
Analysis of Layered ROLLO-I:
A BII-LRPC code-based KEM

Seongtaek Chee1, Kyung Chul Jeong1, Tanja Lange2, Nari Lee1, Alex
Pellegrini2, and Hansol Ryu1

1 The Affiliated Institute of ETRI, Daejeon 34044, Republic of Korea
{chee, jeongkc, narilee, hansolryu}@nsr.re.kr

2 Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands
tanja@hyperelliptic.org, alex.pellegrini@live.com

Abstract. We analyze Layered ROLLO-I, a code-based cryptosystem
published in IEEE and submitted to the Korean post-quantum cryptog-
raphy competition. Four versions of Layered ROLLO-I have been pro-
posed in the competition. We show that the first two versions do not
provide the claimed security against rank decoding attacks and give re-
ductions to small instances of the original ROLLO-I scheme, which was
a candidate in the NIST competition and eliminated there due to rank
decoding attacks. Finally, we provide two efficient message recovery at-
tacks, affecting every security level of the first three versions of Layered
ROLLO-I and security levels 128 and 192 of the fourth version.

Keywords: Post-quantum cryptography · code-based cryptography ·
rank-metric code · BII-LRPC code · Layered ROLLO-I.

1 Introduction

Rank metric codes were introduced to cryptography by Gabidulin, Paramonov,
and Tretjakov at Eurocrypt’91 [5] but attacked and broken 10 years later by
Overbeck in several papers, covered in [12]. The NIST competition on post-
quantum cryptography saw a revival of rank-metric codes in rounds 1 and 2 until
some new algebraic attacks were found near the end of round 2. These attacks
did not completely break the systems and larger parameters were proposed that
would resist the new attacks, but the attacks showed that rank-metric codes
were not mature enough to be used. Furthermore, the larger parameters would
have hurt the performance of the systems. Consequently, NIST deselected all
rank-metric-based designs from advancing to round 3.

In this paper, we analyze a blockwise interleaved ideal low-rank parity-check
(BII-LRPC) code-based KEM, which was proposed by Kim, Kim, and No in [10]
and submitted to the KpqC Competition under the name Layered ROLLO-I [6].
Layered ROLLO-I is a modified version of the NIST candidate ROLLO [1],
and particularly of ROLLO-I. Layered ROLLO-I adds additional structure to
increase the length of the codewords that an attacker is faced with while at the
same time permitting the legitimate receiver, using the secret key, to peel off this



2 Chee, Jeong, Lange, Lee, Pellegrini, and Ryu

layer of structure and then to perform rank decoding with parameters which are
even smaller than in ROLLO-I, thus increasing performance.

In this paper we describe attacks on four versions of Layered ROLLO-I
that have been released subsequently to the communication of our analyses on
the KpqC bulletin. We show how to reduce every instance of the first two ver-
sions to an instance of original ROLLO-I at the smaller parameter size that
Layered ROLLO-I uses internally. This shows that the additional structure does
not add any security. As a consequence, the parameter sets proposed for Layered
ROLLO-I offer less security than the parameter sets for the corresponding levels
in the original ROLLO-I. After these two reduction attacks we show a message
recovery attack that works very efficiently for all parameter sets in the first three
versions and for two out of three levels for the fourth version.

This paper is organized as follows. The next section is dedicated to the needed
notation and background. For the sake of simplicity, we will refrain from intro-
ducing the entire framework of rank metric codes, (ideal and blockwise inter-
leaved ideal) low-rank parity check (LRPC) codes, since these notions will not
be directly used in the attacks and analysis. In Section 3.1, we give the specifi-
cation of Layered ROLLO-I and propose an attack reducing Layered ROLLO-I
to ROLLO-I and recalculate costs of RSD attacks following the improvements
in [3,4,2]. In Section 3.2, we describe the first Modified Layered ROLLO-I (MLR1)
system. We also show that we can adapt the attack in Section 3.1 to reduce this
system to ROLLO-I and further improve on RSD attacks complexities. Section 4
introduces two message recovery attacks. In Section 4.1, we describe the second
modified Layered ROLLO-I (MLR2) that resists the reduction attacks presented
in Section 3. We propose an efficient message recovery attack that can be applied
to all the versions of Section 3 and MLR2. Finally, in Section 4.3 we introduce
the third modified Layered ROLLO-I (MLR3) and a message recovery attack.
This attack recovers messages efficiently for security levels 128 and 192 of MLR3.

2 Notation and background

In the specifications of this paper, we will follow the notation of [10] with minor
changes. For an element x ∈ Fn

qm let wtR(x) denote the rank weight of x, which
is defined as the rank of the m × n-matrix over Fq containing as columns the
representations of the entries of x relative to some fixed basis of Fqm over Fq.

