body, which runs
code πB, only has access to (sidB,PB), which in this work we will treat as don’t
cares: we arbitrarily fix them to ⊥. We depict this separation in Figure 12. We
emphasize that the session identifier is, as always in the UC setting, formally
defining the context of the UC security analysis and, for this reason, it must be
globally unique. Conversely, the party identifier is emulating an arbitrary party
addressing mechanism within that particular protocol instance (it just needs to
be different for every party running this protocol instance). One can think of it
as any addressing scheme that is used in the real world, e.g., and IP address and
a listening TCP port. What is crucial for the notion of bare PAKE is that nei-
ther of these parameters is directly accessible to the body of the cryptographic
protocol, which captures the guarantee that the only input that really affects
the correctness and security of a bare PAKE is the password.

Ideal world execution model. The ideal world for structured protocols is the
same as for unstructured protocols. When the environment creates a party, a
dummy party is created instead. Dummy parties are actually using the ideal
functionality that the real world protocol is compared to. Note that the dummy
party is replacing the full real-world protocol (πB, πSh). In particular, when the
environment creates a new session at party (P,⊥) with session identifier (sid ,⊥),
then the dummy party will inform the functionality of this fact. Conversely,
outputs produced by the dummy party are triggered by a command issued by
the ideal functionality. A simulator Sim (often called the ideal world adversary)
must present to the environment a view that is indistinguishable from what A
would provide in the real world. To achieve this, Sim has access to the backdoor
interface of the ideal functionality.

A Canonical Shell. A bare PAKE (Setup,StartIni,StartRsp,EndIni,EndRsp)
as specified above produces messages (and keys), but it does not contain any

21It is common practice when presenting the syntax of UC protocols and the de-
scription of ideal functionalities to keep the code π implicit, and to assume that P and
sid are given as inputs to the protocol. We also adopt this choice in the body of the
paper, so as to keep notation aligned with the literature. However, this is a presenta-
tion choice and, formally, it is not what happens in the UC execution model. Indeed, P
and sid are defined when the party machine is created, so that its extended identifier
(sid ,P, π) can be used to globally address it.

38

Z

structured protocol instance

Shell
running πSh

Body
running πB

on payload

(sidSh,⊥,PSh,⊥, πSh, πB︸ ︷︷ ︸
sid

, payload)

(πB, payload)

Fig. 12. Structured protocol with sidB = PB = ⊥, i.e., the body is receiving only the
payload of the input and is oblivious of session and party information.

instructions on how to deal with communications, sending messages and pro-
cessing incoming messages. For example, consider an application where a single
party wants to produce keys from more than one password (e.g., a laptop that
is set up to connect to various routers through WPA). Such a party runs several
instances of StartIni, and needs to decide which of this instance an incoming
message is processed with. We suggest a canonical shell code πSh in Fig. 13
that models what we find to be the most natural practical deployment of a bare
PAKE protocol, and we will use it throughout this paper.

The shell πSh models an implementation that manages an arbitrary number
of instances of the bare PAKE protocol by indexing them using an integer i.
Here, an “instance of a bare PAKE protocol” corresponds to an input password,
i.e., a single party runs as many instances as it obtains input passwords. An
instance may be long-lived, cashing state and saving computation, or short-lived
(e.g., used only once). Our framework allows both, and it is up to applications
to choose a mode of operation that suits them. The instance identifier i can,
for example, correspond to a TCP port that this instance uses to communicate.
When a new instance i is created, the initialization code of the body is run, and
the state is kept for future reference. The shell announces through the network
adversary A that a new instance is running, along with any outgoing message
that is already available for transmission. Incoming messages from the network
are annotated with the target instance, which allows the shell to retrieve the
correct state. Again, note that the same stored state can, according to this
shell definition, be used to process multiple incoming messages, for example, a
single initialization can be used to establish different keys with parties that share
the same password. Note also that the shell πSh models applications where an
instance must have been initialized (e.g., by creating a listening socket) before
it can process any incoming messages.

39

On creation, generate and store prm←R Setup.

When Z passes input (NewSession, i , pw , id , role):
◦ ignore this query if record ⟨[i], ⋆⟩ exists
◦ if role ̸= R (always the case for SSF protocols)
− compute (m, stI)←R StartIni(prm, pw , id)
− store ⟨i , stI⟩
− send (i ,m) to A

◦ else
− compute stR ←R StartRsp(prm, pw , id)
− store ⟨i , stR⟩
− send i to A as coming from (sid ,P)

When A delivers message (i ,m) to party running as (sid ,P):
◦ ignore this message if record ⟨[i], ⋆⟩ does not exist
◦ retrieve record ⟨[i], st⟩
◦ if role ̸= R (always the case for SSF protocols)
− compute (K, ssid , cpid)← EndIni(st ,m)
− on error, do nothing
− otherwise, output (K, ssid , cpname)

◦ else
− compute (K, ssid , cpname,m ′)←R EndRsp(st ,m)
− on error, do nothing
− otherwise send (i ,m ′) to A and output (K, ssid , cpname)

Fig. 13. Shell code πSh. Works as a wrapper around body program of the form
πB = (Setup, StartIni, StartRsp,EndIni,EndRsp) and it runs under extended identifier
((sidSh,⊥), (PSh,⊥), (πB, πSh)).

Shell Variants: one-time passwords, message buffering, and more. πSh in Fig. 13
allows to address a specific password instance to compute a key with, without
any restrictions. In particular, each password instance can be addressed multiple
times and hence can produce multiple output keys. One could define arbitrary
shell variants, in particular

– a “one-time” adaption of πSh where a state is invalidated after it is used to
compute a key for the first time. We call this variant π1-Sh.

– a “buffering” adaption of πSh where incoming messages are recorded if the
target instance does not yet exist, and are processed once the instance is
initialized.

– a “flooding” adaption of πSh where incoming messages are processed with
as many instances as possible, i.e., the maximum number of output keys is
computed.

We will present detailed proofs for the canonical wrapper, and leave it to future
work to extend the proofs to these other shell variants, which we expect to be
straightforward.

40

B Details on Transformations

We start with the compiler from bare PAKE to PAKE, which is conceptually
simpler.

B.1 Constructing PAKE from Bare PAKE

We show that any protocol that realizes the UC bare PAKE functionality (Fig-
ure 2) can be compiled in a straightforward manner to another one that realizes
the multi-session variant of the original UC PAKE functionality FPAKE (Fig-
ure 1). For now, we only consider the non-relaxed version of both functionalities.

The compiler, depicted in Figure 14, takes the PAKE-conformant inputs sid ,
P, ssidPAKE, CP, and pwPAKE, writes all these values into password pwbPAKE, and
then runs bPAKE using pwbPAKE, using a fresh instance identifier i . The agreed
secret key is simply the first session key produced by bPAKE instance i . Note
that, intuitively, this transformation is delegating to bPAKE to make sure that a
matching key can only be derived by a party that has matching PAKE-compliant
inputs. The remaining features of bPAKE are not used, namely the ability to
add/get party/coparty names, the ability to obtain session identifiers generated
on the fly, and the ability to reuse a bPAKE instance.

On input (NewSession, sid ,P, ssidPAKE, CP, pwPAKE, role), party P does:
– Set pwbPAKE ← {P, CP}ord||sid ||ssidPAKE||pwPAKE.
– Take i = ssidPAKE and store record ⟨i⟩.
– Send (NewSession, sid , i , pwbPAKE,⊥, role) to FbPAKE.

On output (sid , i ,K, ∗, ∗) from FbPAKE, party P does:
– Ignore this output if there was a previous output (sid , i , ∗, ∗, ∗) by FbPAKE.
– Ignore this output if record ⟨i⟩ does not exist.
– Output (sid , ssidPAKE,K), where ssidPAKE = i .

Fig. 14. Transformation ΠbareP−to−P from bare PAKE to PAKE. Bare PAKE instance
identifiers just need to be locally unique, so we reuse ssidPAKE for that purpose.

Theorem 4 (BarePAKE-to-PAKE transformation). The protocol ΠbareP−to−P
realizes functionality FPAKE in the FbPAKE-hybrid model. That is, for any efficient
adversary A against ΠbareP−to−P (interacting with FbPAKE), there exists an effi-
cient simulator Sim that interacts with FPAKE and produces a view such that for
all efficient environments it holds that

DΠbareP−to−P,{FPAKE,Sim}
Z (κ) is negligible in κ,

where DΠbareP−to−P,{FPAKE,Sim}
Z (κ) is the distinguishing advantage of environment Z

between the real world execution of ΠbareP−to−P and the simulation presented by
Sim interacting with FPAKE.

41

Proof Intuition.We provide a brief proof intuition. The core idea of theΠbareP−to−P
transformation is to embed PAKE-related information, such as the party iden-
tifiers P, CP, the unique subsession identifier ssidPAKE for PAKE sessions into
the “extended” password used by bPAKE parties. This fact can be used by the
simulator to implement the ActiveNewKey and PassiveNewKey queries, which are
used by the adversary to attack the underlying bPAKE protocol. Note that a
password guess on the transformed protocol is only correct if all information em-
bedded into the password matches, i.e., party identifiers and the unique session
identifiers for the PAKE sessions need to match. The simulator hence always
checks the “extended” part of the password but lets FPAKE decide whether the
“regular” password is correct. The remainder of the proof consists mainly of
bookkeeping to implement the other queries the adversary may issue. Figure 15
shows the full simulator.

Proof. We prove this theorem by constructing a sequence of games that step-wise
transforms a real-world execution of the protocol ΠbareP−to−P (using FbPAKE as
hybrid building block) into a simulated version of the protocol using the FPAKE

functionality such that no efficient environment Z can distinguish the two worlds.

