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Abstract

In an (εs, εz)-weak non-interactive zero knowledge (NIZK), the soundness error is at most εs
and the zero-knowledge error is at most εz. Goyal, Jain, and Sahai (CRYPTO 2019) show that
if εs + εz < 1 for some constants εs, εz, then (εs, εz)-weak NIZK can be turned into fully-secure
NIZK, assuming sub-exponentially-secure public-key encryption.

We revisit the problem of NIZK amplification:

• We amplify NIZK arguments assuming only polynomially-secure public-key encryption, for
any constants εs + εz < 1.

• We amplify NIZK proofs assuming only one-way functions, for any constants εs + εz < 1.

• When the soundness error εs is negligible to begin with, we can also amplify NIZK argu-
ments assuming only one-way functions.

Our results are based on the hidden-bits paradigm, and can be viewed as a reduction from
NIZK amplification to the better understood problem of pseudorandomness amplification.
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1 Introduction

Security amplification is a foundational problem in cryptography: given a cryptographic primitive
that is weakly secure in some sense, we would like to make it strongly secure. One central motivation
for studying such amplification is that weak primitives are often easier to construct. Another
motivation comes from cryptographic combiners [HKN+05, Her05] where amplification may allow
to combine several constructions, only some of which are secure, into one construction that is
guaranteed to be secure. Intuitively, by picking one of the constructions at random we obtain a
weakly secure construction, which we can then amplify.

Given its basic importance, the problem of security amplification has been extensively studied.
Perhaps the most famous examples are Yao’s amplification of weak one-way functions and Yao’s
XOR lemma for amplifying unpredictability [Yao82]. Other examples include public-key encryption
[DNR04, LT13] and key-agreement [Hol05], oblivious transfer (OT) [DKS99, Wul07], commitments
[DKS99, HR08], cryptographic arguments [Hai09], and many more.

Amplifying Non-Interactive Zero Knowledge. We consider amplification of non-interactive
zero knowledge (NIZK) [BFM88], a central cryptographic object. NIZKs allow the prover to gener-
ate a proof of validity of an NP statement without revealing any information about the witness, in a
model where both the prover and verifier have access to a trusted common reference string (CRS).
This is captured by the existence of an efficient simulator that can generate from the statement
alone a CRS and proof that are indistinguishable from real ones.

An (εs, εz)-weak NIZK is such that a cheating prover can cause the verifier to accept a false
statement, adaptively chosen based on the CRS, with probability at most εs, and the simulated
proof and CRS are distinguishable from real ones with advantage at most εz. Here the focus is on
the non-trivial case where εs + εz < 1.1 A challenge in the context of NIZK is coming up with
simultaneous amplifiers, which eventually reduce both the soundness and ZK errors to negligible.
The difficulty in simultaneous amplification, also expressed in primitives such as oblivious transfer
[DKS99, Wul07], is that amplifying one property would typically degrade the other property.2

The problem of simultaneous amplification for NIZKs was studied by Goyal, Jain and Sahai
[GJS19]. They show how to amplify (εs, εz)-weak NIZK for any constants εs and εz such that
εs + εz < 1, assuming sub-exponentially-secure public-key encryption (PKE). Their amplifier is
based on the MPC-in-the-head paradigm [IKOS07] and their reliance on sub-exponentially-secure
PKE stems from an inefficient security reduction and complexity leveraging. Their approach is
extended in [BKP+24] to statistical zero knowledge for a more restricted parameter regime (εs, εz) =
(negl(n), n−O(1)), and assuming lossy commitments.

1.1 Our Results

We revisit the problem of simultaneous amplification of NIZKs, and present new and improved
simultaneous amplification results, as detailed next.

1Note that when εs + εz = 1, we can include in the CRS an εs-biased bit which determines whether to use the
trivially sound system where the witness is sent in the clear, or the trivially ZK system where the prover sends
nothing, and the verifier accepts.

2We remark that we focus on security properties and do not deal with weak completeness; namely, we assume a
negligible completeness error.
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In the setting of arguments, we rely on polynomially (rather than sub-exponentially) secure
PKE.

Theorem 1.1 (Informal). For any constants εs, εz such that εs + εz < 1, (εs, εz)-weak NIZK
arguments for NP can be amplified to fully-secure NIZK arguments for NP, assuming polynomially-
secure PKE.

In the setting of proofs, we further reduce the assumption to one-way functions (OWFs).

Theorem 1.2 (Informal). For any constants εs, εz such that εs+εz < 1, (εs, εz)-weak NIZK proofs
for NP can be amplified to fully-secure NIZK proofs for NP, assuming OWFs.

In the case that the soundness error εs is negligible to begin with (which arises for instance in
the construction of NIZK from batch arguments [BKP+24]), we can rely only on OWFs (rather
than PKE) also in the case of arguments, and even for εz = 1− o(1).

Theorem 1.3 (Informal). For any constant δ < 1, (n−ω(1), 1−n−δ)-weak NIZK arguments for NP
can be amplified to fully-secure NIZK arguments for NP, assuming OWFs.

In the last two theorems (where PKE is not assumed), we also preserve a random CRS if the
original weak NIZK has a random CRS, whereas in the first theorem we collapse to the so called
structured common reference string model, as in [GJS19].

A Reduction to Pseudorandomness and Soundness*. The main component behind our
results is a zero-knowledge amplifier that diverges from the approach of [GJS19], and in particular
has an efficient reduction to OWFs. The amplifier is based on the hidden-bits paradigm, and
specifically on amplifying the pseudorandomness of hidden-bits generators.

For soundness amplification, we use basic parallel repetition as in [GJS19]. We introduce a
natural soundness notion that we call soundness∗, for which amplification can be proven without
any additional computational assumptions. While in certain cases (such as proofs) this notion is
equivalent to plain soundness, in the case of general arguments, to upgrade plain (weak) soundness
to soundness∗, we rely on PKE.

To achieve simultaneous amplification we carefully combine the two, using security degradation
theorems from the literature (and generalization thereof). We next elaborate on our techniques.

1.2 Technical Overview

We first focus on the case that the zero-knowledge error is large, say εz ≈ 0.99, but the soundness
error is negligible. This will already convey the main technical components behind our amplifiers.
We will then discuss the general case of simultaneous amplification where the zero-knowledge and
soundness errors are some constants εs, εz such that εs + εz < 1.

Hidden-Bits Amplification. The zero-knowledge amplifier we construct is based on the hidden-
bits model [FLS99]. Recall that in the hidden-bits model, a trusted party generates a random string
and shares it with the prover, who then picks a subset of bits to reveal to the verifier. Feige, Lapidot
and Shamir [FLS99] show how to construct a NIZK proof in the hidden-bits model (HBM) without
any computational assumptions. Thus, in order to construct NIZK, it suffices to implement a so
called hidden-bits generator (HBG) [QRW19, KMY20].
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Roughly speaking, an HBG is a pseudorandom generator G : {0, 1}n → {0, 1}t, accompanied
with the ability to prove, for any I ⊆ [t], membership in the image of GI (the restriction of G to the
bits in I). Furthermore, a proof πI for GI(s), does not compromise the pseudorandomness of the
rest of the bits GI(s). Combining an HBG and an HBM proof system with (statistical) soundness
2−2n and t(n) = poly(n) hidden bits, yields a NIZK with a common random string (CRS) r ∈ {0, 1}t
as follows. The hidden bit string is set to be r∗ := G(s) ⊕ r for a random seed s, and the prover
reveals r∗I , by revealing y = GI(s) along with a corresponding proof πI that y is indeed in the image
of GI . The fact that G(s) can be described by a short seed s ∈ {0, 1}n, implies that the HBM
soundness error will only increase from ≈ 2−2n to ≈ 2−n.

Clearly, if we had a NIZK to begin with, then an HBG could be easily constructed from any
pseudorandom generator G, as the required proofs πI can be realized using the NIZK. Indeed, the
fact that the proof πI is zero knowledge implies that no information is leaked on the seed s, and
accordingly the non-revealed bits GI(s) remain pseudorandom. The soundness of proofs follows
from the adaptive soundness of the underlying NIZK.3 If our NIZK is only weakly ZK, however, then
we obtain an HBG with weak pseudorandomness. This suggests a reduction to pseudorandomness
amplification, which has been thoroughly studied starting from the work of Yao [Yao82].

Perhaps the most natural first attempt is to apply Yao’s XOR Lemma [Yao82, GNW95].
Namely, rather than using a single pseudorandom string G(s), consider the XOR over several
independent seeds G(s1)⊕ · · · ⊕G(sk) with independent proofs πI(s1), . . . , πI(sk) for the revealed
GI(s1), . . . , GI(sk). If we start with an HBM proof with sufficiently small soundness error ≪ 2−nk,
we would obtain a sound NIZK as before. In terms of ZK, if each proof is εz-ZK, then each GI(si)
is 2εz-indistinguishable from random (as the hybrid argument goes through the simulator twice),
which in turn implies that each bit is 4εz-unpredictable. Accordingly, the XOR Lemma implies
that GI(s1)⊕· · ·⊕GI(sk) is ≈ t · (4εz)k-pseudorandom. In fact, a more careful analysis shows that
the error can be reduced to t · (2εz)k. But still, this approach is limited to εz < 1/2.

Tighter Amplification via Extraction. To be able to deal with εz ≈ 0.99, we turn to a
different approach taken by Maurer and Tessaro in the context of weak PRG amplification [MT10].
They rely on the concatenate and extract approach: Output Ext(G(s1), . . . , G(sk); r), r for a strong
randomness extractor Ext (where r denotes the seed). They show that this approach could amplify
ε-weak PRGs for an arbitrary ε < 1−1/poly(n). However, the above construction is not applicable
in our setting as is. Specifically, the output ExtI(G(s1), . . . , G(sk); r) may depend on all underlying
inputs bits G(s1), . . . , G(sk), rather than just the restricted GI(s1), . . . , GI(sk) in the case of the
XOR construction.