Denote by Sn
w(Fqm) the set of vectors of length n and rank weight w over

Fqm :
Sn
w(Fqm) = {x ∈ Fn

qm | wtR(x) = w}.
Let w = c + e for some codeword c and error e with wtR(e) ≤ r and let

s = wHT be the syndrome of w using a parity-check matrix H of the code.
The Rank Support Recovery (RSR(F, s, r)) algorithm is used as a decoder in

the decapsulation procedures of ROLLO-I and the follow-up designs. It recovers
the support E of (the Fq-linear subspace of Fqm generated by) the error vector e
given the support F of the dual code3, the syndrome s, and the rank r of the

3 Thus F defines the parity check for the code.

https://groups.google.com/g/kpqc-bulletin
https://10836797700226419832.googlegroups.com/attach/1fedaa7b4b23f/Layered_ROLLO_Documentation.pdf?part=0.1&view=1&vt=ANaJVrGNpL1moJsbRyAkSVyreW0cSZmmzrOrwxQInaWYgCevGYEngIlPD5JnU6ePy4lGWyAeErr6M3j2WEgEzrzJ5gOjyzLd-do0qAbQr3RQGL2M2A9jIEk
https://10836797700226419832.googlegroups.com/attach/24a65e7d8fda/New_Comments_230922.pdf?part=0.1&view=1&vt=ANaJVrGBH1MgahLejK7mxE3vVph6mmK3e5t-3Ejzl4lwq2fkqGN0JqCtWGFBxacajHWYhpH38IFpfF_r8ofXherqhHRaYIygfnhbDQCZ5DYgAkYS8heudTE
https://10836797700226419832.googlegroups.com/attach/24a65e7d8fda/New_Comments_230922.pdf?part=0.1&view=1&vt=ANaJVrGBH1MgahLejK7mxE3vVph6mmK3e5t-3Ejzl4lwq2fkqGN0JqCtWGFBxacajHWYhpH38IFpfF_r8ofXherqhHRaYIygfnhbDQCZ5DYgAkYS8heudTE
https://10836797700226419832.googlegroups.com/attach/7a3160382b61/New_Comments_231020.pdf?part=0.1&view=1&vt=ANaJVrGZsW7qx4_m1uPwS75Beovd4eafVAWKDEwvkPK9pYj18wZEqLLYNLv40aS8jneSPdNVy90rbVD579leHykP0SN2ZkRjj2ILS1CjDa6VJKqb3aBPdAs


Analysis of Layered ROLLO-I 3

error. This corresponds to actually finding the error coordinates, by solving a
linear system of equations (see p. 13 of the ROLLO specification [1]).

Let P (x) ∈ Fqm [x] be a polynomial of degree n. We can identify the vector
space Fn

qm with the ring Fqm [x]/(P (x)), where (P (x)) is the ideal of Fqm [x] gen-
erated by P (x). Given u = (u0, . . . , un−1) ∈ Fn

qm , denote by u(x) ∈ Fqm [x] the

polynomial u(x) =
∑n−1

i=0 uix
i. Given u,v ∈ Fn

qm , we define their product uv as
the unique vector w ∈ Fn

qm such that w(x) = u(x)v(x) mod P (x). Similarly, we
define Qu = Q(x)u(x) mod P (x) for Q(x) ∈ Fqm [x] and u−1 for u(x) invertible
modulo P (x).

2.1 ROLLO-I [1]

We give a simple description of ROLLO-I, which is the base of Layered ROLLO-I.
The values (q, n,m, r, d, P ) are the system parameters, where q, n,m, r, d are

integers and P (x) ∈ Fqm [x] is a primitive polynomial of degree n.

– KeyGen:
• Pick random x,y ∈ Sn

d (Fqm).
• Set h(x) = x(x)−1y(x) mod P (x).
• Return pk = h and sk = (x,y).

– Encap(pk):
• Pick random (e1, e2) ∈ S2n

r (Fqm).
• Set E = ⟨e1, e2⟩, where ⟨e1, e2⟩ denotes the Fq-vector space spanned by
the columns of e1 and e2 (interpreted as vectors in Fm

q ).
• Return K = hash(E) and c(x) = e1(x) + e2(x)h(x) mod P (x).

– Decap(sk):
• Set s(x) = x(x)c(x) mod P (x), F = ⟨x,y⟩ and E = RSR(F, s, r).
• Return K = hash(E).

3 Reduction Attacks

Layered ROLLO-I uses a structure of layer. Due to the special structure, the
performance has improved by 30-70% compared to ROLLO-I. In this section, we
give a simple description of Layered ROLLO-I and its variant and show that the
layer can be removed by exploiting public information. As a result, the security
of each algorithm is reduced to that of ROLLO-I for the small parameters inside
the layer, which gives far lower complexity than was suggested in [10].