Game G0: The real execution. The environment Z runs the real protocol
ΠbareP−to−P (using FbPAKE as hybrid building block) with adversary A.

Game G1: Change layout. We move the whole execution of G0 into an ITI
called simulator Sim. We add an empty ITI F that relays inputs and outputs
of parties between Z and Sim, and we add dummy party relays between Z
and F for each real party. The changes are only syntactical and hence we
have

Pr[G0] = Pr[G1].

Game G2: Introduce the functionality. In this game we set F = FPAKE,
with two modifications (which we will revert in later games):

(1) F relays all outputs of the form (ssidPAKE, i ,K) from Sim to Z.
(2) F adds pwPAKE to NewSession queries, i.e., it informs the simulator about

passwords.

The changes are only syntactical because with modifications (1) and (2), all
inputs and outputs are still relayed between the real execution within Sim
and the environment Z. The newly added interfaces TestPwd and NewKey
are not yet called by the simulator and hence do not have any effect on the
output distribution. We have

Pr[G1] = Pr[G2].

Game G3: Creating records. We change the simulator Sim as follows. Upon
invocation it creates an empty set S′, which it will later use to track partially
and fully complete sessions. This set will later replace the internal set S
the FbPAKE functionality uses. Additionally, the simulator implements the
following:

42

– Whenever FPAKE outputs (NewSession, sid ,P, ssidPAKE, CP, pwPAKE, role)
the simulator Sim ignores the query if a record ⟨P, ssidPAKE, CP, role⟩
already exists. Otherwise, it records ⟨P, CP, ssidPAKE, role⟩ and sends
(NewSession, sid ,P, ssidPAKE, CP, role) to A (who expects this as a mes-
sage from FbPAKE). Additionally, the simulator suppresses any NewSession
message from FbPAKE to any outside entity. Note that the interaction of
Sim with the FbPAKE remains unchanged, i.e., it still sends NewSession
message to FbPAKE such that the ActiveNewKey and PassiveNewKey queries
made by A still work as intended.

– Whenever (ActiveNewKey, sid ,P, i , ∗, ∗, ∗) is queried by A, the simulator
ignores this query if the record ⟨P, i , ∗, ∗⟩ already exists. Note that this
disallows reusing a bPAKE instance, which is required by the PAKE
functionality.

– Whenever (PassiveNewKey, sid ,P, i , CP, i ′, ssidbPAKE) is queried by A,
we ignore this query if either record ⟨P, i , ∗, ∗⟩ or record ⟨P ′, i ′, ∗, ∗⟩ (or
both) already exist. Note that this disallows reusing a bPAKE instance,
which is required by the PAKE functionality.

Note that whenever Sim would ignore incoming queries, the functionality
FbPAKE would also ignore those queries. Hence, our changes do not influence
the output distribution and we have

Pr[G2] = Pr[G3].

Game G4: FPAKE decides keys of honest sessions. In this game Sim imple-
ments the completion of honest sessions when the (PassiveNewKey, sid ,P, i ,
P ′, i ′, ssidbPAKE) query is issued by the adversary. First, Sim always checks
if a record of form ⟨sesinf,P, i , ssidbPAKE, cpid⟩ (where cpid can be extracted
from the records filed in G3) exists. The simulator will create such record
as soon as party P has output a key in protocol instance i . As such, the
PassiveNewKey query is ignored, if a record of this form exists. The sim-
ulator implements the completion of honest session by distinguishing the
following two cases:

(1) The protocol participant who is first to finish. First, Sim checks if ssidbPAKE /∈
S′, which only holds of neither P nor P ′ have completed the protocol yet.
If this is the case, Sim adds ssidbPAKE to S′, tracking that one partici-
pant is now to complete the protocol. To this end, the simulator creates a
record ⟨sesinf,P, i , ssidbPAKE, cpid⟩ and sends (NewKey, sid ,P, i ,⊥) (where
i corresponds to the PAKE session identifier) to FPAKE, which outputs
the correct key. Note that the newly created record allows Sim to check
whether a participant has already completed its protocol run and output
a key.

(2) The protocol participant who is second to finish. The second case is
a little more involved. First, the simulator checks if a record of form
⟨sesinf,P ′, i ′, ssidbPAKE, id⟩ exists. Note that this check ensures that (i)
P ′ has completed the protocol instance i ′ and (ii) that P expects to fin-
ish the protocol with id as partner. Only if this holds true, Sim records

43

⟨sesinf,P, i , ssidbPAKE, cpid⟩ (tracking that the second-to-finish partici-
pant will finish the protocol) and sends (NewKey, sid ,P, i ,⊥) to FPAKE,
which results in the correct key being output.

(3) “Extended” part of password is wrong. Furthermore, Sim needs to cover a
more subtle subcase. Note that, e.g., id in record ⟨sesinf,P ′, i ′, ssidbPAKE, id⟩
might not correspond to the name party P identifies itself with. In both
cases, the simulator sends (TestPwd, sid ,P, i ,⊥) and (NewKey, sid ,P, i ,⊥)
in sequence to FPAKE, which results in outputting a random key towards
P, as required by a PAKE protocol.

If none of the above cases occur, the message is ignored by Sim. Note that
by still forwarding the PassiveNewKey query to the original functionality
FbPAKE, we guarantee that the ActiveNewKey queries still works as intended.
However, in order to guarantee a correct output distribution towards the
adversary, we suppress all messages generated upon a PassiveNewKey query
by FbPAKE but instead let Sim deliver messages as described above. We hence
have

Pr[G3] = Pr[G4].

Game G5: FPAKE decides keys of attacked parties. In this game hop Sim
implements the completion of attacked sessions when the (ActiveNewKey, sid ,P, i , pw∗bPAKE,K∗,
ssidbPAKE, cpid) query is issued by the adversary. First, Sim always checks if
a record of form ⟨sesinf,P, i , ssidbPAKE, cpid⟩ exists. The simulator will create
such record as soon as party P has output a key in protocol instance i . As
such, the ActiveNewKey query is ignored, if a record of this form exists. The
simulator implements the completion of attacked session by distinguishing
the following two cases:

(1) The “extended” part of the password is wrong. Recall that the trans-
formed protocol uses passwords, where party identifiers, the PAKE sub-
session identifier, and the actual PAKE user password are embedded.
Note that FPAKE can only check the PAKE user password, which leaves
Sim to ensure that the other parts are correct as well. To this end, Sim
parses (P̃, P̃ ′, ssidPAKE, pw

∗
PAKE) ← pw∗bPAKE, and checks if {P̃, P̃ ′}ord ̸=

{P,P ′}ord or ssidPAKE ̸= i hold. Should this be the case, the pass-
word guess by the adversary cannot be correct. Consequently, Sim sends
(TestPwd, sid ,P, i ,⊥) to FPAKE, which will later result in a random key
for P.

(2) The “extended” part of the password is correct. If the check conducted in
(1) was correct, then the “extended” part of the password guess pw∗bPAKE
must be correct. This leaves to verify, whether the PAKE user password
is correct. To this end, the simulator sends (TestPwd, sid ,P, i , pw∗PAKE)
to FPAKE. Note that (i) the functionality FPAKE will check if the guess
pw∗PAKE is correct and will react accordingly.

Finally, the simulator adds ssidbPAKE to S′, records ⟨sesinf,P, i , ssidbPAKE,
cpid⟩, and sends (NewKey, sid ,P, i ,K∗) to FPAKE, which outputs a key to-
wards party P. Now that Sim already simulates ΠbareP−to−P with the aid of

44

FPAKE, it does not forward any more queries output by FbPAKE. We have

Pr[G4] = Pr[G5].

Game G6: Remove password and key forwarding from functionality.
As of G5, passwords of honest parties are not accessed by Sim anymore. At
the same time, outputs of honest parties are produced by FPAKE. We can
hence remove the forwarding of passwords and keys that we temporarily
installed in game G5, restoring the original FPAKE functionality, without
modifying any outputs seen by Z. We hence have

Pr[G5] = Pr[G6],

where the execution in this game is run by Sim of Figure 15 together with
the PAKE functionality FPAKE. This concludes the proof.

On Supporting Lazy Extraction. We remark that we can also proof thatΠbareP−to−P
realizes functionality FPAKELE in the FbPAKELE -hybrid model. The proof follows the
same pattern as before but requires an additional game hop where the dashed
boxes in Figure 15 are introduced.

B.2 Constructing Bare PAKE from PAKE

We show that any protocol that realizes the multi-session variant of the UC
PAKE functionality (Fig. 1) can be compiled to another one that realizes FbPAKE

(Fig. 2).
The intuition is that each key corresponding to a (non-repeat) bare PAKE

output will be computed by a fresh PAKE session. The bare PAKE protocol
we construct outlines a solution to the practical problem of defining a unique
global session identifier and party identifiers that distinguish the participants,
as required by PAKE. The protocol is shown in Figure 16. Observe that the
FPAKE functionality is called with a random ssid agreed by the parties using two
nonces, and that these nonces play a dual role: parties are using their nonce
as their party identifier when calling FPAKE. This dual use is not needed for
particular applications that have another way of setting up the party identifiers
used as input to the PAKE but here we are looking for a solution that does not
rely on any external means to create the inputs to the PAKE.22

Theorem 5 (PAKE-to-barePAKE transformation). The protocol in Fig-
ure 16 realizes functionality FPAKE in the FbPAKE-hybrid model. That is, for any
efficient adversary A against ΠP−to−bareP (interacting with FPAKE), there exists

22Recall that party identifiers only need to be unique within the set of parties using
a given session identifier.

45

(G3) Upon start, Sim initializes a set S′ ← {} to track (partially and fully) completed
sessions.

