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Abstract. This paper introduces an algorithm to efficiently break the De-

cisional Diffie-Hellman (DDH) assumption in totally non-maximal imaginary
quadratic orders, specifically when ∆1 = 3, and f is non-prime with knowledge

of a single factor. Inspired by Shanks and Dedekind’s work on 3-Sylow groups,

we generalize their observations to undermine DDH security.

1. Introduction

The Decision Diffie–Hellman assumption (DDH) is essential for demonstrating
the security of numerous widely employed protocols, including Diffie–Hellman key
agreement, El Gamal encryption and more advanced functionalities. The DDH
problem posits that given a finite cyclic group G = 〈g〉 with a generator g, it is
hard to distinguish between (g, gx, gy, gxy) and (g, gx, gy, gz), where x, y, and z are
chosen randomly in G.

It is well known that one can defeat the DDH assumption in F∗p employing
the Legendre symbols and in class groups (and for class group actions [1, 2]) via
genus theory. Therefore, G is selected as a cyclic prime-order subgroup within the
multiplicative group F∗p of a finite prime field. For class groups (and class group
actions), one must operate within the set of square elements (principal genus). The
Legendre symbol acts as a group homomorphism mapping from F∗p → {1,−1}. For
any prime ` | (p − 1), a homomorphism from F∗p to H can be constructed where
H is a subgroup with an order of `. Consequently, when (p − 1) encompasses
various small factors, an algorithm can be developed to distinguish Diffie-Hellman
quadruples from random quadruples, leading to the resolution of the DDH problem.
This can be extended to any group with a known order and is not restricted to F∗p.
The amazing aspect of genus theory is that it provides an efficiently computable
character even when the order of the group is unknown. This is typically the case
in the class group of maximal order of an imaginary quadratic field Cl(∆), and
these characters can be used to break DDH (the fix as mentioned above is to work
in the group of squares). In this paper we focus on the special case of totally
non-maximal imaginary quadratic orders O∆f

such that ∆f = ∆1f
2 and the class

number of the maximal order h(∆1) = 1. The key feature of these totally non-
maximal orders is the immediate knowledge of the class number of the maximal
order h(∆1) = 1. Consequently, the class number of the non-maximal order ∆f ,
where the conductor f is prime, is also known immediately and is equal to h(∆f ) =
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f−
(

∆1

f

)
, where

(
∆1

f

)
represents the Kronecker symbol. In [3] it was shown that the

discrete logarithm problem in totally non-maximal imaginary quadratic orders O∆f

for prime f , can be reduced to the discrete logarithm problem in F ∗f (if
(

∆1

f

)
= 1)

or F ∗f2 (if
(

∆1

f

)
= −1) respectively. In a broader context, the study conducted in

[4] demonstrated that the calculation of discrete logarithms within Cl(∆f ) can be
simplified to the computation of discrete logarithms within the class group Cl(∆1)
of the maximal order, along with the computation of discrete logarithms within
various smaller groups derived from the factorization of f . It becomes evident that
the DDH problem can be readily undermined in the case of totally non-maximal
imaginary quadratic orders by computing h(Cl(∆f ) when the factorization of f is
known.

Our contribution. The main contribution of this paper is an algorithm that
breaks efficiently DDH for totally non-maximal imaginary quadratic orders with
∆1 = 3 in cases where f is non-prime, and the knowledge of a single factor of
f is available. The inspiration for writing this paper comes from [5, §8], where
Shanks provides an interesting characterization of 3-Sylow groups for binary qua-
dratic forms. He quotes some results contained in a work by Dedekind [6], where
the 3-Sylow subgroup for certain discriminants relates to the set of quadratic forms
representing all primes that have a prescribed composite integer a as a cubic residue:

For example cf. Dedekind [6], one has discriminant h(−4 · 243) = 9
with a group C(3) × C(3). There are four subgroups of order 3,
not merely one as would be the case if the group were cyclic. One
of these four, comprising I = (1, 0, 243) and the forms (9,±6, 28),
represents all primes having 2 as a cubic residue. Another: I and
(4,±2, 61) has 3 as a cubic residue; the third: I and (7,±6, 36) has
6; and the last: I and (13,±4, 19) has both 12 = 4·3 and 18 = 2·9 as
cubic residues. The discriminant −4·675, with a group C(3)×C(6),
may be used similarly for a = 2, 5, 10, 20, and 50.

In this paper, we generalize this observation to efficiently break the DDH in the
aforementioned case.

