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Abstract—As CPU performance is unable to keep up with the
dramatic growth of the past few decades, CPU architects are
looking into domain-specific architectures to accelerate certain
tasks. A recent trend is the introduction of matrix-multiplication
accelerators to CPUs by manufacturers such as IBM, Intel
and ARM, some of which have not launched commercially yet.
Apple’s systems-on-chip (SoCs) for its mobile phones, tablets and
personal computers include a proprietary, undocumented CPU-
coupled matrix multiplication coprocessor called AMX. In this
paper, we leverage AMX to accelerate the post-quantum lattice-
based cryptosystems Saber and FrodoKEM, and benchmark
their performance on Apple M1 and M3 SoCs. We propose
a variant of the Toeplitz Matrix-Vector Product algorithm for
polynomial multiplication, which sets new speed records for
Saber using AMX (up to 13% for the main KEM operations,
and 151% for matrix-vector multiplication of polynomials). For
FrodoKEM, we set new speed records with our AMX implemen-
tation (up to 21% for the main KEM operations, and 124% for
matrix multiplication, with even greater improvements for 4×-
batching). Such speedups are relative to our optimized NEON
implementation, also presented here, which improves upon the
state-of-the-art implementation for ARMv8 CPUs.

Index Terms—Post-quantum cryptography, AMX, ARM,
NEON, FrodoKEM, Saber

I. INTRODUCTION

Quantum computers pose a threat to cryptographic schemes
whose security rely on the presumed hardness of computa-
tional problems such as finding discrete logarithms or factoring
integers. Post-quantum cryptography (PQC) refers to crypto-
graphic systems that remain secure against attacks employ-
ing quantum and classical computers. In 2017, the National
Institute of Standards and Technology (NIST) called for a
PQC standardization process; three out of the four selected
candidates for standardization are lattice-based. Saber [1] and
FrodoKEM [2] are lattice-based Key Encapsulation Mecha-
nisms that reached round 3 in the standardization process; the
latter is recommended by the German BSI [3] and is under
consideration for standardization by ISO [4].

The performance bottlenecks of lattice-based cryptography
usually lie in polynomial/matrix multiplication and symmetric-
cryptography operations, prompting extensive research efforts
to enhance their efficiency. Various manufacturers have de-
veloped high-performance AI accelerators, such as NVIDIA’s

tensor cores [5], Intel’s Advanced Matrix Extensions (AMX)
[6] and ARMv9-A’s Scalable Matrix Extensions (SME) [7], to
cater to the high demands of AI applications. Apple’s AMX
(unrelated to Intel’s) is an undocumented coprocessor found in
its SoCs, starting with the 2019’s A13 [8, Section 7.6], which
we apply to Saber and FrodoKEM in this work.

A. Related works

Many studies target GPU cores, achieving high throughput
via huge batching levels, but compromising latency. Gazzoni
Filho et al. [9] presented the first cryptographic implementa-
tion on a CPU-linked matrix multiplication accelerator, setting
new NTRU speed records using Apple’s AMX coprocessor on
M1/M3 SoCs, beating state-of-the-art NEON implementations
with low latency, no batching and running in constant time.

Becker et al. [10] set the current speed record for Saber [1]
on ARMv8-A using O(n log n) Number Theoretical Trans-
form (NTT) methods combined with a novel “Barrett mul-
tiplication” algorithm for modular multiplication, achieving
a speedup of 56% over the previous state-of-the-art on the
Apple M1. We also remark the work in [11], which introduced
innovative Toeplitz Matrix-Vector Product (TMVP) formulas,
with the “four-way” formula standing out as the best non-NTT-
like multiplication algorithm for Saber’s ring on Cortex-M4.

The state-of-the-art implementation for FrodoKEM [2] is
the work of Bos et al. [12], which improves matrix multipli-
cation through a row-wise blocking and packing approach, and
also proved that Strassen’s algorithm improves throughput for
use cases with high batching levels. An ARMv8 implementa-
tion using NEON was presented shortly after in [13], claiming
a speedup of 10.22× at the protocol level. However, they do
not acknowledge the improvements of [12] which, while not
ARM-specific, appear to be superior on M1 and M3.1

B. Our contributions

We present an optimized AMX implementation of Saber,
adapting the techniques from [9] as well as a novel method that

1The implementation of [13] is not publicly available and the authors could
not be reached for clarification. Our benchmarks of Section V show speedups
for [12] that exceed those reported by [13] for their implementation.
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increases AMX utilization in Saber’s matrix-vector products
based on the TMVP approach [11]. This sets new speed
records on Apple M1 and M3, with speedups of up to 13% at
the protocol level and 151% for the polynomial operations.

For FrodoKEM, we first present a NEON implementation
of our own to use as a baseline, which already sets new speed
records on the M1/M3. We then present our AMX implemen-
tation, which improves further on our NEON record. Both im-
plementations explore possible matrix multiplication strategies
and use a novel technique for generating FrodoKEM-AES’s A
matrix. We make an innovative use of AMX’s unique genlut
instruction to perform Gaussian sampling, improving it by up
to 418% versus a NEON implementation. This might be of
particular interest for other applications. Compared to the state
of the art, we improve on the M1 and M3 by up to 21% at
the protocol level and 124% for matrix multiplication. Then,
we develop 4×-batched NEON and AMX implementations,
showing that AMX is significantly faster than NEON, by up to
91% at the protocol level and 708% for matrix multiplication.