Messages from FPAKE:

On (NewSession, sid ,P, ssidPAKE, CP, role):
– (G3) Ignore if record ⟨P, ssidPAKE, CP, role⟩ does exist.
– (G3) Record ⟨P, ssidPAKE, CP, role⟩.
– (G3) Send (NewSession, sid ,P, ssidPAKE, CP, role) to A as output of FbPAKE.

Messages from A:

On message (LateTestPwd, sid ,P, i , ssidbPAKE, pw
∗
bPAKE) from A:

– Parse (P̃, P̃ ′, ssidPAKE, pw
∗
PAKE)← pw∗

bPAKE.

– If {P̃, P̃ ′}ord ̸= {P,P ′}ord or ssidPAKE ̸= i :
• Send (LateTestPwd, sid , i ,P,⊥) to FPAKE.

– Else:
• Send (LateTestPwd, sid , i ,P, pw∗

PAKE) to FPAKE.

On message (ActiveNewKey, sid ,P, i , pw∗
bPAKE,K

∗, ssidbPAKE, cpid) from A:
– (G3) Ignore if record ⟨P, i , [P ′], [role]⟩ does not exist.
– (G5) Ignore if record ⟨sesinf,P, i , ssidbPAKE, cpid⟩ exists. // Key has already been

output.
– (G5) If ssidbPAKE /∈ S′:

• If pw∗
bPAKE ̸= ⊥:

* (G5) Parse (P̃, P̃ ′, ssidPAKE, pw
∗
PAKE)← pw∗

bPAKE.

* (G5) [Guess is wrong.] If {P̃, P̃ ′}ord ̸= {P,P ′}ord or ssidPAKE ̸= i : Send
(TestPwd, sid ,P, i ,⊥) to FPAKE.

* (G5) [Guess may be correct.] Else: Send (TestPwd, sid ,P, i , p̃w) to FPAKE

• If pw∗
bPAKE = ⊥: Send (RegisterTest, sid , ssidPAKE,P) to FPAKE.

• (G5) Set S
′ ← S′ ∪ {ssidbPAKE}.

• (G5) Record ⟨sesinf,P, i , ssidbPAKE, cpid⟩. // Record bPAKE session state
• (G5) Send (NewKey, sid ,P, i ,K∗) to FPAKE.

On message (PassiveNewKey, sid ,P, i ,P ′, i ′, ssidbPAKE) from A:
– (G3) Ignore if record ⟨P, i , [cpid], [role]⟩ does not exist.
– (G3) Ignore if record ⟨P ′, i ′, ∗, [role′]⟩ does not exist.
– (G4) Ignore if record ⟨sesinf,P, i , ssidbPAKE, cpid⟩ exists. // Key has already been

output.
– [Complete protocol for first participant.] If ssidbPAKE /∈ S′:
• (G4) Set S

′ ← S′ ∪ {ssidbPAKE}.
• (G4) Record ⟨sesinf,P, i , ssidbPAKE, cpid⟩. // Record bPAKE session state
• (G4) Send (NewKey, sid ,P, i ,⊥) to FPAKE.

– [Complete protocol for second participant.] If there exists a record
⟨sesinf,P ′, i ′, ssidbPAKE,P⟩:
• (G4) Record ⟨sesinf,P, i , ssidbPAKE, cpid⟩.
• (G4) Send (NewKey, sid ,P, i ,⊥) to FPAKE. // FPAKE decides if password is

correct.
– [“Extended” password is wrong.] If there exists a record ⟨sesinf,P, i ′, ssidbPAKE, ∗⟩:
• (G4) Send (TestPwd, sid ,P, i ,⊥) to FPAKE.
• (G4) Send (NewKey, sid ,P, i ,⊥) to FPAKE.

– Ignore message otherwise.

Fig. 15. The simulator (without dashed boxes) constructed in the proof of Theorem 4.
Lines prepended with (Gi) are added in game i. Dashed boxes can be included if a
simulator for FPAKELE is desired.

46

On input (NewSession, sid ,P, i , pwbPAKE, id , role):
– Sample N ←R {0, 1}κ.
– Store record ⟨i , pwbPAKE, id , role,N ⟩.
– Send message (sid , i , id ,N) to the adversarial network.

On message (sid , i , cpid ,N ′) from the adversarial network:
– Retrieve ⟨i , [pwbPAKE], [id], [role], [N]⟩ (abort if instance i does not exist).
– Set ssid ← {N ,N ′}ord.
– Set pwPAKE ← {id , cpid}ord||pwbPAKE.
– Save ⟨ssid , i , cpid⟩.
– Send (NewSession, sid ,N , ssid ,N ′, pwPAKE, role) to FPAKE.

On output (sid , ssid ,K) from FPAKE, party P does:
– Retrieve ⟨ssid , [i], [cpid]⟩ and ignore if record does not exist.
– Output (sid , i ,K, ssid , cpid).

Fig. 16. Transformation ΠP−to−bareP from PAKE to bare PAKE.

an efficient simulator Sim that interacts with FPAKE and produces a view such
that for all efficient environments it holds that

DΠP−to−bareP,{FbPAKE,Sim}
Z (κ) ≤ 4q2/2κ,

where DΠP−to−bareP,{FbPAKE,Sim}
Z (κ) is the distinguishing advantage of environment

Z between the real world execution of ΠP−to−bareP and the simulation presented
by Sim interacting with FbPAKE, and where q is an upper bound on the number
of protocol executions.

Proof Intuition.We provide a brief proof intuition. The core idea of theΠP−to−bareP
transformation is to pre-agree on a unique subsession identifier ssid before the
underlying PAKE protocol is executed. The subsession identifier consists of a
concatenation of two nonces that have been contributed by the communicating
parties. Note that those nonces serve a dual prupose in the transformation: (i)
They serve to establish a unique subsession identifier for each session between
two parties, and (ii) they also serve as party identities in the underlying PAKE
protocol. That is, from a bPAKE perspective a user may identify with some
name id , but the underlying PAKE protocol identifies the user via a nonce N
instead. The simulator uses this as leverage to create multiple PAKE sessions
for the same pair of bPAKE users. Additionally, the “extended” password pw ′

with added participant names allows the simulator to later distinguish whether
both parties agree on the same names (i.e., if they do, both parties should get
the same key as output, and if not, the keys should be random).The remainder
of the proof consists mainly of bookkeeping to implement the other queries the
adversary may issue. Figure 17 shows the full simulator.

Proof. We prove this theorem by constructing a sequence of games that step-wise
transforms a real-world execution of the protocol ΠbareP−to−P (using FbPAKE as

47

hybrid building block) into a simulated version of the protocol using the FPAKE

functionality such that no efficient environment Z can distinguish the two worlds.

Game G0: The real execution. The environment Z runs the real protocol
ΠP−to−bareP (using FbPAKE as hybrid building block) with adversary A.

Game G1: Change layout. We move the whole execution of G0 into an ITI
called simulator Sim. We add an empty ITI F that relays inputs and outputs
of parties between Z and Sim, and we add dummy party relays between Z
and F for each real party. The changes are only syntactical and hence we
have

Pr[G0] = Pr[G1].

Game G2: Introduce the functionality. In this game we set F = FbPAKE,
with two modifications (which we will revert in later games):

(1) If F relays all outputs of the form (sid , i ,K, ssid , cpid) from Sim to Z.
(2) F adds pw to NewSession queries, i.e., it informs Sim about passwords.

Furthermore, Sim will not route messages of form (sid , i , id ,N) (sent from
Sim towards some party) and (sid , i , cpid ,N ′) (sent from the adversary on
behalf of a some party towards an honest party P) via F , but rather relays
them directly between the dummy parties and itself.
The changes are only syntactical because with modifications (1) and (2),
all inputs and outputs are still relayed between the real execution within
Sim and the environment Z. The newly added interfaces ActiveNewKey and
PassiveNewKey are not yet called by Sim and hence do not have any effect
on the output distribution. We have

Pr[G1] = Pr[G2].

Game G3: First message for honest sessions. We change Sim Sim as fol-
lows:

– Whenever FbPAKE outputs (NewSession, sid ,P, i , id , role) alongside some
password pw (due to G5), Sim behaves as follows. First it checks whether
a record ⟨i , id , ∗, ∗⟩ exists, which would indicate that instance i of P has
already taken part in some session. If so, Sim would ignore the query.
Otherwise, it samples N ←R {0, 1}κ according to the protocol specifica-
tion, records ⟨i , id , role,N ⟩, and sends (sid , i , id ,N) to A as a message
from P.

– The simulator does not change its interaction with the functionality
FPAKE but suppresses all messages of above form from the original pro-
tocol run (which have been replaced by the messages generated above).

Since (1) our simulator only ignores queries that would also would have been
ignored by the original protocol with FPAKE as building block, and (2) we
did not introduce any new messages to the system but only replaced existing
messages, our changes do not influence the output distribution and we have

Pr[G2] = Pr[G3].

48

Game G4: Abort upon nonce collision. In this game Sim tracks all nonces
N ,N ′ ∈ {0, 1}κ generated by honest parties during the execution of the
protocol. If any of the nonces collide (i.e., if N or N ′ were sampled twice in
different sessions), then Sim aborts the simulation. Let q ∈ N be an upper
bound on the number of protocol executions, then we have

|Pr[G3]− Pr[G4]| ≤ 4q2/2κ.