3.1 Layered ROLLO-I

The values (q, n,m, r, d, b, P ) are the system parameters, where q, n,m, r, d, b are
integers, with n a multiple of b, and P (x) ∈ Fqm [x] is a primitive polynomial of
degree n/b. For all parameter sets defined in [10] we have b = 2 and in any case
b < n/b. The map Ψ : Fqm [x]/(P (x)) → Fqm [x]/(P (x)b) casts polynomials of
the first quotient into the second quotient by mapping the input to the unique



4 Chee, Jeong, Lange, Lee, Pellegrini, and Ryu

polynomial of degree < n/b that is congruent to it modulo P (x)b. Similarly, the
map Ω : Fqm [x]/(P (x)b) → Fqm [x]/(P (x)) reduces the input modulo P (x). Since
P (x)b is a multiple of P (x) these maps are well-defined.

– KeyGen:
• Pick random x,y ∈ S

n/b
d (Fqm).

• Pick random invertible PI(x) ∈ Fqm [x]/(P (x)) of degree (b− 1).
• Pick random PO(x), PN (x) ∈ Fqm [x]/(P (x)b) of degree n, with PO(x)
invertible (this last restriction is not stated but is required for function-
ality).

• Set z(x) = PI(x)x(x)
−1y(x) mod P (x).

• Set PP (x) = PO(x)Ψ(PI(x)) mod P (x)b and PH(x) = PO(x)Ψ(z(x)) +
PN (x)P (x) mod P (x)b.

• Return pk = (PP , PH) and sk = (x,y, PO, PI).
– Encap(pk):

• Pick random E = ⟨e1, e2⟩ with e1, e2 ∈ S
n/b
r (Fqm), each corresponding

to a polynomial of degree < n/b− b.
• Set PE1

(x) = Ψ(e1(x)) and PE2
(x) = Ψ(e2(x)).

• Compute
c(x) = PP (x)PE1

(x) + PH(x)PE2
(x) mod P (x)b.

• Return K = hash(E) and c.
– Decap(sk):

• Compute PC(x) = PO(x)
−1c(x) mod P (x)b.

• Compute c′(x) = PI(x)
−1Ω(PC(x)) mod P (x).

• Decode E = RSR(⟨x,y⟩,xc′, r).
• Return K = hash(E).

The attacker thus faces polynomials modulo P b as public key and as ci-
phertexts. These correspond to vectors of length n. The decapsulation process
removes the outer layer so that the RSR step works modulo P and thus on vectors
of length n.

Reduction of Layered ROLLO-I to ROLLO-I We propose a new reduction
of Layered ROLLO-I to ROLLO-I by using exclusively the public key of the
former. To start with, notice that PO must have an inverse modulo P b. This has
not been declared in the specification but the decapsulation process requires P−1

O .
If not, decapsulation fails. Also, PI is irreducible of degree (b−1) < n/b = degP ,
so it has an inverse modulo P and thus Ψ(PI) is invertible modulo P b. Therefore,
we can invert PP modulo P b and compute PP (x)

−1PH(x) as

Ψ(PI(x))
−1Ψ(z(x)) + PP (x)

−1PN (x)P (x) + k(x)P (x)b (1)

for some k(x) ∈ Fqm [x]. Since P divides P b, we can reduce the equation modulo
P , obtaining

PP (x)
−1PH(x) ≡ Ψ(PI(x))

−1Ψ(z(x))

≡ Ψ(PI(x))
−1PI(x)x(x)

−1y(x)

≡ x(x)−1y(x) mod P (x),



Analysis of Layered ROLLO-I 5

where the second equivalence follows from that Ψ(z(x)) ≡ PI(x)x(x)
−1y(x) mod

P (x), and the last equivalence from Ψ(PI(x))
−1 ≡ PI(x)

−1 mod P (x).

This shows that the public key of (q, n,m, r, d, b)-Layered ROLLO-I can
be reduced to the public key of (q, n/b,m, r, d)-ROLLO-I. The same can be
done for ciphertexts by computing PP (x)

−1c(x) = PP (x)
−1(PP (x)PE1

(x) +
PH(x)PE2

(x)) = PE1
(x) + y(x)x(x)−1PE2

(x) mod P (x)b, which is exactly a
ROLLO-I ciphertext.

Estimates for the security of Layered ROLLO-I: Layered ROLLO-I sug-
gests an attack that removes the layer of a BII-LRPC code using exhaustive
search and applies a structural attack to an instance of (q, n/b,m, r, d)-ROLLO-
I [10]. The suggested cost of the attack is shown in the third column of Table
1. However, the calculation is wrong and furthermore, the formula given in [10]
has a typo. The correct formula for the attack is given below.

S′
S =

(n
b

)3

m3q(b−1)m+d⌈m
2 ⌉−m−n

b . (2)

While the correct formula increases attack complexity when compared to the
suggested one in [10], the accurate computation yields significantly lower com-
plexity, which are 65, 112, and 131 bits, respectively.

