
Direct FSS Constructions for Branching
Programs and More from PRGs with
Encoded-Output Homomorphism

Elette Boyle1, Lisa Kohl2, Zhe Li3, and Peter Scholl4

1 IDC Herzliya and NTT Research , eboyle@alum.mit.edu
2 Cryptology Group, CWI Amsterdam , lisa.kohl@cwi.nl
3 Cryptology Group, CWI Amsterdam , zhe.li@cwi.nl

4 Aarhus University , peter.scholl@cs.au.dk

Abstract. Function secret sharing (FSS) for a class F allows to split a
secret function f ∈ F into (succinct) secret shares f0, f1, such that for
all x ∈ {0, 1}n it holds f0(x)− f1(x) = f(x). FSS has numerous applica-
tions, including private database queries, nearest neighbour search, pri-
vate heavy hitters and secure computation in the preprocessing model,
where the supported class F translates to richness in the application.
Unfortunately, concretely efficient FSS constructions are only known for
very limited function classes.

In this work we introduce the notion of pseudorandom generators with
encoded-output homomorphism (EOH-PRGs), and give direct FSS con-
structions for bit-fixing predicates, branching programs and more based
on this primitive. Further, we give constructions of FSS for deterministic
finite automatas (DFAs) from a KDM secure variant of EOH-PRGs.

– New abstractions. Following the work of Alamati et al. (EURO-
CRYPT ’19), who classify minicrypt primitives with algebraic struc-
ture and their applications, we capture the essence of our FSS con-
structions in the notion of EOH-PRG, paving the road towards fu-
ture efficiency improvements via new instantiations of this primitive.
The abstraction of EOH-PRG and its instantiations may be of in-
dependent interest, as it is an approximate substitution of an ideal
homomorphic PRG.

– Better efficiency.We show that EOH-PRGs can be instantiated from
LWE and a small-exponent variant of the DCR assumption. A theo-
retical analysis of our instantiations suggest efficiency improvements
over the state of the art both in terms of key size and evaluation
time: We show that our FSS instantiations lead to smaller key sizes,
improving over previous constructions by a factor of 3.5 and more.
While for bit-fixing predicates our FSS constructions show compa-
rable or mildly improved run time (depending on the instantiation),
we achieve considerable improvements for branching programs by
avoiding the expensive generic transformation via universal circuits,
shaving off a factor of w and more in the number of abstract opera-
tions, where w corresponds to an upper bound on the width of the
underlying class of branching programs.

mailto:eboyle@alum.mit.edu
mailto:lisa.kohl@cwi.nl
mailto:zhe.li@cwi.nl
mailto:peter.scholl@cs.au.dk

2 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

– New constructions. We show that our instantiations of EOH-PRGs
additionally support a form of KDM-security, without requiring an
additional circular-security assumption. Based on this, we give the
first FSS construction for DFAs which supports the evaluation of
inputs of a-priori unbounded length without relying on FHE.

– Applications. We outline applications of our FSS constructions in-
cluding pattern matching with wild cards, image matching, nearest
neighbor search and regular expression matching.

Direct FSS for Branching Programs 3

1 Introduction

Boyle, Gilboa and Ishai [24] introduced the notion of function secret sharing
in 2015. Function secret sharing for a class of functions F allows to split up
a function f : {0, 1}n → G from F into secret shares f0, f1, such that for all
x ∈ {0, 1}n it holds f0(x) − f1(x) = f(x). If f : {0, 1}n → G is an arbitrary
function, its description size can in general scale with 2n, and thus there is no
hope to get compact secret shares. On the other hand, if f is from a class of
functions with succinct description, one can hope to split the function up into
succinct secret shares. As shown in [24], when relaxing the secrecy condition
to computational (i.e., requiring that no computationally bounded adversary
holding only a subset of the shares can derive information about the function
within the function class), this can indeed be achieved.

Function secret sharing schemes have been used in numerous applications,
such as multi-server private-information retrieval [44,24], oblivious RAM [39],
anonymous broadcast messaging [34], private database queries [76], nearest neigh-
bour search [70], private heavy hitters [15], private time-series database [36] and
secure computation in the preprocessing model [21,27,22,20], showing signifi-
cant speed-ups over previous approaches. In many of these settings, the class F
supported by the FSS scheme corresponds to richer applications; for example,
more sophisticated private database queries beyond private lookup.

Unfortunately, concretely efficient FSS constructions are only known for very
limited function classes. For example, efficient function secret sharing schemes
are known to exist for the class of point functions (i.e., functions that take a
non-zero value only at a single input) and the class of comparison functions
(i.e., functions that take the same non-zero value for all inputs less than a given
point) [24,26,20]. While these are already sufficient for many powerful applica-
tions, they do not allow to support, for instance, complex database queries.

One way to obtain function secret sharing for richer classes of function is via
homomorphic secret sharing (HSS) [25], the dual notion of function secret shar-
ing, with the role of function and input reversed. HSS schemes for the class of
polynomial-size branching programs (which in particular captures logarithmic-
depth circuits) are known from a number of assumptions, such as the decisional
Diffie-Hellman assumption [25], the DCR assumption [41,60,67], and the Learn-
ing With Errors assumption [38,28].

As observed in [25], there exists a generic transformation from a homomor-
phic secret sharing scheme to a function sharing scheme by relying on universal
circuits. A universal circuit for a function class F , is a circuit CF such that
∀f ∈ F ,∀x ∈ {0, 1}n it holds CF (f, x) = f(x). Given such a universal circuit,
one can transform the problem of constructing a function secret sharing scheme
for F to the problem of constructing a homomorphic secret sharing scheme for
the class of functions CF := {CF (·, x) | x ∈ {0, 1}n}.

For the class of branching programs, there exists a universal circuit that is
itself a branching program [25]. Any homomorphic secret sharing scheme for the
class of branching programs thus implies a function secret scheme for the same
class. Unfortunately, the transformation introduces a high concrete overhead,

4 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

especially when the structure of the branching program is wished to be hidden.
More precisely, with the techniques given in [25], if w is an upper bound on the
width of a binary branching program, then the resulting universal branching
program has a blow-up of w2 in depth, which leads to large key size and running
time. For branching programs over larger fields, this overhead gets even worse.

We also consider deterministic finite automata (DFAs) in this work [64,73].
A DFA is an automaton with finitely many states that rejects or accepts a given
string following a sequence of states, where the next state is determined by the
next symbol of the string. As observed, e.g., in [47], if f is a function of input
length n that is computed by a DFA with s states, it can be computed by a
branching program of length n and size s ·n+1, an FSS for branching programs
thus directly yields an FSS for DFAs with bounded input-length. Note though
that FSS for branching programs does not allow to compute general classes of
DFAs, since these can support inputs of a-priori unbounded length, while yet
having a succinct representation.

1.1 Our Contributions

In this work, we present constructions of function secret sharing schemes for
the class of bit-fixing predicates, branching programs and more from an abstract
pseudorandom generator with encoded-output homomorphism (EOH-PRG). We
further show that if the EOH-PRG additionally satisfies a form of KDM-security,
we can construct FSS for deterministic finite automata supporting inputs of a-
priori unbounded length.

We give instantiations of the EOH-PRG from the standard learning with
errors (LWE) assumption or a binary-secret variant of ring-LWE, as well as
from a small-exponent variant of the decisional composite residuosity (DCR)
assumption. We give an overview of the efficiency comparison of our FSS to
previous FSS constructions in Table 1.

In some sense, our work can be viewed as an extension of the line of work on
exploring minicrypt primitives with algebraic structure and their applications,
as started by Alamati et al. [5].

Our main results can be captured in a series of theorems. In the following,
we will give a simplified definition of our EOH-PRG, which is yet too demanding
for our instantiations, but allows to present the essence of our core theorems.
For a full definition and more detailed explanation of our results, we refer to the
technical overview section.

EOH-PRG. Roughly speaking, a EOH-PRG allows to encode messages m and
only requires the homomorphic property to hold relative to such encoded mes-
sages.

Definition 1 (EOH-PRG (simplified)). Let S,H, H̃ be finite abelian groups.

A function PRG : S → H̃ is a PRG with encoded output homomorphism (EOH-
PRG) relative to H if it is a pseudorandom generator and there exists a deter-

ministic polynomial-time encoding function Encode : H→ H̃ and conversion (or

Direct FSS for Branching Programs 5

“decoding”) function Conv : H̃ → H such that for all m ∈ H, for s ∈ S, and for
any secret shares s0 − s1 = s, y0 − y1 = PRG(s) + Encode(m) it holds that

Conv(y0 − PRG(s0))− Conv(y1 − PRG(s1)) = m.

Given a truly homomorphic PRG, one could obtain an EOH-PRG by setting
H := H̃ and choosing Encode and Conv as identity functions. Unfortunately,
perfectly homomorphic PRGs with both the domain and image being additive
groups in the typical sense are not known to exist; one barrier is that any ho-
momorphic PRG with an output space that supports efficient linear algebra can
be broken by Gaussian elimination.

The abstract EOH-PRG can be viewed as an almost homomorphic PRG,
in which Conv corrects errors introduced by an almost homomorphic PRG and
transforms shares in H̃ to shares in H (similar to the rounding and lifting in [28]),
or as a homomorphic PRG mapping additive shares to multiplicative shares, in
which Conv converts multiplicative shares back to additive shares (similar to the
conversion prodedure in [25,60,67]).

For our constructions, we further require the existence of an additive group T
such that {0, 1} ⊆ T and such that T defines a non-trivial (left) group operation

on H̃ via · : T× H̃ → H̃. In the following, we refer to this by requiring that our
EOH-PRGs have “tag space” T.

Tensor product theorem. With this, we can state our main results. We start
by giving our tensor product theorem, which can be viewed as lifting the tensor
product theorem of [26] for point predicates (i.e., the family of predicates taking
1 exactly at one point) to arbitrary predicates. Below we present it for the family
of bit-predicates, we note though that it readily extends to any predicates with
logarithmic-size input space. 5 For more detailed results we refer to the technical
overview section and Section 5.

Theorem 2 (Tensor product FSS (simplified)). Let ℓ = ℓ(λ) be a polyno-

mial. Let P be a family of predicates {0, 1} → {0, 1}. Let S, H̃,T be finite abelian
groups.

Then, if there exists an EOH-PRG PRG : S → H̃ relative to H := (S × T)2
with tag space T, there exists an FSS for the function class

P⊗ :=

{
gP1,...,Pℓ

: {0, 1}ℓ → {0, 1}, x 7→
ℓ∧
i=1

Pi(xi)

∣∣∣∣ ∀i ∈ [ℓ] : Pi ∈ P

}

with key space H and “correction word” space H̃ℓ−1 (note that the correction
word space corresponds to the “public” part of the key which both parties share).

5 Note though that this assumes an EOH-PRG with an accordingly larger output
space and thus results in larger key sizes.

6 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

By instantiating the above with the family of bit-fixing predicates, i.e., the family
of predicates

Pα(x) :=

{
1 if x = α ∨ α = ∗
0 else

for α ∈ {0, 1, ∗}, we obtain a FSS construction for bit-fixing predicate (often also
referred to as pattern matching with wildcards). We capture this result in the
following corollary.

Corollary 3 (FSS for bit-fixing predicates). Assume all parameters are as

in Theorem 2 and PRG : S→ H̃ is a EOH-PRG relative to H := (S×T)2 with tag
space T. Then, there exists an FSS for ℓ-bit bit-fixing predicates with key space
H and correction word space H̃ℓ−1.

Note that the FSS for bit-fixing predicates directly implies an FSS for the
class of t-CNF formulas over n variables for constant t, since a t-CNF formula
can be naturally represented as a bit-fixing predicate of length O

(
2t ·
(
n
t

))
. The

underlying idea is that each of the O
(
2t ·
(
n
t

))
potential clauses can be viewed as

a new variable, which can then be encoded as a series of 1’s (the clause appears)
and ∗’s (the clause does not appear). To evaluate the function on a public input,
the parties can first apply this variable transformation, and then evaluate the
bit-fixing predicate on the resulting string.

FSS for branching programs and others. Next, we state our main theorem
for branching programs. We remark that the FSS for branching programs only
hides the transition function whereas the topology of the branching program,
i.e., the number of nodes of each level, is revealed. It is easy to extend each level
to w nodes via adding dummy nodes and then construct an FSS for the extended
branching program (note that the same has to be done in order to apply the
generic transformation from HSS to FSS, if the topology is wished to be hidden).
For more details on the FSS for branching programs, we refer to the technical
overview section.

Theorem 4 (FSS for branching programs (simplified)). Let P be an obliv-
ious, layered branching program with ℓ levels, width w and out-degree d. Let
S, H̃,T be finite abelian groups.

Then, if there exists an EOH-PRG PRG : S→ H̃ relative to H := (S× Tw)d
with tag space T, there exists an FSS for P over key space H and correction word
space H̃ℓ−1.

With FSS for branching programs, we present an FSS for the class of approx-
imate matching functions, which has many attractive application. The class of
approximate matching functions computes the distance between an input and a
given target string with wildcards, compares the distance with a threshold value,
and outputs 0 or 1 accordingly. Formally, the family of approximate matching
functions is defined as

fa,b(x) := (dist(x,a) < b),

Direct FSS for Branching Programs 7

where a ∈ {0, 1, ∗}ℓ, b ≤ ℓ and dist(x,a) =
∑
i∈[ℓ](a[i] ̸= ∗ ∧ a[i] ̸= x[i]). The

idea is to first convert an approximate matching function to a branching program
with ℓ levels and width ℓ and out-degree 2 and then run the FSS for the resulting
branching programs. For details, refer to Section E.1.

We further give an FSS for multivariate polynomials over polynomial size
rings. Let k,m,w ∈ N and assume R is a ring with w elements. Let Pk,m,w be
the class of multivariate polynomials P (X1, . . . , Xk) ∈ R[X1, . . . , Xk] which are
of the form

∑m
i=1 ci ·X

d1
1 · · ·X

dk
k . Each monomial c · xd can be transformed to

a branching program with k level, width w and out-degree w. The idea is to
run the FSS for each monomial and sum up the results. Note that our FSS also
works polynomials over non-commutative rings. For details, refer to Section E.2.

FSS for DFAs. Finally, we give our construction of FSS for DFAs. Note that
the construction of FSS for branching programs would directly imply an FSS
for DFA, but requires the input size to be a-priori bounded as the FSS keys
scale with the size of the input. Instead, we give a direct construction of a DFA,
which can accept inputs of a-priori unbounded size (and for which the key sizes
are independent of the size of the input). To that end, we introduce the notion
of EOH-PRG with KDM-security. We stress that the kind of KDM-security we
require for our FSS construction comes “for free” in our instantiations from LWE
and DCR, without needing to assume a circular-security type assumption. For
more details on DFAs and our construction, we refer to the technical overview
section.

Definition 5 (KDM-secure EOH-PRG (simplified)). Let Ψ be a family of

embeddings ψ : S→ H. Let PRG : S→ H̃ be an EOH-PRG relative to H. We say
that PRG satisfies KDM-security relative to Ψ , if for each ψ ∈ Ψ , PRGψ(s) :=
PRG(s) + Encode(ψ(s)) is a secure PRG.

For our DFA construction, we need to instantiate Ψ with the family of em-
beddings ψi which essentially maps s ∈ S to a vector, where only parts of the
entries are non-zero and each of the non-zero entries contains exactly s. With
this we obtain the following theorem.

Theorem 6 (FSS for DFAs (simplified)). Let M be a DFA with state set Q
and alphabet Σ. Let µ := |Q ∪ {A,R}| = |Q| + 2, where A and R stand for the

merged accept state and rejection state, respectively. Let S, H̃,T be finite abelian
groups.

Then, if there exists a EOH-PRG PRG : S→ H̃ relative to H := (S×Tµ)|Σ|+1

with tag space T which satisfies KDM-security relative to a suitable function
family Ψ , there exists an FSS for M over key space H and correction word space
H̃|Q|.

It is worth to mention that the FSS for DFA is the first that allows key size
independent of the length of the input(except for the generic constructions from
FHE).

8 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

Towards Instantiating the EOH-PRG. In order to instantiate our con-
structions, we have to allow for a slightly more permissive notion of EOH-PRG,
which is not accounted for in the above overview (but for which it is rather
straightforward to adapt the above theorems).

Namely, we have to allow the encoding function Encode to support a smaller
domain H, than the co-domain of the conversion function Conv. Further, we have
to require PRG to remain a PRG even if restricted to some subdomain S. (Note
that this is a consequence of the above, since, e.g., for our recursive tensoring
construction we will choose H := (S × {1})2, and thus require PRG to remain a
PRG on S to achieve security in the next level.)

With this relaxation, we show that it is possible to instantiate the EOH-PRG
from LWE and binary-secret ring-LWE building on the techniques of [28], and
from a short exponent variant of the DCR assumption inspired by the techniques
of [60,67]. More precisely, we obtain the following results.

Theorem 7 (EOH-PRG from LWE (simplified)). Let n, p, q, r, ℓ, w ∈ N
such that r|p, p|q, 1 ≪ r ≪ p,6 and n log q < m log p, where m := ℓ(n + w).
Further, let q > 2pB and let χ be a B-bounded error distribution.7

Then, assuming learning with errors LWEn,m,q,χ is hard, there exists an EOH-

PRG PRG : S→ H̃ relative to (S,H,H), where S = {0, 1}n,S = Znp ,T = Zp, H =

(S × {0, 1}w)ℓ = {0, 1}m and H̃ = H = (S× Tw)ℓ = Zmp .

Note that for a suitable choice of parameters binary-secret LWE is implied by
LWE, which allows us to instantiate the EOH-PRG from standard LWE. For the
instantiations from ring-LWE, on the other hand, we have to rely on a stronger
assumption which we refer to as ring-LWE with binary secrets (note that this
was also done in the instantiation of [28]). As otherwise the instantiation from
ring-LWE is similar, we omit it here and refer to Section 8 for details.

Recall that the DCR assumption states an N -th residue over Z∗
N2 is com-

putationally indistinguishable from a random element over Z∗
N2 . Based on the

DCR assumption, Brakerski and Goldwasser [29] showed that (g1 . . . gd, g
s
1 . . . g

s
d)

is pseudorandom, where d ∈ N, each gi is a N -th residue over Z∗
N2 , and s is ran-

dom element in Zϕ(N). (Note that this can also be viewed as the DDH assumption
over Z∗

N2 .)
We have to rely on a variant of this assumption, where the secret is chosen

from a (sufficiently large) bounded subspace [−B/2, B/2] ⊂ Zϕ(N). Note that
similar flavors of small-exponent assumptions have been used in [51,4,23]. With
this, we obtain the following theorem.

Theorem 8 (EOH-PRG from DCR (simplified)). Let B be an integer such
that B · 2λ ≤ N and B > 2λ. Further, let ℓ, w ∈ N be arbitrary.

Then, assuming a small exponent variant of DCR holds relative to B, there
exists an EOH-PRG PRG : S→ H̃ relative to (S,H,H), where S = [−B/2, B/2],S =

6 Here, by ≪ we denote a super-polynomial gap between parameters.
7 Note that this requirement on the error distribution is to ensure that LWE implies
LWR [14].

Direct FSS for Branching Programs 9

Assumption Key Size No. of Mul./ Exp.

Bit-fixing
LWE

HSS [28] Ring-LWE w/BS 8ℓn log q 4ℓn logn
EOH-PRG LWE 2ℓ(n+ 1) log p 2(ℓ− 1)n(n+ 1)
EOH-PRG Ring-LWR w/BS 2ℓ(n+ 1) log p 4ℓn logn

DCR
HSS [60] DCR w/circ. sec. 14ℓ logN2 7ℓ

EOH-PRG DCR variant 4ℓ logN2 4ℓ

BP
LWE

HSS [28] Ring-LWE w/BS 4ℓw2n log q 8ℓw2n logn
EOH-PRG LWE 2ℓw(n+ w) log p 2ℓn(n+ w)
EOH-PRG Ring-LWR w/BS 2ℓw(n+ w) log p ℓ(2 + ⌈ 2w

n
⌉)n logn

DCR
HSS [60] DCR w/circ. sec. 7ℓw2 logN2 14ℓw2

EOH-PRG DCR variant 2ℓw(w + 1) logN2 ℓ(3w + 2)
Table 1. Comparison of FSS constructed from EOH-PRG and from HSS. ℓ stands for
the length of the bit-fixing predicate or branching program and w stands for the width
of the branching program. For branching programs we assume fixed out-degree d = 2.
For the LWE assumption, n stands for the secret length, q the modulus of the LWE
assumption, and p the output modulus of the PRG. The number of multiplications is
counted over Zq. Ring-LWE w/BS stands for ring-LWE with binary secret. For DCR
assumption, N stands for RSA modulus. For the comparison with [60], we use their
most efficient instantiation, for which they have to assume a DCR variant with circular
security ([60, Section 4.2]). The number of exponentiations is counted over ZN2 .

Zϕ(N2),T = Zϕ(N2), H = (S × {0, 1}w)ℓ,H = (S × Tw)ℓ = (Zϕ(N2))
ℓ(1+w) and

H̃ = (Z∗
N2)ℓ(1+w).

Note that in order for the DCR assumption to hold, the parties cannot know
ϕ(N). In our construction, this will not be an issue. As we will explain in the
technical overview, we are able to generate secret shares of elements x mod
ϕ(N2) whenever |x| is sufficiently small (following the techniques of [60]), and
can otherwise perform operations simply over Z.

We give the concrete comparisons between our FSS for bit-fixing predicates
and branching programs from EOH-PRGs and the FSS constructions via homo-
morphic secret sharing (HSS) in Table 1. Building on EOH-PRG yields more
efficient constructions in terms of key size and runtime. Most notably, the new
FSS schemes for branching programs provide significant improvements in run
time over FSS from HSS for universal branching programs, by avoiding the over-
head of the generic transformation. For details on the efficiency comparison we
refer to Section H.

Applications. The central application of FSS schemes are forms of two-server
private information retrieval [25]. Here, it is assumed that two (non-colluding)
servers each hold a replication of a database DB with D items, and a client
wants to launch a query to the database while keeping the query hidden from
both servers individually. Given an FSS scheme supporting the query class, this
can be achieved with succinct communication, by having the client split its query
into succinct shares, which can then be evaluated by the server. By secrecy of

10 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

the FSS, the servers do not learn anything about the query, as long as they are
non-colluding.

In Section G, we show a number of applications including private image
matching, private nearest neighbour search and private partial text matching,
and how our construction can be used towards boosting the applications in terms
of expressiveness and/or efficiency. In particular, our improved FSS constructions
for bit-fixing and branching programs yield direct applications to applications
such as 2-server private counting queries and private payload computations, as
considered, e.g., in [28], with better efficiency.

Note that for the most part in our application we solely focus on achiev-
ing client privacy. If the underlying database contains privacy-critical data e.g.,
medical, biological or financial data, one further needs to consider server privacy.
We show how this can be achieved in the example of private nearest neighbor
search (Section G.3).