Instead, we use each si as the seed of an n-bit output PRF, to generate t blocks Fsi(1), . . . , Fsi(t).
4

Then, we apply the extractor to each block separately. That is, each bit j ∈ [t] of the amplified HBG
is taken to be Ext(Fs1(j), . . . , Fsk(j); r). This way, to reveal a set I, we exhibit Fs1(I), . . . , Fsk(I),
along with independent proofs πI(s1), . . . , πI(sk). We show that for each of the remaining indices
j /∈ I, the string (Fs1(j), . . . , Fsk(j)) has certain computational entropy, which is extracted by Ext.

In more detail, to show that the bits in I remain hidden, we build on the analysis of [MT10].
We rely on their indistinguishability hard-core lemma (Lemma 2.14) to derive a hybrid indistin-
guishability lemma, which intuitively says that if X is weakly-computationally-indistinguishable

3Note that a malicious prover has the power to choose the set I and values GI(s) adaptively based on the CRS;
hence, adaptive soundness is required.

4The transition to PRFs is for ease of notation, instead of addressing blocks of output of G.
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from Y , then it is strongly-computationally-indistinguishable from a hybrid distribution X ′, that
is weakly-statistically-indistinguishable from Y .

Lemma 1.4 (Informal, see formal Lemma 2.15 in the body). If X is ε-indistinguishable from Y
for some ε < 1− 1/poly(n), then for every ε′ = 1/poly(n), there exists X ′, such that:

• X is ε′-indistinguishable from X ′,

• X ′ is ε-statistically-indistinguishable from Y.

Thus, we can use the fact that Fsi(I) is εz-pseudorandom for all i ∈ [k], and reduce our analysis
to the information-theoretic setting where F ′si(I) is εz-statistically-close to random. To be more
accurate, we are not guaranteed that Fsi(I) is εz-pseudorandom given the real transcript, but we
are only guaranteed that

Reali, Fsi(I)
c
≈εz Simi, Fsi(I)

c
≈ Simi, U

n·|I| ,

where Reali denotes the revealed bits Fsi(I) along with their proofs πI(si), and Simi denotes the
distribution where the proofs are generated by the ZK simulator from Fsi(I) with no direct leakage
on the witness si.

Now, invoking the above hybrid indistinguishability lemma, we deduce:

Reali, Fsi(I)
c
≈ε′ Real

′
i, F
′
si(I)

s
≈εz Simi, U

n·|I| .

Given the above statistical guarantee, we prove by statistical coupling that except with probability
εkz , for every j ∈ I, the (average) min-entropy of F ′s1(j) . . . F

′
sk
(j), given

{
Real′i, F

′
si(I \ j)

}
i
, is at

least n− log(1/(1− εz)), which suffices for extraction.5 Finally, the construction also works when
using k samples from Reali, Fsi(I) instead of Real′i, F

′
si(I), as they are computationally indistin-

guishable.

Simultaneous Amplification and Soundness*. So far, we have assumed that the soundness
error εs is negligible. Considering the general case where εs could be any constant such that
εs+ εz < 1, we need to take into account how the soundness of the above transformation degrades.

Going back to the described amplifier, a naive bound shows that using k weak proofs, soundness
would degrade from εs to at most k · εs. While this is good enough when εs is negligible, in the
general case, we aim to prove a tighter bound of 1− (1− εs)

k ≤ k · εs.
To do this we prove a simple OR easy-subset lemma (see Lemma 3.2), which roughly states that

if an adversary breaks at least one out of k independent challenges with probability 1−(1−ε)k, then
for some coordinate i ∈ [k], at least ε-fraction of challenges are broken with noticeable probability
over the choice of the other challenges.6 This suggests a standard reduction to breaking the εs-
soundness of a single proof. Given a challenge CRS, we generate polynomially many candidates by
iteratively embedding the CRS in every coordinate i ∈ [k] and running the adversary polynomially
many times where the other coordinates are sampled at random.

5Formally, in the body we use a two-universal hash function as the extractor and the generalized left-over hash
lemma [DORS08].

6This lemma can be viewed as a parallel version of an AND easy-subset lemma, commonly used in hardness
amplification (for instance, in Yao’s product amplification of OWFs). We also state this lemma and use it below.
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Soundness∗. The reduction just described does not quite work as is. The problem is that this
reduction given a CRS generates (with the required probability εs) a list of statements and proofs,
only some of which are guaranteed to be actually false. So in order to break plain soundness, we
would have to be able to recognize false statements, which cannot necessarily be done efficiently.
Instead, we work with a more robust notion of weak soundness that we term soundness∗. In
εs-soundness

∗, except with probability εs over the CRS, the adversary cannot even generate a list
of statements and accepting proofs, such that at least one of the statements is false. We later
observe that plain εs-soundness can always be upgraded to εs-soundness

∗ assuming PKE, and in
certain cases arises naturally on its own, or follows automatically from plain soundness (see further
discussion below).

Soundness∗ Amplification. Having deduced that the zero-knowledge amplifier degrades εs-soundness
∗

to 1−(1−εs)k-soundness∗, and assuming k is not too large, we then aim to amplify soundness∗. We
consider the standard parallel repetition amplifier. Here the proof is analogous to Yao’s product
amplification [Yao82], and again relies on the robustness of the soundness∗ notion. Specifically,
we rely on an AND easy-subset lemma (Lemma 3.1), stating that if the adversary breaks all k
independent challenges with probability εk, then for some coordinate i ∈ [k], at least ε-fraction of
challenges are broken with noticeable probability over the choice of the other challenges. We then
use a similar embedding reduction to the one described above to breaking soundness∗ of a single
instance.

Now, we need to take into account how this parallel repetition degrades ZK. We build on
the analysis of [HR08, Gei22], and apply an indistinguishability degradation bound for product

distributions (Lemma 2.17), which roughly states that if X
c
≈ε Y , then Xk c

≈1−(1−ε)k Y k.

Combining the Amplifiers. Overall, we obtain a pair of ZK and soundness∗ amplifiers where
each amplifies one parameter ε ∈ {εs, εz} by ε → εk, but degrades the other by ε → 1 − (1 − ε)k.
Hence, they must be carefully combined in order to amplify both ZK and soundness∗ simultaneously.
It is important to note here that to maintain efficiency, we can only interchangeably apply the two
amplifiers a constant number of times, as the ZK amplifier may polynomially increase the size of
the instance. When εs, εz are constants, three applications are enough.

Let us demonstrate here concretely for

(εs, εz) = (0.8, 0.1) = (1− 2− log 5, 2− log 10) .

Apply the ZK amplifier with k = log n, then we get (1−n− log 5, n− log 10). Now apply the soundness∗

amplifier with k = n3, noting that 1− x ≤ 2−x and 1− (1− x)k ≤ k · x, to obtain((
1− n− log 5

)k
, 1−

(
1− n− log 10

)k)
≤
(
2−k·n

− log 5
, k · n− log 10

)
≤ (2−

√
n, n−0.3) .

Finally, apply the ZK amplifier again with k = ω(1) to obtain (negl(n), negl(n)).7

7Here we essentially used the fact that − log(1 − 0.8) < 3 < − log(0.1), which generalizes for any εs + εz < 1,
replacing 3 with c ∈ (− log(1− εs),− log(εz)).
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More on Soundness∗. We note that the notion of εs-soundness
∗ is equivalent to plain soundness

when εs is negligible; in this case, the reduction can simply guess which statement is false and gain
noticeable advantage. Furthermore, εs-soundness

∗ is equivalent to plain soundness in the case of
proofs, since an inefficient prover can test on its own whether any given statement is false.

Beyond the above, soundness∗ may arise naturally in certain amplification scenarios, such as
constructing combiners. For instance, consider the case of 2-out-of-3 combiners, where we have three
NIZK candidates, two of which are fully secure, and one which is completely insecure. Then choosing
one of them at random yields a (1/3, 1/3)-NIZK that in fact has 1/3-soundness∗ (rather than just
1/3 plain soundness). Indeed, provided that we have chosen one of the two valid constructions, we
are guaranteed a negligible soundness error.

Finally, we observe that one can always upgrade plain soundness to soundness∗ using PKE, by
guaranteeing witness extraction. Specifically, the prover uses a designated public key in the CRS
to encrypt its witness and then uses the NIZK to prove that the encryption is to a valid witness.
In this case the reduction can efficiently test which statement is false by decrypting the witness
using the corresponding secret key. This transformation is standard and is also used in [GJS19] to
directly amplify plain soundness.

2 Preliminaries

For n ∈ N, we denote by [n] the set {1, . . . , n}. For a function f : [n] → X and a subset I ⊆ [n],
we denote by f(I) the concatenation of f(i) over i ∈ I. For a distribution X over a set Ω, we use
x← X to denote the result of sampling according to X, and x← Ω to denote a uniformly random
sample from the set. For a set of events {Ai}i∈[k] and I ⊆ [k], we denote by

(
AI , AI

)
the event

where Ai occurred for every i ∈ I and did not occur otherwise. Bernoulli’s inequality states that
(1+x)k ≥ 1+ kx for k ∈ N and x ≥ −1, which implies (α− β)k ≥ αk − kβ, for any 1 ≥ α ≥ β ≥ 0.
For random variables X and Y , we denote by H̃∞(X | Y ) the average min-entropy of X given Y
[DORS08]:

H̃∞(X | Y ) = − log

(
E

y←Y

[
max
x

Pr [X = x | Y = y]
])

,

and for an event A, we denote by H̃∞(X | Y,A) := H̃∞(XA | YA) the average min-entropy of X
given Y under the conditional distribution of A.

We rely on standard computational concepts and notation:

• We say that a function f : N → R is negligible if for all constants c > 0, there exists N ∈ N
such that for all n > N , f(n) < n−c. We sometimes denote negligible functions by negl. We
say that a function f : N→ R is overwhelming if 1− f is negligible. We say that a function
f : N→ R is noticeable if for some constant c > 0 and N ∈ N, for all n > N , f(n) > n−c.