Now we consider the attacks in [3,4,2], where we discard the options in [4]
that have been proved too optimistic in [3]. Since Layered ROLLO-I did not
consider applying these three attacks on the original parameters directly, we
recompute the costs of rank decoding attacks, finding out that the proposed
parameters are not suitable for the requested security levels. The most efficient
values of these attack costs are reported in the fourth column of Table 1. The
last column reports the cost of these attacks on the system after our reduction.

Security (q, n,m, r, d, b) Cost [10] Cost Cost red.

128 (2, 148, 67, 3, 2, 2) 130.83 48.76 [4] 40.65 [4]

192 (2, 172, 79, 4, 3, 2) 199.19 66.21 [4] 55.16 [4]

256 (2, 212, 97, 5, 3, 2) 274.98 85.68 [4] 72.05 [4]
Table 1. Suggested parameters and values of the log2 of attack costs for Layered
ROLLO-I’s suggested parameters. Cost [10] refers to the cost stated in the paper in-
troducing the system; references after the costs refer to the publication which has the
best attack on these parameters.

3.2 First Modified Layered ROLLO-I (MLR1)

This subsection extracts the description of the modified system MLR1 from [7].
The designers modified the system to overcome the reduction in Section 3.1
by replacing the two moduli P and P b by two primitive polynomials P1 and
P2 of degree n1 and n2, respectively. Because they are primitive they are in
particular irreducible and thus coprime. In this setting, one cannot simply reduce



6 Chee, Jeong, Lange, Lee, Pellegrini, and Ryu

equation (1) modulo P1 as the term k(x)P2(x) would not vanish which seems to
stop the attack.

However, this might make it seem like decapsulation cannot recover (e1, e2)
either because the moduli are incompatible. The KEM works around this prob-
lem by reducing the degrees of e1 and e2. In this setting, Ω first lifts to Fqm [x]
choosing the unique polynomial of degree less than n2 and then reduces mod-
ulo P1, Ψ similarly lifts to Fqm [x] choosing the unique polynomial of degree less
than n1 and then considers this polynomial modulo P2. Given that n2 > n1 no
reduction is needed.

The values (q, n1, n2, dI ,m, r, d), where dI < n1 < n2 are the system pa-
rameters. The two polynomials P1 and P2 are primitive of degrees n1 and n2

respectively. These are not stated among the system parameters but are needed
for the functioning of the system. In the following, we assume that P1 and P2

are part of the system parameters.

– KeyGen:
• Pick random x,y ∈ Sn1

d (Fqm).
• Pick random invertible PI(x) ∈ Fqm [x]/(P1(x)) of degree dI .
• Pick random PO(x) ∈ Fqm [x]/(P2(x)).
• Set z(x) = PI(x)x(x)

−1y(x) mod P1(x).
• Set PP (x) = PO(x)Ψ(PI(x)) mod P2(x) and PH(x) = PO(x)Ψ(z(x)) mod
P2(x).

• Return pk = (PP , PH) and sk = (x,y, PO, PI).

– Encap(pk):
• Pick random E = ⟨e1, e2⟩ with e1, e2 ∈ Sn2

r (Fqm) each corresponding to
a polynomial of degree < n2 − n1 − dI .

• Set PE1
= e1(x) and PE2

= e2(x). item Compute c(x) = PP (x)PE1
(x)+

PH(x)PE2(x) mod P2(x).
• Return K = hash(E) and c.

– Decap(sk):
• Compute c′′(x) = PO(x)

−1c(x) mod P2(x).
• Compute c′(x) = PI(x)

−1Ω(c′′(x)) mod P1(x).
• Decode E = RSR(⟨x,y⟩,xc′, r).
• Return K = hash(E).

Decapsulation works because

c′′(x) = PO(x)
−1(PP (x)PE1

(x) + PH(x)PE2
(x))

= PO(x)
−1(PO(x)Ψ(PI(x))PE1

(x) + PO(x)Ψ(z(x))PE2
(x))

= Ψ(PI(x))PE1
(x) + Ψ(z(x)PE2(x) mod P2(x)

and the degree of Ψ(PI(x))PE1
(x) + Ψ(z(x))PE2

(x) is < n2 by the choice of the
error vectors. Hence, c′′(x) = Ψ(PI(x))PE1

(x) + Ψ(z(x)PE2(x) in Fqm [x] i.e.,
without reduction, and thus the reduction modulo P1(x) preserves the factors
PI(x) which can then be divided out.



Analysis of Layered ROLLO-I 7

Reduction of MLR1 to ROLLO-I Now we will describe a reduction of MLR1.
Along the way we compute PI and PO, meaning that the system leaks private
information.

The idea of the reduction remains the same, observing that PH(x)/PP (x)
cancels the PO. However, because of the coprimality of the moduli, we cannot
proceed directly from there to reducing modulo P1. Nevertheless, we know that
the polynomials involved have very low degrees. Let R(x) = PH(x)/PP (x) mod
P2(x) then deg(R) < n2 andR(x) = Ψ(z(x))/Ψ(PI(x)) mod P2(x) with deg(z) <
n1 and dI small. Note that the division might cancel common factors of PI and
z, however, given the degrees this is unlikely.