1.2 Discussion and Related Work

Beyond the two-party case. Note that the FSS constructions from one-way
functions [44,24,26] cannot be easily extended to more than two parties. Our FSS
construction approach from EOH-PRGs, on the other hand, naturally extends
beyond the two-party setting. However, it is not known how to instantiate the
EOH-PRG from concrete assumptions for more than two parties. Our two-party
instantiations from LWE and the DCR variant heavily rely on the distributed
rounding [28] and distributed discrete logarithm [60], respectively, which were
developed for two-party homomorphic secret sharing. To date, it is unclear how
to generalize the distributed rounding or distributed discrete logarithm to more
than two parties. In fact, [13] proved that there exists a barrier to directly gener-
alize the share conversion from two-party to multi-party. Any such progress may
lead to significant improvements for efficient multi-party FSS/HSS constructions.

On FSS from weaker assumptions. While construction FSS for function
classes such as branching programs solely based on the assumption of one-way
functions would be a major breakthrough [24], it seems a more tractable open
question if such FSS can be constructed for subclasses of AC0 such as bit-fixing
predicates or t-CNF. In the technical overview, we give some intuition why it
seems unlikely that the techniques of the line of work on FSS from one-way
functions [44,24,26] allow for this without relying on additional structure (such
as EOH-PRGs), due to an inherent exponential blow-up. An alternative route
could be taken following [37], who give constructions of privately constrained
PRFs for t-CNFs from one-way functions. Here, however, the problem is that
de-randomizing the constrained points to fixed values would again introduce an
exponential blow-up. We leave it as an interesting open questions to either give
such candidates, or give barriers towards their construction.

Relation to secure branching program evaluation protocols. There is a
line of work on secure branching program evaluation (BPE) [30,11,12,18,77,50,75]

Direct FSS for Branching Programs 11

relying on garbled circuits or homormorphic encryption. The setting considered
in their work is somewhat orthogonal to ours: They consider a branching pro-
gram (held by a sender) to be evaluated on a single input (held by a receiver),
such that the result is learned by the receiver, and such that both the branching
program provided by the sender and receiver input remain hidden. We, on the
other hand, consider a branching program (held by a client) to be evaluated on
a database (held by two servers), such that a linear combination of the outputs
is learned by the client, and such that the branching program (i.e., database
query) provided by the client remains hidden, as long as the two servers are
not colluding. With our approach, the communication cost scales with logN for
a database of size N , since the same branching program can be evaluated on
all inputs. Except for the FHE-based approach [18], the communication cost of
all other protocols in the BPE line of work instead scales with N to achieve
the same functionality. This is even true for the protocols [77] relying on addi-
tively homomorphic encryption, since they still require communication between
the receiver and sender per input to be evaluated. It is worth to point out that
sublinear communication complexity in the line of work on BPE (as achieved in
[75]) refers to sublinear in the size of the branching program, whereas we consider
settings where the size of the database N is the dominating cost.

1.3 Organization

Only the main results and techniques are presented in the body part. Section
2 presents an overview of the central techniques, followed by preliminaries in
Section 3. The EOH-PRG is formally defined in Section 4. We show the con-
structions for tensor product, branching programs and DFAs in Section 5,6,7,
respectively. Finally, in Section 8 we present instantiations of the EOH-PRG.

2 Technical Overview

In the following we give an overview of the central techniques. We start by ex-
plaining the tensor product FSS for point functions of Boyle, Gilboa and Ishai
[26] (in the following refered to as BGI16), and show how to extend their con-
struction to a more general tensor product using an encoded-output PRG. Then,
we show how this yields FSS for the classes of bit-fixing predicates. Next, we
explain how the construction can be extended towards FSS for branching pro-
grams and for DFAs. Finally, we explain how to instantiate EOH-PRG from the
learning with errors or DCR assumption. For an overview of our paper we refer
to the table of contents H.2 in the Supplementary Material.

Background [24,26]. Before giving the construction, we recall some required
preliminaries. Firstly, recall that a point function is simply a function that takes
a non-zero value only at one dedicated point. More precisely, the point function

12 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

fβα with input space {0, 1}n and output space R (for some group R) is defined
as

fβα (x) :=

{
β if x = α

0 else
.

A function secret sharing scheme for a family of function F consists of tuple
of PPT algorithms (Gen,Eval), such that Gen takes as input the description f̂
of f and returns a tuple of keys (k0, k1) and Eval takes as input a party index
b, a key kb and an input value x and outputs an output value yb, such that the
following holds:

Correctness: For all x ∈ {0, 1}n. it holds Eval(0, k0, x)− Eval(1, k1, x) = f(x).

Secrecy: For b ∈ {0, 1}, kb computationally hides f̂ within F .

Note that an FSS for the class of point functions, is also refered to as distributed
point function (DPF).

Tensor product FSS for point functions [BGI16 [26]]. Given a function
secret sharing scheme for the class F◦ of point functions, and a function secret
sharing scheme for a function class F of arbitrary functions, BGI16 gives a
construction for the tensor product F◦ ⊗F , i.e., the class of functions

Fα,f (x1, x2) :=

{
f(x2) if x1 = α

0 else

for α ∈ {0, 1}n, f ∈ F , where the key size scales polynomially in the key sizes of
the underlying FSS schemes.8

In the following, we describe the construction of BGI16 in a number of steps,
adding layers of secrecy one-by-one. For the construction we assume that the
FSS scheme (Gen,Eval) for F satisfies a symmetry property, i.e., Eval(0, k, x) =
Eval(1, k, x) for all inputs x and keys k. Further, we assume that keys (k0, k1)←
Gen(f) are individually pseudorandom over the same key space K.

First attempt: a construction with very limited secrecy: To get a construction
where α is hidden from P1, one can proceed as follows: To share Fα,f , one can

generate keys (k0, k1) ← Gen(f̂) and set K0 := (α, k0, k1) and K1 := k1. To
evaluate on point (x1, x2), party P0 outputs y0 := Eval(0, k0, x2) if x1 = α and
y0 := Eval(0, k1, x2) otherwise. Party P1 simply outputs y1 := Eval(1, k1, x2).

Correctness and very limited secrecy: Here, for x1 = α we have y0 − y1 =
Eval(0, k0, x2) − Eval(1, k1, x2) = f(x2) by the correctness of (Gen,Eval). For
x1 ̸= α, on the other hand, it holds y0− y1 = Eval(0, k1, x2)−Eval(1, k1, x2) = 0

8 The resulting scheme actually satisfies a stronger notion of key compactness, namely
the non-public part of the key does not grow, allowing to apply the tensor product
operation recursively a polynomial number of times.

Direct FSS for Branching Programs 13

by symmetry, as required.9 This construction does obviously hide α from P1,
but otherwise does not provide any secrecy guarantees.

Second attempt: a construction with secret α. Towards hiding α also from P0, the
trick is to additionally use the FSS scheme (Gen◦,Eval◦) for F◦, and flipping the
order of k0 and k1 with probability 1/2, thereby hide from the parties when they
use the same keys. More precisely, assume to be given an FSS for point functions
with output space {0, 1} (i.e., the point function maps to 1 at the unique non-
zero point α, and otherwise to 0). Now, the idea is to generate keys (k◦0 , k

◦
1) ←

Gen◦(f̂1α), and compute “tag” values τb ← Eval◦(b, k◦b , α) (i.e., τ0 ⊕ τ1 = 1 by
construction) relative to these keys. The tag values are used to hide if the parties

use the same key kb, by defining cwτb := kb (where (k0, k1)← Gen(f̂) as before)
and setting Kb := (k◦b , cw0, cw1). To evaluate at a point (x1, x2), party Pb first
computes tb ← Eval◦(b, k◦b , x1) and then outputs yb ← Eval(b, cwtb , x2).

Correctness and secrecy of α: Now, for x1 = α, it holds cwtb = cwτb = kb. As
before, the parties thus obtain y0 − y1 = Eval(0, k0, x2)− Eval(1, k1, x2) = f(x2)
as required. If x1 ̸= α, on the other hand, it holds t0 = t1 and thus kt0 = kt1 ,
implying y0 − y1 = Eval(0, kt0 , x2) − Eval(1, kt0 , x2) = 0, again by symmetry.
The construction hides α from both parties by the secrecy of (Gen◦,Eval◦) and
the pseudorandomness of keys for (Gen,Eval) (which prevents the parties from
learning when they use the real key at position α and when they use a “dummy
key”), but still fully leaks f .

The construction of BGI16. The idea of BGI16 to overcome this, is to addition-
ally use a pseudorandom generator to blind the keys k0, k1, such that party P0 is
only able to recover k0 and party P1 is only able to recover k1 at the dedicated
point x1 = α (without being able to distinguish this from the case where both
parties recover the same ”dummy” key, to ensure that α remains hidden). To
this end, assume that FSS◦ is now an FSS for point functions with output space
{0, 1}λ+1. The idea of BGI16 is as follows: To generate a key for Fα,f , the key
generation algorithm starts by choosing s ←R {0, 1}λ at random and generat-

ing (k◦0 , k
◦
1) ← Gen◦(f̂

s∥1
α). Further, the key generation algorithm generates the

corresponding “seed values” σb ∈ {0, 1}λ and, again, “tag values” τb ∈ {0, 1} as
(σb, τb) ← Eval◦(b, k◦b , α) (i.e., σ0 ⊕ σ1 = s and τ0 ⊕ τ1 = 1 by construction).
Further, given a pseudorandom generator PRG : {0, 1}λ → K, the full “correc-

tion words” are generated as CWτb := kb + PRG(σb) (where (k0, k1) ← Gen(f̂)
as before) and the keys defined as Kb := (k◦0 , CW0, CW1). To evaluate on point
(x1, x2), the parties now compute (sb, tb)← Eval◦(b, k◦b , x1), “correct” their keys
to κb := CWtb − PRG(sb) and evaluate to yb ← Eval(b, κb, x2).

Correctness and secrecy of BGI16: If x1 = α, it holds κb = CWtb−PRG(sb) =
CWτb−PRG(σb) = kb and thus y0−y1 = Eval(0, k0, x2)−Eval(1, k1, x2) = f(x2)
as required. If x1 ̸= α, on the other hand, then t0 = t1 and thus κ0 = κ1 (i.e.,

9 This construction would not actually require symmetry of the underlying FSS since
P0 knows when x1 ̸= α and could evaluate Eval(1, k1, x2)in this case, but this will
no longer be possible in the subsequent constructions.

14 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

both parties recover the same “dummy” key), and y0 − y1 = Eval(0, κ0, x2) −
Eval(1, κ0, x2) = 0 by symmetry. Full secrecy holds by the above considerations
and because (Gen,Eval) satisfies secrecy and pseudorandomness of keys, which
prevents the parties from learning where the true FSS keys are embedded.

Limitation of BGI16 to tensoring with point functions. The issue with
extending the above approach even slightly beyond point functions (e.g., to func-
tion which take a non-zero value at two points) is that it would incur an expo-
nential blow-up in the key size (and run time of the key generation), since the
parties have to recover different key pairs (K0,K1) and (K ′

0,K
′
1) for different

non-zero points α, α′ (as reusing a key would allow the parties to locally de-
rive information about the position of non-zero points). Note that this includes
the “correction word” part CW0, CW1 of the key, since keys with different first
component require different correction words in construction of BGI16. The key
generation time and key length thus (at least) double at each tensoring. Recur-
sive tensoring is therefore limited to at most a logarithmic number of times,
which is not sufficient for most applications.

This issue could be overcome, if the keys could be “randomized” in order to
hide that the same key is reused. For additive secret sharing this is trivially the
case: Namely, assume an output value is shared as y = k0 − k1 ∈ K (for some
additive group K). Then, for any ∆ ∈ K, the secret can be re-shared as (k0 +
∆, k1 +∆), which looks like perfectly fresh keys from the view of the adversary.
Unfortunately, the construction of BGI16 does not satisfy this property of “shift-
invariance”, even if the underlying FSS schemes F◦ and F were to satisfy these
properties: Namely, even if σ0 − σ1 = σ′

0 − σ′
1 (where σb ← Eval◦(b, kb, α) and

σ′
b ← Eval◦(b, kb, α

′)), the PRG outputs PRG(σb) and PRG(σ′
b) are in general

uncorrelated.
This could be resolved by using an ideal homomorphic PRG, ensuring that

the correlation is preserved to PRG(σ0)−PRG(σ1) = PRG(σ′
0)−PRG(σ′

1). Unfor-
tunately, perfectly homomorphic PRGs with both the domain and image being
additive groups in the typical sense are not known to exist. For simplicity, we still
start by outlining our tensor product construction assuming access to a perfectly
homomorphic PRG PRG : {0, 1}λ → K, before giving our full construction.

Overcoming the limitations via an ideal homomorphic PRG. We start
by simplifying the construction of BGI16 assuming access to a perfectly homo-
morphic PRG PRG : {0, 1}λ → K, and assuming a shift-invariant FSS FSS =

(Gen,Eval) for F with key space K,10 i.e., for (k0, k1)← Gen(f̂), we assume that
any shifted tuple (k0 +∆, k1 +∆) for ∆ ∈ K constitutes a valid key pair for f .
Then, the construction of BGI16 can be simplified to a construction requiring
only one correction word CW :

10 Note, that for correctness of the simplified construction outlined below, we would
actually require (K,+) := ({0, 1}k,⊕), for some k ∈ K. To be aligned with the
general construction, we will still use th notation (K,+) in the following.

Direct FSS for Branching Programs 15

Again, to generate a key for Fα,f , the key generation algorithm samples s←R

{0, 1}λ and generates keys (k◦0 , k
◦
1)← Gen◦(f

s∥1
α). Instead of pre-computing the

tag and seed values at position α, the key generation algorithm simply generates
(k0, k1) ← Gen(f̂), sets CW := k0 − k1 + PRG(s) and outputs (K0,K1), where
Kb := (k◦b , CW). To evaluate, the parties now compute (sb, tb)← Eval◦(b, k◦b , x1)
and then obtain the “corrected” keys as κb := tb · CW − PRG(sb). (Note that
tb ∈ {0, 1}, and thus the multiplication simply corresponds to adding 0 or CW.)

Correctness holds, since at position α it holds s0 − s1 = s and t0 − t1 = 1,
and thus

κ0−κ1 = (t0 ·CW−PRG(s0))−(t1 ·CW−PRG(s1)) = CW−PRG(s) = k0−k1.11

As FSS is shift-invariant, the above implies that (κ0, κ1) and (k0, k1) are func-
tionally equivalent, and thus y0 − y1 = Eval(0, κ0, x2) − Eval(1, κ1, x2) = f(x2)
as required. If x1 ̸= α, on the other hand, we obtain s0 = s1 and t0 = t1 and
thus κ0 = κ1 as before, and correctness follows from the symmetry of FSS. Se-
crecy holds by the secrecy of the underlying FSS schemes, together with the
pseudorandomness of PRG.

Note that this simplified scheme readily extends beyond point functions.

EOH-PRG. In order to instantiate the above construction, we introduce the no-
tion of PRG with encoded-output homomorphism (EOH-PRG) and show that the
above construction can be extended to support instantiation from this weaker
notion. Roughly, an EOH-PRG has “encoding” and “conversion” (or “decod-
ing”) functions Encode and Conv such that it satisfies the following: given ad-
ditive secret shares (s0, s1) of a seed s, and additive secret shares (y0, y1) of a
blinded encoding PRG(s)+Encode(m), we require Conv(y0−PRG(s0))−Conv(y1−
PRG(s1)) = m (except with negligible probability over the random choice of the
secret shares). Intuitively, this is sufficient to instantiate (a variant of) the tensor
product FSS above, by encoding the key difference k0 − k1 to Encode(k0 − k1)
before adding PRG(s).

More formally, a EOH-PRG PRG : S→ H̃ as required for our tensor product
construction is parametrized by S,H,H, together with (efficiently computable)

maps Encode : H → H̃ and Conv : H̃→ H such that:

– PRG : S→ H̃ is a PRG.
– S ⊂ S is such that PRG restricted to S is still a PRG and 0 ∈ S. Note

that S will serve as the seed space of our tensor product (recall that before
S = {0, 1}λ). 0 has to be included in S to account for the case where both
parties recover the same “dummy” seed value s0 = s1, i.e., s0 − s1 = 0.

– H is a finite abelian group containing the set H ⊂ H. Note that H will
correspond to the key space K of the FSS FSS before encoding (i.e., recovery
of the keys is relative to addition in K). H ⊂ H will correspond to the set

11 Note that to obtain t0 ·CW − t1 ·CW = CW we use (K,+) = ({0, 1}k,⊕). We will
later show how to generalize this.

16 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

of actual key differences k0 − k1 for (k0, k1) ← Gen(f̂) for f ∈ F . Having
separate H ⊂ H stems from the intantiations of EOH-PRG – given a truly
homomorphic PRG, one could simply choose H = H = H̃.

– H̃ is a finite abelian group containing the image of the PRG.

Finally, Enc : H → H and Conv : H̃ → H are such that for all s ∈ S, for all
m ∈ H, for random secret shares s0, s1 ←R S with s0 − s1 = s, and for random
secret shares y0, y1 ←R H̃ with y0 − y1 = PRG(s) + Encode(m) it holds

Conv(y0 − PRG(s0))− Conv(y1 − PRG(s1)) = m

in H except with negligible probability.
Further, we require a tag space which operates on H̃. More formally, we

require the following:

– T is a finite abelian group containing {0, 1} ⊂ T. Note that T = {0, 1} will
serve as the tag space of our tensor product FSS, which is embedded in the
group T, i.e., recovery of the tag will now be additive over T, rather then
additive over ({0, 1},⊕).

– · : T × H̃ → H̃ is an efficiently computable non-trivial (left) group action
of T on H̃. Note that we need to define an operation of T on H̃ in order
to “correct” the keys based on the tag values. This allows to support more
general key spaces than K = {0, 1}k.

In the following, we will assume this as part of the definition of an EOH-PRG
and simply add T to the parametrization.

Our tensor product FSS for arbitrary predicates from EOH-PRG. Our
tensor product construction from a EOH-PRG is essentially the same as the
one from a perfectly homomorphic PRG (assuming the underlying FSS satisfy
some additional properties), except that the correction word is computed as
CW := PRG(s) + Enc(k0 − k1), and the keys are recovered as κb := Conv(tb ·
CW − PRG(sb)).

12

Note that for construction to satisfy correctness, it is now required that
the FSS scheme FSS for F satisfies k0 − k1 ∈ H for all f ∈ F and (k0, k1) ∈
Gen(f̂) (since the encoding function Encode takes inputs in H), but satisfies shift
invariance relative to the additive group H (since the decoding function Conv
returns elements in H).

12 A subtlety is that in the definition of EOH-PRG we only require correctness relative
to random shifts, but here we rely on correctness relative to shifts of the form
tb · CW − PRG(sb). This can be solved by having the parties re-randomize their
shares with random offset PRF(s, i) (where each time a fresh index i is used and both
parties hold the key s). This is necessary anyway for applying tensoring recursively,
and allows for a simpler definition of EOH-PRG. Note though that this requires us
to settle with a form of “non-adaptive” correctness as used e.g. in [28], where the
inputs are assumed to be chosen independently of the keys.

Direct FSS for Branching Programs 17

An example for such an FSS can be obtained by additively secret-sharing the
truth table with values in H over H if the function class is sufficiently small, this
can be done efficiently.

With this we obtain the following theorem.

Theorem 9 (Theorem 20). Assume PRG : S→ H̃ is a EOH-PRG parametrized
by (S,T, H,H). Further, let FSSP = (GenP ,EvalP) be an FSS for a function fam-

ily fβP : {0, 1}n1 → S× T, where

fβP (x1) =

{
β if P (x1) = 1

0 else
,

for β ∈ S×{1} ⊆ S×T ⊆ S×T (i.e., recovery is additive in S×T) and P ∈ P,
and let FSS = (Gen,Eval) be a symmetric and shift-invariant FSS for some class
of functions F of the form f : {0, 1}n2 → R with key space K = H, such that for

any pair of keys (k0, k1)← Gen(f̂) it holds k0 − k1 ∈ H.
Then, there exists an FSS FSS⊗ = (Gen⊗,Eval⊗) for the class FP ⊗ F of

functions

FP,f : {0, 1}n1+n2 → G, (x1, x2) 7→

{
f(x2) if P (x1) = 1

0 else
,

for P ∈ P, f ∈ F , where the resulting keys consist of a “secret” part correspond-
ing to the key space in FSSP and a “correction word” space H̃.

FSS for bit-fixing predicates from EOH-PRG. It is not hard to see that
if FSSP in the above construction satisfies symmetry and shift-invariance, then
so does the resulting FSS for FP ⊗ F . As further the secret part of the FSS
does not grow, tensoring can be applied recursively an arbitrary (polynomial)
number of times. While the construction of BGI16 is restricted to recursively
tensoring point functions (and thus obtaining FSS for point functions), the new
construction allows to, e.g., recursively tensor the truth-table function secret
sharing scheme for one-bit functions

φβα(x) :=

{
β if x = α or α = ∗
0 else

,

where α ∈ {0, 1, ∗}, β ∈ S × {1} ⊆ S × T 13. Thus, given an EOH-PRG relative
to (S,T, H,H) with H := (S × T)2 and H := (S× T)2 (as this is the domain of
the keys for the truth-table function secret sharing of ψβα over S × T), one can
obtain an FSS for the function class of bit-fixing preicates, i.e., the class

φα(x) :=

{
1 if ∀i ∈ [ℓ] : x[i] = α[i] or α[i] = ∗
0 else

,

13 The key for φβ
α is a sharing of (β, β), (β, 0), (0, β) for α = ∗, 0, 1, respectively.The

evaluation takes the first or second entry according to the input bit x.

18 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

where α ∈ {0, 1, ∗}ℓ.
More generally, Theorem 9 yields the following corollary.

Corollary 10. Assume PRG : S → H̃ is a EOH-PRG relative to (S,T, H,H)
with H = (S × T)2,H = (S× T)2. Assume P is a family of predicates {0, 1} →
{0, 1}. Then, there exists an FSS for the function class

FP1∧···∧Pℓ
: {0, 1}ℓ → {0, 1}, x 7→

ℓ∧
i=1

Pi(x[i]),

where P1, . . . , Pℓ ∈ P.

FSS for branching programs. In general, a branching program can be de-
scribed as a finite directed acyclic graph with one source node and two sink
nodes, accept and reject. In this section, we focus on giving an FSS construction
for oblivious ℓ-layered branching programs with out-degree 2, i.e., each width-w
layer uses a fixed position of the input, each non-sink node has two outgoing
edges labeled by 0 and 1, and edges only go from one level to the next level, as
specified by a transition function f : [ℓ]× [w]× {0, 1} → [w].

Roughly, the idea to obtain an FSS for the class of such branching programs
is to extend the tag value t ∈ {0, 1} to a tag vector t ∈ {0, 1}w, allowing to pick
the “right” correction word in going from the i-th to the (i+ 1)-th level.