• A PPT algorithm is a probabilistic polynomial-time algorithm. A family of circuits A =
{An}n∈N is s(n)-sized if |An| ≤ s(n). It is polynomial-sized if s(n) ≤ poly(n). We follow the
common practice of modeling any efficient adversary as a family of polynomial-size circuits
A = {An}n∈N. We also say that such an A runs in non-uniform polynomial time.

• We denote statistical distance by SD. For two random variables X,Y and ε ∈ [0, 1], we write

X
s
≈ε Y to denote the fact that SD(X,Y ) ≤ ε and say thatX is ε-statistically indistinguishable

from Y . For two ensembles X = {Xn}n∈N and Y = {Yn}n∈N and function ε, we write X
s
≈ε Y
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if for all large enough n, Xn
s
≈ε(n) Yn. For X , Y and ε as above, we write that X

c
≈ε Y against

s(n)-sized circuits if the computational distance against s(n)-sized circuits is at most ε. That
is, for every s(n)-sized family of distinguishers D = {Dn}n∈N and large enough n ∈ N:∣∣∣∣ Pr

x←Xn

[Dn(x) = 1]− Pr
y←Yn

[Dn(y) = 1]

∣∣∣∣ ≤ ε(n) .

We omit the bound on the size when referring to a polynomial-sized family of distinguishers.
In addition, we may drop ε from the subscript when it is a negligible function.

Pseudorandom Functions. A PPT seeded function Fs : {0, 1}∗ → {0, 1}m(n) with s ∈ {0, 1}n,
is an m-bit-output PRF, if for every oracle-aided polynomial-sized circuit family of distinguishers
D = {Dn}n∈N: ∣∣∣∣ Pr

s←{0,1}n
[
DFs
n = 1

]
− Pr

Rm

[
DRm
n = 1

]∣∣∣∣ ≤ negl(n) ,

where Rm(·) is a random oracle to uniform m-bit strings.

Public-Key Encryption. A PKE scheme is a PPT triplet (Gen,Enc,Dec) such that:

• Correctness: With overwhelming probability over (pk, sk)← Gen(1n), for all m ∈ {0, 1}∗ we
have

Pr [Decsk(Encpk(m)) = m] = 1 ,

where the probability is taken over the random coins of the encryption algorithm.

• Security: For every ensemble of polynomial-size messages m = {mn}n∈N:

pk,Encsk(mn)
c
≈ pk,Encsk(0

|mn|) ,

where (pk, sk)← Gen(1n).

Remark 2.1. We assume w.l.o.g. almost-all-keys perfect-correctness, as public-key encryption
schemes can be immunized, see [DNR04].

We note that the existence of OWFs is equivalent to that of PRFs, and we will be assuming
OWFs whenever we need a PRF. Further, note that PKE implies OWFs, which is why we do not
need to additionally assume OWFs when already assuming PKE. We also remark that the existence
of NIZK for a hard-on-average language implies the existence of non-uniform OWFs [OW93, Ps05].

2.1 Non-Interactive Zero Knowledge and the Hidden-Bits Model

In this paper, we only consider doubly-efficient non-interactive protocols in the common reference
string (CRS) model. Below we define this primitive and the different notions of soundness and
privacy that we need. We always refer to n as the size of the statement |x| = n.

Definition 2.2 (Non-Interactive Protocol in the CRS Model). A non-interactive protocol (NIP)
Π in the CRS model for an NP relation R is a triplet of PPT algorithms (Gen,P,V), with the
following syntax:

9



• crs ← Gen(1n): Given the instance size n, the randomized set-up algorithm Gen outputs a
CRS crs.

• π ← P(crs, x, w): Given CRS crs, instance x and witness w, the randomized prover outputs
a proof π.

• b := V(crs, x, π): Given CRS crs, instance x, and proof π, the deterministic verifier returns
a bit b representing accept or reject.

In the following definitions, Π is a non-interactive protocol in the CRS model for an NP relation
R.

Definition 2.3 (Completeness). NIP Π satisfies completeness if for every ensemble {(x,w) ∈ Rn}n∈N,
the following probability is overwhelming:

Pr
crs←Gen(1n)
π←P(crs,x,w)

[V(crs, x, π) = 1] .

Definition 2.4 (Soundness (Adaptive)). NIP Π is εs-computationally-sound if, for every polynomial-
sized circuit family of malicious provers P∗ = {P∗n}n∈N, we have that

Pr
crs←Gen(1n)
(x,π)←P∗

n(crs)

[|x| = n ∧ x /∈ L(Rn) ∧ V(crs, x, π) = 1] ≤ εs(n) .

If the above holds also for unbounded circuit families, we say that Π is εs-statistically-sound. We
may omit εs when it is negligible.

Definition 2.5 (Soundness∗). NIP Π is εs-computationally-sound∗ if, for every polynomial-sized
circuit family of malicious provers P∗ = {P∗n}n∈N, we have that

Pr
crs←Gen(1n)

(x1,π1),...,(xt,πt)←P∗
n(crs)

[∃i ∈ [t] : |xi| = n ∧ xi /∈ L(Rn) ∧ V(crs, xi, πi) = 1] ≤ εs(n) .

If the above holds also for unbounded circuit families, we say that Π is εs-statistically-sound
∗. We

may omit εs when it is negligible.

Remark 2.6. Note that εs-statistical-soundness is equivalent to εs-statistical-soundness
∗, since an

unbounded adversary can always test whether x /∈ L(Rn). In the computational setting, soundness∗

implies soundness, so it is a stronger notion. However, note that negligible-computational-soundness
is equivalent to negligible-computational-soundness∗, since we can preserve non-negligible success
probability by picking an instance-proof pair at random.

Definition 2.7 (Zero Knowledge). NIP Π is εz-zero knowledge if there exists a PPT simulator
Sim such that for all {(x,w) ∈ Rn}n∈N, we have

(crs, π)
c
≈εz(n) Sim(x) ,

where crs ← Gen(1n) and π ← P(crs, x, w). We may omit εz when it is negligible.
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Remark 2.8. Throughout the paper, we refer to non-adaptive zero knowledge. There is a general
transformation from NIZK with non-adaptive to adaptive ZK [DN00, KMY20] (where both have a
negligible adaptive-soundness error). Also, we restrict our attention to single-instance ZK, noting
that there is a general transformation that allows to handle multiple instances, assuming OWFs
[FLS90].

Definition 2.9 (NIZK). Let Π be a NIP that satisfies completeness. It is an (εs, εz)-weak NIZK
if it satisfies εs-soundness and εz-ZK. It is an (εs, εz)-weak

∗ NIZK if it satisfies εs-soundness
∗

and εz-ZK. It is a standard NIZK if it satisfies negl-soundness and negl-ZK. It is an (εs, εz)-weak
statistically-sound NIZK if it satisfies εs-statistical-soundness and εz-ZK. It is a statistically-sound
NIZK if it satisfies negl-statistical-soundness and negl-ZK.

Definition 2.10 (NIZK in the Hidden-Bits Model). An HBM NIZK Πhbm with t(n) = poly(n)
hidden bits for an NP relation R, is a pair of PPT algorithms (Phbm,Vhbm), with the following
syntax:

• (I, πhbm) ← Phbm(r, x, w): Given hidden bits r ∈ {0, 1}t, instance x and witness w, the
randomized prover outputs a subset I ⊆ [t] and a proof πhbm.

• b := Vhbm(I, rI , x, π
hbm): Given subset I ⊆ [t], string rI ∈ {0, 1}|I|, instance x and a proof

πhbm, the deterministic verifier returns a bit b representing accept or reject.

The following properties should be satisfied by it:

• Completeness: For all {(x,w) ∈ Rn}n∈N, the following probability is overwhelming:

Pr
r←{0,1}t

(I,πhbm)←Phbm(r,x,w)

[
Vhbm(I, rI , x, π

hbm) = 1
]
.

• Statistical Soundness: For every unbounded circuit family of malicious provers P∗ = {P∗n}n∈N:

Pr
r←{0,1}t

(x,I,πhbm)←P∗
n(r)

[
|x| = n ∧ x /∈ L(Rn) ∧ Vhbm(I, rI , x, π) = 1

]
≤ negl(n) .

• Zero Knowledge: There exists a PPT simulator Simhbm such that for all {(x,w) ∈ Rn}n∈N,
we have

(I, rI , π
hbm)

s
≈ Simhbm(x) ,

where r ← {0, 1}t and (I, πhbm)← Phbm(r, x, w).

Remark 2.11. We can always amplify soundness to 2−k(n) · negl(n), using k(n) parallel repetitions.

Theorem 2.12 ([FLS99]). There exists HBM NIZK for all NP.
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2.2 Useful Lemmas

Lemma 2.13 (Generalized Leftover Hash Lemma [DORS08]). Let X be a random variable over

X , and Z be some jointly distributed random variable. Further, let H =
{
h : X → {0, 1}ℓ

}
be a

universal hash family for some ℓ ∈ N. Then we have that

Z, h, h(X)
s
≈ε Z, h, U

ℓ ,

over h← H, where ε ≤ 0.5

√
2ℓ/2H̃∞(X|Z).

Lemma 2.14 (Indistinguishability Hard-Core Lemma [MT10], Reinterpreted). Let X and Y be
random variables, and let δ, ε ∈ (0, 1) and s ∈ N be given. Assume that

X
c
≈δ Y ,

against s-sized circuits. Then, there exists a pair of events A and B, with probability 1 − δ each,
such that

X | A
c
≈ε Y | B ,

against s′-sized circuits with s′ := s·ε2
128(log|Im(X)|+log|Im(Y )|+1) .

The above indistinguishability hard-core lemma implies the following:

Lemma 2.15 (Hybrid Indistinguishability Lemma). Let X and Y be random variables, and let
δ, ε ∈ (0, 1) and s ∈ N be given. Assume that

X
c
≈δ Y ,

against s-sized circuits. Then there exists a hybrid distribution X ′ such that

X
c
≈ε X

′ s
≈δ Y ,

where the first indistinguishability is against s′-sized circuits with s′ := s·(ε/(1−δ))2
128(log|Im(X)|+log|Im(Y )|+1) ,

and the second is statistical.