Let MR be the (dI + 1)× n2 matrix over Fqm representing multiplication of
a polynomial of degree up to dI by R modulo P2, i.e.

MR =


R(x) mod P2(x)
R(x)x mod P2(x)

...
R(x)xdI mod P2(x)

 , (3)

where each row consists of the coefficient vector of R(x)xi mod P2(x) for i =
0, . . . , dI .

Remark 1. Let A be any n×m matrix, with n,m ∈ N. We denote by A[a : b, c :
d], with a < b ∈ [1, n] and c < d ∈ [1,m], the submatrix of A consisting of the
rows in the range [a, b] and columns in the range [c, d]. We omit a and b, i.e.
use A[:, c : d] to denote the submatrix consisting of all the rows and columns in
[c, d]. Similarly, for all the columns. With this notation A = A[:, :]. If S1 ⊂ [1, n]
and S2 ⊂ [1,m] we denote by A[S1, S2] the submatrix of A consisting of rows
indexed by S1 and columns indexed by S2.

The polynomial P2 is irreducible and thus Fqm [x]/(P2(x)) defines a field.
Note that multiplication by R defines an automorphism of this field, thus the
associated matrix M has rank n2. Therefore, since MR = M [1 : dI + 1, :], it has
rank dI + 1. Let π : Fn2

qm → FdI+1
qm be the projection of an element of Fn2

qm onto
its first dI + 1 coordinates. Consider

π(Ψ(PI(x)))MR = Ψ(z(x)) (4)

as a linear system of equations in the coefficients of Ψ(PI) and Ψ(z), where in this
case we view Ψ(z) as an element of Fn2

qm consisting of the unknown coefficients
of Ψ(z) and n2 − n1 trailing zeroes. Note that π does not induce any loss of
information due to the degree of Ψ(PI). Since deg(Ψ(PI))+n1 = dI+n1 < n2, the
system has a solution corresponding to the representatives of PI and z modulo
P1 (here we remove the Ψ notation as the solutions will have degree lower than
n1).

We can actually compute PI from a subset of the equations defined by (4).
Indeed, π(Ψ(PI)) lies in the left kernel of the submatrix of MR that consists
of the last n2 − n1 columns, meaning that such submatrix has rank at most



8 Chee, Jeong, Lange, Lee, Pellegrini, and Ryu

dI , and typically exactly dI as this system is defined over Fqm . Hence, let J ⊂
{n1 + 1, . . . , n2} having cardinality #J = dI . Denote by MR[:, J ] the submatrix
of MR consisting of the columns indexed by J . We only require MR[:, J ] to have
rank dI , which holds for most choices of J , so typically we take the last dI
columns. This makes explicit that the system is underdetermined, and in case
MR[:, J ] has rank lower than dI , we can include further columns. From (4) we
can compute PI by solving

π(Ψ(PI(x)))MR[:, J ] = 0 (5)

Since also λπ(Ψ(PI(x)))MR[:, J ] = 0 for any constant λ ∈ Fqm we can recover
PI only up to such a constant factor. We will now show that this is not a problem.
Let P ′

I(x) = λPI(x). We can recover P ′
O(x) = PP (x)/P

′
I(x) = PO(x)/λ, then

z′(x) = PH(x)/P ′
O(x) = P ′

I(x)x(x)
−1y(x) = λPI(x)x(x)

−1y(x), and finally
z′(x)/P ′

I(x) = x(x)−1y(x) which corresponds to a ROLLO-I public key.

Similarly, for the ciphertext, we can recover

λc′′(x) = c(x)/P ′
O(x) = λΨ(PI(x))PE1

(x) + λΨ(z(x))PE2
(x) mod P2(x).

Since λ is constant, the degree of the right-hand side is below n2 and we can
reduce modulo P1 and divide by λPI(x) to get PE1

(x) + λx(x)−1y(x)PE2
(x),

matching the ROLLO-I ciphertexts. Note that the degree constraint on deg(PEi)
bounding it from above by n2−n1−dI for all proposed parameters implies that
deg(PEi

) < n1, hence, this is a valid ROLLO-I ciphertext. While this is not
pointed out in [7], this is also required for the ROLLO-I decoder to work as
RSR(⟨x,y⟩,xc′, r) in the regular decapsulation procedure.

Estimates for the security of MLR1 The proposed parameters forMLR1 along
with the attack costs are displayed in Table 2. The complexities of the attacks are
computed using the script provided in [11], the Sage script performs puncturing
of the public code to find the optimal complexity. For each security level, the
costs of the attacks on the proposed parameters are shown in the third column
of Table 2, and those of reduced Layered ROLLO-I along are in the fourth col-
umn of Table 2. The time in seconds to compute the public key transformation
described in this section, on a Linux Mint virtual machine, is stated in the fifth
column of Table 2. Furthermore, Table 2 shows that the security is still lower
for these parameters than the targeted security levels, even though the designers
were now aware of the attacks in [4].