More precisely, for the i-th level, the key generation algorithm essentially
chooses a seed si ∈ Sw, i.e., the j-th node on the i-th level is “labelled” by
a seed value si,j ∈ S together with a fixed tag vector ej ∈ {0, 1}w, where ej
corresponds to the j-th unit vector. Recall that each node has two outgoing
edges, 0 and 1. In other words, for each node (si,j , ej) on level i, there exist two
possible nodes j0 := f(i, j, 0) and j1 := f(i, j, 1) that can be reached in level i+1
with corresponding labels (si+1,j0 , ej0) and (si+1,j1 , ej1). To go from the i-th to
the (i + 1)-th level, the idea is now to encode the transitions into correction
words. More precisely, we define

CWi[j] := PRG (si,j) + Encode ((si+1,j0 , ej0), (si+1,j1 , ej1)) .

Thus, the correction word for each node can be computed in this way. The FSS
key consists of a sharing of the label of start node and correction words.

During evaluation, the tag vector allows to pick the right correction word to
proceed to the next level. Namely, given secret shares (sb, tb) such that

(s0, t0) + (s1, t1) = (si,j , ej)

the parties can compute

yb = Conv

(
w∑
k=1

tb[k] · CWi[k]− PRG(sb)

)

Direct FSS for Branching Programs 19

to obtain

y0 − y1 = Conv

(
w∑
k=1

t0[k] · CWi[k]− PRG(s0)

)

− Conv

 ∑
k∈[wi]

t1[k] · CWi[k]− PRG(s1)


= Conv(t0[j] · CWi[j]− PRG(s0)) + Conv(t1[j] · CWi[j]− PRG(s1))

= ((si+1,j0 , ej0), (si+1,j1 , ej1)) ,

by the property of the EOH-PRG. The parties can now continue the evaluation
with the left or right part of the output, depending on the i-th input bit.

Note that in the described inductive construction of FSS for branching pro-
grams, we assumed that each level has exactly w nodes. This can be achieved
by virtually adding dummy nodes, for which the correction words for dummy
nodes can be sampled uniformly at random, since these are never reached during
evaluation.

Comparison with FSS via universal branching programs. Previous constructions
of FSS for branching programs rely on homomorphic secret sharing (HSS) [25,
Theorem 4.15] or FSS for all functions from fully homomorphic encryption(FHE)
[38, Section 6.3]. Given a branching program P , the construction of [25] encodes
P to P̂ and generates a universal branching program (UBP) for P such that
UBP (P̂ , x) = P (x) for arbitrary x. Next, P̂ is secret-shared via the underlying
HSS to hide the transition function of P . Note that the transformation via UBPs
incurs a considerate efficiency blow-up which is at least quadratic in the number
of levels. Refer to Section H.2 for details.

In contrast, the evaluation of our FSS construction directly emulates the
evaluation of the branching program. For each level of the program P , the PRG
needs to be evaluated once. Moreover, our FSS for branching programs naturally
supports multi-edges. For the FSS via universal branching programs, on the other
hand, the multi-edges need to be splitted to plain edges, incurring an additional
blow-up. Finally, for branching programs with polynomial out-degree, say d, our
FSS construction only increases the correction word for each node from two
elements to d elements.

FSS for DFAs. Given a DFA M := (Q,Σ, δ, q0, F), we first transform the set
of accepting states F to a single accept state A via appending a special symbol
ϵ to the end of each input. Similarly, we can transfer the remaining states to
a rejection state R. The resulting DFA has alphabet Σ ∪ {ϵ} and states set
Q ∪ {A,R}.

Similarly to the FSS for branching programs, the FSS for DFAs focuses on
hiding the transition function. For each state s ∈ Q, the label for s consists of a
uniformly random seed and a tag vector assigned according to a designated order
of the states. The correction word for s hides the labels of one-step reachable

20 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

states from s. The key for the FSS is a random sharing of the label for q0 and
the correction word for every state in Q. Since a state may be transferred to
itself via some symbols, a KDM secure variant of EOH-PRG is necessary. With
EOH-PRG, the key size of this FSS is independent of the length of string to be
evaluated by the DFA.

In other words, FSS for DFAs can be viewed as one level of FSS for branching
programs, where each input symbol evaluates to the same level again during
evaluation.

Instantiating the EOH-PRG. In the following we explain our instantiations
of EOH-PRG from LWE and a small-exponent DCR variant.

EOH-PRG from LWE. Recall that the LWE assumption naturally provides an
almost-homomorphic PRG (AH-PRG). Let p, q ∈ N with p|q and let ⌈·⌋q→p be

defined as ⌈·⌋q→p : Zq → Zp, x 7→ ⌈(p/q) · x⌋. Suppose A ←R Zn×mq . Then,
PRGA : Znq → Zmp , s 7→ ⌈sA⌋q→p is an AH-PRG . It is easy to verify that

PRGA(s0 + s1) = PRGA(s0) + PRGA(s1) + e

with ∥e∥∞ ≤ 1.
Note though that an AH-PRG is not sufficient to instantiate our construc-

tion, since the small error vector would lead to correctness errors with too high
probability. To overcome this problem and obtain an EOH-PRG, we rely on the
distributed rounding and lifting technique as introduced in [28].

Concretely, let r ∈ N be an integer such that r|p and 1≪ r ≪ p. Then, [28]
observed that for µ ∈ Zp the following holds. Given y = (p/r) · µ+ e mod p for
small error e, and random additive secret shares y0 − y1 = y mod p, it holds

⌈y0⌋p→r − ⌈y1⌋p→r = µ mod r,

except with negligible probability. Further, if |µ| ≪ r, then this secret sharing
holds with overwhelming probability over the integers and thus also modulo p:

⌈y0⌋p→r − ⌈y1⌋p→r = µ mod p.

Towards obtaining a EOH-PRG, our idea is thus to encode a vector x ∈ {0, 1}m
as (p/r)·x, which then allows to remove errors potentially introduced via the AH-
PRG using the conversion function y 7→ ⌈y⌋p→r. More precisely, we instantiate
the EOH-PRG as follows.

– PRG : Znp → Zmp , s 7→ ⌈sA⌋q→p , where A ∈ Zn×mq and the vector-matrix
multiplication sA is performed modulo q;

– Encode : {0, 1}m → Zmp ,x 7→ (p/r) · x;
– Conv : Zmp → Zmp ,y 7→ ⌈y⌋p→r.

Settingm := ℓ(n+w) (where ℓ, w are determined by the underlying application),

the above construction allows to obtain a EOH-PRG PRG : S → H̃ relative to
S,H,T,H where S := {0, 1}n, S := Znp , H = (S × {0, 1}w)ℓ, T = Zp and

H = H̃ = (S× Tw)ℓ = Zmp .

Direct FSS for Branching Programs 21

EOH-PRG from small-exponent DCR. Next, we outline our EOH-PRG instan-
tiation from a variant of the DCR assumption. Recall that the DCR assumption
induces a homomorphic PRG mapping the additive group (Zϕ(N),+) to the mul-
tiplicative group (Z∗

N2)4. Namely, assume g := (g0, g1, g2, g3) ∈ Z4
N2 , where each

gi is uniformly sampled from the N -th residue group mod N2. Then, based on
the DCR assumption, PRGg : Zϕ(N) → (Z∗

N2)4, r 7→ (gr0, g
r
1, g

r
2, g

r
3) defines a ho-

momorphic PRG [29], for which it holds Gg(s0 − s1) = Gg(s0)/Gg(s1) for any
s0, s1 ∈ Zϕ(N). However, in order to use this recursively in our constructions, we
need to be able to recover a homomorphism over (Zϕ(N),+) (while not revealing
ϕ(N)).

To that end, we follow the techniques of [60], who showed that given z0 =
z1 · (1 + N)x mod N2 for x ∈ ZN , there exists an efficiently computable map
DDLog : Z∗

N2 → ZN , which satisfies

DDLog(z0)− DDLog(z1) = x mod N.

Further, if |x| ≤ N
2λ
, then DDLog(z0) − DDLog(z1) = x over Z, and thus in

particular it holds

DDLog(z0)− DDLog(z1) = x mod ϕ(N),

allowing to recover the homomorphism over (Zϕ(N),+). Note that this allows to
generate secret shares of a value x mod ϕ(N) without knowing ϕ(N), whenever
|x| is sufficiently small.

Our idea is thus to build on a small-exponent variant of the DCR assumption
which states that PRGg(r) remains a PRG restricted to seeds r with |r| ≤ N

2λ
.

It is pointed out in [4] that this variant of the DCR assumption is reasonable as
long as the domain of the small exponent is still exponentially large. This kind
of low exponent assumption dates back to [51].

With this we can state our EOH-PRG from small-exponent DCR as follows.
Let B be an integer such that B ·2λ ≤ N and B > 2λ. Let m := ℓ(1+w) (where,
again, ℓ, w are determined by the underlying application). Assume the DCR
variant assumption holds relative to exponents in B. Then, we can instantiate
the EOH-PRG as follows. (This instantiation is a little different from Section 8.
Here we use ϕ(N) instead of ϕ(N2) for the additive group.)

– PRG : Zϕ(N) →
(
Z∗
N2

)m
, s 7→ gs, where g ∈ (Z∗

N2)m and each entry of g is
a N-th residue;

– Encode : ([−B/2, B/2]× {0, 1}w)ℓ → (Z∗
N2)m,x 7→ (1 +N)x mod N2;

– Conv : (Z∗
N2)m → Zmϕ(N),y 7→ DDLog(y).

The above construction allows to obtain a EOH-PRG PRG : S → H̃ relative to
(S,H,T,H) with S = [−B2 ,

B
2], T = {0, 1},S = Zϕ(N),T = Zϕ(N), H = (S ×

Tw)ℓ,H = (S × Tw)ℓ = Zmϕ(N) and H̃ = (Z∗
N2)m. We want to stress here that

using the resulting EOH-PRG in our construction is possible without knowing
ϕ(N) via the techniques outlined above, the instantiation of our EOH-PRG is
thus not in contradiction to the DCR assumption.

22 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

3 Preliminaries

In this section, we recall the preliminaries for function secret sharing from [43,24].
For the remaining preliminaries we refer to Section A in the Supplementary
Material. Here, we only consider two-party function secret sharing as all of our
constructions are in the two-party setting.

Definition 11 (Function Secret Sharing(FSS)). A function secret shar-
ing scheme for function a function class F consists of two PPT algorithms
(Gen,Eval):

− Gen(1λ, f) outputs a pair of keys (k0, k1) and correction word CW upon the
security parameter and f ∈ F .

− Eval(b, kb, CW, x) outputs the corresponding share of f(x) upon the party
index b, kb and input x.

(Gen,Eval) is a secure function secret sharing if it satisfies the correctness and
security requirements:

− Correctness For all f ∈ F and all x ∈ Df ,

Pr
[
Eval(0, k0, CW, x)− Eval(1, k1, CW, x) = f(x) : (k0, k1)← GenF (1λ, f)

]
≥ 1− negl(λ),

where Df is the domain of f .
− Security Assume party z is corrupted by an adversary A. Consider the fol-

lowing experiment.
1. The adversary A outputs (f0, f1)← A(1λ,F).
2. The challenger samples b← {0, 1} and computes (k0, k1, CW)← Gen(1λ, fb).
3. The adversary outputs b′ ← A(kz, CW).
Let Adv(1λ,A) be the advantages of A in guessing b′, i.e., Adv(1λ,A) :=∣∣Pr[b = b′]− 1

2

∣∣. Then (Gen,Eval) is a secure FSS if Adv(1λ,A) is negligible
for every b ∈ {0, 1} and every PPT adversary A.

We remark that the FSS definition differs from the FSS in [43,24] in a formal
sense, since here the correction word is viewed as an independent part whereas
in literature the correction word is part of party key. This is necessary in order to
define shift-invariance for FSS, which does not affect the correction-word part.
Note that the correction word can also be viewed as the public part of the key
for the two parties.

Further, note that we only require correctness, when the key (k0, k1, CW) is
generated independently from the input x. The reason for settling for this notion
of correctness is that in our construction a PRF (with key known by the parties)
is used by the parties to locally re-randomize their local share. By choosing the
input adversarially (based on this key), the parties could hurt correctness, similar
as is the case in [28]. Note that this is sufficient for all applications that do not
require privacy for reconstruction, such as 2-server private information retrieval
without database privacy.

Direct FSS for Branching Programs 23

4 FSS with Extra Properties and EOH-PRGs

In this section, we define shift-invariant FSS and symmetric FSS, which will
serve as a basis for our recursive constructions. We further introduce the notion
of a PRG with encoded-output homomorphism (EOH-PRG).

Shift-invariance essentially means that the keys remain functional when shifted
by an arbitrary shift s. Note that the shift-invariance does not affect the correc-
tion word space CW, which is thus listed separately in Definition 12. Further,
note that all of the FSS constructions in this work satisfy shift-invariance.

Definition 12 (Shift-invariant FSS). Let (Gen,Eval) be an FSS for a func-
tion class F . Assume the key space K of (Gen,Eval) is a finite abelian group and
the correction word space is CW. For any f ∈ F , let Df be the domain of f . We
say (Gen,Eval) is shift-invariant, if there exists a negligible function negl : N →
R≥0 such that for all λ ∈ N, f ∈ F , x ∈ Df , (k0, k1, CW) ← Gen(1λ, f), and
s←R K,

Pr [Eval(0, k0 + s, CW, x)− Eval(1, k1 + s, CW, x) = f(x)] ≥ 1− negl(λ),

where the probability is taken over the randomness of Gen and s.

Next, we introduce the notion of symmetric FSS. Note that the FSS schemes
for point functions in [24,26] are also symmetric.

Definition 13 (Symmetric FSS). An FSS is symmetric if for all k ∈ K, for
all x ∈ Df ,

Eval(0, k, CW, x) = Eval(1, k, CW, x).

4.1 PRG with Encoded-Output Homomorphism

We now define the notion PRG with encoded-output homomorphism (EOH-
PRG), which is central to our work. EOH-PRG corresponds to an approximate
substitution of ideal homomorphic PRG.

Note that in the following we consider all entities implicitly parametrized by
λ (e.g., by a set S we denote an ensemble of sets S = {Sλ}λ∈N). In Section 8,
we show how to obtain EOH-PRGs from the (ring)-LWE or DCR assumption.

Definition 14 (EOH-PRG). Let S,H be finite abelian additive groups, and H̃
a finite abelian group. Let H ⊂ H and S ⊂ S be subsets such that 0 ∈ S. A
function PRG : S → H̃ is a PRG with encoded-output homomorphism (EOH-
PRG) relative to (S,H,H) if it is a secure PRG relative to S and S, and there

exists a deterministic polynomial-time encoding function Encode : H → H̃ and a
deterministic polynomial-time conversion function Conv : H̃ → H such that for
all m ∈ H, for s←R S and

y := PRG(s) + Encode(m),

24 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

s0 ←R S, y0 ←R H̃, s1 := s0 − s, y1 := y0 − y it holds that

Conv(y0 − PRG(s0))− Conv(y1 − PRG(s1)) = m

in H except with negligible probability over the choice of s0 and y0.
Note that for y0 = y1, s0 = s1, we have Conv(y0 − PRG(s0)) = Conv(y1 −

PRG(s1)) as Conv is deterministic.

Since for our instantiations we will typically have to work with a “tag space” T
operating on H̃, we will slightly extend the definition of EOH-PRG, and typically
refer to the below when we talk about an EOH-PRG.

Definition 15 (EOH-PRG with “tag-space” T). Let PRG : S → H̃ be a
EOH-PRG relative to (S,H,H). We say that it is an EOH-PRG relative to
(S,T, H,H), if T is an additive group such that T := {0, 1} ⊂ T and there exists

a (non-trivial)14 efficiently computable (left) group operation · : T× H̃→ H̃ of T
on H̃.

Definition 16 (EOH-PRG with KDM security). Let PRG : S → H̃ be a
EOH-PRG relative to (S,T, H,H). Let Ψ a family of embeddings ψ : S → H. We
say PRG is KDM secure relative to Ψ , if for all ψ ∈ Ψ , PRGψ : s 7→ PRG(s) +
Encode(ψ(s)) is a PRG relative to S and S.

Remark 17. Note that the share obtained from Conv for m may be not pseudo-
random. In order to ensure that the homomorphic property can be recursively
applied, the two parties can use a PRF with shared key to re-randomize the
share of m.

Remark 18. For the tensor-product FSS, we needH = (S×T)2 andH = (S×T)2,
for out-degree 2 branching programs we need H = (S × {ei}wi=1)

2 and H =
(S × Tw)2 where w is the width of the branching program and ei is the i-th
standard basis of Tw.

Remark 19. We further need that operations over S,H and T are efficiently com-
putable. While this is trivially the case for our instantiation from LWE, this can
be sufficiently emulated for our instantiation with DCR (where S and T are
additive modulo an unknown ϕ(N)), by building on techniques of [60].

5 Tensor Product FSS for Arbitrary Predicates from
EOH-PRGs

In this section, we present our tensor product FSS, which allows to tensor FSS
schemes for arbitrary predicates, as long as the second FSS is symmetric and
shift-invariant.

14 I.e., 1 · h ̸= 0 for h ̸= 0.

Direct FSS for Branching Programs 25

Theorem 20 (Tensor Product FSS). Let n1, n2 ∈ N, and S, T be two finite
abelian groups. Let P1 be a family of predicates mapping {0, 1}n1 to {0, 1} and
P2 be a family of predicates mapping {0, 1}n2 to {0, 1}. Let FP1 : {0, 1}n1 →
S × T,FP2 : {0, 1}n2 → S × T be the function families induced by P1,P2 as

fP1,β : {0, 1}n1 → S × T, x 7→ P1(x) · β =

{
β if P1(x) = 1

0 else
,

fP2,γ : {0, 1}n2 → S × T, x 7→ P2(x) · γ =

{
γ if P2(x) = 1

0 else
,

respectively, with P1 ∈ P1, P2 ∈ P2 and β ∈ S × {1}, γ ∈ S × {1}.
Assume

1. PRG : S → H̃ is a EOH-PRG relative to (S,T, H,H) (as in Definition 15),
where H := (S× T)2 and H := (S × {0, 1})2

2. FSSFP1 (GenFP1 ,EvalFP1) is an FSS for FP1
over key space K1, correction

word space CW1 with pseudorandom correction words and pseudorandom
output shares.

3. FSSFP2 (GenFP2 ,EvalFP2) is a symmetric and shift-invariant FSS for FP2

over key space K2 := H, such that for all (u0, u1)← GenFP2 it holds u0−u1 ∈
H, with correction word space CW2, and with pseudorandom correction words
and output shares.

4. PRF : {0, 1}λ × [N]→ H is a PRF (for N sufficiently large).

Then there exists FSS⊗(Gen⊗,Eval⊗) for G := FP1
⊗FP2

= {gP1,P2,γ : {0, 1}n1×
{0, 1}n2 → S × T} over key space K1, correction word space CW1 × CW2 × H̃,
with pseudorandom correction words and pseudorandom output shares, where

gP1,P2,γ(x1, x2) := P1(x1) · P2(x2) · γ =

{
γ if P1(x1) = 1 ∧ P2(x2) = 1

0 else
.

In particular, FSS⊗ is symmetric and shift-invariant if FSSFP1 is symmetric and
shift-invariant.

The construction for (Gen⊗,Eval⊗) is shown in Figure 1. For the proof we refer
to Section B in the Supplementary Material. A few remarks follow.

Remark 21. – The predicate family FP2
can be changed to other function

families rather than predicates, as long as the corresponding FSS remains
symmetric and shift-invariant.

– The FSS for bit-fixing predicates from EOH-PRG in Section C can be viewed
as the tensor product of FSS for length 1 predicates.

– The FSS schemes FSSFP1 and FSSFP2 are assumed to output pseudorandom
shares. As shown in [26] this is the case for any expressive enough function
family. If this is not the case, the ouput shares can be re-randomized by a
PRF with global key and global state as used in our tensor product con-
struction.

We further explain how to obtain FSS schemes for the for negation and
disjunction of predicates in Section B.2.

26 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

Function secret sharing scheme FSS⊗ = (Gen⊗,Eval⊗) from EOH-PRG:

Parameters: Let PRG : S → H̃ be a EOH-PRG relative to (S,T, H,H), where
H := (S × T)2 and H := (S × {0, 1})2, and corresponding functions Encode,Conv.
Let FSSFP1 (GenFP1 ,EvalFP1) be an FSS for FP1 over key space K1 and correction
word space CW1. Let FSS

FP2 (GenFP2 ,EvalFP2) be a symmetric shift-invariant FSS for
FP2 over key space K2 = H and correction word space CW2 such that for any two keys
u0, u1 in the image of GenFP2 it holds u0 − u1 ∈ H. Further let N ∈ N (sufficiently
large) and PRF : {0, 1}λ × [N] → H a PRF. We assume that both parties have access
to a global key K ←R {0, 1}λ and global state st ∈ [N].
Gen⊗(1λ, gP1,P2,γ) :

1: Sample s←R S and let β := (s, 1). Then β ∈ S×T ⊂ S×T. ▷ γ =: (σ, 1) ∈ S×T.
2: Let (k0, k1, CW1)← GenFP1 (1λ, fP1,β).
3: Let (u0, u1, CW2)← GenFP2 (1λ, fP2,γ). ▷ u0, u1 ∈ H s.t. u0 − u1 ∈ H.
4: CW ← PRG(s) + Encode(u0 − u1).
5: Let CW⊗ := (CW1, CW2, CW) be the new correction word.
6: Return (k0, k1, CW⊗).

Eval⊗(b, kb, CW, (x1, x2)) :

1: Parse CW⊗ as CW⊗ =: (CW1, CW2, CW).
2: Let (sb, tb) = EvalFP1 (b, kb, CW1, x1). ▷ (sb, tb) ∈ S× T and

(s0 − s1, t0 − t1) ∈ S × T .
3: Compute vb ← tb · CW − PRG(sb).
4: Compute wb ← Conv(vb) + PRF(K, st). ▷ wb ∈ H and w0 − w1 ∈ H.
5: Update the state st← st+ 1.
6: Return EvalFP2 (b, wb, CW2, x2).

Fig. 1. FSS (Gen⊗,Eval⊗) for FP1 ×FP2 from FSSFP1 , FSSFP2 and EOH-PRG.

6 FSS for Branching Programs

In this section, we generalize the FSS for tensor products to FSS for branching
programs. Concretely, the one-bit tag is extended to a w-bit tag, which supports
polynomially many possible choices (corresponding to the number of nodes in
one level of the branching program). We also generalize the FSS for branching
program to FSS for DFAs, approximate matching functions and multivariate
polynomials. For details, we refer to Section 7 and E.

Recall that given a branching program P , the size is the number of nodes in
V , the length is ℓ, and the width is the maximal number of nodes of every level.
Note that every branching program can be converted to a layered, input-oblivious
branching program with polynomial blowup in size [63,25].

Now, we start to construct an FSS for branching programs. Let P be a
layered, oblivious branching program of width w, and let Pi : {0, 1}n → [wi]
be the function which evaluates P to level i (i.e., to the state of the branching
program at level i). We start by explaining how to obtain the FSS for the “first
level” function

fP1,γ=(γ0,γ1) : {0, 1}
n → (S × Tw1)2,x 7→ γx1

,

Direct FSS for Branching Programs 27

Note that there is one node in level 0 (the initial node) and two nodes in level 1
(one for the choice of 0 and 1 for the choice of 1), i.e., w1 = 2 and P1 considers
only the first bit x1 of the input x ∈ {0, 1}n.