Proof. Let X ′ = (1 − δ) · (Y | B) + δ · (X | A), namely, we sample from Y | B w.p. 1 − δ and
otherwise from X | A. Then the computational distance between X and X ′ is equal to (1 − δ)
times the computational distance between X | A and Y | B, and the statistical distance from Y is
at most δ.

We also give in the appendix (Appendix A.1) a proof sketch based on the original statement of
[MT10].

Remark 2.16. There is also a uniform version of the indistinguishability hard-core lemma, where X
and Y are efficiently samplable and δ, ε are noticeable and efficiently computable. In this setting,
the poly-time distinguishers get oracle access to the conditional distributions A | X and B | Y , for
input-independent queries. That is, the oracle-aided distinguisher may pick queries x1, . . . , xq and
y1, . . . , yq, depending only on its internal randomness and previous queries, and receive answers
{Pr [A | X = xi]}i∈[q] and {Pr [B | Y = yi]}i∈[q]. So in particular, it can generate samples from
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X | A, X | A, Y | B, Y | B, by rejection sampling and deciding when to accept based on the
oracle.

We can thus also generalize the hybrid indistinguishability lemma to the uniform setting, where
we allow distinguishers access to samples from X ′, as we can use the oracle access to A | X and
B | Y in order to sample from X ′.

Lemma 2.17 (Indistinguishability Bound for Product Distributions [HR08, Gei22]). Let X and Y
be distributions over n bits such that

X
c
≈δ Y ,

against s-sized circuits. Then, for every m ∈ N and ε ∈ (0, 1), we have that

Xm c
≈1−(1−δ)m+ε Y

m ,

against s′-sized circuits, with s′ := (s−1)·((1−δ)m−ε)
log(1/δ)+log(1/ε) − 5m · n− 1.

Remark 2.18. We note that a uniform version also exists for the indistinguishability bound for
product distributions, although the dependency on the slackness 1/ε is then polynomial instead of
logarithmic, this is still good enough for us. We also remark that the above bound could be shown
using [MT10], which is the approach taken by [GJS19].

3 The Amplifiers

In this section, we present and analyze our pair of amplifiers. We start by presenting two general
information-theoretic lemmas that will be used to analyze the soundness degradation and amplifi-
cation of our amplifiers. Then, we present the zero-knowledge amplifier based on the hidden-bits
paradigm, which is the main component behind our results. Finally, we show soundness amplifica-
tion by parallel repetition of the base protocol. Throughout the section we work with soundness∗

as the security notion, and in Section 4.1 we derive corresponding corollaries for plain soundness
(assuming PKE).

3.1 AND/OR Easy-Subset Lemmas

In this section, we present two general information-theoretic lemmas, that are used in our analysis
of soundness degradation and amplification. Roughly speaking, we show that if k independent
challenges can all be solved (AND) w.p. noticeably larger than εk, or if the probability to solve
at least one challenge (OR) is noticeably larger than 1 − (1 − ε)k, then for some coordinate i ∈ k
we can solve ε-fraction of challenges with noticeable probability, over the choice of other challenges
and the internal solver’s randomness.

Lemma 3.1 (AND Easy-Subset Lemma, adapted from Yao’s OWF amplification [Yao82]). Let
f : X k → {0, 1} be any boolean mapping (possibly randomized), where X is some finite set and
k ∈ N. Also, let D : X → [0, 1] be any distribution over X . For any q ∈ N and ε ∈ (0, 1) such that

Pr
∀i∈[k]: xi←D

[f(x1, . . . , xk) = 1] ≥ εk + k/q ,

there exists some i and Gi ⊆ X with D(Gi) ≥ ε, such that for every xi ∈ Gi:

Pr
∀j∈[k]\i: xj←D

[f(x1, . . . , xk) = 1] ≥ 1/q .
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Proof. For every i we let Gi be the set of all xi such that

Pr
∀j∈[k]\i: xj←D

[f(x1, . . . , xk) = 1] ≥ 1/q ,

and assume toward contradiction that D(Gi) < ε for all i. Since the events {xi /∈ Gi}i and ∀i :
xi ∈ Gi are covering (not necessarily disjoint) we have that

Pr
∀i: xi←D

[f(x1, . . . , xk) = 1] ≤

k∑
i=1

Pr [xi /∈ Gi] Pr [f(x1, . . . , xk) = 1 | xi /∈ Gi] +

Pr [∀i : xi ∈ Gi] Pr [f(x1, . . . , xk) = 1 | ∀i : xi ∈ Gi] <

εk · 1 + k · 1 · 1/q = εk + k/q ,

which is a contradiction.

Lemma 3.2 (OR Easy-Subset Lemma). Let f : X k → {0, . . . , k} be any mapping (possibly ran-
domized), where X is some finite set and k ∈ N. Also, let D : X → [0, 1] be any distribution over
X . For any q ∈ N and ε ∈ (0, 1) such that

Pr
∀i∈[k]: xi←D

[f(x1, . . . , xk) = 0] < (1− ε)k − k/q ,

there exists some i and Gi ⊆ X with D(Gi) ≥ ε, such that for every xi ∈ Gi:

Pr
∀j∈[k]\i: xj←D

[f(x1, . . . , xk) = i] ≥ 1/q .

Proof. For every i we let Gi be the set of all xi such that

Pr
∀j∈[k]\i: xj←D

[f(x1, . . . , xk) = i] ≥ 1/q ,

and assume toward contradiction that ∀i : D(Gi) < ε. Note that for every i we have that

1/q >Pr [f(x1, . . . , xk) = i | xi /∈ Gi] ≥
Pr [∀j ∈ [k] \ i : xj /∈ Gj ] Pr [f(x1, . . . , xk) = i | ∀j : xj /∈ Gj ] ≥
(1− ε)k−1 · Pr [f(x1, . . . , xk) = i | ∀j : xj /∈ Gj ] .

This inequality is used in the third transition below

Pr
∀i: xi←D

[f(x1, . . . , xk) = 0] ≥ Pr [∀j : xj /∈ Gj ] Pr [f(x1, . . . , xk) = 0 | ∀j : xj /∈ Gj ] =

Pr [∀j : xj /∈ Gj ]

(
1−

k∑
i=1

Pr [f(x1, . . . , xk) = i | ∀j : xj /∈ Gj ]

)
≥

(1− ε)k ·

(
1− k

q (1− ε)k−1

)
= (1− ε)k − k(1− ε)

q
≥ (1− ε)k − k/q ,

and we arrive at a contradiction.
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3.2 Zero-Knowledge Amplification

In this section, we present and analyze our zero-knowledge amplifier that is based on the hidden-bits
paradigm.

3.2.1 Statistical Tools

Lemma 3.3 (Useful facts). We defer the proofs of the following useful facts to the appendix (Ap-
pendix A.2).

1. Let (X1, Z1), (X2, Z2) be two independent pairs of jointly distributed random variables. Then

H̃∞(X1, X2 | Z1, Z2) = H̃∞(X1 | Z1) + H̃∞(X2 | Z2) .

2. Let X,Z be a pair of jointly distributed random variables and A be an event, then

H̃∞(X | Z,A) ≥ H̃∞(X | Z)− log(1/Pr [A]) .

3. Let Y := (Z,X1, . . . , Xt) be a random variable and denote by Y −j the r.v. with Xj omitted.
Further, let f(· ; r) be a randomized function. Assume that for all j ∈ [t] we have

Y −j , R, f(Xj ;R)
s
≈δ Y

−j , R, U ,

then we also have
Z,R, f(X1;R), . . . , f(Xt;R)

s
≈t·δ Z,R,U t .

4. Let X,Y be a pair of jointly distributed random variables and {Ai}i∈[k] be a set of events,
then

SD(X,Y ) ≤
∑
I⊆[k]

Pr[AI ,AI ]>0

Pr
[
AI , AI

]
· SD(X,Y | AI , AI) .

Lemma 3.4 (Statistical Extraction Lemma). Let (Z,X1, . . . , Xt)
s
≈δ (Z̃, Un

1 , . . . , U
n
t ) be distribu-

tions over Z×{0, 1}t·n for some t, n ∈ N and δ ∈ (0, 1), where each Un
i is uniform and independent.

Further, let H =
{
h : {0, 1}k·n → {0, 1}

}
be a universal hash family and consider k independent

copies of {(Zi, Xi1, . . . , Xit)}i∈[k], for some k ∈ N. Then we have that

Z1, . . . , Zk, h, {h(X1j , . . . , Xkj)}j∈[t]
s
≈δ′ Z1, . . . , Zk, h, U

t ,

over h← H, where δ′ ≤ δk + t/
√
2n−log(1/(1−δ)).

Proof. Using the coupling method, there exist events A, Ã with probability 1− δ each, such that

(Z,X1, . . . , Xt) | A ≡ (Z̃, Un
1 , . . . , U

n
t ) | Ã .