Note that here we use PI with degPI = dI as stated in [7]. The parameters
file in the implementation package instead uses degPI = 4 for all security levels.



Analysis of Layered ROLLO-I 9

Security (q, n1, n2, dI ,m, r, d) Cost Cost red. Time (s)

128 (2, 37, 61, 11, 67, 6, 2) 103.83 [3] 96.95 [3] 1.85

192 (2, 43, 71, 15, 79, 7, 3) 185.52 [2] 156.16 [3] 2.42

256 (2, 53, 103, 20, 97, 7, 3) 187.91 [3] 151.11 [3] 4.21

Table 2. Values of the log2 of attack costs for MLR1’s suggested parameters, before
and after our reduction, and time consumed by the reduction. References after the
costs refer to the publication which has the best attack on these parameters.

4 Message Recovery Attacks

We describe the two message recovery attacks that we mounted against Layered
ROLLO-I. The first one breaks all the versions described so far and MLR2 (see
Section 4.1). The second one applies to security levels 128 and 192 of MLR3 (see
Section 4.3). The idea is to reduce the modular equation in the encapsulation to
a system of linear equations and exploit the knowledge of zero positions of the
error vectors to solve the system.

In the following, we first describe another modification MLR2 the designers
made which changes the structure of the public key to counter the attacks de-
scribed in the previous section. This and both previous versions use the same
equation for encapsulation, albeit with different constraints on the degrees of
the PEi

. The message recovery attack works solely with this equation and thus
applies to all these versions, hence we put the attack after the description of
MLR2 to demonstrate the range of applicability, but want to stress that it ap-
plies already to the journal version [10] and is not a byproduct of the designers’
patches. Finally, we describe and then attack a third modified version MLR3.

4.1 Second Modified Layered ROLLO-I (MLR2)

In this subsection, we describe the system from [8]. The new version of Layered
ROLLO-I, which we denote by MLR2, uses polynomial masking techniques in
order to avoid the reduction to ROLLO-I described in Section 3.2. To this end,
the new system patch introduces an auxiliary polynomial PN of small degree
and modifies the PP -part of the public key.

The values (q, n1, n2, nI ,m, r, d), where nI < n1 < n2 are the system param-
eters. There is also a primitive polynomial P2 of degree n2 which is a system
parameter. We will report here only the key generation procedure, as the rest is
the same as for MLR1 except for the degree of the error polynomials. The key
generation procedure of the new system works as follows.

– KeyGen:
• Pick random x,y ∈ Sn1

d (Fqm).
• Pick random primitive P1(x) ∈ Fqm [x] of degree n1.
• Pick random PI(x) ∈ Fqm [x]/(P1(x)) of degree nI .
• Pick random PO(x), PN (x) ∈ Fqm [x]/(P2(x)), with degPN = nN .



10 Chee, Jeong, Lange, Lee, Pellegrini, and Ryu

• Set z(x) = PI(x)x(x)
−1y(x) mod P1(x).

• Set PP (x) = PO(x)(Ψ(PI(x)) + PN (x)P1(x)) mod P2(x) and
PH(x) = PO(x)Ψ(z(x)) mod P2(x).

• Return pk = (PP , PH) and sk = (x,y, PO, PI , P1).

The encapsulation mechanism with updated error weights is equivalent to
that of MLR1 except that the random vectors e1, e2 should each correspond to
a polynomial of degree nE < n2 − n1 − nI − nN − 2.

4.2 Message recovery attack on all versions described so far

Recall that encapsulation for all versions of Layered ROLLO-I computes the
ciphertext as

c(x) = PE1
(x)PP (x) + PE2

(x)PH(x) mod P2(x),

where we put P2 = P b for the first version to unify notation. The public key is
pk = (PP , PH) and the degree of the error polynomials PEi

is limited to nE to
permit decapsulation.

Using the public key, we can compute PH(x)−1 mod P2(x) and multiply the
ciphertext polynomial by it to obtain

c̄(x) = c(x)PH(x)−1 = PE1(x)R(x) + PE2(x) mod P2(x), (6)

where R(x) = PP (x)PH(x)−1 mod P2(x). View equation (6) in terms of Fqm

vectors corresponding to the coefficient vectors of the polynomials involved. As
in Section 3.2, we can regard R as the (nE+1)×n2 full rank matrix MR over Fqm

representing the multiplication of a polynomial of degree up to nE by R modulo
P2, defined as in (3). In other words, MR generates a linear [n2, nE + 1]-code
over Fqm .

With this in mind we can rewrite (6) as

c̄ = e1MR + e2, (7)

which corresponds to a McEliece-like encryption of the “message” e1 and using
e2 as error vector. Due to the low degree of the polynomial PE2

, the error vector
e2 also has a relatively low Hamming weight and we could use information-set
decoding attacks to recover e1 and e2.