In order to be able to recurse, we set γb := (sb, tb), where sb ∈ S is some
random seed and t0 = (1, 0) and t1 = (0, 1) are the unit vectors over {0, 1}2.
A function secret sharing scheme for fP1,γ=(γ0,γ1) which satisfies shift-invariance
over (S,Tw1)2 for some abelian groups S,T with S ⊂ S, T ⊂ T can be obtained
via a direct truth table sharing. We show the corresponding FSS in Figure 5
in the Supplementary Material D, and capture the statement in the following
lemma.

Lemma 22 (Base case). Let S and T be finite abelian groups, and let S ⊂ S,
T ⊂ T be arbitrary subsets.

Then, there exists a shift-invariant FSS for the family of functions fP1,γ over
key space (S× T2)2.

Next, we show an inductive lemma to construct an FSS for P which extends
an FSS for Pi to an FSS for Pi+1.

Lemma 23 (Inductive). Assume

1. FSSi = (Geni,Evali) is a shift-invariant FSS for Pi over key space (S×T2)2,
correction word space CWi with pseudorandom correction word and pseudo-
random output share. FSSi maps the input x with index set {τ(V0), τ(V1) . . . ,
τ(Vi−1)} to the Pi(x)-th position of a given array β.

2. PRGi : S → H̃i is a EOH-PRG relative to (S,T, Hi,Hi) as in Definition 15
where Hi = (S × Twi+1)2,Hi = (S× Twi+1)2.

Then, there exists a shift-invariant FSS for Pi+1 over key space (S×T2)2, correc-

tion word space CWi × H̃wi
i with pseudorandom correction word and pseudoran-

dom output share. Again, FSSi+1 maps the input x with index set {τ(V0), τ(V1) . . .
τ(Vi−1), τ(Vi)} to the Pi+1(x)-th position of a given array γ.

The FSS FSSi+1 = (Geni+1,Evali+1) for Pi+1 is shown in Figure 2. For the
proof of this lemma we refer to Section D.

With this, we can obtain an FSS for branching programs of arbitrarily
polynomially-bounded width and length, as captured in the following theorem.

Theorem 24 (FSS for BP from EOH-PRG). Let P be a branching program
with width (w0, w1, . . . , wℓ) for each level, where w0 = 1, w1 = 2, wℓ = 2, wi ≤ w
for i ∈ [0, ℓ]. Assume PRGi : S → H̃i is a EOH-PRG relative to S,T, Hi =
(S × Twi+1)2,Hi = (S× Twi+1)2 for i ∈ [1, ℓ].

Then, there exists an FSS for P over key space (S×T2)2 and correction word

space H̃w1
1 × H̃w2

2 · · ·× H̃wℓ−1

ℓ−1 , i.e., with key size bounded by 2(log |S|+2 log |T|)+∑
i∈[1,ℓ−1] wi log

∣∣∣H̃i∣∣∣.
Note that the FSS construction for branching program in Theorem 24 only hides
the transition function f whereas the topology of the branching program, i.e.,
the number of nodes of each level, is revealed. For a topology-hiding construction
we refer to Section D.4 in the Supplementary Material.

28 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

Function secret sharing scheme FSSi+1 = (Geni+1,Evali+1) from EOH-PRG
for Pi+1:

Parameters: Let PRGi : S→ H̃i be a EOH-PRG relative to (S,T, (S × Twi+1)2, (S×
Twi+1)2). Let FSSi = (Geni,Evali) be a shift-invariant FSS for Pi over key space K and
correction word space CW. Further let N ∈ N (sufficiently large) and PRF : {0, 1}λ ×
[N] → H is a PRF. We assume that both parties have access to a global key K ←R

{0, 1}λ and global state st ∈ [N].
Geni+1(1λ, Pi+1, γ ∈ (S × Twi+1)wi+1) :

1: Parse γ as γ =: ((σ[1], e1), (σ[2], e2) . . . (σ[wi+1], ewi+1)) with σ ∈ Swi+1 and ej ∈
Twi+1 the j-th basis in Twi+1 . ▷ σ is the seed value for level i+ 1.

2: Sample s←R Swi . ▷ s is the seed value for level i.
3: Let β ← ((s[1], e1), (s[2], e2) . . . (s[wi], ewi)) ∈ (S × Twi)wi with ej ∈ Twi the j-th

basis in Twi .
4: Let (k0, k1, CWi)← Geni(1λ, Pi,β).

5: Let CW [1 : wi] ∈ H̃wi
i be the correction word for level i computed as follows.

6: for j ∈ [wi] do
7: Let uj ∈ (S × Twi+1)2 be the key for level i+ 1 with 2 elements.
8: Set uj [0]← γ[f(i, j, 0)] and uj [1]← γ[f(i, j, 1)]. ▷ Map 0 and 1 to the

corresponding element of level i+ 1 in the array γ.
9: Set CW [j]← PRG(s[j]) + Encode(uj).
10: end for
11: Let CWi+1 := (CWi, CW [1 : wi]) be the new correction word.
12: Return (k0, k1, CWi+1).

Evali+1(b, kb, CWi+1,x) :

1: Parse CWi+1 as CWi+1 =: (CWi, CW [1 : wi]).
2: Let (sb, tb) = Evali(b, kb, CWi,x). ▷ (sb, tb) ∈ S× Twi .
3: Compute vb ← Conv(

∑
j∈[w] tb[j] · CW [j]− PRG(sb)) + PRF(K, st). ▷

vb ∈ (S× Twi+1)2.
4: Update the state st← st+ 1.
5: Return vb[x[τ(Vi+1)]] ∈ S× Twi+1 . ▷ Use the input x[τ(Vi+1)] to choose the key

for level i+ 1.

Fig. 2. FSS (Geni+1,Evali+1) for Pi+1 from FSS (Geni,Evali) and EOH-PRG PRG.

7 FSS for DFAs

Similar to the FSS for branching programs, the FSS for DFAs mainly hides the
transition function for each state. Given a DFA M := (Q,Σ, δ, F, q0), the set of
accepts states F could be transferred to one accept state A via appending an
empty string ϵ to the input whereas the set of other states is transferred to one
rejection state R. The transformation leads to a DFA with |Q| + 2 states and
with alphabet Σ ∪ {ϵ}. The construction relies on a KDM secure EOH-PRG.

Theorem 25 (FSS for DFAs). Let M := (Q,Σ, δ, q0, F) be a DFA. Let µ :=

|Q ∪ {A,R}| = |Q| + 2. Assume PRG : S → H̃ be a KDM secure EOH-PRG
relative to (S,T, (S × Tµ)|Σ|+1, (S× Tµ)|Σ|+1).

Direct FSS for Branching Programs 29

There exists a FSS for M over key space S × Tµ and correction word space

H̃|Q|. Futhermore, the key size is bounded by log |S|+ µ log |T|+ |Q| log
∣∣∣H̃∣∣∣.

The FSS for M is shown in Figure 3.

Function secret sharing scheme for DFA from KDM secure EOH-PRG

Parameters: Let PRG : S → H̃ be a KDM secure EOH-PRG relative to (S,T, (S ×
Tµ)|Σ|+1, (S×Tµ)|Σ|+1) and µ := |Q ∪ {A,R}| = |Q|+2. Further letN ∈ N (sufficiently
large) and PRF : {0, 1}λ× [N]→ H is a PRF. We assume that both parties have access
to a global key K ←R {0, 1}λ and global state st ∈ [N].
Gen(1λ,M) :

1: Assign a fixed order to Q ∪ {A,R} and Σ ∪ {ϵ}.
2: Sample σ ←R Sµ.
3: Let β ← ((σ[1], e1) . . . (σ[µ], eµ)) ∈ (S × Tµ)µ with ej ∈ Tµ the j-th basis in Tµ.
4: Let CW [1 : |Q|] be the correction words for meaningful states computed as follows.
5: for each state s ∈ Q do
6: Let u ∈ (S × Tµ)|Σ|+1 be the keys for one-step reachable states from s.
7: for symbol α ∈ Σ ∪ {ϵ} do
8: Let t← δ(s, α).
9: Set u[α]← β[t]. ▷ β[t] is the key for t.
10: end for
11: Set CW [s]← PRG(σ[s]) + Encode(u). ▷ No correction words for {A,R}.
12: end for
13: Sample k0, k1 ←R S× Tµ such that k0 − k1 = β[q0]. ▷ Share the key for q0.
14: Return (k0, k1, CW).

Eval(b, kb, CW,x, i) :

1: Return kb if i > len(x).
2: Parse kb as kb =: (sb, tb) ∈ S× Tµ.
3: Compute vb ← Conv(

∑
j∈[µ] tb[j] ·CW [j]−PRG(sb))+PRG(K, st) ∈ (S×Tµ)|Σ|+1.

4: Update the state st← st+ 1.
5: Return Eval(b, vb[x[i]], CW,x, i+ 1). ▷ Use the input x[i] to choose the key for

next state.

Fig. 3. FSS for a DFA from KDM secure EOH-PRG.

The correctness is easy to verify as the the tag vector is used in Lemma 23.
The security follows from the pseudorandomness of the KDM secure PRG. We
explain why KDM secure EOH-PRG is required. For a state s, it is possible
that δ(s, α) = s for some input α ∈ Σ, which leads to the correction word
CW [s]← PRG(σ[s]) + Encode(u) and σ[s] is also contained in the α-th entry of
u. The KDM secure EOH-PRG can be instantiated from LWE or DCR for free
without assuming circular security(Remark 30). The running time of Eval relies
on the input length as DFAs.

Remark 26. The FSS for DFAs could be viewed as one level of the FSS for
branching programs and there is no level change during the evaluation.

30 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

8 EOH-PRG Instantiated from LWE or DCR Assumption

In this section, we show EOH-PRG instantiated from LWE or a DCR variant
assumption. As remarked following Definition 15, if a PRG is homomorphic then
the PRG itself is a EOH-PRG. The LWE assumption implies an almost homo-
morphic PRG and the DCR assumption implies a homomorphic PRG mapping
an additive group to a multiplicative group. We show how the AH-PRG from
LWE or the H-PRG from DCR cooperate with other tools to implement the
EOH-PRG.

Here we show the three instantiations from LWE, Ring-LWR and DCR. The
preliminaries for the assumption, proof of the instantiations and remarks appear
in Section F.

Theorem 27 (EOH-PRG from LWE). Let n = n(λ), p = p(λ), q = q(λ), r =
r(λ), B = B(λ) ∈ N such that r|p, p|q, 2λω(1) ≤ r, 2Brλω(1) ≤ p and n log q ≤
ℓ(n+ w) log p. Let w, ℓ be parameters depending on concrete applications.

Assume LWEn,ℓ(n+w),q is hard. Let S = {0, 1}n, T = {0, 1},S = Znp ,T =

Zp, H = (S × Tw)ℓ = {0, 1}ℓ(n+w),H = (S × Tw)ℓ = Zℓ(n+w)
p , H̃ = Zℓ(n+w)

p and
the corresponding functions for the instantiation be

– The group action · : Zp × Zℓ(n+w)
p → Zℓ(n+w)

p , (t, s) 7→ t · s.
– PRG : Znp → Zℓ(n+w)

p , s 7→ ⌈sA⌋q→p , where A ∈ Zn×ℓ(n+w)
q and the vector-

matrix multiplication sA is performed modulo q;

– Encode : {0, 1}ℓ(n+w) → Zℓ(n+w)
p , s 7→ p

r · s;
– Conv : Zℓ(n+w)

p → Zℓ(n+w)
p , t 7→ ⌈t⌋p→r.

Then PRG is a EOH-PRG relative to (S,T, H,H).

Similarly, we show the EOH-PRG instantiation from Ring-LWE. As pointed
out in Lemma 36, to work with a binary secret Module-LWE instances, the rank
of the Module-LWE should be at least log q(basing on the Ring-LWE pseudo-
randomness). However, small secret Module-LWR has been used in the NIST
post-quantum cryptography submissions including Saber [35], Kyber [69] for
constant rank. Based on this, we show the instantiation for good efficiency rely-
ing on Assumption 66.

Note if the number ℓ(n+w) is not exactly a multiple of n. Assume ℓ·(n+w) =
n ·µ+γ with 0 ≤ γ < n. The EOH-PRG from Ring-LWE output has µ elements
from Rp and γ elements from Zp.

Theorem 28 (EOH-PRG from Ring-LWR). Let n = n(λ), p = p(λ), q =
q(λ), r = r(λ), B = B(λ) ∈ N such that r|p, p|q, 2λω(1) ≤ r, 2Brλω(1) ≤ p and
n log q ≤ ℓ(n + w) log p. Let w, ℓ be parameters depending on concrete applica-
tions. Denote R as the algebraic ring with degree n.

Assume binary secret Ring-LWRR,ℓ+⌈ ℓw
n ⌉,q,p is hard. Let S = {0, 1}n, T =

{0, 1},S = Rp,T = Zp, H = (S × Tw)ℓ = {0, 1}ℓ(n+w),H = (S × Tw)ℓ =

Rℓ+⌊
ℓw
n ⌋

p × Zℓw−n⌊ ℓw
n ⌋

p , H̃ = Rℓ+⌊
ℓw
n ⌋

p × Zℓw−n⌊ ℓw
n ⌋

p and the corresponding func-
tions for the instantiation be

Direct FSS for Branching Programs 31

– The group action · : Zp×
(
Rℓp × Zℓw−n⌊ ℓw

n ⌋
p

)
→ Rℓp×Z

ℓw−n⌊ ℓw
n ⌋

p , (t, s) 7→ t·s,

where · is the scalar multiplication mod p.

– PRG : Rp → Rℓp × Zℓw−n⌊ ℓw
n ⌋

p , s 7→ ψ(⌈s · a⌋q→p), where a ∈ Rℓ+⌈ ℓw
n ⌉

q , the
multiplication s ·a is performed modulo Rq, and ψ(·) takes the ring elements
except the last one and the first ℓw − n

⌈
ℓw
n

⌋
coefficients of the last ring

element;

– Encode : {0, 1}ℓ(n+w) → Rℓp × Zℓw−n⌊ ℓw
n ⌋

p , s 7→ p
r · s;

– Conv : Rℓp × Zℓw−n⌊ ℓw
n ⌋

p → Rℓp × Zℓw−n⌊ ℓw
n ⌋

p , t 7→ ⌈t⌋p→r.

Then PRG is a EOH-PRG relative to (S,T, H,H).

Next we show how the EOH-PRG is instantiated from the DCR variant
assumption (Assumption 69). It is pointed out in [4, Section 4.1], the DCR
variant assumption is sound if the domain of the small exponent is exponentially
large. This kind of low exponent assumption dates back to [51] and was also used
in [23]. To enable the group action, here we use Zϕ(N2) instead of Zϕ(N) for the
additive group.

Theorem 29 (EOH-PRG from DCR). Let B be an integer such that B·2λ ≤
N and B > 2λ.

Assume the DCR variant assumption holds. Let S = [−B2 ,
B
2], T = {0, 1},S =

Zϕ(N2),T = Zϕ(N2), H = (S × Tw)ℓ,H = (S× Tw)ℓ = Zℓ(1+w)
ϕ(N2) , H̃ = (Z∗

N2)ℓ(1+w)

and the corresponding functions for the instantiation be

– The group action · : Zϕ(N2)×(Z∗
N2)ℓ(1+w) → (Z∗

N2)ℓ(1+w), (t, s) 7→ st mod N2.

– PRG : Zϕ(N2) → (Z∗
N2)ℓ(1+w), s 7→ gs, where g ∈ (Z∗

N2)ℓ(1+w) and each entry
of g is a N-th residue;

– Encode : ([−B/2, B/2]×{0, 1}w)ℓ → (Z∗
N2)ℓ(1+w),m 7→ (1+N)m mod N2;

– Conv : (Z∗
N2)ℓ(1+w) → Zℓ(1+w)

ϕ(N2) , t 7→ DDLog(t).

Then PRG is a EOH-PRG relative to (S,T, H,H).

Note that the secret key ϕ(N) for Paillier encryption is not explicitly used in the
operations of instantiation of EOH-PRG from DCR.

Remark 30 (KDM Security). The FSS constructions for DFAs in Section 7 rely
on the KDM security of EOH-PRG. It is straightforward to prove the pseudo-
randomness for LWE or DCR following the method to prove the KDM security
in [6, Theorem 6] or [16, Section 3.2] as detailed in Remark 72.

Acknowledgements

E. Boyle’s research is supported in part by AFOSR Award FA9550-21-1-0046
and ERC Project HSS (852952). L. Kohl is funded by NWO Gravitation project
QSC. Z. Li is funded by NWO Gravitation project QSC and ERC ADG AL-
GSTRONGCRYPTO (740972). P. Scholl is funded by the Aarhus University Re-
search Foundation, and the Independent Research Fund Denmark under project
number 0165-00107B (C3PO).

32 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

References

1. glob – Linux Programmer’s Manual – Library Functions. https://man7.org/

linux/man-pages/man3/glob.3.html, accessed: 2023-01-16

2. MySQL 8.0 Reference Manual: 3.3.4.7 Pattern Matching. https://dev.mysql.

com/doc/refman/8.0/en/pattern-matching.html, accessed: 2023-01-16

3. New Regular Expression Features in Tcl 8.1. https://www.tcl.tk/doc/howto/
regexp81.tml, accessed: 2023-01-16

4. Abram, D., Damg̊ard, I., Orlandi, C., Scholl, P.: An algebraic framework for silent
preprocessing with trustless setup and active security. In: Dodis, Y., Shrimpton,
T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 421–452. Springer, Hei-
delberg (Aug 2022)

5. Alamati, N., Montgomery, H., Patranabis, S., Roy, A.: Minicrypt primitives with
algebraic structure and applications. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part II. LNCS, vol. 11477, pp. 55–82. Springer, Heidelberg (May
2019)

6. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (Aug
2009)

7. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, USA, 1st edn. (2009)

8. Asharov, G., Halevi, S., Lindell, Y., Rabin, T.: Privacy-preserving search of similar
patients in genomic data. Proc. Priv. Enhancing Technol. 2018(4), 104–124 (2018),
https://doi.org/10.1515/popets-2018-0034

9. Avidan, S., Butman, M.: Efficient methods for privacy preserving face de-
tection. In: NIPS 2006 (2006), https://proceedings.neurips.cc/paper/2006/
hash/ce60ff163cab97029cc727e20e0fc3a7-Abstract.html

10. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (Apr 2012)

11. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.R., Schneider, T.:
Secure evaluation of private linear branching programs with medical applications.
In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439.
Springer, Heidelberg (Sep 2009)

12. Barni, M., Failla, P., Lazzeretti, R., Sadeghi, A., Schneider, T.: Privacy-preserving
ECG classification with branching programs and neural networks. IEEE Trans.
Inf. Forensics Secur. 6(2), 452–468 (2011)

13. Benhamouda, F., Degwekar, A., Ishai, Y., Rabin, T.: On the local leakage re-
silience of linear secret sharing schemes. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 531–561. Springer, Heidelberg (Aug
2018)

14. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016-A, Part I. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (Jan
2016)

15. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Lightweight tech-
niques for private heavy hitters. In: 2021 IEEE Symposium on Security and Privacy.
pp. 762–776. IEEE Computer Society Press (May 2021)

https://man7.org/linux/man-pages/man3/glob.3.html
https://man7.org/linux/man-pages/man3/glob.3.html
https://dev.mysql.com/doc/refman/8.0/en/pattern-matching.html
https://dev.mysql.com/doc/refman/8.0/en/pattern-matching.html
https://www.tcl.tk/doc/howto/regexp81.tml
https://www.tcl.tk/doc/howto/regexp81.tml
https://doi.org/10.1515/popets-2018-0034
https://proceedings.neurips.cc/paper/2006/hash/ce60ff163cab97029cc727e20e0fc3a7-Abstract.html
https://proceedings.neurips.cc/paper/2006/hash/ce60ff163cab97029cc727e20e0fc3a7-Abstract.html

Direct FSS for Branching Programs 33

16. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125. Springer, Heidelberg (Aug 2008)

17. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (Aug 2013)

18. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS 2015. The Internet Society (Feb 2015)

19. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: On the hardness of module
learning with errors with short distributions. J. Cryptol. 36(1), 1 (2023), https:
//doi.org/10.1007/s00145-022-09441-3

20. Boyle, E., Chandran, N., Gilboa, N., Gupta, D., Ishai, Y., Kumar, N., Rathee,
M.: Function secret sharing for mixed-mode and fixed-point secure computation.
In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol.
12697, pp. 871–900. Springer, Heidelberg (Oct 2021)

21. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 896–912. ACM
Press (Oct 2018)

22. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518.
Springer, Heidelberg (Aug 2019)

23. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret shar-
ing: Optimizations and applications. In: Thuraisingham, B.M., Evans, D., Malkin,
T., Xu, D. (eds.) ACM CCS 2017. pp. 2105–2122. ACM Press (Oct / Nov 2017)

24. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 337–367. Springer,
Heidelberg (Apr 2015)

25. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (Aug 2016)

26. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and ex-
tensions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016. pp. 1292–1303. ACM Press (Oct 2016)

27. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function
secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol.
11891, pp. 341–371. Springer, Heidelberg (Dec 2019)

28. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without
FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol.
11477, pp. 3–33. Springer, Heidelberg (May 2019)

29. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(Aug 2010)

30. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM
CCS 2007. pp. 498–507. ACM Press (Oct 2007)

31. Cai, R., Zhang, C., Zhang, L., Ma, W.: Scalable music recommendation by search.
In: Lienhart, R., Prasad, A.R., Hanjalic, A., Choi, S., Bailey, B.P., Sebe, N. (eds.)
Proceedings of the 15th International Conference on Multimedia 2007, Augsburg,

https://doi.org/10.1007/s00145-022-09441-3
https://doi.org/10.1007/s00145-022-09441-3

34 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

Germany, September 24-29, 2007. pp. 1065–1074. ACM (2007), https://doi.org/
10.1145/1291233.1291466

32. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust indepen-
dent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.)
Computer Vision - ECCV 2010, 11th European Conference on Computer Vi-
sion, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV. Lec-
ture Notes in Computer Science, vol. 6314, pp. 778–792. Springer (2010), https:
//doi.org/10.1007/978-3-642-15561-1_56

33. Chen, H., Chillotti, I., Dong, Y., Poburinnaya, O., Razenshteyn, I.P., Riazi, M.S.:
SANNS: Scaling up secure approximate k-nearest neighbors search. In: Capkun,
S., Roesner, F. (eds.) USENIX Security 2020. pp. 2111–2128. USENIX Association
(Aug 2020)

34. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: An anonymous messaging
system handling millions of users. In: 2015 IEEE Symposium on Security and
Privacy. pp. 321–338. IEEE Computer Society Press (May 2015)

35. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F., Mera, J.M.B.,
Beirendonck, M.V., Basso, A.: SABER. Tech. rep., National Institute of Stan-
dards and Technology (2020), available at https://csrc.nist.gov/projects/

post-quantum-cryptography/post-quantum-cryptography-standardization/

round-3-submissions

36. Dauterman, E., Rathee, M., Popa, R.A., Stoica, I.: Waldo: A private time-series
database from function secret sharing. In: SP 2022. pp. 2450–2468. IEEE (2022),
https://doi.org/10.1109/SP46214.2022.9833611