We make all our code available at https://github.com/... 2

II. PRELIMINARIES

A public-key encryption scheme (PKE) is a tuple of algo-
rithms (KeyGen,Enc,Dec). KeyGen generates a public key
pk and a secret key sk. Enc outputs a ciphertext c given pk
and a message m. Dec outputs a message m′ from sk and c. A
key encapsulation mechanism (KEM) is a tuple of algorithms
(KeyGen,Encaps,Decaps). KeyGen generates a public
key pk and a secret key sk. Encaps outputs a shared key
ss and a ciphertext c given pk. Decaps outputs a shared key
ss′ from sk and c. We present next KEMs obtained from PKEs
via a variant of the Fujisaki-Okamoto transform; we only show
PKE algorithms, which are the target of our optimizations.

Bold lower case denotes vectors and bold upper case denotes
matrices. We write v[i : j : k] for a matrix/vector slice of
coefficients i, i+j, i+2j, . . . , i+k; j = 1 if omitted. Sampling
from a uniform distribution over a set S is denoted x← U(S).
A. Saber

Saber [1] is a lattice-based KEM relying on the hardness of
Module Learning With Rounding. Its NIST submission spec-
ifies the parameter sets below for security levels 1, 3, and 5.

Parameter set Sec. level l n q p T µ
LightSaber 1 2 256 213 210 23 10

Saber 3 3 256 213 210 24 8
FireSaber 5 4 256 213 210 26 6

Saber works over the ring Rq := Zq[X]/(Xn + 1) and
employs the binomial distribution centered at µ, denoted βµ,
hash functions F ,G,H, and a function gen to generate a
pseudorandom matrix from a seed. We have that q = 2ϵq , p =
2ϵp , T = 2ϵT . Let s ← βµ(R

l
q; r) denote sampling each

coordinate of a vector s ∈ Rl
q pseudorandomly from the

distribution βµ(Rq) with seed r. Algorithms II.1, II.3 and II.2
are a verbatim reproduction of Saber’s PKE specification.

2A GitHub repository will be made available following the paper’s publi-
cation.

Algorithm II.1
Saber.PKE.KeyGen()

Input: None
Output: Key pair (pk, sk)
1: seedA ← U({0, 1}256)
2: A← gen(seedA) ∈ Rl×l

q

3: r ← U({0, 1}256)
4: s← βµ(R

l×1
q ; r)

5: b← ((ATs+h) mod q)≫ (ϵq−
ϵp) ∈ Rl×1

p

6: return (pk := (seedA,b), sk :=
s)

Algorithm II.2
Saber.PKE.Dec(sk, c)

Input: Secret key sk, ciphertext c
Output: Message m′

1: v ← b′T(s mod p) ∈ Rp

2: m′ ← ((v − 2ϵp−ϵT cm +
h2) mod p)≫ (ϵp − 1) ∈ R2

3: return m′

Algorithm II.3
Saber.PKE.Enc(pk,m; r)

Input: Public key pk, message m ∈ R2,
optional randomness r

Output: Ciphertext c
1: A← gen(seedA) ∈ Rl×l

q

2: if r is not specified then
3: r ← U({0, 1}256)
4: s′ ← βµ(R

l×1
q ; r)

5: b′ ← ((As′ + h) mod q) ≫
(ϵq − ϵp) ∈ Rl×1

p

6: v′ ← bT(s′ mod p) ∈ Rp

7: cm ← (v′ + h1 − 2ϵp−1m mod
p)≫ (ϵp − ϵT ) ∈ RT

8: return c := (cm,b′)

B. FrodoKEM
FrodoKEM [2] is a lattice-based KEM that relies on the

hardness of Learning With Errors. The submission to NIST
specifies the parameters as in the table below.

Parameter set Sec. level n q m = n lA lSE

Frodo-640 1 640 215 8 128 128
Frodo-976 3 976 216 8 128 192

Frodo-1344 5 1344 216 8 128 256

FrodoKEM uses a function Gen(s) to generate a matrix
A ∈ Zn×n

q pseudorandomly from a seed s of length lA (using
AES or SHAKE), and a function SM(r, s, t) for inversion
sampling of a matrix in Zs×t

q using a pseudorandom array
of 16-bit integers r and a precomputed table Tχ for an error
distribution χ. Let SK denote SHAKE. The PKE specification
is given by Algorithms II.4, II.6 and II.5.