Note that nonces for honest parties are now unique.
Game G5: Acting on second message. In this game we describe how Sim

acts upon receiving the second message (sid , i , cpid ,N ′) for some honest
party P from the adversary. The simulator first retrieves the record ⟨P, i , [id], [role], [N]⟩
to ensure that instance i of party P is indeed honest and exists. Should the
record not exist, Sim will ignore the incoming message.
Next, Sim sets ssid ← {N ,N ′}ord and distinguishes two cases: (i) N ′ was
generated maliciously, and (ii) N ′ was generated honestly.
(i) N ′ was generated maliciously. Note that Sim can check this due to the

changes made in gameG3, i.e., whenever it receives a nonce N
′, it tries to

retrieve a record of form ⟨∗, ∗, ∗, ∗,N ′⟩. If it does not exist, the nonce was
not generated honestly. Furthermore note, that it is not efficiently pos-
sible for the environment to spawn an honest party such that it matches
with a maliciously generated nonce, as this would require the adversary
to guess which nonce will be chosen by the honest party.
If the nonce was generated maliciously, Sim stores a record of form
⟨P,N , i ,N ′,⊥, ssid , id , cpid⟩. Note that the i ′ = ⊥ entry will help Sim
to track whether a session has a dishonest participant.

(ii) N ′ was generated honestly. Conversely to the above, Sim knows that a
nonce was generated honestly, if record ⟨∗, [i ′], ∗, ∗,N ′⟩ exists. Hence it
will store a new record of form ⟨P,N , i ,N ′, i ′, ssid , id , cpid⟩. Note that
i ′ ̸= ⊥, which indicated that this session is honest.

Finally, Sim sends (NewSession, sid ,N , ssid ,N ′, role) to the adversary as an
output of FPAKE. Note that the nonces have been used as party identifiers
here.
Since (1) our simulator only ignores queries that would also would have been
ignored by the original protocol with FPAKE as building block, and (2) we
did not introduce any new messages to the system but only replaced existing
messages, our changes do not influence the output distribution and we have

Pr[G4] = Pr[G5].

Game G6: Functionality decides keys of parties. We change Sim as fol-
lows.
– Whenever it receives a message (TestPwd, sid ,P, ssid , pw∗PAKE), it ignores

the query if a record ⟨pwguess, sid ,P, ssid , ∗⟩ exists. Otherwise, it creates
a record ⟨pwguess, sid ,P, ssid , pw∗PAKE⟩.

– Whenever it receives a message (NewKey, sid ,P, ssid ,K∗) it does the fol-
lowing. First, it retrieves the record r = ⟨P, [i], [P ′], [i ′], ssid , [id], [cpid]⟩,

49

which must exist for any given pair of session with at least one honest
participant. The simulator distinguishes the following three cases:
(i) A password guess exists. This is recognized by trying to a record

of form ⟨pwguess, sid ,P, ssid , [pw∗PAKE]⟩. If it exists, the simulator
parses {id ′, cpid ′}ord||pw∗bPAKE ← pw∗PAKE and checks if the “extended”
part of the password is indeed equal to id , cpid from record r. If this is
not the case, then the password guess was hence wrong and Sim sets
the password guess to pw∗bPAKE = ⊥. Otherwise, pw∗bPAKE is left as is.
The simulator concludes this case by sending (ActiveNewKey,P, i , pw∗bPAKE,K∗, ssid , cpid)
to FbPAKE (i.e., the functionality decides if the “regular” part of the
password guess is correct). Note that this results in a random key if
the password guess was wrong, or in K∗ if the guess was correct.

(ii) Both parties are honest. This case is recognized by the functionality
by checking if i ′ ̸= ⊥ holds. Recall that this only holds if both
parties are honest (see G5). Hence, Sim sends (PassiveNewKey, sid ,
P, i ,P ′, i ′, ssid) to FbPAKE and lets the functionality determine the
output key.

(iii) The counterparty is malicious. If i ′ = ⊥ holds, one party is malicious.
Since a malicious party does not have an instance identifier i ′ known
to the functionality, a random output key is expected here. The sim-
ulator achieves this by sending (ActiveNewKey,P, i ,⊥,⊥, ssid , cpid)
to FbPAKE. Note that the password guess has been set to ⊥, which
will always result in a wrong password guess and a random key.

– The simulator suppresses all outgoing messages from the original FPAKE

functionality.
Note that the behavior of Sim is now independent of FPAKE, but the output
distribution has not changed. We have

Pr[G5] = Pr[G6].

Game G7: Remove password and key forwarding from functionality.
As of G6, passwords of honest parties are not accessed by Sim anymore.
At the same time, outputs of honest parties are produced by FbPAKE. We
can hence remove the forwarding of passwords and keys that we temporarily
installed in game G5, restoring the original FbPAKE functionality, without
modifying any outputs seen by Z. We hence have

Pr[G6] = Pr[G7],

where the execution in this game is run by Sim of Figure 17 together with
the bare PAKE functionality FbPAKE. This concludes the proof.

On Supporting Lazy Extraction. We remark that we can also prove thatΠP−to−bareP
realizes functionality FbPAKELE in the FPAKELE -hybrid model. The proof follows the
same pattern as before but requires an additional game hop where the dashed
boxes in Figure 17 are introduced.

50

Messages from FbPAKE:

On (NewSession, sid ,P, i , id , role):
– (G3) Ignore if record ⟨P, i , id , ∗, ∗⟩ exists.
– (G3) Sample N ←R {0, 1}κ.
– (G3) Store ⟨P, i , id , role,N ⟩.
– (G3) Send (sid , i , id ,N) to A.

Messages from A:

On message (sid , i , cpid ,N ′) from A for honest party P:
– (G5) Retrieve ⟨P, i , [id], [role], [N]⟩ and ignore, if record does not exist.
– (G5) Set ssid ← {N ,N ′}ord.
– (G5) If ⟨∗, ∗, ∗, ∗,N ′⟩ does not exist: // N ′ was generated maliciously.
• (G5) Store ⟨P,N , i ,N ′,⊥, ssid , id , cpid⟩.

– (G5) Else:
• (G5) Retrieve ⟨∗, [i ′], ∗, ∗,N ′⟩. // N ′ was generated honestly.
• (G5) Store ⟨P,N , i ,N ′, i ′, ssid , id , cpid⟩.

– (G5) Send (NewSession, sid ,N , ssid ,N ′, role) to A as output of FPAKE. // N ,N ′

are used as party identifiers here.

On message (TestPwd, sid ,P, ssid , pw∗
PAKE) from A:

– (G6) Ignore, if record ⟨pwguess, sid ,P, ssid , ∗⟩ exists.
– (G6) Record ⟨pwguess, sid ,P, ssid , pw∗

PAKE⟩. // A does not expect feedback.

On message (RegisterTest, sid , ssid ,P) from A:
– Ignore, if record ⟨pwguess, sid ,P, ssid , ∗⟩ exists. // =⇒ session not fresh
– Retrieve ⟨P, [i], ∗, ∗, ssid , ∗, ∗⟩ and ignore, if record does not exist.
– Record ⟨latetest, sid ,P, i , ssid⟩.

On message (LateTestPwd, sid , ssid ,P, pw∗
PAKE) from A:

– Retrieve ⟨latetest, sid ,P, [i], ssid⟩ and ignore, if record does not exist.
– Retrieve ⟨P, ∗, ∗, ∗, ssid , [id], [cpid]⟩
– Parse {id ′, cpid ′}ord||pw∗

bPAKE ← pw∗
PAKE.

– If {id ′, cpid ′}ord ̸= {id , cpid}ord: Set pw∗
bPAKE = ⊥.

– Send (LateTestPwd, sid ,P, i , ssid , pw∗
bPAKE) to FbPAKE.

On message (NewKey, sid ,P, ssid ,K∗) from A:
– (G6) Retrieve ⟨P, [i], [P ′], [i ′], ssid , [id], [cpid]⟩ and ignore, if record does not exist.
– (G6) If ⟨pwguess, sid ,P, ssid , ∗⟩ exists:
• (G6) Retrieve ⟨pwguess, sid ,P, ssid , [pw∗

PAKE]⟩.
• (G6) Parse {id ′, cpid ′}ord||pw∗

bPAKE ← pw∗
PAKE.

• (G6) If {id ′, cpid ′}ord ̸= {id , cpid}ord: Set pw∗
bPAKE = ⊥. // “Extended” part

of password wrong.
• (G6) Send (ActiveNewKey,P, i , pw∗

bPAKE,K
∗, ssid , cpid) to FbPAKE.

– (G6) If i
′ ̸= ⊥ : // counterparty is honest

• (G6) Send (PassiveNewKey, sid ,P, i ,P ′, i ′, ssid) to FbPAKE.
– (G6) Else: Send (ActiveNewKey,P, i ,⊥,⊥, ssid , cpid) to FbPAKE. // counterparty

is not honest

Fig. 17. The simulator (without dashed boxes) constructed in the proof of Theorem 5.
Lines prepended with (Gi) are added in game i. Dashed boxes can be included if a
simulator for FbPAKELE is desired.

51

C Proofs of the theorems in Section 5

C.1 Proof of Theorem 1

Proof. We prove this theorem via a sequence of three games, where the first game
is the (m,n)-OT-CKS game when b = 0 and the third game is the (m,n)-OT-CKS
when b = 1. We define Pr[Gi] as the probability of the adversary winning in game
Gi. We therefore have that

Adv
(m,n)-OT-CKS
A,H[sNIKE] (κ) = |Pr[G0]− Pr[G2]| .

Game G0: This game is the real (m,n)-OT-CKS game when b = 0.
Game G1: This game works as G0 but with the following modification: the

Test oracle uses an independent random oracle H′ (outside of the adversary’s
view) as a key derivation function.
Clearly, G0 and G1 are identical until attacker ever queries H on a pre-key
that is computed by the Test oracle. We call this event E and therefore have

|Pr[G0]− Pr[G1]| ≤ Pr[E] .

We defer bounding the probability that E occurs to the end, as this is the
most intricate part of the proof.