37. Davidson, A., Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Adap-
tively secure constrained pseudorandom functions in the standard model. In: Mic-
ciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp.
559–589. Springer, Heidelberg (Aug 2020)

38. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its ap-
plications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol.
9816, pp. 93–122. Springer, Heidelberg (Aug 2016)

39. Doerner, J., shelat, a.: Scaling ORAM for secure computation. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 523–535. ACM
Press (Oct / Nov 2017)

40. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft,
T.: Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.)
PETS 2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (Aug 2009)

41. Fazio, N., Gennaro, R., Jafarikhah, T., Skeith III, W.E.: Homomorphic secret shar-
ing from paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.)
ProvSec 2017. LNCS, vol. 10592, pp. 381–399. Springer, Heidelberg (Oct 2017)

42. Gennaro, R., Hazay, C., Sorensen, J.S.: Automata evaluation and text search pro-
tocols with simulation-based security. Journal of Cryptology 29(2), 243–282 (Apr
2016)

43. Gilboa, N., Ishai, Y.: Compressing cryptographic resources. In: Wiener, M.J. (ed.)
CRYPTO’99. LNCS, vol. 1666, pp. 591–608. Springer, Heidelberg (Aug 1999)

44. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (May 2014)

45. Huang, Y., Malka, L., Evans, D., Katz, J.: Efficient privacy-preserving biometric
identification. In: NDSS 2011. The Internet Society (Feb 2011)

https://doi.org/10.1145/1291233.1291466
https://doi.org/10.1145/1291233.1291466
https://doi.org/10.1007/978-3-642-15561-1_56
https://doi.org/10.1007/978-3-642-15561-1_56
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1109/SP46214.2022.9833611

Direct FSS for Branching Programs 35

46. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the
curse of dimensionality. In: 30th ACM STOC. pp. 604–613. ACM Press (May
1998)

47. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (Feb
2007)

48. Janani, T., Brindha, M.: Secure similar image matching (SESIM): an improved
privacy preserving image retrieval protocol over encrypted cloud database. IEEE
Trans. Multim. 24, 3794–3806 (2022)

49. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Sec-
ond Edition. CRC Press (2014), https://www.crcpress.com/

Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/

book/9781466570269

50. Kiss, Á., Naderpour, M., Liu, J., Asokan, N., Schneider, T.: SoK: Modular and
efficient private decision tree evaluation. PoPETs 2019(2), 187–208 (Apr 2019)

51. Koshiba, T., Kurosawa, K.: Short exponent Diffie-Hellman problems. In: Bao, F.,
Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 173–186. Springer,
Heidelberg (Mar 2004)

52. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image
search. In: ICCV (2009), https://doi.org/10.1109/ICCV.2009.5459466

53. Kulshrestha, A., Mayer, J.R.: Identifying harmful media in end-to-end encrypted
communication: Efficient private membership computation. In: Bailey, M., Green-
stadt, R. (eds.) USENIX Security 2021. pp. 893–910. USENIX Association (Aug
2021)

54. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lat-
tices. Des. Codes Cryptogr. 75(3), 565–599 (2015), https://doi.org/10.1007/
s10623-014-9938-4

55. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998), https://doi.org/
10.1109/5.726791

56. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its
algorithmic applications. In: 35th FOCS. pp. 577–591. IEEE Computer Society
Press (Nov 1994)

57. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (May / Jun 2010)

58. Ma, J., Jiang, X., Fan, A., Jiang, J., Yan, J.: Image matching from handcrafted
to deep features: A survey. Int. J. Comput. Vis. 129(1), 23–79 (2021), https:

//doi.org/10.1007/s11263-020-01359-2

59. Mohassel, P., Niksefat, S., Sadeghian, S.S., Sadeghiyan, B.: An efficient protocol for
oblivious DFA evaluation and applications. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 398–415. Springer, Heidelberg (Feb / Mar 2012)

60. Orlandi, C., Scholl, P., Yakoubov, S.: The rise of paillier: Homomorphic secret
sharing and public-key silent OT. In: Canteaut, A., Standaert, F.X. (eds.) EURO-
CRYPT 2021, Part I. LNCS, vol. 12696, pp. 678–708. Springer, Heidelberg (Oct
2021)

61. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (May 1999)

https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://doi.org/10.1109/ICCV.2009.5459466
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/s11263-020-01359-2
https://doi.org/10.1007/s11263-020-01359-2

36 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

62. Phalakarn, K., Attrapadung, N., Matsuura, K.: Efficient oblivious evaluation pro-
tocol and conditional disclosure of secrets for DFA. In: Ateniese, G., Venturi, D.
(eds.) ACNS 22. LNCS, vol. 13269, pp. 605–625. Springer, Heidelberg (Jun 2022)

63. Pippenger, N.: On simultaneous resource bounds (preliminary version). In: FOCS.
pp. 307–311. IEEE Computer Society (1979)

64. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM journal
of research and development 3(2), 114–125 (1959)

65. Ravichandran, D., Pantel, P., Hovy, E.H.: Randomized algorithms and NLP: using
locality sensitive hash functions for high speed noun clustering. In: ACL 2005
(2005), https://aclanthology.org/P05-1077/

66. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press
(May 2005)

67. Roy, L., Singh, J.: Large message homomorphic secret sharing from DCR and
applications. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS,
vol. 12827, pp. 687–717. Springer, Heidelberg, Virtual Event (Aug 2021)

68. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: ORB: an efficient alternative
to SIFT or SURF. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.V. (eds.)
IEEE International Conference on Computer Vision, ICCV 2011, Barcelona, Spain,
November 6-13, 2011. pp. 2564–2571. IEEE Computer Society (2011), https://
doi.org/10.1109/ICCV.2011.6126544

69. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Seiler, G., Stehlé, D., Ding, J.: CRYSTALS-KYBER. Tech. rep.,
National Institute of Standards and Technology (2022), available at https://csrc.
nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

70. Servan-Schreiber, S., Langowski, S., Devadas, S.: Private approximate nearest
neighbor search with sublinear communication. In: SP. pp. 911–929. IEEE (2022),
https://doi.org/10.1109/SP46214.2022.9833702

71. Shashank, J., Kowshik, P., Srinathan, K., Jawahar, C.V.: Private content based
image retrieval. In: CVPR 2008. IEEE Computer Society (2008), https://doi.
org/10.1109/CVPR.2008.4587388

72. Shashank, J., Kowshik, P., Srinathan, K., Jawahar, C.V.: Private content based
image retrieval. In: CVPR. IEEE Computer Society (2008)

73. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company
(1997)

74. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy. pp. 44–55. IEEE Com-
puter Society Press (May 2000)

75. Tueno, A., Kerschbaum, F., Katzenbeisser, S.: Private evaluation of decision trees
using sublinear cost. PoPETs 2019(1), 266–286 (Jan 2019)

76. Wang, F., Yun, C., Goldwasser, S., Vaikuntanathan, V., Zaharia, M.: Splin-
ter: Practical private queries on public data. In: NSDI 2017 (2017), https:

//www.usenix.org/conference/nsdi17/technical-sessions/presentation/

wang-frank

77. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.E.: Privately evaluating decision trees
and random forests. PoPETs 2016(4), 335–355 (Oct 2016)

https://aclanthology.org/P05-1077/
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1109/SP46214.2022.9833702
https://doi.org/10.1109/CVPR.2008.4587388
https://doi.org/10.1109/CVPR.2008.4587388
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wang-frank
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wang-frank
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wang-frank

Supplementary Material

A Supplementary Materials for Preliminaries

Notations. We use λ to denote the security parameter. For integers p < q, the
rounding function ⌈·⌋q→p is defined as ⌈·⌋q→p : Zq → Zp, x 7→ ⌈(p/q) · x⌋.

A.1 LWE and LWR

Definition 31 (LWE). [66] Let n,m, q ∈ N and χ be a noise distribution over
Z. Assume s←R Znq . Let m = poly(n), A←R Zn×mq and e← χm. Given

(A, sA+ e),

the LWEn,m,q,χ problem is to output the vector s.

Recall that LWEn,m,q,χ problem is exactly the search LWE problem. Denote
η-LWE as the LWE instance with secret sampled from {−η . . . 0 . . . η}n.

Definition 32 (LWR). [10] Let n,m, q, p ∈ N. The LWRn,m,q,p problem is to
distinguish between the following two distributions:

(A, ⌈sA⌋q→p) and (A, ⌈u⌋q→p),

where s←R Znq ,m = poly(n), A←R Zn×mq and u←R Zmq .

For super-polynomial ratio q/p, [10] proved that LWR is as hard as LWE. Bog-
danov et al. [14] established the hardness of binary secret LWR for polynomial
ratio q/p. A similar result can be directly achieved via applying the reduction
of [10] to binary secret LWE.

Lemma 33. [14, Theorem 3] Assume s is sampled from {0, 1}n. For polynomial
ratio q/p, the LWRn,m,q,p distribution is pseudorandom under the assumption
that the corresponding LWEn,m,q,χ is hard.

If each entry of the matrix and the vector is sampled from Rq := Zq[X]/(Xn+1)
rather than Zq, then the problem is Module-LWE.

Definition 34 (Module-LWE). [54] Let n,m, q, d ∈ N. Let Rq := Zq[X]/(Xn+
1) and χ be a noise distribution over R. Assume s←R Rdq . Let m = poly(n, d),

A←R Rd×mq and e← χd. Given

(A, sA+ e),

the Module-LWEd,m,q,χ problem is to output the vector s.

Here d is the rank of Module-LWE problem. If d = 1, then it is Ring-LWE
problem [57].

38 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

Definition 35 (Module-LWR). Let d, n,m, q, p ∈ N. Let Rq := Zq[X]/(Xn+
1). The Module-LWRn,m,q,p problem is to distinguish between the following two
distributions:

(A, ⌈sA⌋q→p) and (A, ⌈u⌋q→p),

where s←R Rdq ,m = poly(n), A←R Rd×mq and u←R Rmq .

Boudgoust et al. [19] proved the small secret Module-LWE with larger rank is
at least as hard as random secret Module-LWE with smaller rank.

Lemma 36. [19, Theorem 3.2] For any cyclotomic field of degree n, there ex-
ists a PPT reduction from the decisional Module-LWEk,m,q,Dα

assumption to
decisional η-Module-LWEd,m,q,Dβ

assumption, where d · log2 (2η + 1) ≥ (k +

1) · log2 q + ω(log2 n), d ≤ m ≤ poly(n), α ≥
√
n/q ·

√
ln (2nm(1 + ϵ−1))/π,

β ≥ α · nη
√
2d
√

4n2η2 + 1 and Dα is a Gaussian distribution with s.d. α.

A.2 Almost Homomorphic PRGs(AH-PRG)

Definition 37 (Homomorphic PRGs). Let G0,G1 be two finite abelian ad-
ditive groups. A function G : G0 → G1 is a homomorphic PRG if it is a secure
PRG and for all x0, x1 ∈ G0,

G(x0 + x1) = G(x0) +G(x1).

There are no known PRGs such that both G0 and G1 are additive groups in the
typical sense. Thus, the definition is relaxed to almost homomorphic.

Definition 38 (Almost Homomorphic PRGs(B-AH-PRG)). Let G0,G1

be two finite abelian additive groups where G2 is equipped with norm ∥·∥. Let
B ∈ N. A function G : G0 → G1 is B-AH-PRG if for all x0, x1 ∈ G0,

G(x0 + x1) = G(x0) +G(x1) + e,

where e ∈ G2 and ∥e∥ ≤ B.

Next we show an instantiation of 1-AH-PRG from LWR problem [17].

Example 39 (AH-PRG from LWR). Assume A←R Zn×mq . Then

GA(s) := ⌈sA⌋q→p

is an 1-AH-PRG under the assumption that LWEn,m,q is hard relative to ∥·∥∞.

The security of GA follows from the pseudorandomness of LWR distributions and
the almost homomorphic property naturally follows from the rounding opera-
tion. Note that here almost-homomorphic property does not require the super-
polynomial ratio q/p.

Direct FSS for Branching Programs 39

A.3 DCR Assumption

Definition 40 (DCR Assumption [61]). Let N = PQ be an RSA modulus
[49]. The DCR assumption is that for any PPT adversary there is no advantage
to distinguish between an N -th residue over Z∗

N2 and an arbitrary element of
Z∗
N2 .

A.4 Bit-fixing Predicates and CNF/DNF Formulae

Definition 41 (Bit-fixing Predicates). Given a vector v ∈ {0, 1, ∗}ℓ, the
bit-fixing predicates PBF

v : {0, 1}ℓ → {0, 1} specified by the vector v is defined as

PBF
v (x) :=

∧
i∈[ℓ]

(v[i] = x[i] ∨ v[i] = ∗) .

The family of bit-fixing predicates specified by length ℓ predicates is defined as

PBF
ℓ := {PBF

v : v ∈ {0, 1, ∗}ℓ}.

Definition 42 (CNF/DNF formulae). Given a set of n variables {u1, . . . , un},
a conjunctive normal form(CNF) formula is an AND of ORs of literals, e.g., a
CNF formula φ is defined as

φ :=
∧
i

∨
j

vij ,

where each vij is either a variable uk or its negation ¬uk. Each
∨
j vij is called a

clause of φ. A CNF formula φ is called k-CNF if every clause of φ has at most
k literals.
A disjunctive normal form (DNF) formula is an OR of ANDs of literals, i.e., a
DNF formula ϕ is defined as

ϕ :=
∨
i

∧
j

wij .

Similarly, a DNF formula is called k-DNF if every clause of ϕ has at most k
literals.

A.5 DFA

Definition 43 (Deterministic Finite Automata (DFA)). [73, Definition
1.15] A DFA M is defined by (Q,Σ, δ, q0, F) where

– Q is the state set,
– Σ is the alphabet,
– δ : Q×Σ → Q a transition function,
– q0 ∈ Q is the start state,
– F ⊂ Q is the set of accept states.

40 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

A DFA M accepts a string x = (x1 . . . xℓ) ∈ Σℓ if there exists a sequence of
states (s0 . . . sℓ) such that

1. s0 = q0,
2. δ(si, xi+1) = si+1 for i ∈ {0, 1 . . . ℓ− 1},
3. sℓ ∈ F .

DFAs recognize the set of regular languages [73, Definition 1.16].

B Tensor Product and FSS for Negation and Disjunction
of Predicates

In this section, we present the missing proofs of Section 5 and the FSS for
negation and disjunction of predicates.

B.1 Proof of Theorem 20

Proof. We directly prove FSS⊗ is symmetric and shift-invariant if FSSFP1 is
symmetric and shift-invariant. We first prove correctness and shift-invariance.
Let σ ∈ K1 be an arbitrary random shift for the key of the two-party. Thus, the
target is to prove that for all P1 ∈ P1, P2 ∈ P2, x,

Pr[Eval⊗(0, k0 + σ,CW⊗, x)− Eval⊗(1, k1 + σ,CW⊗, x) = gP1,P2
(x) · γ :

(k0, k1, CW
⊗)← Gen⊗(1λ, gP1,P2

)] ≥ 1− negl(λ).

Recall that in GenFP1 , it is set to output β := (s, 1) if P1(x) = 1 whereas to
output (0, 0) if P1(x1) = 0. We continue the proof by distinguish two cases
depending on x1.

Case P1(x1) = 1: Recall that in Eval⊗, we use (sb, tb) to denote intermediate
evaluation result according to the input x1. Because FSSFP1 is shift-invariant,
thus (s0, t0) − (s1, t1) = (s, 1) over (S,T) with overwhelming probability. That
the share (sb, tb) is pseudorandom follows from the definition of FSSFP1 . Recall
that CW ← PRG(s) + Encode(u0 − u1). From the definition of EOH-PRG, as
(s0, s1) is a random sharing of s, the key (w0, w1) for FSS

P2 satisfies

w0 − w1 = (Conv(t0 · CW − PRG(s0)) + PRG(K, st))

− (Conv(t1 · CW − PRG(s1)) + PRF(K, st))

= u0 − u1

except with negligible probability. Recall that (u0, u1) is the key for the shift-
invariant FSS (GenFP2 ,EvalFP2). Thus, for P1(x1) = 1,

Pr[EvalFP2 (b, w0, CW2, x2)−EvalFP2 (b, w1, CW2, x2) = P2(x2) ·γ] ≥ 1−negl(λ).

Hence, for P1(x1) = 1, the FSS satisfies shift-invariance and correctness holds
with probability 1− negl(λ).

Direct FSS for Branching Programs 41

Case P1(x1) = 0: Then (s0, t0) = (s1, t1) with overwhelming probability.
Thus, the key (w0, w1) for FSS

P2 satisfies

w0 − w1 = Conv(t0 · CW − PRG(s0))− Conv(t1 · CW − PRG(s1)) = 0.

as Conv is deterministic. Therefore for P1(x1) = 0,

Pr[EvalFP2 (0, w0, CW2, x2)− EvalFP2 (b, w1, CW2, x2) = 0] ≥ 1− negl(λ)

as FSSFP2 is symmetric.

Hence, with overwhelming probability, the resulting FSS satisfies correctness
and shift-invariance.

Next we show that the FSS also satisfies symmetry. If FSSFP1 is symmetric,
for identical keys the two-party obtains identical (sb, tb) on arbitrary input x1
and identical (vb, wb) as PRG and Conv are both deterministic. Hence, the two-
party finally obtains same value as also FSSFP2 is symmetric.

Next we prove that the final output share is pseudorandom. From the as-
sumption that FSSFP2 has pseudorandom output share, once the evaluation for
FSS⊗ is correct, the FSSFP2 leads to pseudorandom final output share.

The security of FSS⊗ follows the security of FSSFP1 , the security of FSSFP2

and the pseudorandomness of PRG via a series of games. It is formally proved
in Lemma 44.

Lemma 44 (Security). If PRG is a PRG with encoded-output homomorphism,
(GenFP1 ,EvalFP1) is a secure FSS for FP1 , and (GenFP2 ,EvalFP2) is a secure
FSS for FP2

then (Gen⊗,Eval⊗) is a secure FSS for FP1
×FP2

.

Furthermore, the correction word CW⊗ is pseudorandom.

Proof (Proof of Lemma 44). We prove the security via a series of hybrid games.
Concretely, for any two functions gP1,P2,γ and gQ1,Q2,γ′ with P1, Q1 ∈ P1 and
P2, Q2 ∈ P2, we transfer the key distribution of gP1,P2 to the key distribution
of gQ1,Q2 step-by-step. For each party index b, the party key consists of kb
and CW⊗. Now we define the hybrid distributions. The changed part of each
distribution is explicitly represented with boxes.

H0 : The key distribution for gP1,P2,γ .

H0(b, gP1,P2,γ) :=

(kb, CW
⊗) :

s←R S

(k0, k1, CW1)← GenFP1 (1λ, fP1,(s,1))

(u0, u1, CW2)← GenFP2 (1λ, fP2,γ)

CW ← PRG(s) + Encode(u0 − u1) ∈ H̃
CW⊗ := (CW1, CW2, CW)



42 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

H1 : (Security of FSSFP1) Change the key for P1 to Q1. Note that the correction
word CW is still computed with respect to the seed s for gP1,P2,γ .

H1(b, gP1,P2,γ , gQ1,Q2,γ′) :=


(kb, CW

⊗) :

s, s′ ←R S

(k0, k1, CW1)← GenFP1 (1λ, fQ1,(s′,1))

(u0, u1, CW2)← GenFP2 (1λ, fP2,γ)

CW ← PRG(s) + Encode(u0 − u1) ∈ H̃
CW⊗ := (CW1, CW2, CW)


From the security of FSSFP1 , the key distributions for P1 and Q1 are identi-
cal. Thus the two distributions H0(b, gP1,P2,γ) and H1(b, gP1,P2,γ , gQ1,Q2,γ′)
are identical.

H2 : (PRG security) Change PRG(s) to random S. Note that s is not used in
the remaining part.

H2(b, gP1,P2,γ , gQ1,Q2,γ′) :=


(kb, CW

⊗) :

S ←R H̃
s′ ←R S

(k0, k1, CW1)← GenFP1 (1λ, fQ1,(s′,1))

(u0, u1, CW2)← GenFP2 (1λ, fP2,γ)

CW ← S + Encode(u0 − u1) ∈ H̃
CW⊗ := (CW1, CW2, CW)


By the pseudorandomness of the output of PRG, the two distributions H1(b,
gP1,P2,γ , gQ1,Q2,γ′) and H2(b, gP1,P2,γ , gQ1,Q2,γ′) are computational indistin-
guishable.

H3 : (Security of FSSFP2) Change CW2 for P2 to Q2.

H3(b, gP1,P2,γ , gQ1,Q2,γ′) :=


(kb, CW

⊗) :

S ′ ←R H̃
s′ ←R S

(k0, k1, CW1)← GenFP1 (1λ, fQ1,(s′,1))

(u0, u1, CW2)← GenFP2 (1λ, fQ2,γ′)

CW ← S ′ ∈ H̃
CW⊗ := (CW1, CW2, CW)


The two distributions H2(b, gP1,P2,γ , gQ1,Q2,γ′) and H3(b, gP1,P2,γ , gQ1,Q2,γ′)

are computational indistinguishable from the security of FSSFP2 . Actually,
the distribution H3 is completely independent of gP1,P2

. Moreover, CW2

is pseudorandom as FSSFP2 outputs pseudorandom correction words. Next
we can apply the first two steps via an reversed order to obtain the key
distribution for gQ1,Q2,γ′ .

Direct FSS for Branching Programs 43

As CW is random, we can change it to a value relying on the key (u0, u1)
without changing the distribution.

H3(b, gQ1,Q2,γ′) :=


(kb, CW

⊗) :

S ′ ←R H̃
s′ ←R S

(k0, k1, CW1)← GenFP1 (1λ, fQ1,(s′,1))

(u0, u1, CW2)← GenFP2 (1λ, fQ2,γ′)

CW ← S ′ + Encode(u0 − u1) ∈ H̃
CW⊗ := (CW1, CW2, CW)


H4 : (PRG security) Change S ′ to PRG(s′).

H4(b, gQ1,Q2,γ′) :=


(kb, CW

⊗) :

s′ ←R S

(k0, k1, CW1)← GenFP1 (1λ, fQ1,(s′,1))

(u0, u1, CW2)← GenFP2 (1λ, fQ2,γ′)

CW ← PRG(s′) + Encode(u0 − u1) ∈ H̃
CW⊗ := (CW1, CW2, CW)


Now the distribution H4(b, gQ1,Q2,γ′) is exactly the key distribution for
gQ1,Q2,γ′ , namely, H4(b, gQ1,Q2,γ′) = H0(b, gQ1,Q2,γ′).

By combining the distributions from H0 to H4, for each party index b, the key
distribution for gP1,P2,γ and gQ1,Q2,γ′ are computational indistinguishable.

B.2 FSS for Negation and Disjunction of Predicates

In this section, we show some basic FSS constructions for negation and dis-
junction of predicates. The tensor product construction can be viewed as the
conjunction of predicates. Before the FSS construction for negation and disjunc-
tion, we first define the notion anti-symmetric FSS.