Let us denote by Y and Ỹ the r.v.s (Z,X1, . . . , Xt) and (Z̃, Un
1 , . . . , U

n
t ) respectively. Further,

for j ∈ [t], denote by Y −j (resp. Ỹ −j) the r.v. where Xj (resp. Un
j ) is omitted. The k pairs
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(Y1, A1), . . . , (Yk, Ak) are mutually independent. For every non-empty subset ∅ ≠ I ⊆ [k] and
j ∈ [t], we can choose some i∗ ∈ I and have that

H̃∞

(
X1j , . . . , Xkj | Y −j1 , . . . , Y −jk , AI , AI

)
=
∑
i∈[k]

H̃∞

(
Xij | Y −ji , AI , AI

)
≥

H̃∞

(
Xi∗j | Y −ji∗ , AI , AI

)
= H̃∞

(
Xi∗j | Y −ji∗ , Ai∗

)
= H̃∞

(
Un
j | Ỹ −j , Ã

)
≥

H̃∞

(
Un
j | Ỹ −j

)
− log

(
1/Pr

[
Ã
])

= n− log(1/(1− δ)) ,

where we used Fact 1 in the first equality, and Fact 2 in the second inequality. Specifically, for Fact
1, we used that the k pairs (X1j , Y

−j
1 ), . . . , (Xkj , Y

−j
k ) remain mutually independent conditioned

on any AI , AI . Then, using the generalized leftover hash lemma (Lemma 2.13), we conclude that

Y −j1 , . . . , Y −jk , h, h(X1j , . . . , Xkj) | AI , AI

s
≈δ∗ Y −j1 , . . . , Y −jk , h, U | AI , AI ,

over h ← H, and for δ∗ ≤ 2
−n+log(1/(1−δ))

2 . Now we can apply a hybrid argument over j ∈ [t] as in
Fact 3 to conclude that

Z1, . . . , Zk, h, {h(X1j , . . . , Xkj)}j∈[t] | AI , AI

s
≈t·δ∗ Z1, . . . , Zk, h, U

t | AI , AI ,

over h← H. Finally, using Fact 4 and over h← H, it holds that

SD
(
(Z1, . . . , Zk, h, {h(X1j , . . . , Xkj)}j∈[t]), (Z1, . . . , Zk, h, U

t)
)
≤∑

I⊆[k]

Pr
[
AI , AI

]
· SD

(
(Z1, . . . , Zk, h, {h(X1j , . . . , Xkj)}), (Z1, . . . , Zk, h, U

t) | AI , AI

)
≤

Pr
[
A∅, A[k]

]
+

∑
∅≠I⊆[k]

Pr
[
AI , AI

]
· t · δ∗ ≤ δk + t · δ∗ .

3.2.2 The Zero-Knowledge Amplifier

Theorem 3.5. Consider the protocol Πz described in Fig. 3.1, where Πwk is an (εs(n), εz(n))-weak
∗

NIZK, the amplification parameter is set to k, and Πhbm is an (2−k·n · negl(n))-sound HBM NIZK.
Then, Πz is an (1 − (1 − εs(n

′))k + negl, εkz(n
′) + negl)-weak∗ NIZK, for some fixed polynomial

n′ = k · poly(n).

Note that usually we think of εs(n) and εz(n) as non-increasing, so depending on n′ > n is not
worse. However, if for example εz(n) = 1− 1/n, then εz(n

′) > ε(n).

Proof. Correctness follows readily from the correctness of Πwk and Πhbm. We focus on proving
soundness and zero knowledge.
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Given a weak∗ NIZK Πwk, amplification parameter k, HBM NIZK Πhbm with t = k · poly(n)
hidden bits, n-bit-output PRF Fs and a universal hash family H =

{
h : {0, 1}k·n → {0, 1}

}
,

we construct Πz as follows:

crsz ← Genz(1
n)

1. Sample a hash function h← H.

2. Sample r ← {0, 1}t.

3. For all i ∈ [k], sample crs i ← Genwk(1
n′
), for some fixed polynomial n′ = k · poly(n)

corresponding to the size of the statement below.

4. Output crsz := (h, r, crs1, crs2, . . . , crsk) as the CRS.

πz ← Pz(crsz, x, w)

1. For all i ∈ [k], sample a PRF seed si ← {0, 1}n.

2. Compute the hidden bit-string r∗ where ∀j ∈ [t] : r∗j = rj ⊕ h(Fs1(j), . . . , Fsk(j)).

3. Compute the HBM proof (J, πhbm)← Phbm(r∗, x, w).

4. For all i ∈ [k], generate a (weak ZK) proof that a consistent seed w.r.t. the revealed
indices Fsi(J) exists, namely πi ← Pwk (crs i, ∃s ∈ {0, 1}n : Fs(J) = Fsi(J), si).

5. Output πz :=
(
J, πhbm, {Fsi(J)}i∈[k] , {πi}i∈[k]

)
as the proof.

bz := Vz(crsz, x, πz)

1. Parse πz :=
(
J, πhbm, {yij}i∈[k], j∈J , {πi}i∈[k]

)
and crsz := (h, r, crs1, crs2, . . . , crsk).

2. Check that Vwk(crs i, ∃s ∈ {0, 1}n : Fs(J) = yi(J), πi) = 1, for all i ∈ [k].

3. Compute the revealed bit-string r∗J where ∀j ∈ J : r∗j = rj ⊕ h(y1j , . . . , ykj).

4. Check that Vhbm(J, r∗J , x, π
hbm) = 1.

5. If all checks passed output bz := 1 (accept πz), otherwise output bz := 0 (reject πz).

Figure 3.1: ZK Amplifier
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Soundness∗. Let Az(crsz) be an adversary that breaks the soundness∗ of Πz with probability
ε = ε(n), and assume toward contradiction that ε(n) > 1−(1−εs(n

′))k+3k/q for some polynomial
q = q(n) and infinitely many n’s. We construct an adversary Awk(crs) that breaks the soundness∗

of Πwk as follows:

1. Initialize OUT as the empty string.

2. For every i ∈ [k], repeat q log q times:

(a) Sample ∀j ∈ [k] \ i : crsj ← Genwk(1
n′
), with h← H and r ← {0, 1}t.

(b) Set crs i := crs and crsz := (h, r, crs1, crs2, . . . , crsk).

(c) Run (x1, π1), . . . , (xp, πp)← Az(crsz), where each πℓ is parsed as(
Jℓ, π

hbm
ℓ , {yℓi(Jℓ)}i∈[k] , {πℓi}i∈[k]

)
.

Recall that each πℓ induces k statement-proof pairs {(xℓi, πℓi)}i∈[k], where

xℓi := ∃s ∈ {0, 1}n : Fs(Jℓ) = yℓi(Jℓ) .

(d) For every ℓ ∈ [p], concatenate the i’th internal statement-proof pair of πℓ to OUT, that
is, concatenate the tuple (xℓi, πℓi) taken from πℓ.

3. Output OUT.

The running time of Awk increases to k · q log q · (TIME(Az) + poly(n, k)) so it remains polynomial.
To analyze the success probability of Awk, we define a randomized and possibly inefficient func-

tion T (crs1, crs2, . . . , crsk)→ {0, . . . , k}, that runs the adversary Az and tests which crs i was bro-
ken. That is, T samples h← H and r ← {0, 1}t, runs (x1, π1), . . . , (xp, πp)← Az(h, r, crs1, crs2, . . . , crsk),
and outputs an i ∈ [k] such that the i’th internal statement-proof pair (xℓi, πℓi) of some πℓ, is a
false statement with an accepting proof w.r.t. crs i. If for all ℓ ∈ [p] no such i ∈ [k] exists T outputs
0, and if multiple such i’s exist simply pick one at random or pick the minimal.

By the
(
2−k·n · negl(n)

)
-statistical-soundness of Πhbm, except for negligible probability over

r ∈ {0, 1}t, there does not exist an accepting HBM proof of a no-instance for all choices of the
PRF seeds. Specifically, fixing any h ∈ H, and taking a union bound over all choices of s1, . . . , sk ∈
{0, 1}n, this probability (over r ∈ {0, 1}t) is bounded by:

2k·n ·
(
2−k·n · negl(n)

)
= negl(n) .

Therefore, with probability at least ε(n) − negl(n), we have that Az breaks soundness∗ against
a “good” r (no accepting HBM proof of a no-instance for all seed choices), then for every false
instance with an accepting proof (x, πz) it cannot be that all {yi(J)}i∈[k] are consistent with PRF
seeds. Thus, for at least one ℓ and one i, we have that (xℓi, πℓi) is a no-instance with an accepting
proof w.r.t. crs i. We conclude that

Pr
∀i: crsi←Genwk(1n

′ )
[T (crs1, crs2, . . . , crsk) = 0] ≤ 1− ε+ negl <

(1− εs)
k − 3k/q + negl ≤ (1− εs − 1/q)k + k/q − 3k/q + negl <

(1− (εs + 1/q))k − k/q ,
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The simulator Simz = Simz(x) is defined below:

(crsz, πz)← Simz(x)

1. Sample a hash function h← H.

2. Simulate the Πhbm proof (J, r∗J , π
hbm)← Simhbm(x).

3. For i ∈ [k]:

(a) Sample crs i ← Genwk(1
n′
).

(b) Sample a PRF seed si ← {0, 1}n.
(c) Generate a (weak ZK) proof that a consistent seed w.r.t. the revealed indices Fsi(J)

exists, namely πi ← Pwk (crs i, ∃s ∈ {0, 1}n : Fs(J) = Fsi(J), si).

4. Compute the random CRS bit-string at revealed indices rJ where ∀j ∈ J : rj = r∗j ⊕
h(Fs1(j), . . . , Fsk(j)).

5. Sample the random CRS bit-string at hidden indices rJ ← {0, 1}
|J|.

6. Set crsz := (h, r, crs1, crs2, . . . , crsk) as the CRS.

7. Set πz :=
(
J, πhbm, {Fsi(J)}i∈[k] , {πi}i∈[k]

)
as the proof.

8. Output (crsz, πz).

Figure 3.2: Simulator Simz

where we used that αk ≤ (α− β)k + β · k for all 0 ≤ β ≤ α ≤ 1. Now we apply the OR easy-subset
lemma (Lemma 3.2) and get that there exists some i and a set of CRS’s S with

Pr
crs←Genwk(1n

′ )
[crs ∈ S] ≥ εs + 1/q ,

such that for every crs i ∈ S:

Pr
∀j∈[k]\i: crsj←Genwk(1n

′ )
[T (crs1, crs2, . . . , crsk) = i] ≥ 1/q .

