
Constructing Committing and Leakage-Resilient
Authenticated Encryption

Patrick Struck1 and Maximiliane Weishäupl2

1 Universität Konstanz, Konstanz, Germany, patrick.struck@uni-konstanz.de
2 Universität Regensburg, Regensburg, Germany, maximiliane.weishaeupl@ur.de

Abstract. The main goal of this work is to construct authenticated encryption (AE)
that is both committing and leakage-resilient. As a first approach for this we consider
generic composition as a well-known method for constructing AE schemes. While
the leakage resilience of generic composition schemes has already been analyzed by
Barwell et al. (Asiacrypt’17), for committing security this is not the case. We fill
this gap by providing a separate analysis of the generic composition paradigms with
respect to committing security, giving both positive and negative results: By means of
a concrete attack, we show that Encrypt-then-MAC is not committing. Furthermore,
we prove that Encrypt-and-MAC is committing, given that the underlying schemes
satisfy security notions we introduce for this purpose. We later prove these new
notions achievable by providing schemes that satisfy them. MAC-then-Encrypt turns
out to be more difficult due to the fact that the tag is not outputted alongside the
ciphertext as it is done for the other two composition methods. Nevertheless, we
give a detailed heuristic analysis of MAC-then-Encrypt with respect to committing
security, leaving a definite result as an open task for future work. Our results, in
combination with the fact that only Encrypt-then-MAC yields leakage-resilient AE
schemes, show that one cannot obtain AE schemes that are both committing and
leakage-resilient via generic composition. As a second approach for constructing
committing and leakage-resilient AE, we develop a generic transformation that turns
an arbitrary AE scheme into one that fulfills both properties. The transformation
relies on a keyed function that is both binding, i.e., it is hard to find key-input pairs
that result in the same output, and leakage-resilient pseudorandom.
Keywords: Authenticated Encryption · Committing Security · Leakage Resilience

1 Introduction
Authenticated encryption (AE) with associated data is the modern day version of what
cryptography was historically: a method to secure the communication between two parties.
Classically, secure communication is understood to entail confidentiality and authenticity.
The former prevents anyone except the rightful receiver of a ciphertext to recover the
message from it, while the latter ensures that the ciphertext originates indeed from the
claimed sender and was not manipulated during transmission. In an AE scheme, the
ciphertext is generated by encryption of the message under a context (K, N, A), consisting
of a key K, a nonce N , and associated data A. To achieve the above security goals,
both the message and associated data need to be authenticated, whereas confidentiality is
required only for the message.

⋆We thank the anonymous reviewers for the valuable feedback. Patrick Struck acknowledges support
by the Hector Foundation II. Work of Maximiliane Weishäupl was funded by the German Federal Ministry
of Education and Research (BMBF) under the project Quant-ID (16KISQ111).

mailto:patrick.struck@uni-konstanz.de
mailto:maximiliane.weishaeupl@ur.de

Besides the standard security notions—confidentiality and authenticity—there are
several, more advanced security notions. This encompasses, for instance, security against
related-key attacks [FKOS22] which enables the adversary to obtain ciphertexts generated
by keys that exhibit a certain relation, anonymous AE [CR19] where ciphertexts have to
conceal the nonce to provide anonymity of the communicating parties, leakage-resilient
AE [BMOS17] where the adversary can obtain extra information via side-channels, and
committing security [BH22] which prevents adversaries from finding ciphertexts that
decrypt under more than one key. These advanced security notions are typically analyzed
isolated and not in conjunction. However, depending on the use-case, a joint consideration
of multiple security notions might be sensible. As there is little analysis on the interplay
between the notions, unwanted effects might occur: While there are transformations, which
one applies to an AE scheme to obtain certain security properties, concatenating them might
not have the desired outcome. A successive application of two or more transformations
could result in a scheme that is not secure with respect to all of the security notions,
but—in the worst case—only the notion corresponding to the last transformation that
was applied. This stems from the fact that these transformations are usually proven to
achieve the desired security property while maintaining the standard AE security, i.e.,
the last transformation might subvert the additional guarantees from the previous ones.
On the other hand, it is possible that a transformation achieves security with respect to
additional notions besides the one it was developed for. This would make further changes
to the scheme redundant and might result in unnecessary overhead. In total, deepening our
understanding of the relation between advanced security notions brings various benefits
with it. As we will see later, this is the case for the transformation given in [BH22]: It
was designed with the goal to achieve committing security and while it does not initially
achieve leakage resilience, we show that a minor tweak to it allows to achieve both.