However, in the settings of all the versions of Layered ROLLO-I we have much
more information on e2: We can exploit the low degree of the polynomial PE2

,
meaning that we know that the top n2 − nE − 1 positions are 0. (See Section 2
for the conversion between polynomials and vectors.) Indeed, we can find an
invertible submatrix of MR that consists of a subset of columns corresponding
to error-free positions in the ciphertext by searching for an invertible submatrix
of MR[:, nE + 2 : n2]. Picking nE + 1 random columns of a rank nE + 1 matrix
over Fqm , where q and m are given by the suggested parameters, will constitute



Analysis of Layered ROLLO-I 11

an invertible matrix with overwhelming probability. We can also just take the
last nE + 1 columns. Let MRinv be such a matrix. The last step is to compute
e1 = c̄′M−1

Rinv, where c̄′ consists of the coordinates of c̄ corresponding to the
columns of MRinv. Finally, compute e2 = c̄[1 : nE + 1]− e1MR[:, 1 : nE + 1].

We implemented this attack in SageMath. An average of the time required,
on a Linux Mint virtual machine, to recover the plaintext for the proposed
parameters of MLR2 is given in Table 3.

Table 3. Average time in seconds (on 50 samples for each security level) needed to
recover a plaintext.

Security nE Time (s)

128 17 2.21

192 19 3.18

256 39 6.65

Remark 2. We would like to remark that this message recovery attack works for
all three versions of Layered ROLLO-I presented to so far since the degrees of e1
and e2 are smaller than half of n2, which is relevant for the positions in MRinv

not to overlap with the positions in e2.

4.3 Third Modified Layered ROLLO-I (MLR3)

In this subsection, we describe the system from [9]. MLR3 uses polynomial
masking in the ciphertext to overcome the message recovery attack that we
described in the previous subsection. We will only display the parts in the
specification of KeyGen and Encap that differ from that of MLR2. The val-
ues (q, n1, n2, nI , nA,m, r, d), where nI = n1 < n2 and nA = 4 are the system
parameters. The updates to the key generation procedure of the new system are
as follows.

– KeyGen:
• Pick random PN,A(x), PN,B(x) ∈ Fqm [x]/(P2(x)) of degree nA

• Set
PP (x) = PO(x)(Ψ(PI(x)) + PN,A(x)P1(x)) mod P2(x),
PH(x) = PO(x)Ψ(z(x)) mod P2(x), and
PB(x) = PO(x)PN,B(x)P1(x) mod P2(x).

• Return pk = (PP , PH , PB) and sk = (x,y, PO, PI , P1).

The updates to the encapsulation mechanism with updated error weights are as
follows.

– Encap(pk):
• Compute
c(x) = PP (x)PE1(x) + PH(x)PE2(x) + PB(x)PN,C(x) mod P2(x),



12 Chee, Jeong, Lange, Lee, Pellegrini, and Ryu

where PE1
, PE2

and PN,C have degree nE < n2−n1−nA−1. The decapsulation
procedure has not been updated.

Message recovery attack on MLR3 We describe a fast message recovery
attack on the security levels 128 and 192 of MLR3, that uses only linear algebra.

Compute the polynomials

A1(x) = PP (x)P
−1
B (x), B1(x) = PH(x)P−1

B (x),

A2(x) = PP (x)P
−1
H (x), C2(x) = PB(x)P

−1
H (x), and

B3(x) = PH(x)P−1
P (x), C3(x) = PB(x)P

−1
P (x),

(8)

and let MA1
,MB1

,MA2
,MC2

,MB3
and MC3

be the corresponding matrices as
in (3). Set

c1(x) = c(x)P−1
B (x),

c2(x) = c(x)P−1
H (x), and

c3(x) = c(x)P−1
P (x).

(9)

From these values, we derive the following equations

c1 = e1MA1 +MB1e2 + p,

c2 = e1MA2 + e2 + pMC2 , and

c3 = e1 + e2MB3 + pMC3 ,

(10)

where we denote the coefficient vector of PN,C by p. A first key observation is
that, if we restrict to the last n2 − ℓ columns of each matrix, corresponding to
the terms of degree ≥ ℓ, we can remove the terms p, e2 and e1 from the first,
second and third equation in (10), respectively. A second key observation is that,
thanks to the size of the field Fqm , we can find three sets S1, S2, S3 ⊂ [ℓ+ 1, n2]
of cardinality ℓ such that the matrices MA1

= MA1
[:, S1],MB1

= MB1
[:, S1],

coinciding on S1, the matrices MA2
= MA2

[:, S2],MC2
= MC2

[:, S2], coinciding
on S2, and the matrices MB3

= MB3
[:, S3],MC3

= MC3
[:, S3], coinciding on S3,

are all invertible ℓ× ℓ matrices. Denote by c1, c2 and c3 the subvectors of c1, c2
and c3 of consisting of entries indexed by S1, S2 and S3, respectively.

c1 = e1MA1
+ e2MB1

,

c2 = e1MA2
+ pMC2

, and

c3 = e2MB3
+ pMC3

.