So if crs i ∈ S, the probability to never get T = i during q log q repetitions is at most (1−1/q)q log q.
Note that Awk(crs) goes over all possible values of i ∈ [k] so in particular it hits the correct value,
hence its probability to succeed breaking the soundness∗ of Πwk, over the choice of crs ← Genwk(1

n′
)

and its internal randomness, is at least εs+1/q−(1−1/q)q log q > εs in contradiction to the security
of Πwk.

Zero Knowledge. We start by describing the simulator in Fig. 3.2. Then, we prove by a hybrid
argument that the real distribution of CRS and proof (crsz, πz) given by an honest execution of Πz
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The distribution H1 = H1(x,w) is defined below:

(crsz, πz)← H1(x,w)

1. Sample a hash function h← H.

2. Sample r∗ ← {0, 1}t.

3. Compute the HBM proof (J, πhbm)← Phbm(r∗, x, w).

4. For i ∈ [k]:

(a) Sample crs i ← Genwk(1
n′
).

(b) Sample a PRF seed si ← {0, 1}n.
(c) Generate a (weak ZK) proof that a consistent seed w.r.t. the revealed indices Fsi(J)

exists, namely πi ← Pwk (crs i, ∃s ∈ {0, 1}n : Fs(J) = Fsi(J), si).

5. Compute the random CRS bit-string r where ∀j ∈ [t] : rj = r∗j ⊕ h(Fs1(j), . . . , Fsk(j)).

6. Set crsz := (h, r, crs1, crs2, . . . , crsk) as the CRS.

7. Set πz :=
(
J, πhbm, {Fsi(J)}i∈[k] , {πi}i∈[k]

)
as the proof.

8. Output (crsz, πz).

Figure 3.3: Hybrid H1
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The distribution H2 = H2(x,w) is defined below:

(crsz, πz)← H2(x,w)

1. Sample a hash function h← H.

2. Sample r∗ ← {0, 1}t.

3. Compute the HBM proof (J, πhbm)← Phbm(r∗, x, w).

4. For i ∈ [k]:

(a) Sample crs i ← Genwk(1
n′
).

(b) Sample a PRF seed si ← {0, 1}n.
(c) Generate a (weak ZK) proof that a consistent seed w.r.t. the revealed indices Fsi(J)

exists, namely πi ← Pwk (crs i, ∃s ∈ {0, 1}n : Fs(J) = Fsi(J), si).

5. Compute the random CRS bit-string at revealed indices rJ where ∀j ∈ J : rj = r∗j ⊕
h(Fs1(j), . . . , Fsk(j)).

6. Sample the random CRS bit-string at hidden indices rJ ← {0, 1}
|J|.

7. Set crsz := (h, r, crs1, crs2, . . . , crsk) as the CRS.

8. Set πz :=
(
J, πhbm, {Fsi(J)}i∈[k] , {πi}i∈[k]

)
as the proof.

9. Output (crsz, πz).

Figure 3.4: Hybrid H2
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over (x,w), which we refer to as H0, is indistinguishable from the simulated distribution of CRS
and proof, which we refer to as H3.

We first observe that the hybrid H1 described in Fig. 3.3, has exactly the same distribution
of H0: We simply changed the order of sampling, as r is sampled uniformly and independently
of {si}i, it is equivalent whether we sample r ← {0, 1}t and let r∗ = r ⊕ g(s1, . . . , sk), or sample
r∗ ← {0, 1}t and let r = r∗⊕ g(s1, . . . , sk), where g(s1, . . . , sk) ∈ {0, 1}t is defined by ∀j ∈ [t] : gj =
h(Fs1(j), . . . , Fsk(j)).

Next, in the hybrid H2 described in Fig. 3.4, we randomly sample rJ ← {0, 1}
|J| instead of com-

puting rJ = r∗
J
⊕gJ(s1, . . . , sk). For the indistinguishability analysis, fix some choice of (r∗, J, πhbm)

in the second and third lines. We observe that the k random variables
{
(Fsi(J), crsi, πi) , Fsi(J)

}
i∈[k]

are i.i.d., and denote by (Fs(J), crs, π) , Fs(J) their shared distribution. We have that

(Fs(J), crs, π) , Fs(J)
c
≈εz (Fs(J), Simwk(Fs(J))) , Fs(J)

c
≈

(Fs(J), Simwk(Fs(J))) , U
n·|J| ,

where the first transition is based on the weak-ZK of Πwk, and the second is based on the security
of the PRF. Also, we used Simwk(Fs(J)) as shorthand for Simwk (∃s′ ∈ {0, 1}n : Fs′(J) = Fs(J)).
Now, using the hybrid indistinguishability lemma (Lemma 2.15), for every ε > 0 there exists some
hybrid distribution (F ′s(J), crs

′, π′) , F ′s(J) such that

(Fs(J), crs, π) , Fs(J)
c
≈ε

(
F ′s(J), crs

′, π′
)
, F ′s(J)

s
≈εz+negl

(Fs(J), Simwk(Fs(J))) , U
n·|J| ,

with respect to circuits smaller by poly(ε/n). Therefore, we have that{
(Fsi(J), crsi, πi) , Fsi(J)

}
i∈[k]

c
≈k·ε

{(
F ′si(J), crs

′
i, π
′
i

)
, F ′si(J)

}
i∈[k] .

We next apply the statistical extraction lemma (Lemma 3.4), to conclude that{(
F ′si(J), crs

′
i, π
′
i

)}
i∈[k] , h,

{
h(F ′s1(j), . . . , F

′
sk
(j))

}
j∈J

s
≈εkz+negl{(

F ′si(J), crs
′
i, π
′
i

)}
i∈[k] , h, U

|J| ,

where h← H. Going back to the original distributions, we arrive at

{(Fsi(J), crsi, πi)}i∈[k] , h, {h(Fs1(j), . . . , Fsk(j))}j∈J
c
≈εkz+2kε+negl

{(Fsi(J), crsi, πi)}i∈[k] , h, U |
J| ,

where h← H. Since the above holds for every fixed choice of (r∗, J, πhbm), it also holds for a random
sample. Hence, the hybrid H2 is at most εkz + 2kε + negl computationally indistinguishable from
H1, seeing that we replaced ∀j ∈ J : rj = r∗j ⊕ h(Fs1(j), . . . , Fsk(j)) by ∀j ∈ J : rj ← U ≡ r∗j ⊕U .

Finally, in the hybrid H3 induced by the simulator Simz, we simulate (J, r∗J , π
hbm)← Simhbm(x)

using the simulator of Πhbm instead of generating (J, r∗, πhbm) honestly, which suffices since we are
not using r∗

J
. By the ZK of Πhbm, hybrid H3 is indistinguishable from H2.

Overall, we conclude that Simz(x) is at most εkz +2kε+negl computationally indistinguishable
from (crsz, πz) given by an honest execution of Πz over (x,w), and since this holds for any ε > 0 with
the running time of the reduction being polynomial in 1/ε, we have εkz + negl indistinguishability.
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Remark 3.6. We can only compose the ZK amplifier a constant number of times to maintain ef-
ficiency, as the statement size grows polynomially. We also remark that it works for adaptive
soundness with looser degradation k · εs, but not for non-adaptive soundness as the attacked in-
stances are induced by the adversary. Finally, we remark that since the PRF is only applied to [t],
a PRG with an output length of t · n bits parsed as t blocks of size n would suffice, and we use a
PRF strictly for notational ease.

Remark 3.7. Note that the above reduction for zero-knowledge amplification is non-uniform. Specif-
ically, we used non-uniformity to fix some choice of (r∗, J, πhbm) and obtain samples from the induced
hybrid distribution (F ′s(J), crs

′, π′) , F ′s(J), for the hybrid argument{
(Fsi(J), crsi, πi) , Fsi(J)

}
i∈[k]

c
≈k·ε

{(
F ′si(J), crs

′
i, π
′
i

)
, F ′si(J)

}
i∈[k] .

Even though the uniform version of the hybrid indistinguishability lemma allows to sample from the
hybrid X ′, it is not immediately applicable here, because of the auxiliary parameter (r∗, J, πhbm).
We suppose that a more careful consideration of Holenstein’s uniform hard-core lemma [Hol05]
should suffice for this generalization, but leave it open for the curious reader.

The above zero-knowledge amplifier directly implies the following:

Corollary 3.8 (Weak Zero-Knowledge Amplification). Assuming OWFs and an (negl, 1− 1/nε)-
weak NIZK for some constant ε < 1, there also exists standard NIZK.

Proof. Recall that negl-soundness is equivalent to negl-soundness∗. Using the zero-knowledge am-
plifier (Theorem 3.5), noting that 1− (1− ε)k ≤ ε · k and 1− x ≤ e−x, yields (up to negl)(

k · negl, e−k/(k·nc)ε
)
=
(
negl, e−k

1−ε/nc·ε
)
,

where we used that n′ = k · nc for some constant c > 0. We want to have k1−ε/nc·ε ≫ log n, so we
can pick for example k = nc/(1−ε) = poly(n).

In more general, the above corollary also applies to the case where the ZK error may be 1 −
1/poly(λ) in the security parameter λ, but not where it arbitrarily grows with the instance size n.

3.3 Soundness* Amplification

In this section, we explicitly present and analyze the parallel repetition soundness∗ amplifier.

Theorem 3.9. Consider the direct-product protocol Πs described in Fig. 3.5, where Πwk is an
(εs, εz)-weak

∗ NIZK and the amplification parameter is set to k. Then, Πs is an (εks + negl, 1 −
(1− εz)

k + negl)-weak∗ NIZK.

Proof. Correctness follows readily from the correctness of Πwk.