Definition 45 (Anti-symmetric FSS). An FSS is anti-symmetric if for k0 =
k1, for all x ∈ Df ,

Eval(0, k0, CW, x)− Eval(1, k1, CW, x) ̸= 0.

If the anti-symmetric FSS is for a predicate, then Eval(0, k0, CW, x)−Eval(1, k1, CW, x) =
1 for k0 = k1 and Eval(0, k0, CW, x)− Eval(1, k1, CW, x) = 0 for k0 ̸= k1.

Note that the tensor operation does not work for anti-symmetric FSS.

Lemma 46 (FSS for Negation of Predicates). Let P be a family of predi-
cates mapping {0, 1}n to {0, 1}. Let FP : {0, 1}n → S×T be the function family
induced by P as

fP,β : {0, 1}n → S × T, x 7→ β · P (x) =

{
β if P (x) = 1

0 else
.

44 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

with P ∈ P and β ∈ S × {1} ⊆ S × T . Similarly, let F¬P : {0, 1}n → S × T be
the function family induced by ¬P as

f¬P,β : {0, 1}n → S × T, x 7→ β · (1− P (x)) =

{
β if P (x) = 0

0 else
.

Assume there exists a shift-invariant FSS for FP over key space K and correction
word space CW.

Then there exists a shift-invariant FSS for F¬P over key space K × (S× T)
and correction word space CW. In particular, if the FSS for FP is symmetric,
then the FSS for F¬P is anti-symmetric.

The FSS for F¬P can be obtained by adding an extra step to FP to switch
the between value β and 0. Concretely, assume (β0, β1) is a random sharing of β,
namely β0 − β1 = β. Let (k0, k1, CW) be the key output by FSSFP for P . Then
the key output by FSSF¬P for ¬P is ((k0, β0), (k1, β1), CW). The evaluation for
FSSF¬P becomes βb − Eval(b, kb, CW, x). It is easy to verify that

(β0 − Eval(0, k0, CW, x))− (β1 − Eval(1, k1, CW, x))

=(β0 − β1)− (Eval(0, k0, CW, x)− Eval(1, k1, CW, x))

=β − β · P (x) = β · (1− P (x)).

Hence, the correctness holds. Because (β0, β1) is a random sharing of β, the
security holds as well.

Lemma 47 (FSS for Disjunction of Predicates). Given an anti-symmetric
and shift-invariant FSS for P1, an anti-symmetric and shift-invariant FSS for
P2 and a EOH-PRG, there exists anti-symmetric and shift-invariant FSS con-
struction for P1 ∨ P2.

Proof. Given P1∨P2, the FSS first takes negation to P1∨P2 to obtain ¬P1∧¬P2,
then run the FSS for tensor products of ¬P1 and ¬P2 and finally take negation
to the FSS to obtain an FSS for P1 ∨ P2.

C FSS for Bit-fixing Predicates from EOH-PRG

In this section, we show function secret sharing (FSS) schemes for bit-fixing
predicates from EOH-PRG.

We first construct a symmetric and shift-invariant FSS for one-bit predicate

PBF
α : {0, 1} → {0, 1}, x 7→

{
1 if x = α or α = ∗
0 else

.

For this, we use a naive secret sharing of the truth table. The construction is
shown in Figure 4.

Direct FSS for Branching Programs 45

Function secret sharing scheme FSS1 = (Gen1,Eval1)

Parameters: Let S,T be two finite abelian groups such that S ⊆ S.
Gen1(1λ, α):

1: Sample s←R S.
2: Sample s00, s

1
0, s

0
1, s

1
1 ←R S and t00, t

1
0, t

0
1, t

1
1 ←R T according to the following three

cases:
3: case α = ∗: s00 − s10 = s01 − s11 = s and t00 − t10 = t01 − t11 = 1.

4: case α = 0: s00 − s10 = s, s01 − s11 = 0, and t00 − t10 = 1, t01 − t11 = 0.

5: case α = 1: s00 − s10 = 0, s01 − s11 = s, and t00 − t10 = 0, t01 − t11 = 1.

6: Return kb := (sb0, s
b
1, t

b
0, t

b
1) ∈ S2 × T2 for b ∈ {0, 1}.

Eval1(b, kb, x):

1: Parse kb as kb = (sb0, s
b
1, t

b
0, t

b
1).

2: Return (sbx, t
b
x).

Fig. 4. One-bit FSS FSS1. Superscripts b for s and t represent the party id.

Lemma 48 (One-bit FSS). Let S,T be two finite abelian groups. Then (Gen1,Eval1)
is a symmetric and shift-invariant FSS over key space K := S2 × T2.

Proof. Security is straightforward as the key kb for Party Pb is fully uniform.
Correctness and the shift-invariant property directly follow from the nature of
additive sharing of seed and tag. Symmetry follows from the evaluation.

Remark 49. From the construction, it is obvious that the tag part indicates the
output of the one-bit FSS. To keep consistent with the tensor operation, we keep
the seed part and the tag part for each bit. Furthermore, it is natural to map
the matched output s to a prior value β via an extra operation as in [26].

Theorem 50 (FSS from EOH-PRG). Assume PRG : S→ H̃ is a EOH-PRG
relative to (S,T, (S × T)2, (S× T)2).

There exists a symmetric and shift-invariant FSS for the family of bit-fixing
predicates of length ℓ with key space S2 × T2 and correction word space H̃ℓ−1.

Moreover, the key size is 2(log |S|+ log |T|) + (ℓ− 1) log
∣∣∣H̃∣∣∣.

Proof. Iteratively applying Theorem 20 to Lemma 48, i.e., tensoring the one-bit
FSS to itself, ℓ−2 times, yields FSS for bit-fixing predicates. The correctness and
security follow from Theorem 20 and Lemma 48. The correction word consists
of ℓ− 1 elements from H̃ and the key kb is an element of S2 × T2. Thus the key

size is exactly 2(log |S|+ log |T|) + (ℓ− 1) log
∣∣∣H̃∣∣∣.

Remark 51. Note that the key size is a polynomial of the security parameter
and the input length ℓ whereas the naive sharing of the truth table of bit-fixing
predicates is of exponential size.

As presented in Section 8, the EOH-PRG could be instantiated from the LWE
assumption or the DCR variant assumption. The comparsions of the resulting

46 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

FSS schemes from EOH-PRG and FSS for bit-fixing predicates from HSS are
shown in Table 2. It is clear that whatever for instantiations from LWE or from
DCR, our FSS from EOH-PRG has better key size and running time.

D Supplementary Materials for FSS for Branching
Programs

In this section, we show the missing preliminaries, constructions, proofs and
remarks of Section 6.

D.1 Branching Programs

We start by recalling the definition of branching programs.

Definition 52 (Oblivious, layered branching program). A layered branch-
ing program P for a function g : {0, 1}n → {0, 1} is a directed acyclic graph
(V,E), where V is divided into ℓ+1 disjoint levels V0, V1, . . . , Vℓ such that every
node u ∈ Vi, i < ℓ has out-degree 2, and such that edges only points from nodes
in level Vi to nodes in level Vi+1. Further, we assume that level i consists of wi
nodes, upper bounded by the width w of the branching program. Further, there
are two adjoint functions τ, f such that

– V0 = {v0} contains the only initial node.
– Vℓ = {va, vr} contains the accept node va and the rejection node vr.
– τ : V \Vℓ → [n] is the index-to-input map which maps all the non-sink nodes

to the input of P .
– f : [ℓ] × [w] × {0, 1} → [w], fi(i, j,x[τ(i)]) 7→ k is the transition function,

which maps the j-node in level i to the k-th node in level i + 1 upon the
input x[τ(i)]. (Note that here we actually consider maps fi : [wi]× {0, 1} →
[wi+1], since different levels might have a different amount of nodes, but for
simplicity we use f as above, where we assume w to be an upper bound on
the number of nodes.)

The branching program is called input-oblivious if every level i node v ∈ Vi is
mapped to the same input index via the index-to-input map τ .

Each branching program can be converted to a layered, input-oblivious branching
program with polynomial blowup in size [63,25].

D.2 Supplementary Constructions for FSS for Branching Programs

The FSS for P1 is show in Figure 5. It is a naive sharing of the labels of the
nodes in level 1. Each label for the two nodes in level 1 consists of a seed s and
a standard basis of T2 as the tag vector t. The two labels for the two nodes
are rearranged according to the transition function for the root node. In the
FSS1, Gen1 directly shares the rearranged labels and Eval1 chooses the shared

Direct FSS for Branching Programs 47

Function secret sharing scheme FSS1 = (Gen1,Eval1) for P1:

Parameters: Let S,T be two finite abelian groups.
Gen1(1λ, P1, γ ∈ (S × T 2)2) :

1: Parse γ as γ =: ((σ[1], e1), (σ[2], e2)) with σ ∈ S2 and (e1, e2) ∈ T 2 the standard
basis of T2. ▷ σ is the seed value for level 1.

2: Set u← (γ[f(0, 1, 0)], γ[f(0, 1, 1)]) ∈ (S × T 2)2. ▷ Map 0 and 1 to the
corresponding element of level 1 in the array γ.

3: Sample u0,u1 ←R (S× T2)2 such that u0 − u1 = u.
4: Return kb ← ub for b ∈ {0, 1}.
Eval1(b, kb,x) :

1: Return kb[x[τ(V0)]] ∈ S× T2. ▷ Use input x[τ(V0)] to choose the label for level 1.

Fig. 5. FSS (Gen1,Eval1) for P1. Superscripts for k, s, t, v represent the party id.

label according to the input x[τ(V0)]. The transition function for the root node
is hidden in the rearrangement of the labels. Correctness and security naturally
follow from the random sharing of the reordered labels.

We omit the proof of Lemma 22 as it is straightforward.

D.3 Proof of Lemma 23

Proof. We first address the correctness of (Geni+1,Evali+1). For correctness, the
target is to show that for all x ∈ {0, 1}n,

Pr[Evali+1(0, k0, CWi+1,x)− Evali+1(1, k1, CWi+1,x) = γ[Pi+1(x)] :

(k0, k1, CWi+1)← Geni+1(1λ, Pi+1, γ)] = 1− negl(λ).

From the definition of Pi and Pi+1, Pi+1(x) = f(i, Pi(x),x[τ(Vi)]). From the
correctness of (Geni,Evali), we have that

Pr[Evali(0, k0, CWi,x)− Evali(1, k1, CWi,x) = β[Pi(x)] :

(k0, k1, CWi)← Geni(1λ, Pi, β)] = 1− negl(λ).

It is exactly that

s0 − s1 = s[Pi(x)] and t0 − t1 = ePi(x) ∈ T
wi .

In particular, t0[Pi(x)]− t1[Pi(x)] = 1 and t0[j]− t1[j] = 0 for j ̸= Pi(x). It is
easy to verify that∑

j∈[wi]

t0[j] · CW [j]−
∑
j∈[wi]

t1[j] · CW [j] = CW [Pi(x)].

Recall that CW [j] ← PRG(s[j]) + Encode(u[j]). From the definition of EOH-
PRG, as (s0, s1) is a random sharing of s[Pi(x)], the key (v0, v1) for level i + 1

48 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

satisfies

v0 − v1 = Conv

 ∑
j∈[wi]

t0[j] · CW [j]− PRG(s0)

− Conv

 ∑
j∈[wi]

t1[j] · CW [j]− PRG(s1)


= uPi(x)

with overwhelming probability. Thus, (v0, v1) is a pseudorandom sharing of
uPi(x) as each vb is re-randomized by the PRF. From the Geni+1, v0 − v1 =
uPi(x) = (γ[f(i, Pi(x), 0)], γ[f(i, Pi(x), 1)]). Thus, (v0[x[τ(Vi+1)]], v1[x[τ(Vi+1)]])
is exactly a share of γ[Pi+1(x)] = γ[f(i, Pi(x),x[τ(Vi+1)])].

Because FSSi is shift-invariant, arbitrary random shift to the key (k0, k1) will
lead to the same value β[Pi(x)], i.e., ((s0, t0), (s1, t1)) is a sharing of β[Pi(x)].
Hence, FSSi+1 is also shift-invariant.

The security follows from the security of FSSi and the pseudorandomness of
PRG. The security can be formally proved as in the security proof of Lemma 44
via hybrid games. We omit the details here.

D.4 Topology-Hiding FSS for Branching Programs

It is easy to extend each level to w nodes via adding dummy nodes and then
construct an FSS for the extended branching program. Concretely, level 1 and
level ℓ inherently have 2 nodes for every out-degree 2 branching program. We
only add dummy nodes from level 2 to level ℓ − 1. (In fact, note that for any
out-degree 2 branching programs, the i-th level has at most 2i nodes, and thus
we could only add small number of dummy nodes for the first ⌊logw⌋ levels. For
simplicity, here we consider a simpler padding though, where we add dummy
nodes to level i for i ∈ [2, ℓ− 1] such that level i has exactly w nodes.)

Formally, we obtain the following theorem.

Theorem 53 (Topology Hiding FSS for BP from EOH-PRG). Let P

be a branching program with length ℓ and width w. Assume PRG : S → H̃ and
PRGℓ−1 : S→ H̃ℓ−1 are EOH-PRGs.

Then, there exists a topology-hiding FSS for P over key space (S × T2)2

and correction word space H̃w(ℓ−2)× H̃wℓ−1. Moreover, the key size is bounded by

2(log |S|+ 2 log |T|) + w(ℓ− 2) log
∣∣∣H̃∣∣∣+ w log

∣∣∣H̃ℓ−1

∣∣∣.
Note that here dummy nodes are used to hide the level width spectrum of the
branching program. Correction words for dummy nodes can be uniformly sam-
pled, since these nodes will never be reached during evaluation. This allows to
achieve topology hiding at little extra cost.

E FSS for Approximate Matching Functions and
Polynomials

In this section, we present the the FSS for approximate matching functions and
polynomials.

Direct FSS for Branching Programs 49

E.1 FSS for Approximate Matching Functions

In this section, we show an FSS for approximate matching function using the tag
vector technique introduced for branching programs. Concretely the approximate
matching function is defined as

fa,b(x) := (dist(x,a) < b)

where a ∈ {0, 1, ∗}ℓ,x ∈ {0, 1}ℓ, b ≤ ℓ and dist(x,a) =
∑
i∈[ℓ](a[i] ̸= ∗ ∧ a[i] ̸=

x[i]).
The approximate matching function first counts the number of unmatched

bits and then compare with a threshold value b. It is a distance comparing
generalization of the bit-fixing predicate. Consequently, the bit-fixing predicate
is the special case dist(x,a) < 1.

We construct a branching program for fa,b first and then run the FSS for
branching program to build an FSS for fa,b. Now we sketch the branching pro-
gram for fa,b. The branching program consists of ℓ+1 levels i.e., {V0, V1, . . . Vℓ},
and for i < ℓ, level i has i + 1 nodes, which correspond to the possible i + 1
distance values. For level i < ℓ− 1, assume the distance for the current node is
j. If a[i] = ∗, the distance is still j for level i+ 1, which implies the both edge 0
and edge 1 point to the distance j node in level i+ 1. If a[i] = 0, edge 0 points
to the distance j node in level i+1 and edge 1 points to the distance j+1 node
in level i+ 1 whereas if a[i] = 1 the two edges for 0 and 1 are exchanged. In the
last level, from level ℓ − 1 to level ℓ, the matching for a[ℓ] and the comparison
operation are merged. Therefore level ℓ has only two nodes. If the node in level
ℓ− 1 stands for the distance ≥ b, whatever a[ℓ] is, the node points to the 0 node
in level ℓ. If the node in level ℓ − 1 stands for the distance ≤ b − 1, whatever
a[ℓ] is, the node points to the 1 node in level ℓ. Only if the node in level ℓ − 1
exactly stands for the distance b−1, the unmatched a[ℓ] will change the distance
from b−1 to b, which points to the 0 node in level ℓ. In summary, the branching
program has ℓ+1 levels. For i ∈ [0, ℓ− 1], level i has i+1 nodes and level ℓ has
only two nodes.

With the branching program for fa,b, we construct an FSS for it.

Theorem 54. Given a ∈ {0, 1, ∗}ℓ and b < ℓ, let fa,b be an approximate
matching function. Let Pfa,b be the corresponding branching program of fa,b
and {1, 2, . . . , ℓ − 1, ℓ, 2} the level width spectrum of Pfa,b . Assume that for

i ∈ [1, ℓ − 2],PRGi : S → H̃i relative to (S,T, (S × T i+2)2, (S × Ti+2)2) and

PRGℓ−1 : S→ H̃ relative to (S,T, (S × T 2)2, (S× T2)2) are EOH-PRGs.
There exists an FSS for fa,b over key space (S × T2)2 and correction word

space
∏
i∈[1,ℓ−2] H̃

i+1
i × H̃ℓ. Moreover, the key size is bounded by 2 log |S| +

4 log |T|+
∑
i∈[1,ℓ−2](i+ 1) log

∣∣∣H̃i∣∣∣+ ℓ log
∣∣∣H̃∣∣∣.

Remark 55. Note that although the construction reveals the topology structure
of the branching program Pfa,b , the bit-fixing predicate a and the threshold value
b are still hidden. In fact, for length ℓ predicates, the approximate matching
functions share the same topology structure.

50 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

Note that the approximate matching function is a little different from the dis-
tributed comparison function(DCF) in [24]. In DCF, the operand to compare is
explicitly given as input and the DCF only hides the threshold value b. In our
approximate matching function, the value to be compared is a shared result of
another FSS, which also explains the reason that DCF enables super-polynomial
possible threshold values whereas our approximate matching function only sup-
ports polynomially possible threshold values because we need to use a branching
program to record the distance of each step and map the distance to the com-
parison result in the final step.

The FSS for branching program is readily to extend to out-degree q to support
q-ary string.

Remark 56. – The distance comparison condition can also be changed to an
equality condition, which only changes the operation of the branching pro-
gram of last level.

– For q-ary strings, the distance for each position can be defined for approx-
imate equality, for instance, the two numbers are viewed as equal if the
difference is less than some bound B.

E.2 FSS for Polynomials over a Ring

In this section, FSS schemes for polynomials over a ring are presented and the
working ring has polynomial size. Before the FSS constructions for polynomials,
we recall some definitions for polynomials over a ring.

Definition 57 (Total Degree). Let k,w ∈ N. Let R be a ring with w elements.
For a monomial xd = xd11 · x

d2
2 . . . xdkk , the total degree of xd is defined as d1 +

d2 + . . . dk. The total degree of a polynomial P (x) =
∑
i cix

di with ci ∈ R is the
maximal total degree of monomials with ci ̸= 0.

Given a polynomial P (x) =
∑
i∈[m] cix

di , the FSS securely shares each monomial

cix
di and sums up all the local shares of the monomials after evaluation. The FSS

for a monomial is built upon the branching program induced by the monomial.
Given cxd, the first level of the FSS corresponds to cxd11 , the second level xd22 ,
and the i-th level xdii , etc. Given an input y ∈ Rk, the shared value of the FSS
for P (y) corresponds to the seed and tag for P (y) in level k. Assume the ring
R has a set of element {0, 1, . . . , w− 1}. Then ⟨tP (y), (0, 1, . . . , w− 1)⟩ is exactly
the value P (y). After the evaluation of each monomial, the two-party locally
sums up the shares for the monomials.

We briefly sketch the branching program from a monomial.The monomial
cxd can be viewed as an out-degree w branching program with k levels and w
nodes in each level. The level 1 nodes are rearranged according to c · xd11 , i.e.,
the order of the elements (c · 0d1 , c · 1d1 . . . c · (w − 1)d1). Inductively, for a node
j in level i, assuming vj being the corresponding value of node j in ring R,

the edges to next level from node j is rearranged according to vj · xdi+1

i+1 , i.e.,

(vj · 0di+1 , vj · 1di+1 . . . vj · (w − 1)di+1).
Thus, we have an FSS for a monomial.

Direct FSS for Branching Programs 51

Lemma 58 (FSS for a Monomial). Let k,w ∈ N. Assume R is a ring with

w elements. Let PRG : S→ H̃ be a EOH-PRG relative to (S,T, (S × Tw)w, (S×
Tw)w). Let c · xd be a monomial defined over ring R and k variables.

There exists an FSS for c · xd over key space (S×Tw)w and correction word

space H̃(k−1)w with key size w(log |S|+ w log |T|) + (k − 1)w log
∣∣∣H̃∣∣∣.

Remark 59. Note that the coefficient c is embedded into level 1 of the induced
branching program and thus is hidden by the FSS. Similarly, the degree di is
embedded into level i of the branching program and thus is hidden by the FSS.
For di = 0, xi does not appear in c·xd, the branching program directly multiplies
the previous value by 1 to hide this di as x

di
i is exactly 1.

Remark 60. Note that there is no real multiplication happened during the FSS
evaluation. Each multiplication is essentially a move from one node to another
node in the induced branching program. For the same reason, the multiplication
over the ring R can be non-commutative.

Remark 61. Different from the t-CNF/t-DNF cases, the FSS for polynomials of
constant total degree can be achieved via directly sharing the coefficient of each
possible monomial. It is an information-theoretic FSS.

Theorem 62 (FSS for Polynomials). Let k,w ∈ N. Assume R is a ring with

w elements. Let PRG : S→ H̃ be a EOH-PRG relative to (S,T, (S × Tw)w, (S×
Tw)w). Let P (x) be a polynomial with m monomials defined over R and k vari-
ables.

There exists a shift-invariant FSS for P (x) over key space (S× Tw)mw and

correction word space H̃mw(k−1) with key size mw(k − 1) log
∣∣∣H̃∣∣∣+mw(log |S|+

w log |T|).

The FSS construction is obtained via sharing each monomial according to Lemma
58 and the Eval sums up all the tag values.

Remark 63. The FSS for polynomials (c1x
d1
1 + c2x

d2
2 + · · ·+ ckxdkk)d of this form

is not captured by Theorem 62. By following the same idea as in Lemma 58,
the FSS for (c1x

d1
1 + c2x

d2
2 + · · · + ckx

dk
k)d is straightforward to obtain, which

computes the power d in the last level. The FSS for this type of polynomials can
be combined with the FSS in Theorem 62.

F Supplementary Materials for EOH-PRG Instantiated
from LWE or DCR

We show the missing preliminaries, proofs and remarks of Section 8.

52 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

F.1 EOH-PRG from LWE

Before presenting the proof of EOH-PRG instantiated from LWE, we recall some
basic results from [28].

Lemma 64 (Distributed Rounding). [28, Lemma 1] Let p, q, B ∈ N with p|q
and 2Bpλω(1) ≤ q. Assume

s =
q

p
m+ e mod q

for some m ∈ Zp with |e|∞ ≤ B. Assume s = s0 − s1 for random s0, s1 ∈ Zq.
Then

Pr
[
m = ⌈s⌋q→p = ⌈s0⌋q→p − ⌈s1⌋q→p mod p

]
≥ 1− 2Bp

q
≥ 1− 1

λω(1)
.

The probability is over the randomness of s0 and s1.