Game G2: This game is the real (m,n)-OT-CKS game when b = 1. The ad-
versary’s view in the two games is identical except when two test queries
on the same public keys return two different session keys in G1: this never
happens according to the rules of G2. If this event never happens, then the
keys output by H′ and revealed by Test to the attacker in G1 are identically
distributed to those generated and revealed by the same oracle in G2. The
probability that this event occurs can be bounded using a union bound over
all test queries and observing that, for each of them, the event occurs with
exactly the probability of a correctness error. This means that

|Pr[G1]− Pr[G2]| ≤ qT · δ .

Bounding event E. We conclude the proof by bounding the probability that
E occurs. To do this, we must introduce a series of modifications in G1.
We first introduce game G1

1, which initially samples i, j ←R [m] and sets
a bad event E1 if E occurs, for the first time, for the random oracle input
sNIKE.ShKey(sk i, pk j) computed by the test oracle. Since i, j are sampled
independently from the adversary’s view, it is clear that

Pr[E] ≤ m2 · Pr[E1] .

At this point E1 refers to only two key pairs, and it seems that a direct reduc-
tion to the one-wayness game is straightforward: the reduction can generate
all honest key pairs except i and j, which it programs with the challenge keys
from the one-wayness games. This is indeed the strategy we will use. How-
ever, there is still the possibility that the attacker places CorrReveal queries
that require knowledge of sk i or sk j to answer. We make the following ob-
servations:

52

– The one-time use restriction implies that an honest key is either used in
the test oracle, or in the corrupt reveal oracle.

– If E1 occurs, then at least one of the two honest public keys pk i or pk j

will be used in the test oracle.
– This implies that, worst case, the reduction will need to deal with one

corrupt reveal query on either pk i or pk j .
– Fixing an honest key pk1 and a corrupt key pk2 in the input to CorrReveal

fully determines the random oracle input associated with this query (as
the shared key derivation algorithm is deterministic).

– The adversary can make at most qH different queries to the random
oracle, and at most one of them can be for the secret key that is computed
by CorrReveal in that critical query. Let us call this the ℓ∗-th qH query,
and let ℓ∗ = qH +1 if the adversary never queries qH on the input value
that permits checking the consistency of this critical corrupt reveal query.

We now introduce gameG2
1. This game initially samples a value ℓ←R [qH+1]

and sets a bad event E2 if E1 occurs and ℓ∗ = ℓ. Again, since ℓ is sampled
independently of the adversary’s view, we have that:

Pr[E1] ≤ (qH + 1) · Pr[E2] .

Finally we can construct a reduction to the one-wayness game. It proceeds as
we described above, but it only needs to offer a good simulation of game G2

1

if ℓ is correct. To perfectly simulate the critical corrupt-reveal query, in this
case, it can simply use the output key of the ℓ-th query to H if ℓ ̸= qH + 1;
otherwise it uses a fresh random key. At the end of the adversary’s run, the
reduction chooses an entry K in the random oracle input log by sampling
an index in the range [qH] and queries the guess oracle on (pk i, pk j ,K).
If E2 occurred, this will be the correct answer to the OW challenge with
probability 1/qH . We therefore have

Pr[E2] ≤ qH ·AdvOW
B,sNIKE(κ) .

The theorem follows by plugging together this inequality with the inequali-
ties that relate games G0, G1 and G2.

C.2 Proof of Theorem 2

Proof. We present the simulator that justifies our protocol in Figure 8. The
proof is structured as a sequence of games, which begins with the real-world
experiment and terminates in the ideal world experiment where our simulator
interacts with the FbPAKE functionality.

Game G0: This is the real-world experiment. We show the expanded protocol
and operation of the ideal cipher (and the step-wise transformations during
the next games) in Figure 18.

53

Game G1: We modify the operation of the ideal cipher, so that ciphertexts
produced in the forward direction are sampled so as to be globally fresh
across all queries placed to the ideal cipher. This game and G0 are identical
until bad occurs, where bad is the event that a ciphertext is generated in G0

by computing the ideal cipher in the forward direction that collides with some
pre-existing ciphertext at the output of the ideal cipher. This occurs with
probability at most q2IC/|C|. The game now keeps a table mapping ciphertexts
to passwords, that is updated whenever a new ciphertext is generated by the
ideal cipher (this table, which we note fully identifies a password when given
a ciphertext generated by the ideal cipher, will be useful in future games).
We also note that this modification guarantees a ciphertext transmitted by
an honest party fully identifies the session instance that transmitted it. We
have

|Pr[G0]− Pr[G1]| ≤ Pr[bad] ≤ q2IC/|C|.

Game G2: Wemodify once more the operation of the ideal cipher, so that pub-
lic keys generated in ideal cipher reverse queries are not sampled uniformly
at random conditioned on the permutation property, but rather created us-
ing sNIKE.Keygen and aborting if the permutation property is violated. The
ideal cipher table now also keeps the generated secret key.

Let ϵsNIKE.Keygen be the maximum advantage of a ppt adversary in distin-
guishing public keys produced by sNIKE.Keygen from uniform. Then we can
bound the distance between Games 1 and 2 as

|Pr[G1]− Pr[G2]| ≤ q2IC/|PK|+ qIC · ϵsNIKE.Keygen

To see this, note that we can first modify Game 1 to sample uniform keys and
aborting if a collision occurs, at the cost of a q2IC/|PK| statistical distance.
Then one can directly reduce the distance between the resulting two games
to the pseudorandomness of ϵsNIKE.Keygen using a hybrid argument over all
reverse IC queries.

Game G3: At this point we replace all outputs of sNIKE.ShKey that are com-
puted using two key pairs generated by the game with random values in
SK. Note the caching of secret keys to deal with consistency on matching
sessions and delivery of repeat messages. Concretely, for sessions that agree
on session keys computed from two ciphertexts that were generated by the
game, it is guaranteed that the game itself generated the key pairs associated
with these ciphertexts in the IC table: all such session keys are replaced with
random ones. When the incoming ciphertext is not generated by the game,
one must check if the correct password identifies a backward IC query, in
which case the game also generated the associated key pair in the IC table.
List LK is therefore partitioned between those entries that contain two ci-
phertexts generated by the game (that intuitively correspond to passive or
almost passive attacks where the attacker just changes the coparty names)
and those entries that contain only one such ciphertext, and that correspond
to active attacks with wrong password guesses (no two such entries will ever

54

collide by lexicographic ordering, so there is no possibility of matching, as
should be the case in active attacks).
We construct a reduction B that perfectly interpolates between G2 and G3

and wins the CKS game against the underlying sNIKE protocol with the
same advantage that an attacker can distinguish the two games. The reduc-
tion simply uses the Test oracle to obtain the session computed between two
public keys generated by the game, and CorrReveal to obtain the session keys
that result from key agreements where one of the public keys was chosen by
the adversary. We therefore have

|Pr[G3]− Pr[G2]| ≤ Adv
(qIC,qIC)-CKS
B,sNIKE (κ) ,

where we bound the number of honest and corrupt public keys involved in
the reduction indirectly using a bound on the number of ideal cipher calls
executed during the game.

Game G4: In this game we replace the outputs of KDF with random keys
whenever the input key to the function was randomly sampled by the game.
This means that the KDF is now only computed when an active attack suc-
ceeds in guessing the correct password. Note that, at this point, the indexing
of the table that keeps track of key matching and key repeats now uses ssid .
This is consistent with the modification we introduced, since the KDF out-
put is determined by its input key and ssid . The two games can be bridged
using a hybrid argument over the KDF input keys involved in this change,
where each hybrid step is a direct reduction to the PRF property of the
KDF: note that the same KDF input key may be used over different ssid
due to the possibility that the adversary manipulates the names of parties
during transmission. If ϵKDF is the maximum advantage against the PRF
property of the KDF by a ppt adversary, then we have

|Pr[G3]− Pr[G4]| ≤ qK · ϵKDF,

where qK bounds the number of keys derived in the game.
Game G5: In this game we simply rearrange the code of the experiment to

more closely match the split between the code of FbPAKE and the simulator
in the ideal world. The only modification that introduces a difference in the
adversary’s view is that protocol sessions no longer generate and encrypt
public keys, but rather directly sample a ciphertext for transmission as if a
new forward IC query occurred. The public key of such a session is generated
only if/when it is needed. This can happen in two cases: 1) the attacker
decrypts this ciphertext under the correct password causing the key pair to
be sampled; or 2) the attacker delivers another ciphertext to this session that
decrypts, under the correct password, to a public key for which it may know
the secret key. The secret key is only needed if the second case occurs and the
game detects this event exactly like the simulator: the list S now contains
only the ciphertexts and passwords corresponding to forward queries placed
by the adversary, so it allows for password extraction; the game can therefore
obtain the key pair by querying IC−1. After this change, the execution of

55

honest parties no longer relies on the password, except when checking if
an active attacker is using the correct password, exactly matching the ideal
world.
It remains to bound the probability that an attacker can distinguish G5

from G4. The two games are identical until bad′ occurs, where bad′ is the
probability that one of two events occur: 1) G4 generates a repeat public
key that does not cause a fresh ciphertext to be generated; 2) The attacker
places a forward query to the IC that would have guessed an honest party’s
public key in G4, but this key has not yet been generated in G5 (in our
pseudocode entries of the form (⊥,⊥,⊥, c′) in table T are assumed to never
match adversarial input to the IC). Due to the lower bound on public-key
min entropy, we have

|Pr[G4]− Pr[G5]| ≤ 2 · q2IC/2κ.

This concludes the proof.

D Proof of Theorem 3

Proof. Game G0: The real execution. Z runs the real protocolΠbCPace with
adversary A.

Game G1: Change layout. We move the whole execution of G0 into an ITI
called simulator Sim. We add an empty ITI F that relays inputs and outputs
of parties between Z and Sim, and we add dummy party relays between Z
and F for each real party. The changes are only syntactical and hence we
have

Pr[G0] = Pr[G1].