Soundness∗. Let As be an adversary that breaks the soundness∗ of Πs with probability ε = ε(n),
and assume toward contradiction that ε > εks + 2k/q for some polynomial q = q(n) and infinitely
many n’s. We construct an adversary Awk(crs) against Πwk as follows:

1. Initialize OUT as the empty string.
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Given a weak∗ NIZK Πwk and amplification parameter k, we construct Πs as follows:

crss ← Gens(1
n)

1. For all i ∈ [k], sample crs i ← Genwk(1
n).

2. Output crss := (crs1, . . . , crsk) as the CRS.

πs ← Ps(crss, x, w)

1. For all i ∈ [k], generate a (weak ZK) proof πi ← Pwk (crs i, x, w).

2. Output πs := (π1, . . . , πk) as the proof.

bs := Vs(crss, x, πs)

1. Check that Vwk(crs i, x, πi) = 1, for all i ∈ [k].

2. If all checks passed output bs := 1 (accept πs), otherwise output bs := 0 (reject πs).

(crss, πs)← Sims(x)

1. For all i ∈ [k] simulate (crs i, πi)← Simwk(x).

2. Set crss := (crs1, . . . , crsk) as the CRS.

3. Set πs := (π1, . . . , πk) as the proof.

4. Output (crss, πs).

Figure 3.5: Soundness∗ Amplifier (Direct-Product)
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2. For every i ∈ [k], repeat q log q times:

(a) Sample crsj ← Genwk(1
n) for all j ∈ [k] \ i.

(b) Set crs i := crs and crss := (crs1, crs2, . . . , crsk).

(c) Run (x1, π1), . . . , (xp, πp)← As(crss), where each πℓ is parsed as (πℓ1, . . . , πℓk).

(d) For every ℓ ∈ [p], concatenate the i’th internal proof of πℓ to OUT, namely, the tuple
(xℓ, πℓi).

3. Output OUT.

The running time of Awk increases to k · q log q · (TIME(As) + poly(n, k)) so it remains polynomial.
For the analysis of the success probability, we define a randomized and possibly inefficient

function T (crs1, crs2, . . . , crsk)→ {0, 1}, that runs the adversary As(crs1, crs2, . . . , crsk) and tests
whether it succeeds breaking soundness∗. We have that

Pr
∀i: crsi←Genwk(1n)

[T (crs1, crs2, . . . , crsk) = 1] = ε > εks + 2k/q ≥ (εs + 1/q)k + k/q ,

where we used that (α−β)k+β ·k ≥ αk for all 0 ≤ β ≤ α ≤ 1. Now we apply the AND easy-subset
lemma (Lemma 3.1) and get that there exists some i and a set of CRS’s S with

Pr
crs←Genwk(1n)

[crs ∈ S] ≥ εs + 1/q ,

such that for every crs i ∈ S:

Pr
∀j∈[k]\i: crsj←Genwk(1n)

[T (crs1, crs2, . . . , crsk) = 1] ≥ 1/q .

So if crs i ∈ S, the probability to never get T = 1 during q log q repetitions is at most (1−1/q)q log q.
Note that Awk(crs) goes over all possible values of i ∈ [k] so in particular it hits the correct value,
hence its probability to succeed breaking the soundness∗ of Πwk, over the choice of crs ← Genwk(1

n)
and its internal randomness, is at least εs+1/q−(1−1/q)q log q > εs in contradiction to the security
of Πwk.

Zero Knowledge. We have that Simwk(x)
c
≈εz (crs, π) where crs ← Gens(1

n), π ← Pwk (crs, x, w),
and we are now switching to k independent copies, so we can apply the indistinguishability bound
for product distributions (Lemma 2.17). As long as 1/(1−εz)k is polynomial, we maintain efficiency
for every inverse-polynomial slackness error ε (and even beyond that).

It is important to note here, that all of the above soundness∗ security reductions are oblivious
to statistical-soundness. That is, if the underlying protocol is (weakly) statistically-sound∗, the
reduction preserves this property (with the same amplification and degradation parameters).
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4 Simultaneous Amplification

In this section, we show how to combine our pair of amplifiers in order to amplify weak to fully
secure NIZK. We state a general theorem for the notion of soundness∗, and derive corollaries for
standard notions of soundness.

Theorem 4.1 (Weak∗ NIZK Amplification). Assuming OWFs and an (α, β)-weak∗ NIZK for some
constants α, β such that α+ β < 1, there also exists standard NIZK.

Proof. We start from (α, β) = (1−1/2− log(1−α), 1/2− log β). Apply the ZK amplifier with k = log n,
to get

(1− 1/n− log(1−α) + negl, 1/n− log β + negl) ≤ (1− 1/nc1 , 1/nc2) ,

for some constants c1 < c2, since − log(1 − α) < − log β. It is important to note we do not want
to choose k to be much larger, so that 2−k log(1−α) remains polynomial. Now apply the soundness∗

amplifier with k = n(c1+c2)/2, noting that 1− x ≤ e−x and 1− (1− ε)k ≤ ε · k, we get

(e−k/n
c1

+ negl, k/nc2 + negl) = (negl, 1/nc) ,

for some positive constant c. Finally, apply the ZK amplifier again with k = log n, to obtain
(negl,negl).

We remark that we can also do soundness∗ → ZK → soundness∗, with a slightly more careful
argument taking into account the growth in statement size for the increasing function 1− 1/nc.

Corollary 4.2 (Weak Statistically-Sound NIZK Amplification). Assuming OWFs and an (α, β)-
weak statistically-sound NIZK for some constants α, β such that α + β < 1, there also exists a
statistically-sound NIZK.

Proof. Recall that α-statistical-soundness is equivalent to α-statistical-soundness∗, since a compu-
tationally unbounded adversary can always pick the false statement with an accepting proof out of
several candidates. Then, we can apply the above weak∗ NIZK amplifier (Theorem 4.1).

4.1 Soundness to Soundness* via Public-Key Encryption

In this section, we construct weak∗ NIZK from weak NIZK and public-key encryption.

Theorem 4.3. Consider the protocol Πwk∗ described in Fig. 4.1, where Πwk is an (εs(n), εz(n))-
weak NIZK and PKE is a public-key encryption scheme. Then, Πwk∗ is an (εs(n

′) + negl, εz(n
′) +

negl)-weak∗ NIZK, for some fixed polynomial n′ = poly(n).

We note that up to this point, all our constructions preserve a random CRS. That is, if the
underlying weak NIZK has a random CRS, the amplification protocol preserves this property. This
is no longer necessarily true for the transformation given by the above theorem.

Proof. Consider NP relation R with m(n)-sized witnesses. Throughout the proof, we denote by
x(pk, c) the statement

∃(w, r) : c = PKE.E(pk, w; r) ∧ (x,w) ∈ R .

The correctness of Πwk∗ follows readily from the correctness of Πwk, so let us focus on proving
soundness∗ and ZK.
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Given a weak NIZK Πwk, and an almost-all-keys perfectly-correct public-key encryption
scheme PKE, we construct a weak∗ NIZK Πwk∗ as follows:

crswk∗ ← Genwk∗(1
n)

1. Sample (pk, sk)← PKE.G(1n).

2. Sample crswk ← Genwk(1
n′
), for some fixed polynomial n′ = poly(n) corresponding to the

size of the statement below.

3. Output crswk∗ := (pk, crswk) as the CRS.

πwk∗ ← Pwk∗(crswk∗ , x, w)

1. Encrypt cw ← PKE.E(pk,w; r).

2. Generate a weak proof that a valid witness was encrypted, namely

πwk ← Pwk (crswk, ∃(w, r) : cw = PKE.E(pk, w; r) ∧ (x,w) ∈ R, (w, r)) .

3. Output πwk∗ := (cw, πwk) as the proof.

bwk∗ := Vwk∗(crswk∗ , x, πwk∗)

1. Parse crswk∗ := (pk, crswk) and πwk∗ := (c, πwk).

2. Return Vwk(crswk, ∃(w, r) : c = PKE.E(pk,w; r) ∧ (x,w) ∈ R, πwk).

(crswk∗ , πwk∗)← Simwk∗(x)

1. Sample (pk, sk)← PKE.G(1n).

2. Encrypt c0 ← PKE.E(pk, 0m(n); r), where m(n) is the size of the witness.

3. Simulate (crswk, πwk)← Simwk(∃(w, r) : c0 = PKE.E(pk,w; r) ∧ (x,w) ∈ R).

4. Set crswk∗ := (pk, crswk) as the CRS.

5. Set πwk∗ := (c0, πwk) as the proof.

6. Output (crswk∗ , πwk∗).

Figure 4.1: Soundness∗ From Soundness and PKE
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Soundness∗. Let Awk∗(crswk∗) be an adversary breaking the soundness∗ of Πwk∗ with probability
at least ε = ε(n). We construct an adversary Awk(crswk) breaking the (adaptive) soundness of Πwk

with probability ε − negl as follows: given crswk ← Genwk(1
n′
) we sample (pk, sk) ← PKE.G(1n)

and set crswk∗ := (pk, crswk). Then, we run (x1, π1), . . . , (xp, πp)← Awk∗(crswk∗) where each proof
πℓ is of the form (cℓ, πwk,ℓ). We return (xℓ(pk, cℓ), πwk,ℓ) for some ℓ ∈ [p] such that πℓ is accepting,
but wℓ := PKE.D(sk, cℓ) is not a valid witness for xℓ. If no such ℓ exists, we return ⊥.

With probability at least ε−negl, soundness∗ is broken while (pk, sk) is perfectly-correct. Since
soundness∗ is broken, there exists a false instance with an accepting proof, and in particular no
witness is valid for it, so we can efficiently find an appropriate ℓ as described above, by decrypting
every ciphertext and testing whether it contains a valid witness. Because of perfect-correctness,
there cannot exist (w′, r′) with w′ ̸= wℓ such that cℓ = PKE.E(pk,w′; r′). Hence, the statement
xℓ(pk, cℓ) must be a false statement, and we know that πwk,ℓ is an accepting proof for it w.r.t.
crswk, since πℓ is accepting.

Zero Knowledge. For any given (x,w) ∈ Rn, the security of PKE implies that pk, cw
c
≈ pk, c0,

where
(pk, sk)← PKE.G(1n), cw ← PKE.E(pk,w; r), c0 ← PKE.E(pk, 0m(n); r) .