Two areas that have gained a lot of attention are leakage resilience [BMOS17,DJS19,
DEM+20, BPPS17, BGP+19, DM21, DM19, MOSW15, BGPS21] and committing secu-
rity [BH22, CR22, MLGR23, KSW23, DMVA23], though they were never considered in
conjunction. We focus on developing AE schemes that fulfill both properties. Firstly,
having such schemes allows deployment in different scenarios even if each of it requires
only one of the properties. Secondly, we think that this concrete combination of security
notions has also practical relevance: Considering key-recovery attacks on embedded devices,
both leakage-resilience and committing security are necessary properties. More precisely,
consider an AE scheme that is either leakage-resilient or committing but not both. Using
side-channel attacks, an adversary might be able extract the secret key if the scheme is
only committing secure. If the scheme is only leakage-resilient an adversary could apply a
Partitioning Oracle Attack [LGR21] to learn the key: the adversary crafts ciphertexts that
are valid for a subset of keys. If decryption succeeds, it knows that the target key is within
this set and the attack continues using smaller and smaller subsets until it finds the key.

Towards the goal of developing schemes that fulfill both notions, we start by considering
generic composition as a well-known method of constructing AE schemes. Here, an AE
scheme is obtained by “gluing together” a symmetric encryption (SE) scheme and a message
authentication code (MAC) such that security of the AE scheme follows from security of the
two underlying components. There are three general methods: Encrypt-and-MAC (E&M),
Encrypt-then-MAC (EtM), and MAC-then-Encrypt (MtE). A common misconception is
that only EtM is secure and the other two approaches (E&M and MtE) are not. While
initial work [BN00] indeed showed that only EtM is secure in general, later work [NRS14]
provided a more fine-grained analysis. Here, associated data was taken into account
as an input to the MAC and encryption schemes based on random IVs or nonces were
considered. This led to the development of several secure AE schemes derived from the
three classical composition methods: eight A-schemes that are composed of an IV-based
encryption scheme and a vector-MAC; and three N-schemes which rely on nonce-based

2

encryption for the underlying scheme and again a vector-MAC. Throughout this work, we
will mainly focus on the latter schemes N1, N2, and N3, which follow the E&M, EtM, and
MtE approach, respectively. The three N-schemes have been analyzed both in the leakage
setting [BMOS17] and against related-key attacks [FKOS22]. However, they have yet to
be analyzed with respect to their committing security.