Lemma 65 (Lifting). [28, Lemma 2] Let B, p ∈ N such that Bλω(1) ≤ p. Given
z ∈ Z with |z|∞ ≤ B and z being additively shared as z = z0 − z1 mod p, then

Pr [z = z0 − z1 over Z] ≥ 1− B

p
≥ 1− 1

λω(1)
,

where the probability is taken over the randomness of z0, z1.
Moreover, for any q ∈ N, Pr [z = z0 − z1 (mod q)] ≥ 1 − 1

λω(1) . Note that
here q is completely independent of B, p.

With the two lemmas, we show the proof of the instantiation from LWE.

Proof (Proof of Theorem 27). It is straightforward to verify that · : Zp×Zℓ(n+w)
p →

Zℓ(n+w)
p is indeed a group action. That PRG is a secure PRG relative to S =
{0, 1}n follows from the assumption of LWEn,ℓ(n+w),q from Lemma 33. Next,
we prove PRG is a EOH-PRG relative to (S,T, H,H). For all m ∈ H, for
s←R S, let y := PRG(s) + Encode(m). Assume y is uniformly randomly shared

as (y0, y1) and s is uniformly randomly shared as (s0, s1), i.e., y0 ←R H̃, s0 ←R

S, y1 := y0 − y over H̃, s1 = s0 − s over S. The target is to prove that
Conv(y0−PRG(s0))−Conv(y1−PRG(s1)) = m mod p with overwhelming prob-
ability. Thus,

Conv(y0 − PRG(s0))− Conv(y1 − PRG(s1))

= ⌈y0 − PRG(s0)⌋p→r − ⌈y1 − PRG(s1)⌋p→r

= ⌈y + y1 − PRG(s0)⌋p→r − ⌈y1 − PRG(s1)⌋p→r

= ⌈PRG(s) + Encode(m) + y1 − PRG(s0)⌋p→r − ⌈y1 − PRG(s1)⌋p→r

= ⌈Encode(m) + e+ y1 − PRG(s1)⌋p→r − ⌈y1 − PRG(s1)⌋p→r

=m mod r

Direct FSS for Branching Programs 53

where |e|∞ ≤ 1. The last two steps follow the AH-PRG property of PRG and the
distributed rounding lemma, respectively. Let m0 := Conv(y0−PRG(s0)),m1 :=
Conv(y0 − PRG(s0)). Then m0 −m1 = m over Z with overwhelming probability
from the lifting lemma and thus m0 −m1 = m mod p.

For the EOH-PRG instantiation from Ring-LWR, we show the following
Ring-LWR assumption.

Definition 66 (Assumption). Let n = n(λ), p = p(λ), q = q(λ), r = r(λ), B =
B(λ),m = ℓ+⌈ ℓwn ⌉ ∈ N such that r|p, p|q, 2λω(1) ≤ r, 2Brλω(1) ≤ p and n log q ≤
ℓ(n+ w) log p.

Assume the binary secret Ring-LWRR,m,q,p is pseudorandom, i.e., (a, ⌈s · a⌋q→p)
is pseudorandom, where s←R {0, 1}n,a←R Rmq .

Note the function ψ(·) is additively homomorphic as it only operates on
coefficients. Therefore the PRG is still a AH-PRG as only the rounding operation
leads to errors and the other operations are homomorphic. The proof of Theorem
28 is very similar to the proof of Theorem 27. We omit the details here.

A few remarks follow.

Remark 67. – It is possible to sample each entry of S from a larger domain
rather than {0, 1}. The only consequence is to adjust the parameter (p, r)
such that the distributed rounding lemma and lifting lemma hold.

– The EOH-PRG can be reused for concrete applications like FSS for bit-fixing
predicates, for branching programs and for DFAs.

– For instantiatation from Ring-LWE, the computation maybe become more
efficient because of the NTT optimization.

– In the parameter setting, we require n log q ≤ ℓ(n + w) log p rather than
pλω(1) ≤ q as the HSS instantiated from LWE [28].

– Although the PRG is performed over Zq and the LWE assumption is over
Zq, the FSS key is still shared over Zp.

F.2 EOH-PRG from DCR

Before showing the proof for EOH-PRG from DCR assumption, we first recall
some basic results for the DCR assumption.

Lemma 68 (Distributed DLog). [60, Lemma 3.3] Let N = PQ be an RSA
modulus. Assume z0, z1 are sampled from ZN2 such that z0z1 = (1+N)x mod N2

for some x ∈ ZN . Then there exists a PPT DDLog : Z∗
N2 → ZN such that

DDLog(z0)− DDLog(z1) = x mod N.

Moreover, if |x| ≤ N
2λ
, then

DDLog(z0)− DDLog(z1) = x over Z

with probability at least 1− 1
2λ
, where the probability is over the randomness of

z0, z1.

54 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

Definition 69 (DCR Variant Assumption). [29, Lemma B.1] Let µ ∈ N.
Assume g := (g0, . . . , gµ) ∈ ZµN2 and every entry of g is uniformly sampled from
the N -th residue group mod N2. For a random r ∈ [N], (gr0 . . . g

r
µ) ∈ ZµN2 is

pseudorandom if the DCR assumption over ZN2 holds.
In particular, we use the assumption that for r ∈ [N

2λ
], gr is still pseudoran-

dom for any PPT adversary.

It is pointed out in [4, Section 4.1], the DCR variant assumption is sound if the
domain of the small exponent is exponentially large. This kind of low exponent
assumption dates back to [51] and was also used in [23].

Remark 70. From the DCR variant assumption, the PRG maps additive group
to multiplicative group. With the DDLog operation, the multiplicative group is
converted back to the additive group again.

The proof of Theorem 29 is very similar to the proof of Theorem 27. As the
group H̃ is multiplicative group, we briefly show the techniques.

Proof. It is easy to verify that · : Zϕ(N2) × (Z∗
N2)ℓ(1+w) → (Z∗

N2)ℓ(1+w) is indeed
a group action. PRG being a secure PRG relative to S = [−B/2, B/2] follows
from the DCR variant assumption. Next, we prove PRG is a EOH-PRG relative
to (S,T, H,H). For all m ∈ Hℓ, for s ←R S, let y := PRG(s) × Encode(m).

Assume y0 ←R H̃, s0 ←R S, y1 := y0÷ y, s1 = s0− s. The target is to prove that
Conv(y0 ÷ PRG(s0)− Conv(y1 ÷ PRG(s1)) = m mod ϕ(N2) with overwhelming
probability. Thus,

Conv(y0 ÷ PRG(s0))− Conv(y1 ÷ PRG(s1))

=DDLog(y0 ÷ PRG(s0))− DDLog(y1 ÷ PRG(s1))

=DDLog(y1 × y ÷ PRG(s+ s1))− DDLog(y1 ÷ PRG(s1))

=DDLog(y1 × Encode(m)÷ PRG(s1))− DDLog(y1 ÷ PRG(s1))

=m.

The last two steps follow from the lifting operation and the distributed DLog
lemma, respectively. Let m0 := Conv(y0÷PRG(s0)),m1 := Conv(y0÷PRG(s0)).
Then m0 − m1 = m over Z with overwhelming probability from the lifting
operation and thus m0 −m1 = m mod ϕ(N2).

A few remarks follow.

Remark 71. Note that for LWE or DCR instantiations, (m0,m1) output by Conv
is not a pseudorandom sharing of m over Zp. In our FSS construction for ten-
sor products, for branching programs, and for DFAs, the Conv output is re-
randomized by a PRF.

Remark 72 (KDM Security). The FSS constructions for DFAs in Section 7 rely
on the KDM security of EOH-PRG. It is straightforward to prove the pseudo-
randomness for LWE or DCR following the method to prove the KDM security
in [6, Theorem 6] or [16, Section 3.2]. We briefly shows the steps to prove the
KDM security of PRG for LWE and DCR, repsectively.

Direct FSS for Branching Programs 55

LWE : Suppose si is used in the encoding part. The goal is to prove if there
exists an adversary A breaking the pseudorandnomness of (A, ⌈sA⌋q→p +
p
r (0 . . . si . . . 0)), then there exists an adversary B breaking the pseudoran-
domness of PRG. Given an instance (A, ⌈sA⌋q→p) of PRG, B transforms it
to (A − q

rB, ⌈sA⌋q→p) where B is a public matrix mapping s to the vector
(0 . . . si . . . 0), and then feeds it to A. It is easy to verify (A− q

rB, ⌈sA⌋q→p)
is indeed an instance of the KDM security game. B uses the advantage of A
to distinguish PRG from uniform distribution.

DCR : According to the DCR assumption, the distribution (g,gs) is com-
putationally indistinguishable from the distribution (h,hs), where g :=
(g1 . . . gµ),h := (h1 . . . hi/(1 + N) . . . , hµ), and each entry of {gi, hi}i∈[µ]

is sampled from the N -th residue group. Given an instance of EOH-PRG
instantiated from DCR, one is able to convert it to an instance of the KDM
instance. If there exists an adversary breaking the KDM security game, then
one is able to use that adversary distinguishing the EOH-PRG instantiated
from DCR and the uniform distribution.

G FSS Applications

In this section, we present some applications of the FSS for tensor operation, bit-
fixing predicates, branching programs, DFAs and more. The general framework
follows the model of the 2-server PIR applications of FSS [25]. There are two
roles in the applications, clients and 2-server. Each server holds a replication
of a database DB with N items. A client starts a query to the database while
keeping the query hidden from the 2-server. The protocol with FSS works as
follows. First, a client splits a private query into shares via FSS and sends each
share to the corresponding server. Next, the servers use the FSS share to run the
FSS evaluation and sends the result to the client. Finally, the client combines
the responses from the two servers to get the final result of the query. Servers
learn nothing on the query as long as the two servers do not collude. Note that
only in the private nearest neighbour search(Section G.3), the server privacy is
required. As our main intention was to show the direct applicability of our FSS
constructions in various application scenarios, we do not focus on server privacy
for the most part.

Lots of online sites provide query services to customers, for instance online
shopping sites and travel sites. However, the query maybe reveals the privacy
information of customers. The service provider is able to collect the user in-
formation and acts immorally or maliciously via making use of the collected
information. For example, travel sites count the frequencies of searched flights
and increase the prices for frequently searched flights. Splinter [76] is a system
designed to protect the query privacy and provides a subset of SQL queries cap-
turing most useful applications with good performance. Splinter employs FSS to
split each query into shares and sends the shares to the servers, respectively. Non-
colluding servers are unable to obtain useful information of the query. Splinter
provides {sum, count,min,max, top-k} queries for various conditions.

56 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

As pointed out in Section H and in Table 1, for bit-fixing predicates and
Ring-LWE instantiation, the direct FSS constructions have key size reduced
by a factor around 4 and comparable running time comparing with the previous
FSS constructions from HSS. For bit-fixing preidates and DCR instantiation, the
direct FSS constructions have key size reduced by a factor of 3.5 and running
time reduced by a factor of 1.75 comparing with the previous FSS constructions
from HSS.

The direct FSS constructions for branching programs avoid the heavy uni-
versal branching program transformation. Concretely, assuming n is the secret
length of LWE instance and w the width of the branching program. For branch-
ing programs and Ring-LWE instantation, the direct FSS constructions have key
size reduced from a factor 2w×n to w+n and running time reduced from a factor
8w2 to 2 + ⌈ 2wn ⌉ comparing with the existing FSS for branching programs from
HSS. For branching programs and DCR instantiation, the direct FSS construc-
tions have key size around 0.28 of the key size of the FSS from HSS and running
time reduced from a factor 14w2 to 3w + 2. Hence, the resulting applications
have smaller key size and better running time.

It is worth to mention that the FSS for DFA is the first that allows key size
independent of the length of the input(except for the generic constructions from
FHE).

G.1 Private Image Matching on Public Data

It is mentioned that image matching is not covered by Splinter. Privacy-preserving
image matching protocol has many critical applications, including face detection
[9], logo patent search, patient CT image retrieval [71] as these types of query
images contain sensitive information and thus leakage of the query images leads
to severe impact. We use our FSS from EOH-PRG to design a protocol for image
matching supporting {sum, count,min, top-k} queries.

There are many image matching algorithms such as SIFT, SURF, BRIEF,
ORB, etc [58]. Each of the image matching algorithms consists of three steps,
key point detection, feature descriptor construction, and feature matching. The
BRIEF [32] and ORB [68] use Hamming distance to perform feature matching
over binary strings. Actually, there are algorithms to convert the float point
SIFT or SURF descriptors to binary string with Hamming distance to speed up
the matching algorithm [32]. The FSS for approximate matching function for
Hamming distance from Section E.1 can be exactly used here to do the image
matching.

The private image matching algorithm works as follows. Before the proto-
col, the two servers preprocess the image database to obtain the binary feature
descriptors for each image according to the corresponding matching algorithm.
Given a query image, a client extracts the binary feature descriptor for the query
image. Next, the client generates the FSS keys for the query image according to
the FSS for approximate matching function and sends the FSS keys to the two
servers, respectively. Next, the two servers run the FSS evaluation algorithm to
obtain the share of the response and send the share to the client. Finally, the

Direct FSS for Branching Programs 57

client receives the responses from the two servers to obtain the matching results.
Next, the client and the two servers run the FSS for approximate matching
function following the aforementioned framework to perform the query.

That the binary descriptor of the query image is hidden follows the security
of the FSS scheme. Thus, the secrecy of the query image follows. Let ℓ be the
length of binary feature descriptor. The computational complexity of the FSS
evaluation is O(ℓN) PRG evaluations and the communication cost for the FSS
share scales with O(ℓ2) and the cost for the FSS response is logN as it only
contains the ID of the fetched image.

Most existing secure privacy-preserving image matching protocols [48] rely
on the searchable encryption [74] or homomorphic encryption [61] to perform
computation on encrypted images, which incur huge computation cost. Recently
a private approximate membership computation protocol with perceptual hash
matching was proposed in [53], which can also be used to perform image match-
ing. However, the approximate membership computation protocol heavily relies
on fully homomorphic encryption (FHE). It is worth to mention that PIR is
used in [72] to protect the privacy of the query image. However, the similarity
computation is not supported in the protocol with PIR.

The protocol naturally integrates with the Splinter system to enable {sum,
count,min, top-k} query for images. The {count, sum} query only takes one round
whereas the {min, top-k} query takes log ℓ rounds of communication.

G.2 Private Partial Text Matching

In private partial text matching protocol, the two servers hold a database of
strings and a client would like to run the fuzzy pattern matching without leak-
ing the query pattern. It was also pointed out that Splinter [76] does not support
partial text matching. The like operator in SQL is a typical case of the partial text
matching. Although there are many optimizations for the like operator in real
SQL engines for instance MySQL [2], DFA is still used in partial text matching
for not indexed fields. DFA is also used in the pattern matching in Tcl program-
ming language library [3](Henry Spencer’s implementation) and in the filename
glob syntax [1]. Private DFA evaluation has many interesting applications, for
example private searching on DNA sequences, pharmaceutical databases and
malware detection. With the FSS for DFA in Section 7, it is natural to support
the like operator or DFA evaluations. Furthermore, the FSS for DFA can be used
to support regular expressions as DFAs recognize regular languages.

The private partial text matching protocol works as follows. Given a pattern
string, a client first creates a DFA for the pattern string. Next, the client and the
the two servers run the FSS for DFAs following the above-mentioned framework
to execute the matching.

Remark 73. Following the security of the FSS scheme, the pattern string is hid-
den. However, the FSS construction reveals the number of states of the DFA
which presumably reveals some information on the regular expression. This could
be fixed by adding some dummy states at the expense of inflated key size and
running time as in the FSS for branching programs.

58 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

Previous protocols employ oblivious automation evaluation both hiding the DFA
and the input text. For our FSS, we only care the DFA secrecy. However, the
communication complexity of existing oblivious automation evaluation suffers
an extra factor of the input text length whatever the constructions relying on
garbled circuits and oblivious transfer [59], homomorphic encryption [42] with
several rounds of interactions, or conditional disclosure of secrets [62]. The key-
size of the FSS for is independent of the input length.

The protocol can also be integrated with the system Splinter [76] to enable
{sum, count} query for fuzzy pattern.

G.3 Nearest Neighbour Search

In private nearest neighbour search protocol, the two servers hold a database
of feature vectors and a client wants to find the nearest neighbour to the query
feature based on some metrics, e.g., Euclidean, Hamming, ℓ1, without revealing
information on the query feature vector. For nearest neighbour search, database
privacy is also required, which says the client learns nothing on the database
beyond the query answer after the interactions.

The private nearest neighbour search(NNS) protocol has many applications
such as online music recommendation [31], image search [52], face recognition
[40], biometric identification [45], image recognition especially for handwriting
recognition [55], clustering in NLP [65], patient genomic or data search [8] and
so on.

There are many secure privacy-preserving protocols for nearest neighbour
search, which behaves with high running time and large bandwidth. Most of the
existing protocols rely on two-party secure computation or fully homomorphic
encryptions. For instance, the protocol SANNS [33] uses oblivious RAM, garbled
circuits and homomorphic encryptions. In the recent more efficient protocol [70],
locality sensitive hashing(LSH) is heavily involved, which incurs some accuracy
loss. To achieve a good accuracy, say > 95%, O(

√
N) number of queries to the

database is necessary, which leads to an extra O(
√
N) factor to the communica-

tion cost.
For ease of exposition, assume there exists only one nearest neighbour for

the query vector. Assume the query vector has dimension d, namely from {0, 1}d
and the protocol only returns the identifier(ID) of the nearest neighbour. Our
privacy-preseving protcol for NNS only supports Hamming distance and the ℓ1
distance as the ℓ1 distance can be embedded into Hamming space with a small
distortion [56,46]. The Hamming distance based NSS is used in iamge search,
biometric identification, clustering in NLP, patient genomic data search and so
on. It is easy to observe that Euclidean distance computation is captured by
NC1. To naturally and efficiently support Euclidean distance, it requires further
future work.

Our protocol follows from the framework of the protocol in [70] without rely-
ing on LSH and behaves with improved communication cost. In fact, both LSH
and DPF are replaced by the approximate matching function in our protocol.
For a query vector q, a client sends out d queries for the distance {1, 2 . . . d},

Direct FSS for Branching Programs 59

respectively via the FSS for approximate matching function from Section E.1.
The two servers run the FSS evaluation algorithm to obtain the result for each
distance. Assume the nearest neighbour vector has distance z with identifier id.
Note that the two servers obtain a sharing of the vector v := [0 . . . 0, id, . . .],
where id appears exactly in the z-th position of v. To suppress the information
leakage from the answer vector v, oblivious masking is employed [70, Section
5.1], which maps each v[i] for i < z to 0, to a uniformly random element for
i > z, and keeps the v[z]. The full protocol is shown in Figure 6. The correctness

Private Nearest Neighbour Search Protocol

Server input: DB = (DB[1], . . . ,DB[N])
Client input: query q
Preprocessing(server computation):

1: Output a common random string K and a PRF.

Step 1(client computation):

1: for i ∈ {1 . . . d} do
2: (k0,i, k1,i)← FSS.Gen(q, i) ▷ The FSS for the exact distance i.
3: end for
4: Let kb ← (kb,1 . . . kb,d)
5: Send kb to server b, respectively.

Step 2(server b computation):

1: Let IDb, ĨDb be two arrays of length d.
2: for i ∈ {1 . . . d} do
3: IDb[i]←

∑
j∈[N] DB[j].id · FSS.Eval(b,kb[i],DB[j])

4: ri ← PRG(K, i)

5: ĨDb[i]← IDb[i] + ri ·
∑

j∈[i−1] IDb[j] ▷ Oblivious masking
6: end for
7: Send ĨDb to client.

Step 3(client computation):

1: Receive ĨDb from Server b.
2: Let ĨD := ĨD0 + ĨD1

3: Output the first non-zero entry of ĨD.

Fig. 6. Private nearest neighbour search protocol involving FSS for approximate
matching function and oblivious masking.

of the protocol is easy to verify. The client privacy follows from the security of
the FSS scheme and the server privacy follows from the in-depth analysis of [70,
Section 7.2], which achieves asymptotically optimal leakage. The communication
cost from the client has a d factor for FSS key as there are d FSS keys and the
communication cost from the servers is O(d logN) as each masked id is of size
O(logN). The computational cost for the server has a d ·N factor of a single FSS
evaluation and the computation cost for oblivious masking is O(d). Note that
the computation cost almost matches the computational cost of the protocol in

60 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

[70] with LSH and the communication cost is significantly improved over the√
N factor especially for d ∈ polylog(N) as in [70, Table 6].

G.4 FSS for t-CNF/t-DNF and CNF/DNF

For the ease of exposition, we mainly show the FSS constructions for exact t-CNF
formulae. Recall that in exact t-CNF formula, each clause contains exactly t
literals. An FSS for t-CNF can be conjuncted from FSS for exact j-CNF for
j ∈ [t].

Assume the t-CNF/t-DNF formula through this section has k variables and
m clauses.

Theorem 74 (FSS for exact t-CNF). Assume PRG : S→ H̃ is a EOH-PRG
relative to (S,T, (S × T)2, (S× T)2).

There exists a symmetric and shift-invariant FSS for the family of exact

t-CNF formulae with key space S2 × T2 and correction word space H̃2t(kt)−1.

To derive the FSS scheme, the given exact t-CNF formula φ is first transformed
to an equivalent bit-fixing predicate a of length 2t ·

(
k
t

)
and then the FSS scheme

for the bit-fixing predicate a leads to an FSS scheme for φ. The construction is
presented in Figure 7. Let f be a public canonical function that maps the clause
of exactly t literals out of k variables to a number in range {1 . . . 2t ·

(
k
t

)
}.

Function secret sharing scheme FSSt-CNF for exact t-CNF:

Parameters: Let PRG : S→ H̃ be a EOH-PRG relative to (S,T, (S × T)2, (S× T)2).
Let K = 2t ·

(
k
t

)
.

Gent-CNF(1λ, φ) :

1: Construct a bit-fixing predicate a of length K s.t. P BF
a is equivalent to φ as follows.

2: for clause φi of φ do
3: Set a[f(φi)] = 1.
4: end for
5: Set other entries of a to ∗.
6: Return GenK(1λ,a). ▷ Run the bit-fixing Gen.

Evalt-CNF(b, kb,x) :

1: Map x to a length K binary string y according to f .
2: for all clause ρ with t literals do
3: Evaluate ρ(x) and set y[f(ρ)] = ρ(x).
4: end for
5: Return EvalK(b, kb,y). ▷ Run the bit-fixing Eval.

Fig. 7. FSS (Gent-CNF,Evalt-DNF) for exact t-CNF formula.

Proof. For the correctness part, we show that the exact t-CNF formula φ is
equivalent to the bit-fixing predicate PBF

a induced by a. From Gent-CNF, we have

Direct FSS for Branching Programs 61

a[f(φi)] = 1 and other entries of a are set to ∗. Recall that PBF
a (y) = 1 if∧

j∈[K]

(y[j] = a[j] or a[j] = ∗) .

Thus, for the entry a[j] of a not corresponding to any clause of φ, a[j] is matched.
For the clauses contained by φ, all matched y[j] lead to the matched state. It
suffices to only consider the evaluations of the clauses contained by φ.