Algorithm II.4
FrodoPKE.KeyGen()

Input: None
Output: Key pair (pk, sk)
1: seedA ← U({0, 1}lA )
2: A← Gen(seedA)
3: seedSE ← U({0, 1}lSE )
4: r← SK(0x5F||seedSE,2nn · 16)
5: ST ← SM(r[0 : nn− 1], n, n)
6: E← SM(r[nn : 2nn− 1], n, n)
7: B = AS + E
8: return (pk := (seedA,B), sk :=

ST)

Algorithm II.5
FrodoPKE.Dec(sk, c)

Input: Secret key sk, ciphertext c
Output: Message m′

1: M = C2 −C1S
2: return m′ := Decode(M)

Algorithm II.6
FrodoPKE.Enc(pk,m, r)

Input: Public key pk, message m
Output: Ciphertext c
1: A← Gen(seedA)
2: seedSE ← U({0, 1}lSE )
3: r ← SK(0x96||seedSE,(2mn +

mn) · 16)
4: S′ ← SM(r[0 : mn− 1],m, n)
5: E′ ← SM(r[mn : 2mn −

1],m, n)
6: E′′ ← SM(r[2mn : 2mn +

mn− 1],m, n)
7: B′ = S′A + E′;V = S′B + E′′

8: return c := (C1,C2) = (B′,V+
Encode(m))

C. The AMX coprocessor
AMX is a matrix multiplication coprocessor found in Apple

SoCs. It lacks official documentation, so we turn to the reverse
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engineering efforts of [14]–[16]. We briefly review some
concepts and refer to them for more details, as well as the
description in [9], on which our algorithmic notation is based.

AMX’s register file is comprised of 80 64-byte registers: 16
input registers, split as 8 X and 8 Y registers, and 64 output Z
registers viewed as rows of a matrix, as depicted in Figure 1.
Some instructions can address X and Y registers bytewise
as 512-byte circular buffers. AMX instructions are encoded
within a reserved opcode space of A64; once no longer
speculative, the CPU forwards them to the AMX coprocessor.

X[0] · · · X[n]

Y[0] Z[0][0] += Y[0]X[0] · · · Z[0][n] += Y[0]X[n]

Y[1] Z[1][0] += Y[1]X[0] · · · Z[1][n] += Y[1]X[n]
...

...
. . .

...
Y[n] Z[n][0] += Y[n]X[0] · · · Z[n][n] += Y[n]X[n]

Fig. 1. AMX register file organization.

Data transfer between the CPU is AMX is solely done
through memory, using load (ldx, ldy, ldz) and store (stx,
sty and stz) instructions. extrh and extrv move rows
and columns, respectively, of Z to X or Y registers.

The vector-mode mac16 and vecint instructions realize
vector operations such as addition + and the Hadamard
(pointwise) product ◦. Outer product of a column by a row
vector (the BLAS Level-2 rank-1 update operation xGER) is
realized by the matrix-mode mac16 and matint instructions.
For 16-bit integers, vectors (or matrix rows/columns) are up to
32 elements long; each instruction’s enable modes can mask
part of the computation if smaller sizes are needed.

We illustrate the notation with AMX’s primary application,
matrix multiplication (in our case, 32×32 matrices with 16-bit
integer data), in Algorithm II.7. It is also a basic block, with
suitable modifications, for our Saber and FrodoKEM AMX
implementations. If AT rather than A is input to the algorithm,
we eschew the transposition by removing lines 1 and 2, and
replacing line 4 with a load of the i-th row of A.

Algorithm II.7 MATMULADD(A,B): Compute
Z[0 : 2 : 62]← Z[0 : 2 : 62] +AB using AMX.

Input: A,B ∈ Z32×32
216 in row-major memory layout.

Output: Z[0 : 2 : 62] +AB ∈ Z32×32
216 in even Z registers.

1: for i = 0 to 31 do ▷ Load A to odd Z rows
2: Z[2i+ 1]← ldz(A[i][0 : 31])

3: for i = 0 to 31 do
4: Y0 ← extrv(Z[1 : 2 : 63][i]) ▷ A transpose step
5: X0 ← ldx(B[i][0 : 31])
6: Z[0 : 2 : 62]← mac16(Z[0 : 2 : 62] + YT

0X0)

We also review the genlut instruction, which is instru-
mental to our table-based sampling technique of Section IV-D.
It has two distinct modes, generate and lookup. The latter is
similar to NEON’s TBL instruction: given an input register

with a densely packed array of lane indices (in a format fully
described in [16]) and another register containing a table, it
performs a table lookup operation; in 16-bit mode, registers are
32 elements wide. The generate mode is especially interesting,
and unlike any CPU instruction we are familiar with. It takes a
table T and source register V as input, and generates a packed
array of lane indices, in the format used by lookup mode, by
searching for the minimum index i such that T [i] > V [l], for
each lane l of the source. If T is sorted in ascending order,
genlut returns i such that T [i] ≤ V [l] < T [i+ 1].

III. SABER ON AMX
We now discuss AMX-accelerated multiplication in

Z216 [X]/(Xn + 1), which is Saber’s main algorithmic task.

A. Baseline implementation
An AMX-based algorithm was previously proposed in [9]

for multiplication in Z216 [X]/(Xn−1), which is very similar
to the ring used in Saber, implementation-wise. Indeed, the
reduction modulus Xn+1 is identical to the reduction modulus
Xn − 1, except for flipping signs of terms with powers
greater than n− 1 before reducing them. We achieve this via
vecint and matint instructions, which generalize vector-
and matrix-mode mac16 (respectively) with accumulation
by either adding or subtracting. We refer to [9] for a full
explanation of the techniques, and only mention the key
changes needed to adapt its PolyModMul algorithm to Saber:
• Replacing the mac16 instruction in line 9 of the
AccumulateOuterProductsReduction subrou-
tine by matint using accumulation by subtraction.