1.1 Contribution
We first study the committing security of generic composition.1 We show that N2 (and
EtM in general) does not achieve committing security. The fact that N2 authenticates
the ciphertext together with the circumstance that colliding ciphertexts are easy to find—
due to encryption schemes being reversible by design—enables a generic attack. For N1
(following E&M), we prove that committing security can be reduced to corresponding
collision resistance properties of the underlying encryption and MAC.2 We call these
properties wCR and CR and show that they are achievable security notions by providing
instances that fulfill them—namely, the symmetric encryption scheme and MAC underlying
Slae [DJS19]. To check this, we first note that Slae follows the FGHF′ construction
and hence one can further break down the notions wCR and CR to the functions F , G, H,
and F ′. We then prove that the instantiations for these functions used in Slae fulfill the
desired properties. Our results for N3 (following MtE) are not that definite as the ones
for N1 and N2: The main difficulty lies in the fact that the tag gets encrypted alongside
the message, whereas for N1 and N2, the tag gets appended to the ciphertext—thus any
committing attack against N1 and N2 requires identical tags whereas those against N3 do
not. We give an heuristic analysis, narrowing down the possible attacks and discussing a
number of common attack strategies. However, a complete analysis of MtE with respect
to committing security is still an open task and left for future work. Nevertheless, we can
conclude that committing and leakage-resilient AE cannot be built via generic composition,
as the only leakage-resilient generic composition method is Encrypt-then-MAC [BMOS17],
which we prove to be not secure with respect to committing security. As a second approach
for building committing and leakage-resilient AE, we turn towards generic transformations
as a way to achieve the desired security properties. We observe that none of the existing
transformations from the literature are suitable for our purpose. The problem is that
all of them hash the key, hence the leakage resilience of a scheme might be lost after its
application if the hash function leaks information. To address this problem, we develop
a generic transformation that turns an arbitrary AE scheme, a hash function, and a
keyed function into an AE scheme that is both leakage-resilient and committing. At the
core of the transformation is the keyed function which needs to be both pseudorandom
under leakage and binding. We show existence of such a function by proving that the
sponge-based function used in Slae fulfills the binding property—pseudorandomness under
leakage was already proven in [DJS19]. For the underlying AE scheme and hash function
we rely on default AE security and collision-resistance.

In total, our consideration of committing security and leakage resilience of AE schemes
in conjunction, yields both negative and positive results. On the negative side, our results
indicate that committing security and leakage resilience do not work well together for
generic composition. On the positive side, we develop a simple generic transformation
that achieves both security notions, thereby meeting our goal of building committing and
leakage-resilient AE.

1We focus on the N-schemes, though it is easy to see that the results also apply to the A-schemes: In
case of committing security, the difference between unique nonces and random IVs becomes obsolete as
the adversary can choose them at will.

2In order to get a non-trivial bound for the symmetric encryption scheme, the message length needs to
be of sufficient length (e.g., 128 bits). In light of real-world committing attacks, like the Facebook message
franking attack [DGRW18], this is a reasonable assumption.

3

1.2 Related Work
Generic composition was initially introduced in [BN00] as a method to construct AE schemes
and refined in [NRS14]. It is, especially from a theoretical point of view, an important
method and was studied in various settings [FKOS22,BPP18,Ber23,BMOS17,KS20].

The necessity of committing security for AE schemes is due to real-world attacks that
exploit the lack thereof [DGRW18,LGR21,ADG+22]. The first committing security notions
for AE schemes were formalized in [BH22]. Later works [CR22,MLGR23] provided a more
fine-grained framework for committing security notions. Several works show committing
attacks against various AE schemes: GCM/AES-GCM-SIV [BH22], GCM/OCB [CR22],
CCM/EAX/SIV [MLGR23], Aez [CFGI+23], and the NIST LWC finalists [KSW23].
However, there are also positive results: Cau [BH22], Ctx [CR22], the sponge-based NIST
LWC finalists Ascon, Isap, and Schwaemm [KSW23], SpongeWrap [DFG23], and a
sponge-based AE scheme based on Shake [DMVA23] were proven to be committing.