Then, we have that

Simwk∗(x) = pk, c0,Simwk(x(pk, c0))
c
≈ pk, cw,Simwk(x(pk, cw)) ,

where (pk, sk) ← PKE.G(1n) and r is chosen at random, as we applied an efficient transforma-
tion over the encryption. From the ZK of Πwk, for all (pk, r), and in particular over (pk, sk) ←
PKE.G(1n) and a random r, we have that

pk, cw,Simwk(x(pk, cw))
c
≈εz pk, cw, crswk, πwk ,

where crswk ← Genwk(1
n′
) and πwk ← Pwk (crswk, x(pk, cw), (w, r)). The latter is equivalent to an

honest execution of Πwk∗ over (x,w).

Corollary 4.4 (Weak NIZK Amplification). Assuming PKE and an (α, β)-weak NIZK for some
constants α, β such that α+ β < 1, there also exists standard NIZK.

Proof. Follows by combining Theorem 4.3 and Theorem 4.1.

5 Open Questions

In this section, we discuss a few open directions.

Noticeable Gap. Ideally, we would like to amplify for any α(n) + β(n) < 1 − 1/poly(n), for
example a (1/2, 1/2 − 1/n)-weak NIZK. For comparison, in the setting of weak-OT amplification,
we can indeed amplify whenever the gap from 1 is noticeable - this is done by alternating between
the amplifiers for a logarithmic number of times. However, in our setting the ZK amplifier increases
the size of the statement polynomially even when k is constant, so this would result an extremely
inefficient protocol.
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Still, there are some non-constant parameters we can capture. For example, given a (1 −
2/n, 1/n)-weak NIZK, we can apply the soundness amplifier with k = n to get roughly (1/e2, 1 −
1/e), then use the constants amplifier. A similar in spirit argument could also be made for the ZK
amplifier, although we have to be more careful because of the statement size growth.

Non-adaptive Soundness. Our ZK amplifier requires an adaptively-sound base protocol. It is
an interesting open question how to amplify ZK when only non-adaptive soundness is guaranteed.

Removing PKE. Even though we were able to remove the assumption of public-key encryption
in some settings, it remains open whether we can amplify the general case of (α, β)-weak NIZK
without this assumption.

Although, we do mention that even without PKE we can still show adaptive-soundness degrada-
tion of k ·ε in the ZK amplifier, and non-adaptive soundness amplification in the parallel repetition
soundness amplifier. Hence, we can amplify (1/ log n, 1/ log n)-weak NIZK to fully secure non-
adaptively-sound NIZK without PKE, by first using the ZK amplifier with k = log n/2, then the
soundness amplifier with k = n.
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A Appendix

A.1 Hybrid Indistinguishability Lemma

Below, we give a proof sketch for the hybrid indistinguishability lemma (Lemma 2.15), from the
original statement of the indistinguishability hard-core lemma, as it appears in [MT10].

First, some definitions: A measureM over a set X is a functionM : X → [0, 1], and its density

is µ(M) := Ex←X [M(x)]. We denote by PM sampling according toM, that is, PM(x) = M(x)
µ(M)·|X | .

Lemma A.1 (Indistinguishability Hard-Core Lemma [MT10]). Let E : U → X and F : V → X be
functions, and let δ, ε ∈ (0, 1) and s ∈ N be given. Assume that

E(U)
c
≈δ F (V ) ,

against s-sized circuits, where U ← U , V ← V. Then there exist measures M on U and N on V,
each with density at least 1− δ, such that

E(U ′)
c
≈ε F (V ′) ,

against s′-sized circuits, where U ′ ← PM, V ′ ← PN , and s′ := s·ε2
128(log|U|+log|V|+1) .
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Proof Sketch of Lemma 2.15. Given a distribution X we let N = |Im(X)| and n = logN , then
we can consider its probability vector (p1, . . . , pN ) and round each probability down to an n +
log(1/ε∗)-bits representation. The statistical distance from X when sampling according to the
new probabilities (after normalizing) is at most ε∗. Now we can define an inefficient function

E : {0, 1}n+log(1/ε∗) → Im(X) using inverse transform sampling on the rounded probabilities, such

that E(Un+log(1/ε∗))
s
≈ε∗ X, and do the same for F (Um+log(1/ε∗))

s
≈ε∗ Y . We have that

E(Un+log(1/ε∗))
c
≈δ+2ε∗ F (Um+log(1/ε∗)) ,

against s-sized circuits, and we can use the indistinguishability hard-core lemma with ε′ to conclude
that there exist measures N on {0, 1}log|Im(X)|+log(1/ε∗) andM on {0, 1}log|Im(Y )|+log(1/ε∗), each with
density at least 1− δ − 2ε∗, such that

E(PN )
c
≈ε′ F (PM) ,

against s′-sized circuits where s′ := s·ε′2
128(log|Im(X)|+log(1/ε∗)+log|Im(X)|+log(1/ε∗)+1) . We can assume

w.l.o.g. the measures have density exactly 1 − δ − 2ε∗, because we can always scale them down.
Note that the following are distributionally equivalent

Un+log(1/ε∗) ≡ (1− δ − 2ε∗) · PN + (δ + 2ε∗) · PN ,

Um+log(1/ε∗) ≡ (1− δ − 2ε∗) · PM + (δ + 2ε∗) · PM .

Now we can define the hybrid distribution X ′ using

X ′ := (1− δ − 2ε∗) · F (PM) + 3ε∗ · F (PM) + (δ − ε∗) · E(PN ) ,

then we have that the computational distance between X ′ and E(Un+log(1/ε∗)) is at most

(1− δ − 2ε∗) · ε′ + 3ε∗ · 1 + (δ − ε∗) · 0 ≤ (1− δ) · ε′ + 3ε∗ ,

and the statistical distance from F (Um+log(1/ε∗)) is at most (δ− ε∗). Finally, we switch back to the
original distributions to conclude that

X
c
≈(1−δ)·ε′+4ε∗ X ′

s
≈δ Y ,

and by setting ε′ = ε(1− ε)/(1− δ) with ε∗ = ε2/4, we get what we wanted w.r.t. ε.

A.2 Useful Facts

Here, we prove the useful facts appearing in Section 3.2.1, for the proof of the statistical extraction
lemma (Lemma 3.4).

Proof of Lemma 3.3. Below are the proofs for the useful facts
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1. Let X1, Z1 be a pair of jointly distributed random variables and X2, Z2 be an independent
pair. Then

H̃∞(X1, X2 | Z1, Z2) = − log

(
E

z1,z2←Z1,Z2

[
max
x1,x2

Pr [X1, X2 = x1, x2 | Z1, Z2 = z1, z2]

])
=

− log

(
E

z1,z2←Z1,Z2

[
max
x1,x2

Pr [X1 = x1 | Z1 = z1] Pr [X2 = x2 | Z2 = z2]

])
=

− log

(
E

z1←Z1

[
E

z2←Z2

[
max
x1

Pr [X1 = x1 | Z1 = z1] max
x2

Pr [X2 = x2 | Z2 = z2]

]])
=

− log

(
E

z1←Z1

[
max
x1

Pr [X1 = x1 | Z1 = z1]

]
E

z2←Z2

[
max
x2

Pr [X2 = x2 | Z2 = z2]

])
=

− log

(
E

z1←Z1

[
max
x1

Pr [X1 = x1 | Z1 = z1]

])
− log

(
E

z2←Z2

[
max
x2

Pr [X2 = x2 | Z2 = z2]

])
=

H̃∞(X1 | Z1) + H̃∞(X2 | Z2) .

2. Let X,Z be a pair of jointly distributed random variables and A be an event. We have that

E
z←Z|A

[
max
x

Pr [X = x | Z = z,A]
]
=
∑
z

Pr [Z = z | A] max
x

Pr [X = x | Z = z,A] =

∑
z

max
x

Pr [X = x, Z = z | A] = 1

Pr [A]

∑
z

max
x

Pr [X = x, Z = z,A] ≤

1

Pr [A]

∑
z

max
x

Pr [X = x, Z = z] =
1

Pr [A]
E

z←Z

[
max
x

Pr [X = x | Z = z]
]
.

By applying the decreasing function − log(·) on both sides, we conclude that

H̃∞(X | Z,A) ≥ H̃∞(X | Z)− log(1/Pr [A]) .

3. Let Y := (Z,X1, . . . , Xt) be a random variable and denote by Y −j the r.v. with Xj omitted.
Further, let f(· ; r) be a randomized function. Assume that for all j ∈ [t] we have

Y −j , R, f(Xj ;R)
s
≈δ Y

−j , R, U ,

then we also have

Z,R, f(X1;R), . . . , f(Xj ;R), U t−j s
≈δ Z,R, f(X1;R), . . . , f(Xj−1;R), U t−j+1 ,

as we applied some function on both sides. Using a hybrid argument over j ∈ [t] we conclude
that

Z,R, f(X1;R), . . . , f(Xt;R)
s
≈t·δ Z,R,U t .

4. Let X,Y be a pair of jointly distributed random variables and {Ai}i∈[k] be a set of events,
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then

2 · SD(X,Y ) =
∑
z

|Pr[X = z]− Pr[Y = z]| =

∑
z

∣∣∣∣∣∣∣∣∣
∑
I⊆[k]

Pr[AI ,AI ]>0

Pr
[
AI , AI

] (
Pr[X = z | AI , AI ]− Pr[Y = z | AI , AI ]

)
∣∣∣∣∣∣∣∣∣ ≤∑

z

∑
I⊆[k]

Pr[AI ,AI ]>0

Pr
[
AI , AI

] ∣∣Pr[X = z | AI , AI ]− Pr[Y = z | AI , AI ]
∣∣ =

∑
I⊆[k]

Pr[AI ,AI ]>0

Pr
[
AI , AI

]∑
z

∣∣Pr[X = z | AI , AI ]− Pr[Y = z | AI , AI ]
∣∣ =

2
∑
I⊆[k]

Pr[AI ,AI ]>0

Pr
[
AI , AI

]
SD(X,Y | AI , AI) .
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