Let x be a satisfying assignment of φ. Thus, each clause φi of φ evaluated
under x is satisfied, i.e., φi(x) = 1, then the corresponding y[f(φi)] = φi(x) = 1
and thus y[f(φi)] = a[f(φi)] = 1. Hence, y matches the predicate a.

Let x be an unsatisfying assignment of φ. There exists at least one clause of φ
evaluated under x being unsatisfied. WLOG, let the φi be one of the unsatisfied
clauses, i.e., φi(x) = 0 and thus y[f(φi)] = φi(x) = 0. From Gent-CNF, a[f(φi)]
is set to 1. Thus, y[f(φi)] ̸= a[f(φi)]. Therefore, y does not match the predicate
a. We have proved that the exact t-CNF formula φ is equivalent to the bit-fixing
predicate PBF

a .
Correctness of FSSt-CNF follows from the transformation and the correctness

of FSS for bit-fixing predicates. Security follows from the security of FSS for
bit-fixing predicates.

Corollary 75. Assume PRG : S → H̃ is a EOH-PRG relative to (S,T, (S ×
T)2, (S× T)2).

There exists a symmetric and shift-invariant FSS for the family of t-CNF
formulae.

Given the FSS constructions for exact t-CNF, one can take the tensor product
operation to the FSS for exact j-CNF for j ∈ [t] to obtain an FSS for t-CNF via
Theorem 20.

Theorem 76 (FSS for t-DNF). Assume PRG : S→ H̃ is a EOH-PRG relative
to (S,T, (S × T)2, (S× T)2).

There exists an anti-symmetric and shift-invariant FSS for the family of
exact t-DNF formulae.

Given a t-DNF formula ϕ, we first take an negation to ϕ to obtain a t-CNF
formula ¬ϕ. Next we call the FSS for t-CNF to obtain an FSS for ¬ϕ and then
take the negation to the FSS to obtain an FSS for ϕ according to Lemma 46.

Remark 77. Note that in the FSS construction for t-CNF and t-DNF formulae,
the key size is completely independent of the clause number m. The key size
only relies on (k, t) and the EOH-PRG.

Remark 78. As shown in Table 2, our direct FSS constructions for t-CNF/t-DNF
from bit-fixing predicates instantiated from Ring-LWR have key size around a
quarter of the previous FSS from HSS instantiated from Ring-LWE and com-
parable running time. For DCR assumptions, the direct FSS constructions for
t-CNF/t-DNF have key size reduced by a factor of 3.5 and running time improved
by a factor of 1.75 comparing with the previous FSS for bit-fixing predicates from
HSS.

62 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

FSS for CNF/DNF It is obvious that we can not directly construct FSS for CNF
as for t-CNF because each clause of a CNF formula has wide-ranging literals.
However, there exists a polynomial time algorithm to transform a CNF formula
to an equivalent t-CNF [7, Lemma 2.14] via adding variables and splitting long
clauses to smaller clauses. Concretely, assume the given formula has k variables
and m clauses. In the transformed t-CNF formula, there are at most kn

2(t−1) +

k variables. It is still poly(k,m) and thus the FSS is of key size poly(k,m) ·
log∥H̃∥. Although the resulting FSS construction does not reveal the clauses of
the induced t-CNF, the FSS still reveals the number of new variables, which
perhaps leaks the shapes of the clauses of the original CNF formula.

It is straightforward to transform a CNF/DNF formula to a branching pro-
gram such that each level of the branching program has width 3 and the length
km, where k is the variable number and m the clause number. The FSS for
resulting branching programs does not reveals the shapes of each clause.

Remark 79. As shown in Table 3, the FSS constructions for width 3 branching
programs directly from EOH-PRG instantiated from Ring-LWR have key size
around one-sixth and running time improved by a factor of 24 comparing with
the FSS for branching programs from HSS instantiated from Ring-LWE. For
DCR assumptions, the direct FSS constructions for width 3 branching programs
have key size reduced by a factor of 2.625 and running time reduced by a factor
around 11.45 comparing with the FSS for width 3 branching programs from HSS.

G.5 Other Applications

Multi-server PIR The counting query or retrieval matches or payload computing
are the typical applications of FSS for 2-server PIR as in [24,26,28]. With the
new FSS constructions for bit-fixing predicates, pattern matching with wildcards
becomes more efficient comparing with existing schemes from HSS as indicated
in Table 1. The direct FSS constructions for branching programs avoid the over-
heads in the previous FSS for branching programs from HSS [25]. Thus, any
queries expressed by branching programs can also be efficiently implemented by
the new FSS for branching programs.

Polynomial number of conjunctions of intervals [24] proposed an FSS scheme for
the interval function, which is improved from one dimension interval to constant
dimension intervals in [26]. The FSS for constant dimension intervals has many
practical applications such as Splinter [76], which provides private searching
queries on Yelp clone of restaurant reviews, ticket search, etc. However, the key
size for constant dimension intervals scales with nd, where n is the length of the
PRG seed and d the number of dimensions. Hence for super-constant dimension
intervals the key size increases to super-polynomial. The tensor product from
EOH-PRG works for arbitrary polynomial number of intervals via replacing
the PRG by EOH-PRG and tensoring by EOH-PRG. The key size of tensor
product FSS only scales linearly with the number of intervals. [20] pointed out
that the conjunctions of FSS from one-way function as a barrier to 1-round

Direct FSS for Branching Programs 63

secure evaluation of multiply-then-truncate. We leave this as future research to
use EOH-PRG to efficiently achieve 1-round secure evaluation of multiply-then-
truncate.

SQL query Splinter [76] proposed using FSS to efficiently implement private SQL
queries, especially focusing on hiding the where conditions as pointed out in Sec-
tion G.1 and G.2. The FSS for bit-fixing predicates, for approximate matching
functions and for DFAs from EOH-PRG greatly enriches the expressiveness of
where conditions. Actually any where condition captured by NC1 can be effi-
ciently hidden by our FSS for branching programs. Moreover, the polynomial
number of conjunctions of intervals can also be used to support polynomial
number of range conditions.

Decision Tree Theorem 53 gives an FSS for branching program without revealing
the topology of the branching program via adding dummy nodes. Boyle et al.
[26, Section 3.3] presented a FSS for decision tree from one-way function, which
reveals the topology of the decision tree. The same method could also be used to
implement an FSS for decision tree without leaking the topology of the decision
tree at the cost of increased key size via adding dummy nodes.

H Comparisons

In this section, we present comparisons for FSS instantiated from concrete as-
sumptions and the FSS constructed from HSS. We focus on the FSS for bit-fixing
predicates and FSS for branching programs, respectively.

There are also FSS constructions from homomorphic secret sharing (HSS)
[28,60]. HSS can be viewed as the dual of FSS. In particular, for HSS the input
is hidden and the circuit is public, whereas for FSS, the circuit is private and the
input is shared by all parties. [28,60] constructed HSS for RMS programs with
super-polynomial plaintext space and negligible correctness error based on LWE
or DCR assumptions. [25] proposed a general framework to construct an FSS for
arbitrary branching program from HSS for branching programs. However, this
makes the resulting FSS cumbersome. We compare our direct FSS constructions
for branching programs with the FSS for branching programs from HSS. The
FSS constructions in Section G.4 for t-CNF/t-DNF are based on the FSS for
bit-fixing predicates from EOH-PRG

The comparison results in this section indicate our FSS for bit-fixing predi-
cates, branching programs and DFAs from EOH-PRG are very efficient.

H.1 FSS for Bit-fixing Predicates from HSS vs. EOH-PRG

There is a novel idea to implement an FSS for bit-fixing predicates from HSS.
In this section, we compare the FSS for bit-fixing predicates built directly from
EOH-PRG with FSS from HSS.

We first present the idea to construct FSS for bit-fixing predicates from HSS,
and then compare the two FSS schemes constructed from the two methods.

64 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

Lemma 80. Let HSS = (Setup, Input,Eval) be a secure HSS scheme. Let a ∈
{0, 1, ∗}ℓ be a bit-fixing predicate. Then there exists an FSS scheme for a and
the FSS key consists of at least 2ℓ ciphertexts.

Proof. We first create a matrix B ∈ {0, 1}2×ℓ corresponding to a. The converting
rule works as follows.

Case a[i] = ∗: B[0, i] = B[1, i] = 1.
Case a[i] = 0: B[0, i] = 1, B[1, i] = 0.
Case a[i] = 1: B[0, i] = 0, B[1, i] = 1.

Next, we use Input to encrypt each entry of B times sk to obtain a matrix C
of ciphertexts, i.e., C[j, i] = HSS.Input(B[j, i] · sk) for i ∈ [ℓ], j ∈ {0, 1}. Assume
(ek0, ek1) := HSS.Setup(1λ). Then (ek0, ek1, C) is the key of the FSS for PBF

a .
Given an input x, the FSS evaluation is performed by the multiplication

specified by the input x. After first multiplication, x[1] · sk is shared by the two-
party as sk is additively shared in HSS.Setup. Each party runs the multiplication

Mul(C[x[i+ 1], i+ 1],Mi · sk)

for i ∈ [ℓ−1] to do the evaluation, whereMi is the memory multiplication value,

i.e., Mi =
∏i
j=1B[x[j], j].

In this construction, the memory value becomes 0 once the input x[i] is not
matched. It is straightforward to prove that the resulting FSS exactly implements
the bit-fixing predicate PBF

a . The security follows from the security of HSS and
the CPA security of the encryption scheme. Note that the FSS key for Pb consists
of ekb and C with 2ℓ ciphertexts.

As [28,60] instantiated HSS from LWE and DCR assumption, we compare
the FSS for bit-fixing predicates from HSS and from EOH-PRG instantiated
from LWE and DCR assumptions.

We only consider the HSS instantiated from Ring-LWE [28, Figure 8] rather
than from LWE because the HSS instantiated from LWE incurs larger cipher-
text size. Recall the HSS instantiated from Ring-LWE, each ciphertext contains
four Rq elements and the key is a sharing of one ring element. The most costing
operation is the Mul operation. Each Mul costs exactly four multiplications over
the ring Rq and each multiplication takes n log n multiplications over Zq assume
the parameters are chosen permitting the NTT optimizations. There are total ℓ
Mul operations during FSS evaluation. Hence, the key size for bit-fixing predi-
cates FSS from HSS instantiated from Ring-LWE is about 8ℓn log q as each HSS
ciphertext contains exactly four Rq elements. The key size of ekb is omited here.
The evaluation cost is 4ℓn log n multiplications over Zq. The PRF key used to
re-randomize the intermediate memory values is not taken into account here.

As for the FSS for bit-fixing predicates from EOH-PRG instantiated from
(Ring-)LWE, we consider instantiations from both of the LWE assumption and
the Ring-LWE assumption. Recall that in Section 8, for EOH-PRG instantiated
from LWE, each correction word has size 2(n + 1) log p and the key size for

Direct FSS for Branching Programs 65

the first bit is still 2(n + 1) log p. There are ℓ − 1 correction words. Thus the
total key size is 2ℓ(n + 1) log p. The size for the PRG matrix is not taken into
account because it can be instantiated from a PRG or a random oracle. During
evaluation, the most expensive operation is the PRG evaluation. Each PRG
evaluation takes 2n(n+1) multiplications over Zq. Hence, the total computation
cost is 2(ℓ− 1)n(n+ 1) multiplications over Zq.

For EOH-PRG instantiated from Ring-LWR, the PRG becomes PRG : Rq →
R2
p×Z2

p. Thus each correction word consists of 2 elements of Rp and 2 elements
of Zp. Hence the total key size is 2ℓ(n + 1) log p. During evaluation, the most
costing operation is still the PRG evaluation. Each PRG evaluation takes 4
multiplications over Rq as the PRG evaluation takes multiplications over Rq
before applies the ψ(·) function. Thus total number of multiplications of FSS
evaluation over Zq is bounded by 4ℓn log n. The comparison is shown in Table
2.

Next, we consider the instantiations from DCR assumption. Recall the HSS
instantiated from DCR assumption [60, Section 4.2], each ciphertext contains
seven ZN2 elements(six elements suffice for the KDM security and each HSS
ciphertext contains exactly seven elements). Thus, the key size for bit-fixing FSS
from HSS is around 14ℓ logN2. For the DCR assumption, the most costing is
the exponentiation operation. Each Mul takes seven exponentiation operations.
Thus, the FSS evaluation takes in total 7ℓ exponentiation operations. For the
EOH-PRG instantiated from DCR variant assumption, recall that the PRG is
PRG : ZN → Z4

N2 and each correction word contains 4 ZN2 elements and thus
the key size is bounded by 4ℓ logN2. During evaluation, each PRG evaluation
takes 4 exponentiation operations and thus the FSS evaluation totally takes at
most 4ℓ exponentiation operations. The comparison is shown in Table 2.

Security Assumption Key Size No. of Mul. or Exp.

LWE
HSS [28] Ring-LWE 8ℓn log q 4ℓn logn

EOH-PRG LWE 2ℓ(n+ 1) log p 2(ℓ− 1)n(n+ 1)
EOH-PRG Ring-LWR 2ℓ(n+ 1) log p 4ℓn logn

DCR
HSS [60,67] KDM security 14ℓ logN2 7ℓ
EOH-PRG DCR variant 4ℓ logN2 4ℓ

Table 2. The comparison of FSS for bit-fixing predicates constructed from EOH-PRG
and from HSS. ℓ stands for bit-fixing predicate length. For LWE assumption, n stands
for the secret length, q the modulus of the LWE assumption, and p the output modulus
of the PRG. The number of multiplications is counted over Zq. For DCR assumption,
N stands for RSA modulus. Here we assume six ciphertexts suffice to achieve KDM
security for the HSS from DCR assumption as in [60, Section 4.2]. The number of
exponentiations is counted over ZN2 .

In summary,

66 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

– the direct FSS from EOH-PRG instantiated from LWE provides a quarter
of the key size of the FSS from HSS instantiated from Ring-LWE whereas
the running time is amplified by a factor of n

logn .
– the Ring-LWR instantiation of EOH-PRG provides a quarter of the key size

of the HSS from Ring-LWE and comparable running time.
– the direct FSS from EOH-PRG instantiated from DCR variant assumption

provides significant improvements over the HSS from DCR assumption in key
size and the number of exponentiations. Concretely, the key size is reduced
by a factor of 3.5 and the running time reduced by a factor a 1.75.

Remark 81. There is no encryption operation involved in the FSS construction
from EOH-PRG. If the HSS is instantiated from the LWE assumption, there
exists an HSS from symmetric encryption scheme. The decryption is just an
linear operation. However, if HSS is instantiated from the DCR assumption,
there is an explicit decryption procedure involved. In our FSS construction from
EOH-PRG, there is definitely no decryption operation and even there is no secret
key derived in the Gen procedure.

H.2 FSS for Branching Programs from HSS vs. EOH-PRG

In this section, we only consider the branching programs with out-degree 2 as in
Section D.1. Given a layered oblivious branching program P , [25, Theorem A.5]
provided a general method to construct an FSS for P from HSS. The construction
encodes P into P̂ and a universal branching program UBP such that for any
x,UBP(P̂ , x) = P (x), and runs the HSS for UBP(P̂ , x) to hide P̂ to obtain an
FSS for P .

We roughly recall the structure of UBP and P̂ to show the key size and the
efficiency of the FSS. The encoding P̂ contains every pair of nodes in adjacent
levels of P . If the pair of nodes corresponds to an edge in P , then it is 1 in
P̂ . Otherwise, it is 0. Thus, the size of P̂ is

∑
i∈[1,ℓ−1] wi · wi+1 ≤ ℓ · w2. The

UBP contains ℓ+1 blocks of levels W0,W1 . . .Wℓ. The number of levels of Wi is
2wi ·wi+1 for i < ℓ. In UBP evaluation, the input to level Um for 1 ≤ m < wiwi+1,
where m = jwi+1 + k, 1 ≤ j ≤ wi, 1 ≤ k ≤ wi+1, is yα0 ∈ P̂ for α0 = (j, k) and
the input to level Um for wiwi+1 ≤ m < 2wiwi+1, where m = wiwi+1 + jwi+1 +
k, 1 ≤ j ≤ wi, 1 ≤ k ≤ wi+1 is yα1

∈ P̂ for α1 = (j, k). In summary, the input
for each Um for 1 ≤ m < 2wiwi+1 is a value in P̂ only depending on m. The
input to level U2wiwi+1

is xi.

The FSS for P from HSS encrypts every element of P̂ . There are roughly ℓ·w2

HSS ciphertexts. During the evaluation, for each block except for the last level,
the input is in encryption form and thus for each block Ui there are 2wiwi+1−1
Mul operations of HSS. There are totally at most 2ℓw2 number of Mul operations
for the FSS evaluation.

For HSS from Ring-LWE, the key contains 4ℓ · w2 Rq elements as each ci-
phertext consists of four Rq elements. Thus the key size is 4ℓw2n log q. There are
8ℓw2 multiplications over Rq and thus totally 8ℓw2n log n multiplications over
Zq.

Direct FSS for Branching Programs 67

For HSS from DCR assumption, the key contains around 7ℓ·w2 ZN2 elements
as each ciphertext contains seven ZN2 elements. Thus the key size is 7ℓw2 logN2.
There are total 14ℓw2 exponentiations operations during evaluation as each Mul
takes 6 exponentiations.

Now we show the key size and runtime of the FSS from EOH-PRG. For

EOH-PRG instantiated from LWE, the PRG is PRG : Znq → Z2(n+w)
p . The size

of each level correction word is 2w(n+ w) log p and as each level has at most w
correction words. Thus the total key size is bounded by 2ℓw(n+w) log p. During
PRG evaluation, there are 2n(n+w) multiplications over Zq in each level. Thus,
there are totally 2ℓn(n+ w) multiplications.

For EOH-PRG instantiated from Ring-LWE, the PRG becomes PRG : Rq →

R2+⌊ 2w
n ⌋

p ×Z2w−n⌊ 2w
n ⌋

p as multiple tag bits are compressed to ring elements. The
size of each level correction word is 2w(n + w) log p and thus the total key size
is bounded by 2ℓw(n + w) log p. During PRG evaluation, there are 2 + ⌈ 2wn ⌉
multiplications over Rq each level. Hence, there are totally ℓ(2 + ⌈ 2wn ⌉)n log n
multiplications over Zq.

For EOH-PRG instantiated from DCR variant assumption, the PRG is PRG :
ZN → Z2+2w

N2 . The size of each level correction word is 2w(w + 1) logN2 and
thus the total key size is 2ℓw(w + 1) logN2. During PRG evaluation, there are
3w + 2 exponentiations in each level as each tag bit is used to compute the
exponentiation of corresponding correction word. Thus, there are totally ℓ(3w+
2) exponentiation operations.

The key size and efficiency is summarized in Table 3.

Security Assumption Key Size No. of Mul. or Exp.

LWE
HSS Ring-LWE 4ℓw2n log q 8ℓw2n logn

EOH-PRG LWE 2ℓw(n+ w) log p 2ℓn(n+ w)
EOH-PRG Ring-LWR 2ℓw(n+ w) log p ℓ(2 + ⌈ 2w

n
⌉)n logn

DCR
HSS KDM security 7ℓw2 logN2 14ℓw2

EOH-PRG DCR variant 2ℓw(w + 1) logN2 ℓ(3w + 2)
Table 3. The comparison of FSS for branching programs constructed from EOH-PRG
and from HSS. w stands for the branching program width and ℓ for the branching
program length. For branching programs we assume fixed out-degree d = 2. For LWE
assumption, n stands for the secret length, q the modulus of the LWE assumption,
and p the output modulus of the PRG. The number of multiplications is counted over
Zq. For DCR assumption, N stands for RSA modulus. Here we assume six ciphertexts
suffice to achieve KDM security for the HSS from DCR assumption as in [60, Section
4.2]. The number of exponentiations is counted over ZN2 .

In summary,

– for LWE related assumption, the key size of the FSS from EOH-PRG instan-
tiated from LWE and Ring-LWR are equal. The key size is improved from
a factor of 4wn to 2(n + w) comparing to the FSS for branching programs

68 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

from HSS Ring-LWE. As for the running time, the the FSS from EOH-PRG
from LWE is very inefficient. The running time of the FSS from EOH-PRG
from Ring-LWR is improved from a factor 8w to 2 + ⌈ 2wn ⌉.

– for DCR related assumption, the key size of FSS from EOH-PRG is improved
by a factor around 3 of the the key size of the FSS from HSS and the number
of exponentiation operations of FSS from EOH-PRG is a w of magnitude
less than the FSS from HSS.

Remark 82. It is worth to mention that our FSS for branching programs from
EOH-PRG naturally generalize to branching programs with multi-edge as in
Section E.1 and with polynomial out-degree as in Section E.2. However, for the
FSS from HSS, the universal branching program needs to split the multi-edge
at the cost of increasing edges because in the encoding P̂ of P each two nodes
and the edge value form a point in P̂ and the polynomial out-degree of P causes
worse blow-up for the universal branching programs for the number of levels of
each block, which leads to worse running time.

Table of Contents

1 Introduction . 3
1.1 Our Contributions . 4
1.2 Discussion and Related Work . 10
1.3 Organization . 11

2 Technical Overview . 11
3 Preliminaries . 22
4 FSS with Extra Properties and EOH-PRGs . 23

4.1 PRG with Encoded-Output Homomorphism 23
5 Tensor Product FSS for Arbitrary Predicates from EOH-PRGs 24
6 FSS for Branching Programs . 26
7 FSS for DFAs . 28
8 EOH-PRG Instantiated from LWE or DCR Assumption 30
A Supplementary Materials for Preliminaries . 37

A.1 LWE and LWR . 37
A.2 Almost Homomorphic PRGs(AH-PRG) . 38
A.3 DCR Assumption . 39
A.4 Bit-fixing Predicates and CNF/DNF Formulae 39
A.5 DFA . 39

B Tensor Product and FSS for Negation and Disjunction of Predicates . . 40
B.1 Proof of Theorem 20 . 40
B.2 FSS for Negation and Disjunction of Predicates 43

C FSS for Bit-fixing Predicates from EOH-PRG . 44
D Supplementary Materials for FSS for Branching Programs 46

D.1 Branching Programs . 46
D.2 Supplementary Constructions for FSS for Branching Programs . . 46
D.3 Proof of Lemma 23 . 47
D.4 Topology-Hiding FSS for Branching Programs 48

E FSS for Approximate Matching Functions and Polynomials 48
E.1 FSS for Approximate Matching Functions . 49
E.2 FSS for Polynomials over a Ring . 50

F Supplementary Materials for EOH-PRG Instantiated from LWE or
DCR . 51
F.1 EOH-PRG from LWE . 52
F.2 EOH-PRG from DCR . 53

G FSS Applications . 55
G.1 Private Image Matching on Public Data . 56
G.2 Private Partial Text Matching . 57
G.3 Nearest Neighbour Search . 58
G.4 FSS for t-CNF/t-DNF and CNF/DNF . 60
G.5 Other Applications . 62

H Comparisons . 63

70 Elette Boyle , Lisa Kohl , Zhe Li, and Peter Scholl

H.1 FSS for Bit-fixing Predicates from HSS vs. EOH-PRG 63
H.2 FSS for Branching Programs from HSS vs. EOH-PRG 66