Game G2: Embedding trapdoors. In this game we let Sim sample a gen-
erator gSim ←R G upon invokation. Sim then creates a record (HG, pw , x, Y)
upon HG(pw) from A or any internally simulated honest party, where x←R

Zq is sampled at random and Y = gxSim is sent as a reply to A. Sim checks
for existing records and replies consistently with the same Y if a record for
some input x exists already. Since this way Sim implements a random group
oracle, the changes are not noticable by the environment and we have

Pr[G1] = Pr[G2].

Game G3: Use generator gSim for the simulation of all honest par-
ties. We change the simulation of honest parties as follows: upon each input
(NewSession, sid , i , pw , id ,⊥) and the simulated P querying HG(pw) with
resulting record (HG, pw , x, h) and P sampling secret key a ←R Zq and
computing message (sid , i , (ha, id)), Sim now creates an additional record
(P, i , x · a, ha, id , keysi = []).
Since Sim does not make use of the new record, this change does not have
any effect on the output distribution and is purely syntactical. We hence
have

56

Messages from Z:

(G0–G4 only)
On (NewSession, sid ,P, i , pw , id , role):
– Ignore if record ⟨P, i , ∗⟩ exists or if role ̸= ⊥.
– (sk , pk)←R sNIKE.Keygen(prm)
– c← ICpw (pk)
– m ← (c, id)
– st ← (sk , pw ,m)
– Store ⟨P, i , st⟩.
– Send (i ,m) to A.

(G5 only)
On (NewSession, sid ,P, i , pw , id , role):
– Ignore if record ⟨P, i , ∗⟩ exists or if role ̸= ⊥.
– c←R {c′ ∈ C | (⊥,⊥,⊥, c′) /∈ T}
– Append (⊥,⊥,⊥, c) to T .
– m ← (c, id)
– st ← (⊥, pw ,m)
– Store ⟨P, i , st⟩.
– Send (i ,m) to A.

Messages from A:

(G0–G4 only)
On message (sid , i ,m′) from A towards honest P:
– Ignore if record ⟨P, i , [st]⟩ does not exist.
– Parse (sk , pw ,m)← st .
– (G3) Parse (c, id)← m.
– Parse (c′, id ′)← m ′.
– ssid ← {m,m ′}ord
– (G3) If record ⟨[P ′], [i ′], (·, ·,m′)⟩ or record
⟨[P ′], [i ′], (·, ·, (c′, ·))⟩ exists:
(G3 only)
• If {c, c′}ord ∈ LK , then: K̄ ← LK [{c, c′}ord].
• Else: K̄ ←R K.
• LK [{c, c′}ord]← K̄
• K ← KDF(K̄, ssid)

• (G4) If ssid ∈ LK , then: K ← LK [ssid].
• (G4) Else K ←R K
• (G4) LK [ssid]← K
• (G3) Return (K, ssid , id ′).

– pk ′ ← IC−1
pw (c

′)
– (G3) If (pw , [pk ′], [sk ′], c′) ∈ T and sk ′ ̸= ⊥:

(G3 only)
• If {c, c′}ord ∈ LK , then: K̄ ← LK [{c, c′}ord].
• Else: else K̄ ←R K.
• LK [{c, c′}ord]← K̄.
• K ← KDF(K̄, ssid).

• (G4) If ssid ∈ LK , then: K ← LK [ssid].
• (G4) Else: K ← K
• (G4) LK [ssid]← K
• (G3) Return (K, ssid , id ′).

– K̄ ← sNIKE.ShKey(sk , pk ′)
– K ← KDF(K̄, ssid)
– Output (K, ssid , id ′).

(G5 only)
On message (sid , i ,m′) from A towards honest P:
– Ignore if record ⟨P, i , [st]⟩ does not exist.
– Parse (⊥, pw ,m)← st .
– Parse (c, id)← m.
– Parse (c′, id ′)← m ′.
– ssid ← {m,m ′}ord
– If record ⟨[P ′], [i ′], (·, ·,m′)⟩ or record
⟨[P ′], [i ′], (·, ·, (c′, ·))⟩ exists:
• If ssid ∈ LK , then: K ← LK [ssid].
• Else K ←R K
• LK [ssid]← K
• Return (K, ssid , id ′).

– If L[c′] = ⊥:
• If ssid ∈ LK , then: K ← LK [ssid].
• Else K ←R K
• LK [ssid]← K
• Return (K, ssid , id ′).

– (pw ′, pk ′)← L[c′]
– If pw ̸= pw ′ :
• If ssid ∈ LK , then: K ← LK [ssid].
• Else: K ← K
• LK [ssid]← K
• Return (K, ssid , id ′).

– pk ′ ← IC−1
pw (c

′)
– Retrieve (pw ′, pk , [sk], c) from T .
– K̄ ← sNIKE.ShKey(sk , pk ′)
– K ← KDF(K̄, ssid)
– Output (K, ssid , id ′).

Ideal cipher calls:

On query ICpw (pk):

(G0 only)
– If (pw , pk , [c]) ∈ T , return c.
– c←R {c′ ∈ C | (pw , ·, c′) /∈ T}.
– Append (pw , pk , c) to T .

– (G1) If (pw , pk , ·, [c]) ∈ T , return c.
– (G1) c←R {c′ ∈ C | (·, ·, ·, c′) /∈ T}.
– (G1) Append (pw , pk ,⊥, c) to T .
– (G1) L[c]← (pw , pk).
– Return c.

On query IC−1
pw (c):

(G0 only)
– If (pw , [pk], c) ∈ T , return pk .
– pk ←R {pk ′ ∈ PK | (pw , pk ′, ·) /∈ T}
– Append (pw , pk , c) to T .

– (G2) If (pw , [pk], ·, c) ∈ T , return pk .
– (G2) (sk , pk)←R sNIKE.Keygen(prm)
– (G2) Abort if (pw , pk , ·, ·) ∈ T .
– (G2) Append (pw , pk , sk , c) to T .
– Return pk .

Fig. 18. Modifications of the expanded protocol and the ideal cipher during the se-
quence of games in the proof of Theorem 2. Dashed boxes are only included according
to their description at the top.

57

The simulator (G2) samples a generator gSim ←R G. It also generates parameters for ΠbCPace by running SetupbCPace and
hands them to any party querying Fcrs .

Messages from FbPAKELE

On (NewSession, sid ,P, i ,⊥, id):
– (G11) Sample s←R Zp, set S ← gs

– (G6) Abort if s was sampled upon a NewSession query before
– (G3) Record (P, i , s, S, id , keysi = []), where keysi is an empty array storing compromised keys output by P’s instance

i
– Send (sid , i , (S, id)) to A as message from P

Messages from A

On message (sid , i , (X, cpid)) from A towards honest P:
– (G8) Retrieve record (P, i , [s, S, id , keysi]), ignore message if no such record exists
– Set ssid ← {(S||id), (X||cpid)}ord
– (G9) For any tuple of records (HG, pw , r, R), (HG, pw

′, r′, R′) maintained by Sim, if A already submitted

(sid , H(K′, ssid)), (sid , H(K, ssid)) with K = Bs/r, K′ = Bs/r′ , then Sim aborts.
– (G10) If (i , (X, cpid)) is adversarially generated, do:
• [A computed key already] If ∃ records (HG, [pw], r, ∗), (H,K, ssid , [k]) such that K = Xs/r: // Secret key of P

is s/r, i.e., CDH(H(pw), X, S) = CDH(gr, X, gs) = CDH(g,X, gs/r) = Xs/r.
* Set keysi [(X, cpid)]← k
* Send (ActiveNewKey, sid ,P, i , pw , k, ssid , cpid) to FbPAKELE

• [AdversarialX ⇒ random key] If no such records exist, send (ActiveNewKey, sid ,P, i ,⊥,⊥, ssid , cpid) to FbPAKELE .
– [Honest delivery] Else do:
• (G8) Retrieve record ([CP, i ′], ∗, X, cpid , ∗) // Some party CP previously sent (i , (X, cpid))
• (G8) Set ssid ← {(S||id), (X||cpid)}ord
• (G8) Send (PassiveNewKey, sid ,P, i , CP, i ′, ssid) to FbPAKELE .

Random oracle queries from A

On query HG(pw) by A:
– (G2) Retrieve record (HG, pw , ∗, [h]) and reply with h
– (G2) Otherwise, do:
• (G2) Sample x←R Zq, set h← gxSim
• (G4) Abort if record (HG, ∗, x, ∗) exists
• (G2) Store (HG, pw , x, h) and reply with h.

On query H(K, ssid) by A:
– (G7) Retrieve record (H,K, ssid , [k]) and reply with k
– (G7) Otherwise, extract from ssid values S0, S1, id0, id1

– (G7) If ∃ records (∗, ∗, s0, S0, ∗, ∗), (∗, ∗, s1, S1, ∗, ∗), (HG, ∗, x, ∗) with K = gs0s1/x then abort // Guessed honest DH
key

– (G9) For any three-tuple of records (P, i , s, S, id , keysi), (HG, pw , r, R), (HG, pw
′, r′, R′) maintained by Sim, if A

already delivered message (sid , i , (m, id ′)) to P and also submitted (sid , H(K′, ssid)) with K′ = Bs/r′ : if K = Bs/r

and ssid = {(S||id), (m||id ′)}ord, then Sim aborts.
– (G10) [A computes key already given out to an honest party] If for any j ∈ {0, 1} ∃ records (P, [i], sj , Sj , id , keysi)

with keysi [S1−j , id1−j] ̸= ⊥ and record (HG, [pw], r, ∗) s.t. K = Bsj/r:
• Send (LateTestPwd, sid ,P, i , ssid , keysi [S1−j , id1−j]) to FbPAKELE

• Denote FbPAKELE ’s answer to this query with k.
– In any other case, set k ←R {0, 1}κ
– (G7) Store (H,K, ssid , k) and reply to A with k

Fig. 19. Simulator for bare CPace.