(11)

Let

Mp = MC2
M

−1

A2
MA1

M
−1

B1
+MC3

M
−1

B3
and

cp = c2M
−1

A2
MA1

M
−1

B1
− c1M

−1

B1
+ c3M

−1

B3
,

(12)



Analysis of Layered ROLLO-I 13

and observe that this simplifies to the linear system of equations

pMp = cp,

which we can solve for p. Substituting p into (11) we recover e1 and e2.
We implemented this attack in SageMath. An average of the time required,

on a Linux Mint virtual machine, to recover the plaintext for the proposed
parameters is given in Table 4.

Security nE Time (s)

128 17 11.66

192 21 16.32

Table 4. Average time in seconds (on 50 samples for each security level) needed to
recover a plaintext.

Remark 3. For the parameters of any security level, we always have that 3(n−
ℓ) > n2 where there exist at most n2 linearly independent equations. For levels
128 and 192, we have 3ℓ < n2 ensuring a unique solution of the system, which
is not the case for security level 256.

Acknowledgments

The authors would like to thank Daniel J. Bernstein for discussions regarding
recovering PI in the attack presented in Section 3.2.

References

1. Aragon, N., Blazy, O., Deneuville, J.C., Gaborit, P., Hauteville, A., Ruatta, O.,
Tillich, J.P., Zémor, G., Aguilar Melchor, C., Bettaieb, S., Bidoux, L., Bardet, M.,
Otmani, A.: ROLLO. Tech. rep., NIST (2019), available at Round 2 page

2. Bardet, M., Briaud, P., Bros, M., Gaborit, P., Neiger, V., Ruatta, O., Tillich, J.P.:
An algebraic attack on rank metric code-based cryptosystems. In: Eurocrypt 2020.
LNCS, vol. 12107, pp. 64–93 (2020). https://doi.org/10.1007/978-3-030-45727-3 3

3. Bardet, M., Briaud, P., Bros, M., Gaborit, P., Tillich, J.P.: Revisiting algebraic
attacks on MinRank and on the rank decoding problem. Designs, Codes and Cryp-
tography pp. 1–37 (2023). https://doi.org/10.1007/s10623-023-01265-x

4. Bardet, M., Bros, M., Cabarcas, D., Gaborit, P., Perlner, R.A., Smith-Tone, D.,
Tillich, J.P., Verbel, J.A.: Improvements of algebraic attacks for solving the rank
decoding and MinRank problems. In: Asiacrypt 2020. vol. 12491, pp. 507–536
(2020). https://doi.org/10.1007/978-3-030-64837-4 17

5. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-
commutative ring and thier applications in cryptology. In: Eurocrypt 1991. LNCS,
vol. 547, pp. 482–489. Springer (1991)

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://doi.org/10.1007/978-3-030-45727-3_3
https://doi.org/10.1007/s10623-023-01265-x
https://doi.org/10.1007/978-3-030-64837-4_17


14 Chee, Jeong, Lange, Lee, Pellegrini, and Ryu

6. Kim, C., Kim, Y.S., No, J.S.: Layered ROLLO-I. Submission to KpqC Competition
Round 1 (2022)

7. Kim, C., Kim, Y., No, J.: Comments and modification on Layered ROLLO on
kPQC-forum. Slides attached to reply on Kpqc bulletin (2023)

8. Kim, C., Kim, Y., No, J.: Comments and modification on Layered ROLLO on
kPQC-forum. Slides attached on KpqC Bulletin (2023)

9. Kim, C., Kim, Y., No, J.: Comments and modification on Layered ROLLO on
kPQC-forum. Slides attached to reply on KpqC Bulletin (2023)

10. Kim, C., Kim, Y., No, J.: New design of blockwise interleaved ideal low-rank parity-
check codes for fast post-quantum cryptography. IEEE Commun. Lett. 27(5),
1277–1281 (2023)

11. Lange, T., Pellegrini, A., Ravagnani, A.: On the security of REDOG. Cryptology
ePrint Archive, Paper 2023/1205 (2023)

12. Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin
codes. Journal of Cryptology 21(2), 280–301 (2008)

https://kpqc.or.kr/competition.html
https://groups.google.com/g/kpqc-bulletin/c/8nOd28f2K7k/m/P7K0p9r-AQAJ
https://groups.google.com/g/kpqc-bulletin/c/8nOd28f2K7k
https://groups.google.com/g/kpqc-bulletin/c/8nOd28f2K7k/m/YSs4YDF6AAAJ
https://eprint.iacr.org/2023/1205
https://eprint.iacr.org/2023/1205

	Analysis of Layered ROLLO-I: A BII-LRPC code-based KEM