Outline. This paper is organized as follows. In Subection 1.1, we give a mathe-
matical foundation for understanding the concepts employed in the manuscript. In
subsection 1.2 we present a brief survey that contextualizes the existing literature
and provides insights into the current state of the field. Section 2, the main con-
tribution of the paper, offers a detailed description of the algorithm used for the
break. Finally, we draw conclusions in Section 3.

1.1. Preliminaries. In this subsection, we will discuss properties and notations
related to imaginary quadratic orders. For formal definitions and detailed informa-
tion on quadratic orders, refer to [21].

A quadratic field K is a subfield of the complex numbers C with a degree of 2
over Q. This field can be uniquely expressed as Q(

√
n), where n is a square-free

integer distinct from 1 and 0. The fundamental discriminant ∆K is defined as
n if n = 1 (mod 4) and 4n otherwise. An order O in K is a subset of K that
forms a subring of K, containing 1, and functioning as a free Z-module of rank 2.
The ring O∆K

of integers in K is the maximal order, containing all other orders
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of K. It can be represented as Z + 1
2 (∆K +

√
∆K)Z. If we denote the finite

index of any order O in O∆K
as f = [O∆K

: O], then O can be expressed as

Z+f 1
2 (∆K +

√
∆K)Z = Z+fO∆K

. The integer f is known as the conductor of O.

The discriminant of the order O can be written as ∆f = f2∆K . When referring
to this specific order, denoted as O∆f

, we classify it as a non-maximal order. The
standard representation of an O∆-ideal, for a discriminant ∆, is

a = q

(
aZ +

−b+
√

∆

2
Z
)

with q ∈ Z, a ∈ N and b ∈ Z such that b2 ≡ ∆ (mod 4a). An ideal is called
primitive if q = 1. if −a < b ≤ a, this expression is singularly defined, and we will
denote a primitive ideal by (a, b). This also indicates the positive definite binary
quadratic form ax2+bxy+cy2 with b2−4ac = ∆. A form ax2+bxy+cy2 is primitive
if its coefficients a, b and c are relatively prime. An integer m is represented by a
form f(x, y) if the equation

m = f(x, y)

has an integer solution in x and y. If x and y are relatively prime, we say that m
is properly represented by f(x, y).

1.2. A brief survey of cryptosystems based on imaginary quadratic or-
ders. Buchmann and Williams initiated the exploration of cryptography centered
on class groups of imaginary quadratic orders, as outlined in their work [7]. After
a prolonged period without apparent real-world applications, Lipmaa proposed the
utilization of these techniques to construct secure accumulators without a trusted
setup [8]. This approach leverages the unknown order property of class groups of
imaginary quadratic fields. In recent years, we have witnessed the application of
this unknown order property as a foundation for developing Verifiable Delay Func-
tions (VDF) [9, 10], cryptographic accumulators, and vector commitments tailored
for blockchain applications [11]. Additionally, polynomial commitments based on
this property have been employed in zero-knowledge proofs [12].

It’s important to note that, alongside the primary exploration of maximal order
in cryptography, there is concurrent progress in cryptographic analysis focusing on
non-maximal orders.

For example, at EUROCRYPT 2009, Castagnos and Laguillaumie [13] presented
a breakthrough in cryptographic analysis, unveiling a polynomial time chosen-
plaintext total break of the NICE family of cryptosystems [14, 15, 16]. This pivotal
work not only marked a significant advancement but also introduced a construc-
tive technique that influenced subsequent research. Building on this foundation,
Castagnos and Laguillaumie continued their innovative contributions in CT-RSA
2015, where they introduced a novel linearly homomorphic encryption scheme [17],
operating within the class group of a non-maximal order of an imaginary qua-
dratic field. Continuing this line of research, at ASIACRYPT 2018, Castagnos,
Laguillaumie, and Tucker addressed practical challenges in achieving secure inner
product functional encryption modulo p, exploring schemes based on standard as-
sumptions like DDH and Learning-with-Errors (LWE) [18]. In CRYPTO 2019,
Castagnos, Catalano, Laguillaumie, Savasta, and Tucker shifted their focus to dis-
tributed variants of the ECDSA digital signature standard, introducing a method
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for achieving simulation-based security without non-standard interactive assump-
tions [19]. Lastly, in Advances in Cryptology - CRYPTO 2022, Abram, Damg̊ard,
Orlandi, and Scholl presented collaborative work on a group-theoretic framework for
secure computation tools, unifying approaches based on number-theoretic assump-
tions like DDH, Decision Composite Residuosity (DCR), and Quadratic Residuosity
(QR) [20].