• Modifying the vecint instructions in lines 8 and 13
of the MergeFirstAndLastBlocks subroutine to
perform accumulation by subtraction.

B. TMVP-based implementation
We present a second method for polynomial multiplication,

which has the option of performing the batched multiplication
of a single polynomial b(x) by multiple polynomials a(l)(x).
The method is based on the Toeplitz matrix-vector product ap-
proach introduced by Paksoy and Cenk [11], which computes
the coefficients for a single product c(x) := a(x)b(x) as

c0
c1
c2
...

cn−1

 =


b0 −bn−1 −bn−2 · · · −b1
b1 b0 −bn−1 · · · −b2
b2 b1 b0 · · · −b3
...

...
...

. . .
...

bn−1 bn−2 bn−3 · · · b0




a0
a1
a2
...

an−1

,
which we denote c = Ma. We represent the batched products
by promoting c and a to matrices, with one column per a(l)(x),
a trick first used in the CUDA implementation from [17]. For
the remainder, we fix n = 256 and assume for illustration
purposes that only two multiplications are batched (this will
be the case in LightSaber). By splitting M into 32×32 blocks
and each of the c(l),a(l) into 32× 1 blocks, we get

C
(0)
0 C

(1)
0

C
(0)
1 C

(1)
1

...
...

C
(0)
7 C

(1)
7

 =


B0 −B7 · · · −B2 −B1

B1 B0 · · · −B2 −B1

...
...

. . .
...

...
B7 B6 · · · B1 B0



A

(0)
0 A

(1)
0

A
(0)
1 A

(1)
1

...
...

A
(0)
7 A

(1)
7

,
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and by exploiting the Toeplitz shape retained by the Bi, this
can be rearranged to(

C
(0)
0 C

(1)
0 C

(0)
1 C

(1)
1 · · · C

(0)
7 C

(1)
7

)
=

B0

(
A

(0)
0 A

(1)
0 A

(0)
1 A

(1)
1 . . . A

(0)
7 A

(1)
7

)
+B1

(
−A(0)

7 −A(1)
7 A

(0)
0 A

(1)
0 . . . A

(0)
6 A

(1)
6

)
...

+B7

(
−A(0)

1 −A(1)
1 −A(0)

2 −A(1)
2 . . . A

(0)
0 A

(1)
0

)
(1)

which we denote
∑7

i=0 BiAi, defining the 32 × 16 matrices
in parenthesis as Ai. Note that each Ai can be obtained from
different 16-element-wide slices of the 32× 30 matrix

A :=
(
−A(0)

1 −A(1)
1 · · · −A(0)

7 −A(1)
7 A

(0)
0 A

(1)
0 · · · A

(0)
7 A

(1)
7

)
. (2)

Algorithm III.1 stores the transpose of this matrix (since it is
more efficient to load coefficient slices into rows) to the 30
largest odd-numbered Z registers. Likewise, the Bi matrices
for i = 0 and i > 0 are given respectively by

B0 =


b0 −b255 · · · −b225
b1 b0 · · · −b226
...

...
. . .

...
b31 b30 · · · b0

 , Bi =


b32i b32i−1 · · · b32i−31

b32i+1 b32i · · · b32i−30
...

...
. . .

...
b32i+31 b32i+30 · · · b32i

 ,

so every column of every matrix can be obtained from a 32-
element-tall slice of the 287-element column vector(

−b225 −b226 · · · −b255 b0 b1 · · · b255
)T

.

Note that all but the negative terms (used only for B0) fit in
the X registers, so we load only (b0 · · · b255) to those registers
and replace b224, . . . , b255 by their negated version as needed.

Our algorithm works with the transpose of (1), so output
coefficients can be stored to memory in the natural row-major
layout; thus, we compute

∑7
i=0AT

i B
T
i =

∑7
i=0

∑31
j=0AT

i [:

, j]BT
i [j, :]. Here, AT

i [:, j]B
T
i [j, :] corresponds to the outer

product of X[32i−j : 32i−j+31] and Z[33−4i : 2 : 63−4i][j]
(with the latter obtainable via an extrv instruction). The
resulting algorithm is presented as Algorithm III.2.

Remark 1: It is straightforward to generalize the method
in this section to the case of batching l polynomial mul-
tiplications of b(x) by a(0)(x), a(1)(x), . . . , a(l−1)(x);
the Bi remain the same whereas the Ai become matrices of
dimension 32×8l. The outer products grow to size 32×8l and
can still be computed with a single mac16 instruction as long
as l ≤ 4 (which covers all Saber parameter sets). Meanwhile,
the matrix AT becomes of size 15l × 32, so it is no longer
possible to store it in one half of the Z registers for l > 2.
Instead, one can modify Algorithm III.1 and Algorithm III.2 to
spill and reload rows of AT on demand using an external array,
introducing some overhead due to AMX loads and stores.

C. Application to Saber

Encryption and decryption in Saber need to compute inner
products of polynomial vectors, for which there is no clear way
to benefit from batching, so it is computed using the baseline
polynomial multiplication method from Section III-A.