58

Pr[G2] = Pr[G3].

Note that ha = gxaSim, i.e., with the change of this game, Sim now keeps track
of exponents of honest parties’ exponents w.r.t the “simulation base” gSim.

Game G4: Abort upon HG collision. In this game, we let Sim abort if it
chooses x←R Zq such that record (HG, ∗, x, ∗) already exists.
This and the previous game are equal except in case of an abort, which by
the Birthday Bound is negligible, i.e.,

|Pr[G4]− Pr[G3]| ≤
(qH2G + qvar)(qH2G + qvar − 1)

2 · 2κ
,

where qvar is the overall number of passwords in the system (note that it
must hold that qvar ≤ qns), and qH2G is the number of HG queries issued by
A.

Game G5: Introduce the functionality. In this game we set F = FbPAKELE

in the lazy-extraction version (including gray boxes), with two modifications:
(1) F relays all outputs of the form (sid , i ,K, ssid , id) from Sim to Z, (2) F
adds pw to NewSession queries, i.e., informs the simulator about passwords.
(All these modifications will be rolled back in later games.)
The changes are only syntactical because with modifications (1) and (2), all
inputs and outputs are still relayed between the real execution within Sim
and the environment Z. The newly added interfaces LateTestPwd,ActiveNewKey
and PassiveNewKey are not yet called by the simulator and hence do not have
any effect on the output distribution. We hence have

Pr[G4] = Pr[G5].

Game G6: Abort upon transcript collision In this game we let Sim abort
if any honest party outputs a message (sid , ∗, (A, ∗)) where A was already
output by an honest party before.
By the Birthday Bound, we have

|Pr[G6]− Pr[G5]| ≤
qns(qns − 1)

2 · 2κ
,

where qns is the number of NewSession queries issued by A. From this game
on, messages produced by honest parties are unique.

Game G7: Abort upon DH key guess. We change the simulation of the
H oracle as follows: upon receiving an query H(K, ssid) from A, Sim ex-
tracts from ssid values A||id , B||cpid . If Sim finds records (∗, ∗, a, A, ∗, ∗),
(∗, ∗, b, B, ∗, ∗), (HG, ∗, x, ∗) with K = g

ab/x
Sim , Sim aborts.

This and the previous game produce equal outputs unless Sim aborts. We
show that this happens only with negligible probability if the gapCDH as-
sumption (Definition 6) holds in G.
We build an attacker BgapCDH against the computational DH problem from
a distinguisher D of games G6, G7. BgapCDH holds a challenge (g,A,B).

59

BgapCDH randomly picks one (NewSession, [i , pw ,⊥, id]) query of Z and sets
HG(pw) := g, and (sid , i , (A, id)) as the outgoing message of the party P
who received the NewSession input. Then, BgapCDH randomly picks another
(NewSession, [i ′], pw ,⊥, [cpid]) query of Z (i.e., with the same pw) to some
party P ′ ̸= P and sets (sid , i ′, (B, cpid)) as the message of P ′. BgapCDH

samples K ←R {0, 1}κ. If B gets delivered to instance P, i or/and A gets
delivered to instance P ′, i ′, BgapCDH sets K to be the output by P or/and
P ′.
We need to detail how BgapCDH computes the outputs of P and P ′ for
other messages reaching them for their instances i and i ′. Say message
(sid , i , (Z, id ′)) reaches instance P, i , which had (sid , i , (A, id)) as a mes-
sage. Since BgapCDH does not have secret key for instance P, i , BgapCDH,
it will use its DDH(g,A, ∗, ∗) oracle to program H correctly: BgapCDH sets
ssid ← {(A||id), (Z||id ′)}ord and sets (H(C, ssid), ssid , cpid) as the output
of P, where DDH(g,A, Z,C) = 1. In case no such C can yet be found among
Z’s H queries, BgapCDH leaves a placeholder and fills in C as soon as Z sends
it as an input to the random oracle H.
Outputs of P ′ are computed similarly, only that P ′ uses H(pw ′) = g′ ̸= g
and thus, oracle DDH(g′, B, ∗, ∗) is required to compute the output keys of
P ′.
If Z queries H(K, s) with s = {(A||id), (B||cpid)}ord and provides a solution
DDH(g,A,B,K) = 1, then BgapCDH submits K as CDH solution to its own
challenge (g,A,B).
If Z never queries H(K, {(A||id), (B||cpid)}ord) with DDH(g,A,B,K) = 1,
then BgapCDH perfectly implements G7 and G6. This can be seen since the
only change is in the implementation of the random oracle H using the DDH
oracles, which is a perfect emulation of the H oracle in both games. It thus
follows that

|Pr[G7]− Pr[G6]| ≤ qvarqpwAdvgapCDH
G ,

where qvar is the overall number of passwords in the system (note that it must
hold that qvar ≤ qns), and qpw is the maximum number of parties receiving
the same password through a NewSession input.

Game G8: Functionality decides keys of honest sessions. We change
the simulation as follows. Whenever the adversary delivers an honestly gen-
erated message (sid , i , (X, cpid)) to some honest P, Sim looks for records
(P, i , ∗, [S, id], ∗), ([CP, i ′], ∗, X, cpid , ∗). If both exist, Sim sets ssid ← {(S||id), (X||cpid)}ord
and uses FbPAKELE to fix an output key for P by issuing a request (PassiveNewKey, sid ,P, i , CP, i ′, ssid).
Additionally, the output that the simulated P generated upon receipt of the
message is suppressed.
Since every NewSession triggers a corresponding record created by Sim, Sim
sends PassiveNewKey to instance P, i with partner CP, i ′ if and only if in-
stance P, i outputs a key in G7 upon receipt of a message from CP, i ′.
Because roles are all set to ⊥ in CPace, and transcripts of honest parties
are unique as of game G6, the PassiveNewKey query results in P to out-
put a key for instance i . It is thus left to argue that this output by P, i is

60

indistinguishable in both games. First, note that ssid computed by Sim in
G8 is equal to ssid computed by P, i in G7. In G7, P computed the key as
H(K, ssid). In G8, F either repeats a key that was already output by P, i
for the same ssid , or chooses k ←R {0, 1}κ (in case 1.), or it uses a previ-
ously generated random key from a testable record (case 2.) — but in any
case keys are generated freshly for each honest session. Since H is modeled
as a random oracle, HG is collision-free (cf. game G4), and Z does not query
H for DH keys computed by parties in honest sessions as of game G7, the
output distribution does not change.

Game G9: Abort upon more than one password guess.
We let the simulator abort if A issues more than one password guess per ac-
tively attacked instance. Let us first describe how password guessing works
in the real protocol ΠbCPace. Let P denote an honest party with input
(NewSession, sid , i , pw , id ,⊥). In game G3, a denotes P’s secret key, let
HG(pw) := gxSim and let (P, i , s := x · a,A := gsSim, id , keysi) denote the
corresponding record installed since game G3, where A is the message sent
to the adversary A. A can now attempt to guess pw by sending a message
(sid , i , (B, cpid)) to P, compute a key, and compare that key with the output
key that P computes from B. This works as follows: A takes a password pw ′,
samples a secret key b ←R Zq and computes B ← HG(pw

′)b. Then A com-
putes k ← H(Ab, {(A||id), (B||cpid)}ord. The honest party P that receives
B computes and outputs k′ ← H(Ba, {(A||id), (B||cpid)}ord). Because HG is
collision free as of game G4, we have (HG(pw

′)b)a = Ba = Ab = (HG(pw)b)a

if and only if pw = pw ′. Hence, Z can verify the password guess made by A
by comparing k and k′.
With this game, we limit the allowed number of guesses per active attack
(i.e., per adversarial B delivered to an honest instance P, i) to 1. With the
above, this means we let the simulator abort if the following happens: for any
three-tuple of records (P, i , s, S, id , keysi), (HG, pw , r, R), (HG, pw

′, r′, R′)
maintained by Sim, if A delivers message (sid , i , (m, cpid)) to P and also
submits two queries H(K, ssid), H(K ′, ssid) with K = Bs/r, K ′ = Bs/r′

and ssid = {(m||id), (S||cpid)}ord, Sim aborts.
Clearly, if the abort does not happen, this and the previous game have an
equal output distribution. We now show that the abort happens only with
negligible probability if the simultaneous gapCDH assumption (Definition 7)
holds in G. Advsim−gapCDH gets as input (g, g1, g2, g3), sets gSim ← g, ran-
domly chooses two adversarial HG queries HG(pw),HG(pw

′) with pw ̸= pw ′,
stores (HG, pw ,⊥, g1), (HG, pw

′,⊥, g2) and replies to the adversary query-
ing these oracles with g1 and g2. Advsim−gapCDH also randomly picks a
NewSession query (NewSession, sid , i , p̃w , id ,⊥) with p̃w ∈ {pw , pw ′}, which
is input of some honest party P ′, and sets g3 to be the resulting simulated
message.
Let P denote an honest party receiving an input (NewSession, ..., p̄w , ...),
where p̄w ∈ {pw , pw ′}. We explain how Advsim−gapCDH emulates the exe-
cution for the case p̄w = pw , i.e., HG(p̄w) = g1. Advsim−gapCDH proceeds
the execution for this NewSession query as in the previous game, i.e., lets