2. The algorithm

Our algorithm is based on the following theorem of Dedekind, as presented in
[6].

Theorem 2.1. If at least one of the two natural numbers a, b > 1, and ab is
not divisible by the square of any natural prime number, further, let k = 3ab or
ab, depending on whether (a2–b2) is indivisible or divisible by 9, then the number
of all non-equivalent, positive, primitive binary quadratic forms (A, 1

2B,C) of the

discriminant B2–4AC = D = −3k2 is always a multiple of 3 (3k′′), and one-
third of the form classes represented by these forms constitute a composition group
K, characterized by the following property: Let p be any natural prime number
congruent to 1 (mod 3) and not dividing D, then, through the k′′ forms of the
group K, all and only those prime numbers p can be represented for which ab2, and
hence a2b, is a cubic residue, while through the forms of the remaining 2k′′ classes,
all and only those prime numbers p can be represented for which ab2 is a cubic
non-residue.

In the paper [6], Dedekind makes reference to an unpublished note by Gauss.
This note contains the same example that we previously cited from Shanks [5, §8]:

A very elegant observation made by induction.
2 is a cubic residue or non-residue of the prime number p in the form 3n+ 1,

depending on whether p is representable by the form

x2 + 27y2

or 4x2 + 2xy + 7y2

3 is a residue or non-residue, depending on whether p is representable by
x2 + 243y2 or 4x2 + 2xy + 61y2

7x2 + 6xy + 36y2 or 9x2 + 6xy + 28y2

...

.

In the upcoming part, we will demonstrate how to efficiently leverage Theo-
rem 2.1 to break the Decisional Diffie-Hellman (DDH) problem for totally non-
maximal imaginary quadratic orders with ∆1 = 3. This holds true even in cases
where the factorization of f—and hence h(Cl(∆f )) (namely, the order of this
group)—is unknown. Our approach relies solely on the availability of knowledge
regarding a single factor of f . In the remainder of the paper, we will refer to the com-
position group K of Theorem 2.1 as the principal cubic genus, and χ : Cl(∆f )→ ±1
will act as a distinguisher. The symbol χ corresponds to the single known factor of
f (denoted as a in Theorem 2.1), and it can be efficiently computed.
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Computing the symbol χ. Let ∆f = −3f2 with f = 3ab or ab, depending on
whether (a2 − b2) is indivisible or divisible by 9. With the factorization of b being
unknown, the symbol χ is defined as:

χ : Cl(O∆f
)→ {±1} : [r] 7→

(
a2b

p

)
3

where
(
.
.

)
3

denotes the cubic residue symbol. Here, p is any prime number such

that p ≡ 1 (mod 3) and not dividing ∆f , represented by the class [r]. The ideals r
for which χ(r) = 1 for the genus symbol χ, constitute the principal cubic genus.

Impact on decisional Diffie–Hellman in totally non-maximal imaginary
quadratic orders. It is evident that the symbol χ, which is non-trivial, can be em-
ployed to ascertain whether a quadruple (g, gx, gy, gz) constitutes a genuine Diffie-
Hellman sample for discriminants with the described shape. Indeed, if g is not in
the principal cubic genus but gxy is , then either gx or gy must also be. If the sam-
ple gz is not a true Diffie-Hellman sample, this will be detected with a probability
of 1/3.

Implementation. We implemented the attack in SageMath to demonstrate the
correctness of the algorithm and prove its feasibility. The source code is freely
available on GitHub at the following URL: https://gist.github.com/asanso/
6d0b5127512a94a64e83ad783144fb6c.

Countermeasures. The simplest approach is to restrict to elements which are
cubes, i.e., the principal cubic genus, as the symbol χ becomes trivial on Cl(O)3.
However, if we also consider the standard countermeasure of working with the group
of squares, i.e., the principal genus, we would need to operate on Cl(O)6.

3. Conclusions

In this paper, we introduced an algorithm designed to investigate the Decisional
Diffie-Hellman assumption in non-prime, totally non-maximal imaginary quadratic
orders. Our specific emphasis lies in cases where ∆1 = 3 and there is partial
knowledge of f . We demonstrate that the classical countermeasure of working in
the group of squares, i.e., the principal genus, is not effective in addressing the
identified issues. While this advancement poses a challenge to the security of DDH-
dependent cryptographic protocols in these specific contexts, it’s crucial to recognize
that additional enhancements in this particular direction might be unlikely. Future
work could, therefore, pivot towards exploring alternative approaches or extending
the algorithm’s applicability to related cryptographic challenges.
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