Algorithm III.1 PREPAREMATRIXA(a(0),a(1)): Loads AT

from equation (2) to odd Z registers.

Input: a(0) and a(1) (arrays of 256 coefficients each)
Output: Loads −a(l)32i:32i+31 to Z[2(2i+l)+1] for 0 < i ≤

7, and a
(l)
32i:32i to Z[2(2i+l+16)+1] for 0 ≤ i ≤ 7

1: Y0 ← ldy([−1, . . . ,−1])
2: for l = 0 to 1 do
3: for i = 0 to 7 do
4: Z [2(2i+ l + 16) + 1]← ldz(a(l)[32i : 32i+31])
5: X0 ← ldx(a(l)[32i : 32i+ 31])
6: Z [2(2i+ l) + 1]← mac16(X0 ◦ Y0)

Algorithm III.2 POLYMODMULTMVP(a(0),a(1),b): Mul-
tiplication in Z216 [X]/(X256 + 1) of a polynomial b by two
polynomials a(l) using AMX.

Input: b, a(0), a(1) (arrays of 256 coefficients)
Output: Accumulates to Z[0 : 2 : 30] the coefficients for

c(l)(x) = a(l)(x)b(x), mapping c
(l)
32j:32j+31 to Z[4j + 2l].

1: X0, . . . ,X7 ← ldx(b[0 : 31]), . . . ,ldx(b[224 : 255])
2: tmp← stz(mac16(X7 ◦ [−1, . . . ,−1]))
3: PrepareMatrixA(a(0),a(1)) ▷ load AT to odd Z
4: for j = 0 to 31 do
5: Y0 ← extrv(Z[1 : 2 : 63][j]) ▷ extract AT[:][j]
6: for i = 0 to 7 do
7: if i == 0: X7 ← tmp ▷ negate [b224, . . . , b255]
8: Z[0 : 2 : 30]← mac16(Z[0 : 2 : 30] + Y[16− 2i :

31− 2i]TX[32i− j : 32i− j + 31])
9: if i == 0: X7 ← ldx(b[224 : 255]) ▷ restore

On the other hand, encryption and key generation multiply
an l×l polynomial matrix by an l×1 polynomial vector, which
is well suited for the batched multiplication from Section III-B.
For instance, for LightSaber (l = 2), this can be expressed as

As =

(
A00 A01

A10 A11

)(
s0
s1

)
= s0

(
A00

A10

)
+ s1

(
A01

A11

)
,

so the multiplications are performed in two batches of two.
Additions are free by accumulation in Z registers by Alg. III.2.

Two other tasks (in encryption and key generation) can be
accelerated by AMX. The first is adding a constant polynomial
vector h to the result, which can be done by loading h to the
Z registers before accumulating the matrix-vector product. As
all coefficients of h are identical, they can be distributed to
all Z registers with one mac16 instruction. The second task is
right-shifting the output by a fixed constant ϵq − ϵp element-
wise, using a specific ALU mode of the vecint instruction.
Algorithm III.3 covers the entire computation of (As+h)≫
(ϵq − ϵp) for LightSaber, with straightforward generalizations
for Saber (l = 3) and FireSaber (l = 4) per Remark 1.

IV. FRODOKEM ON NEON AND AMX

In this section, we discuss implementation techniques to
speed up FrodoKEM using NEON, and then our AMX imple-
mentation which achieves further significant speedups.
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Algorithm III.3 SABERMATVECMUL(c,A,b,h, ϵ): Com-
putes (Ab+h)≫ ϵ in Z216 [X]/(X256 +1) with coefficient-
wise shifting, for A a 2×2 polynomial matrix and b,h 2×1
polynomial vectors with all coefficients in h equal.
Input: h (repeating coefficient of h), b (256-coefficient ar-

ray), A (2×2×256 array of coefficients) and ϵ (integer).
Output: c (array of 256 coefficients for the result)

1: Z[0 : 2 : 62]← mac16(ldx([h, h, . . . , h])) ▷ copies of h
2: for l = 0 to 1: PolyModMulTMVP(b,A[0][l],A[1][l])
3: for j = 0 to 31: c[j]← stz(vecint(Z[2j]≫ ϵ))

A. NEON optimizations

The main improvements in our NEON implementation come
from (i) refining the generation of the matrix A in the AES
variant and (ii) a careful loop order for matrix multiplication.

Recall that A is obtained via the Gen function. When
using AES, the reference NEON implementation initializes
the “plaintext” matrix in a first pass, then encrypts it with
AES in a second pass. Our implementation generates A in
a single-pass. We generate the “plaintext” in NEON registers
and immediately encrypt it with ARMv8 AES instructions.

Let U and V be matrices of size m × n and n × p,
respectively. Then, ti,j =

∑n
k=1 ui,kvk,j is the entry in row

i and column j of T = UV. Thus, computing T requires
three nested for loops, iterating through the values of i, j
and k. Although the order of the loops is arbitrary, the data
access patterns are different. For each of FrodoKEM’s matrix
multiplication routines, we evaluated all loop orders to find
those with a high ratio of arithmetic to load/store operations, so
as to ensure NEON ALUs rather than LSUs are the bottleneck.
We checked via performance counters that our choices of loop
order, shown in the next table, yield at least 90% ALU usage.