61

P sample a secret key a ←R Zq and compute A ← ga1 . The only difference
is that Advsim−gapCDH cannot record the HG trapdoor, and instead writes a
record (P, i ,⊥, A, id , keysi), leaving the third field empty.
Whenever a message (sid , i , (m, cpid)) gets delivered to P ′, as of game G8 no
output key needs to be computed from it if that message is honest, because
the key is generated by the functionality. Advsim−gapCDH still needs to com-
pute an output key if the message is adversarial though. In G8, the key was
computed from the secret key of P ′, which is not known to Advsim−gapCDH

since g3 was set as the message of P ′.
We distinguish two cases, depending on the password p̃w input to P ′: (1)
p̃w = pw , or (2) p̃w = pw ′. Advsim−gapCDH handles these cases similarly,
using oracle DDH(g1, g3, ∗, ∗) for case (1) and DDH(g2, g3, ∗, ∗) for case (2).
We detail only case (1). On incoming message m, P ′ sets K as the output
of H(CDH(g1, g3,m), ssid). Advsim−gapCDH perfectly emulates this behavior
by using its DDH oracle DDH(g1, g3,m,K) on every query H(K, ssid), and
if one such oracle query results in 1, Advsim−gapCDH sets the hash output
and the output key of P ′ to be equal. Note that this can happen in an
arbitrary order: if P ′ needs to output the key before such a K is found, the
output key is chosen at random by Advsim−gapCDH and later programmed
into H. Otherwise, the hash value is used as the output of P ′. (Note that
the strategy for consistently computing party outputs is the same as in game
G7.) Upon A querying H(K, ssid), H(K ′, ssid) with DDH(g1, g3,m,K) = 1,
DDH(g2, g3,m,K ′) = 1 and ssid = {(m||id), (S||cpid)}ord, Advsim−gapCDH

submits (m,K,K ′) as solution to its own experiment.
Since the missing entries in the records are not used, Advsim−gapCDH per-
fectly emulates the execution of this game. Moreover, using its oracles,
Advsim−gapCDH can reliably detect solutions to its own challenge. We hence
have

|Pr[G9]− Pr[G8]| ≤ q2H2GqpwAdvsim−gapCDH
G .

Note: The need to emulate the behavior of other parties using the “challenge”
passwords is unique to the bare PAKE setting, i.e., it does not occur when
CPace is used as a standard PAKE [AHH21]. This is because in that version
of CPace, ephemeral generators and secret keys are computed for each key
exchange.

Game G10: Functionality decides keys of attacked parties. We change
the simulation for the case where an attacked party outputs a key. Whenever
the adversary delivers an adversarially generated message (sid , i , (X, cpid))
to some honest party P, Sim tries to retrieve a record (P, i , [s, S, id , keysi])
and drops the message if none exists. Otherwise, Sim continues by set-
ting ssid ← {(S||id), (X||cpid)}ord. Sim looks for records (HG, pw , r, R) and
(H,K, ssid , k) generated from adversarial hashing requests such that K =
Xs/r (note: the HG record contains the adversarial password guess against
the honest party, and the adversary already computed the output key k
of that party). If these exist, then Sim updates keysi([X, cpid]) ← k in the

62

record and sends (ActiveNewKey, sid ,P, i , pw , k, ssid , cpid) to FbPAKELE . Oth-
erwise (X is produced otherwise, A does not yet know the output key), Sim
sends (ActiveNewKey, sid ,P, i ,⊥,⊥, ssid , cpid) to FbPAKELE .
At the same time, we need to treat the case where the attacker computes
a key that was already output by an attacked party: we need to adjust
the simulation of the H oracle, and let Sim program into it the keys out-
put by the functionality towards attacked parties. We change the simula-
tion of the H oracle on input H(K, ssid) by A as follows. Let (S0||id0),
(S1||id1) denote the values extracted from ssid . Before sampling a ran-
dom k as a reply to the H query of A, Sim checks if for some j ∈ {0, 1}
∃ records (P, [i], sj , Sj , id j , keysi) with keysi [S1−j , id1−j] ̸= ⊥ and record
(HG, [pw], r, ∗) s.t.K = Bsj/r and S1−j , id1−j is from an adversarially gener-
ated message. Sim sends (LateTestPwd, sid ,P, i , ssid , pw) to FbPAKELE . Upon
reply k, Sim stores k in the H list and replies to A with k.
We need to argue indistinguishability for the outputs of P and the replies
to adversarial H queries for the various cases of active attacks against P.
(1) Output of P when attacked with valid password guess: if P used pw in
instance i and Sim finds the records above, i.e., A already computed the
key, then P outputs k in the previous game as well as in this game, since the
ActiveNewKey query either passes k through to P in that case, or FbPAKELE

had already output k to P for the very same i , ssid and now repeats that k to
P (replaying a message results in the same key). If P uses a different password
pw ′ in instance i , P outputs H(K̄, ssid) with K̄ = Xs/r′ for HG(pw

′) = gr
′

Sim

in the previous game and a key chosen at random by F in this game. This
change is only noticeable if A submits K̄ to the H oracle, which is excluded
since game G9.
(2) Output of P when attacked without valid password guess: Consider now
the case where Sim does not find two records (HG, pw , r, R) and (H,K, ssid , k)
such that K = Xs/r. The output of P is H(K, ssid) with K̄ = Xs/r and
HG(pw) = grSim for some pw that P received as input in the previous game.
In this game, the output is a uniformly random value in this game, sampled
by F . If A does not submit K to H, the output is equally distributed. Oth-
erwise, the execution is independent of r and hence A submits K to H only
with negligible probability.
(3) Reply to H query, key found: In the previous game, A would receive
as a reply the key output by P in instance i using pw , produced upon re-
trieval of adversarial message (sid , i , (S1−j , id1−j)), because that party com-
puted its output as H(K, ssid). In this game, Sim obtains some key k via
LateTestPwd from FbPAKELE , where k was output by P in instance i using pw
for session ssid if and only if FbPAKELE has a record ⟨latetest,P, ssid , pw , k⟩
flagged testable. This is the case because the simulator in this game sent
(ActiveNewKey, sid ,P, i ,⊥,⊥, ssid , cpid) for the corresponding session of P.
(4) Reply to H query, no key found: Since the simulation in this game only
changes when a corresponding key is found in the records, the reply is still
computed as in the previous game, i.e., random sampling of a reply to a
fresh H query.

63

Game G11: Simulate messages without passwords. We change the sim-
ulation as follows: Upon query (NewSession, sid ,P, i , id ,⊥) from FbPAKELE ,
Sim skips hashing pw and drawing a secret key a, and instead directly sam-
ples s←R Zq. Sim then proceeds as in the previous game, i.e., computes the
message of P as S ← gsSim and records (P, i , s, S, id , keysi []).
Because G is a cyclic group, S of this game and of the previous game (where
parties computed S ← gxaSim with a←R Zq) are equally distributed. Further,
the simulation of this game does not use the secret key a of parties anymore,
because the output of simulated parties is computed by FbPAKELE (in honest
sessions as of game G8, and in attacked sessions as of game G10). The HG
trapdoor r of honest parties is also never accessed by Sim, since only HG
records installed upon adversarial requests are retrieved. Hence, this and
the previous game are equally distributed and we have

Pr[G10] = Pr[G11].

Game G12: Remove password and key forwarding from functionality.
As ofG11, passwords of honest parties are not accessed by the simulator any-
more. At the same time, outputs of honest parties are produced by FbPAKELE .
We can hence remove the forwarding of passwords and keys that we tem-
porarily installed in game G5, restoring the original FbPAKELE functionality,
without modifying any outputs seen by Z. We hence have

Pr[G11] = Pr[G12],

where the execution in this game is run by the simulator of Figure 19 together
with the lazy-extraction bare PAKE functionality FbPAKELE .

D.1 Relating to previous analyses

Applying our barePAKE-to-PAKE transformation in Figure 14 to our bare
CPace protocol ΠbCPace of Figure 9 yields a variant of CPace that is secure w.r.t
the standard UC PAKE functionality (according to Theorem 4), and which can
roughly be described as follows:

generator← HG(pw , {P, CP}ord, ssid)
final key← H(k,A,B)

“Basic CPace” of Abdalla et al. [AHH21], which is proven secure w.r.t FPAKESS ,
i.e., single-session PAKE, can be cast in a multi-session setting by applying the
UC with Join State transformation [CR03]. This transformation adds session
identifiers to all random oracles, and yields the following multi-session CPace
variant:

generator← HG(pw , {P, CP}ord, ssid)
final key← H(k,A,B, ssid)

64

The only difference is hence the additional ssid in the final key derivation hash.
Since adding this public identifier does not impact the security, applying our
Theorem 4 to Theorem 3 confirms the standard UC security of basic CPace of
Abdalla et al. [AHH21].

Next, we compare with the currently specified version of CPace at the IETF
[AHH20]. Our bare CPace ΠbCPace of Figure 9 roughly does the following:

generator← HG(pw)

final key← H(k, {(A||id), (B||cpid)}ord)

Since the security of ΠbCPace is proven w.r.t arbitrary environments in Theorem
3, it holds in particular for id and cpid being empty strings. The resulting bare
CPace

generator← HG(pw)

final key← H(k, {A,B}ord)

is that of [AHH20] when leaving out the optional session- and party identifiers
from the specification. Our Theorem 3 hence shows that [AHH20] enjoys strong
composability guarantees even without a unique session identifier, and without
unique party identifiers that are known to both participants. Of course, without
any identifying information of parties, such a variant of CPace might be of
only limited applicability. It seems therefore that bare CPace is superior to the
protocol specified in [AHH20], in the following sense:
– Bare CPace has composable security without unique and pre-exchanged ses-

sion identifiers
– Both bare CPace and [AHH20] let parties learn authenticated information

about the counterparty’s identity, however
– Bare CPace does not put any conditions on party names id , cpid , while

[AHH20] requires party identifiers to be pre-exchanged and unique among
all protocol participants.

65