Implementation Operation
AS+E S′A+E B′S S′B+E

Reference ijk jik ijk ijk
Optimized ijk kij ijk ijk

NEON ijk kji ikj kij

Also, for a potential doubling in throughput on the M1 and
M3, we employ multiply-accumulate instructions instead of
separate multiplication and addition instructions as in [13].

B. Matrix multiplication on AMX

We focus on the computations AS+E and S′A+E′, where
A has size n× n, S,E have size n× n̄ and S′,E′ have size
n̄× n. For both multiplications, AS and S′A, the main idea
is to load A and S (or S′) into the X and Y input registers,
and compute multiply-accumulates to the Z output registers.
By initializing Z with E or E′, we obtain addition “for free”.

In AMX, the natural size of matrices for multiplication is
up to 32×32. So, AS and S′A are computed via block matrix
multiplication. We decompose A into 32× 32 blocks, S into
32× 8 blocks and S′ into 8× 32 blocks. However, one of the
dimensions being < 32 is sub-optimal since the remaining 24
rows/columns are masked out, but mac16 does not appear

to execute any faster. This wasted computational power is
reclaimed through batching in Section IV-C. For Frodo-976,
32 ∤ n, so part of the computation for blocks at the edges is
masked out, thus behaving as if they were padded with zeros.

Recall that AMX multiplies matrices via outer products of
vectors. To compute AS, we read blocks of A by columns
and S by rows. A and ST are generated in row-major order
by Algorithm II.4 (lines 2 and 5); thus, S is in column-major
order, and we must transpose both A and ST . For S′A, both
matrices are generated in row-major order by Algorithm II.6
(lines 1 and 4). Thus, we transpose S′ only.

We report on transposition strategies that performed best
among all that we tried. For AS, we first transpose the full ST

directly in C (which the compiler autovectorizes to NEON),
while A is transposed online with AMX during multiplication
(as in Algorithm II.7), after generating 32 rows with our one-
pass strategy of Section IV-A; this is shown in Algorithm IV.1.
For S′A, AMX transposition of A also performs best.

Algorithm IV.1 FRODO-AS-PLUS-E-32ROWS(C,Ā,ST,E,r):
Computes rows r, . . . , r + 31 of C ← AS + E; Ā is the
submatrix of A containing rows r, . . . , r + 31.

Input: Ā ∈ Z32×n
216 ; ST,E ∈ Zn×n

216 ; r ∈ {0, 32, . . . , n− 32}
Output: C ∈ Zn×n

216 with rows r, . . . , r + 31 updated.
1: Load E[r : r + 31] to Z[0 : 2 : 62]
2: for j0 = 0, 32, 64, . . . , n− 32 do
3: Load ST[j0][0 : 7] || . . . || ST[j0 + 31][0 : 7] to X
4: Load Ā[0 : 31][j0 : j0 + 31] to Z[1 : 2 : 63]
5: for j = 0, . . . , 31 do
6: Y0 ← extrv(Z[1 : 2 : 63][i])
7: Z[0 : 2 : 62][0 : 7] ← mac16(Z[0 : 2 : 62][0 :

7] + YT
0 X[8j : 8j + 7])

8: Store Z[0 : 2 : 62] to C[r : r + 31]

C. Use of batching

AMX’s throughput is underutilized with single KEM oper-
ations as above. We overcome this by introducing an alternate
API that batches KEM operations with the same (sk, pk) pair,
i.e., batching multiplications with the same A. Thus, it applies
to encapsulation and decapsulation (which compute S′A) but
not to key generation (which computes AS).

Batch S′A+E computation reuses the strategy of Section
IV-B, except we do 4 computations at once. Recall that A has
size n×n while S′ and E have size 8×n. We vertically stack
four S′ or E matrices to get 32×n matrices, thus fully using
AMX’s processing power. The ALUs are nearly saturated in
our NEON implementation (see Section IV-A), so batching is
implemented straightforwardly (a loop over the 4 copies).

The operations S′B+E′′ and B′S, without batching, yield
small 8×8 matrices, which would severely underutilize AMX’s
processing power. With batching, however, one dimension
grows to 32, as in AS+E and S′A, and may become worth-
while. S′B + E′′ requires a single transposition, which we
perform online in AMX during multiplication as in S′A+E;
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for B′S, which requires two transpositions (as S is stored
transposed in the secret key), we failed to achieve a speedup.

D. Gaussian sampling using the AMX genlut instruction
We now present a novel technique for table-based inversion

sampling, applied to FrodoKEM Gaussian sampling. At its
core is the search operation done by AMX’s genlut instruc-
tion in generate mode (see Section II-C) to perform parallel
search on 32 16-bit source values. For distributions with non-
negative support and tables of up to 31 elements, its use is
straightforward, as well as for full support, if the table fits an X
or Y register and inputs use two’s complement representation.
The former condition is met by all parameter sets, but for the
latter, an incompatible representation (sign-magnitude with the
sign given by the least-significant bit) is prescribed. Thus, we
must condition the inputs, at some performance cost.

In lieu of actual two’s complement representation, we place
the sign at the most significant bit by right-rotating each input
(lines 4 and 5 of Algorithm IV.2), and adapt the Tχ tables to
work with this format. The algorithm specified in [2] uses a
table for the non-negative support only, and applies the sign
bit to the output. We avoid separate application of the sign bit
in AMX by using two shifted copies of the table. These fit
in the table register since the largest Tχ (for Frodo-640) has
j + 1 = 13 elements. Concretely, if Tχ = [t0, t1, . . . , tj ] is
the original table, we map it to the genlut-specific table

T′χ = [0, t0 + 1, . . . , tj + 1, t0 + 215 + 1, . . . , tj + 215 + 1].

Finally, genlut in generate mode outputs a densely packed
representation (20 bytes representing the results of 32 parallel
searches). The remainder of the FrodoKEM code expects the
usual 16 bits per element representation. We use genlut in
lookup mode to map results to the range [−j, j], in accordance
with our choice of T′χ. The 32-element mapping is given by

ι = [0, 1, . . . , j, 0,−1, . . . ,−j,−j, . . . ,−j].
We display this procedure as Algorithm IV.2.

Algorithm IV.2 SAMPLEMATRIX(s,T′χ, ι): si ← T′χ[si] for
0 ≤ i < n · n.
Input: s ∈ Zn×n

216 (uniform samples); T′χ, ι ∈ Z32
216 (as above).

Output: s ∈ Zn×n
216 (Gaussian samples)

1: Y0,Y1,Y2 ← ldy(T′χ),ldy(ι),ldy([2
15, . . . , 215])

2: for i = 0, 32, 64, . . . , n ·n− 32 do ▷ Process 32 elements
3: X0 ← ldx(s[i : i+ 31])
4: Z[0]← vecint(X0 ◦ Y2)
5: Z[0]← vecint(Z[0] + X0 >> 1)
6: X[0]← extrh(Z[0])
7: X0 ← genlut(mode = gen, src = X0, tbl = Y0)
8: X0 ← genlut(mode = lookup, src = X0, tbl = Y1)
9: s[i : i+ 31]← stx(X0)

V. EXPERIMENTAL RESULTS

In this section, we describe our experimental setup, report
and analyze performance results, and report on experiments on
the constant-time execution of AMX’s genlut instruction.

A. Experimental setup

We benchmark on M1- and M3-series Apple computers,
running macOS 14 and version 15 of Apple’s clang compiler.

As in [9], we explore distinct array allocation strategies. In
the usual stack allocation, neighboring variables of a function
are very likely allocated in the same memory page, risking
concurrent CPU and AMX accesses, which cause performance
degradation. The POSIX mmap() function returns new mem-
ory pages for each allocation, sidestepping this issue.

As symmetric operations make up the bulk of execution
time in Saber and FrodoKEM, we use fast implementations
of SHAKE, AES and NIST’s randombytes() function,
all using instructions of ARMv8’s Cryptographic Extensions.
We use the 2×-batched SHAKE implementation of Becker
et al. [10], and modify their unbatched SHAKE code to use
ARMv8’s SHA-3 instructions. We implement AES-ECB (for
FrodoKEM) and AES-CTR-DRBG (for randombytes()),
ensuring outputs match with existing implementations.

We use the macOS cycle counting code of [18], and report a
median of 1024 executions for most measurements; however,
for small runtimes (up to a few thousands of cycles), our
experience is that medians, while less noisy, underreport cycle
counts by a few hundred cycles, especially for AMX codes.
Thus, we opted to report averages instead for SABER matrix-
vector multiplication, FrodoKEM Gaussian sampling and the
constant-time experiments of Section V-C.

B. Performance results

We report Saber and FrodoKEM performance data for KEM
operations and specific subroutines accelerated by AMX. For
memory allocation strategies (mmap() or stack), we pick the
fastest strategy for each individual measurement, and indicate
this in the tables by font style: regular font for mmap(), and
italics for stack. We compute speedups as ratios between the
previous state-of-the-art implementation and our AMX one;
for FrodoKEM, we compare our NEON implementation to the
previous state-of-the-art ones, and our AMX implementation
to the fastest CPU implementation (usually, our NEON one).

Saber results are shown in Table I. “MVMR” refers to
matrix-vector multiplication of polynomials with rounding.
NIST levels 1, 3 and 5 map to LightSaber, Saber and FireSaber
parameter sets, respectively. FrodoKEM results without batch-
ing are shown in Table II, and with 4× batching in Table III.
We benchmark KEM operations as well as matrix operations
AS + E and S′A + E. The “full” subheading includes the
cost of A matrix generation, while “mat. mul.” does not.

In lieu of a full discussion, we highlight the main takeaways:
• Most of the cost in both schemes is for symmetric opera-

tions, which use the same implementation everywhere.
Amdahl’s law bounds gains due to polynomial/matrix
multiplication; results should be viewed in that context.

• Saber’s KEM operations are sped up by 8 to 13%,
and matrix-vector multiplication of polynomials by up
to 70%, 108% and 150% for LightSaber, Saber and
FireSaber, respectively, despite replacingO(n log n) NTT
methods in NEON by a schoolbook O(n2) algorithm
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Sec
lvl Work

Operation
Key gen. Encaps. Decaps. MVMR

M1 M3 M1 M3 M1 M3 M1 M3

1
[10] 19.2 19.1 26.3 26.3 25.8 25.7 4.02 3.96
III-A 19.7 18.5 26.5 25.6 25.8 24.5 3.97 3.28
III-B 17.4 17.5 24.4 24.3 23.7 23.2 2.37 2.32

Speedup(×) 1.11 1.09 1.08 1.08 1.09 1.11 1.69 1.71

3
[10] 31.5 31.4 40.3 40.2 40.5 40.3 7.60 7.52
III-A 33.9 32.3 42.7 40.9 43.3 40.9 8.98 7.43
III-B 28.4 28.4 36.9 36.5 37.4 36.4 3.66 3.62

Speedup(×) 1.11 1.11 1.09 1.10 1.08 1.11 2.08 2.08

5
[10] 48.5 48.3 59.6 59.7 60.0 59.8 12.2 12.1
III-A 54.1 51.3 65.8 62.2 66.4 62.4 16.0 13.3
III-B 42.9 42.9 54.1 53.2 54.6 53.5 4.92 4.83

Speedup(×) 1.13 1.12 1.10 1.12 1.10 1.12 2.49 2.51

TABLE I
CYCLE COUNTS FOR SABER OPERATIONS, IN THOUSANDS OF CYCLES,
COMPARING THE IMPLEMENTATION OF [10] TO THE ALGORITHMS OF

SECTIONS III-A AND III-B.

in AMX. Gains rise with the parameter l due to better
utilization of AMX, per Remark 1. As decapsulation
performs reencryption, it also benefits from these gains.

• FrodoKEM’s optimized implementation [12] is up to ≈
15× faster than the reference one, reinforcing our belief
that it is on par or faster than that of Kwon et al. [13]. Our
NEON implementation achieved further speedups of up to
30%, 22% and 25% for key generation, encapsulation and
decapsulation, respectively. AMX improves upon NEON
by up to 13%, 19% and 21% for these operations.

• Matrix operations are further sped up due to the reduced
cost of symmetric operations (even more so when A ma-
trix generation is removed). AMX achieves up to 124%
gains over our already improved NEON implementation.

• Our AMX-specific Gaussian sampling technique of Sec-
tion IV-D achieves gains of up to 418% over NEON.

• Batching amortizes the cost of A matrix generation
across 4 operations and ensures full AMX utilization. Our
NEON implementation improves upon the optimized one
by up to 50%, and AMX improves that further by 91%.
For matrix multiplication only, AMX gains up to 708%.

C. Constant-time behavior of AMX’s genlut instruction

Cryptographic implementations must execute in time inde-
pendent of secret data (or constant time) to avoid timing side-
channel attacks. Gazzoni Filho et al. [9] verify this for many
AMX instructions, but critically not for genlut, on which
our sampling technique of Section IV-D is based. We sought
to do so by benchmarking AMX and NEON sampling routines
for different inputs: 0, 216−2, 216−1 or fully random inputs.
The first three map to specific fixed points in the sampling
table: respectively, the first, midpoint and last elements.

We report results for Frodo-640 on the M3; results for other
parameter sets and the M1 are similar, and are included in the
full results dataset in our GitHub repository. Cycle counts for
sampling the full 8× 640 matrix, across all four inputs, vary
from 4585 to 4593, 4346 to 4350 and 839 to 841 cycles for
optimized, NEON and AMX implementations, respectively.

Thus, modulo small variations across benchmark runs, all
implementations appear to run in constant time.

VI. CONCLUSION AND FUTURE WORK

We have implemented the post-quantum cryptosystems
Saber and FrodoKEM using the undocumented AMX tightly-
coupled matrix multiplication coprocessor, obtaining consid-
erable speedups over CPU-only implementations.

We highlight the difficulties of fully exploiting AMX’s
available processing power. Some strides were made over the
work of Gazzoni Filho et al. [9], by recasting Saber polynomial
multiplication in matrix-multiplication language; still, only
the FireSaber parameter set makes full use of AMX. For
FrodoKEM, a batched implementation is needed to achieve
this goal. Future cryptosystem designs may wish to revisit
parameter choices to favor matrix multiplication accelerators.

We note that the performance of many PQC schemes is
dictated by the cost of symmetric operations, rather than
arithmetic ones such as polynomial/matrix multiplication. To
ensure improvements to the latter are duly reflected in protocol
performance, more research is needed (from design, imple-
mentation and hardware standpoints) into reducing the share of
symmetric operations in the execution time of PQC schemes.

An important class of lattice-based cryptosystems are based
on NTTs, such as Kyber and Dilithium; we echo the suggestion
of [9] to investigate AMX implementations of such schemes.

Table-based sampling is perceived as difficult to implement
efficiently in constant time. Our novel technique of Sec-
tion IV-D, using AMX’s genlut instruction, brings renewed
hope for such methods. CPU architects would do well to
extend instruction set architectures with a similar instruction.
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CYCLE COUNTS FOR FRODOKEM-AES OPERATIONS, IN THOUSANDS OF CYCLES, WITHOUT BATCHING.

Sec
lvl Work

Operation
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full mat. mul.
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