Leakage-resilient cryptography was formalized in [DP08], following the “Only Computa-
tion Leaks Information” paradigm [MR04]. Security notions for authenticated encryption
incorporating leakage were developed in [BMOS17], which also analyzed the leakage re-
silience of generic composition, showing inherent weaknesses for Encrypt-and-MAC and
MAC-then-Encrypt. Several works developed AE schemes that are designed to be leakage-
resilient: Isap [DEM+17, DEM+20], Slae/FGHF′ [DJS19, KS20], Tedt [BGP+19],
Romulus-T [IKM+21], and Sivat [BMOS17]. Furthermore, there are results concern-
ing the leakage resilience of existing AE modes: Pyjamask, Photon-Beetle, Ascon,
Spook, Isap, and Tedt, are analyzed in [BBC+20], which shows different results regarding
what parts need to be protected against leakage. Similarly, [VCS22] shows that out of the
NIST LWC finalists, three modes (Ascon, Isap, and Romulus-T) are advantageous when
hardening their implementations against leakage. Lastly, [GPPS20] is worth highlighting,
which provides a methodology that allows to analyze the leakage resilience of duplex
sponges, e.g., Isap, Ascon, Gibbon, and TedtSponge—two of which were also shown
to be committing.

Overall, there are many results with respect to either notion—for Ascon/Isap even
for both3 individually—we are not aware of any work explicitly targeting both of them.

2 Preliminaries
Notation. By {0, 1}∗, we denote the set of bit strings with arbitrary length. The empty
bit string is written as ε. For a bit string X and an integer y, ⌈X⌉y (resp. ⌊X⌋y) denote
the leftmost (resp. rightmost) y bits of X. Concatenation of bit strings X and Y is written
as X ∥ Y . We use game-based proofs [BR06] and write G(A) → x, to denote that the
output of game G, when played by A, is x. By AG → x, we denote that A outputs x, when
playing game G. Throughout this work, we write IV for some public, fixed initialization
vector used in the constructions.

Primitives. The focus of this work is on authenticated encryption (AE) scheme with
associated data, which is a pair of two algorithms (Enc, Dec). The encryption algorithm
Enc : K×N×A×M→ C takes a key K, a nonce N , associated data A, and a message M as
input, and outputs a ciphertext C. The decryption algorithm Dec : K×N×A×C →M∪{⊥}
takes a key K, a nonce N , associated data A, and a ciphertext C as input, and outputs
a message M or a special symbol ⊥. The key space, nonce space, associated data
space, message space, and ciphertext space are denoted by the sets K, N , A, M, and C,
respectively. Throughout this work, we consider these sets to be bit strings of certain

3Romulus was also analyzed with respect to both leakage resilience and committing security [VCS22,
KSW23], though for different variants (Romulus-N and Romulus-T).

4

N

M

A

C

T

Enc

Tag

Ke

Km

N

M

A

C

T

Enc

Tag

Ke

Km

N

M

A

CEnc

Tag

Ke

Km

Figure 1: The AE schemes N1 (left), N2 (middle), and N3 (right) [NRS14] in terms of an
underlying symmetric encryption scheme (Enc, Dec) and MAC (Tag, Ver).

M

N C

K

F G X T

K

F ′H

Figure 2: The symmetric encryption scheme Se[F ,G] (left), composed of a function F
and a pseudorandom generator G, and the MAC Mac[H,F ′] (right), composed of a hash
function H and a function F ′.

length, more precisely, K = {0, 1}κ, N = {0, 1}ν , A = {0, 1}∗, M = {0, 1}∗, and
C = {0, 1}∗×{0, 1}τ . We abuse notation and write either (C, T) or C ∥ T . The length of a
message is denoted by m. Correctness of an AE scheme means that for any (K, N, A, M) ∈
K × N × A ×M, we have Dec(K, N, A, Enc(K, N, A, M)) = M . All schemes that we
consider satisfy the tidyness property [NRS14]: it holds that M = Dec(K, N, A, C) implies
that C = Enc(K, N, A, M). A symmetric encryption scheme is defined equivalently, except
that there is no associated data and decryption does not return ⊥. Following [MLGR23],
the triple (K, N, A) is called a context.

A message authentication code (MAC) consists of two algorithms (Tag, Ver). The
tagging algorithm Tag : K × X → {0, 1}τ takes as input a key K and an element X. It
returns a tag T of size {0, 1}τ . The verification algorithm Ver : K ×X × {0, 1}τ → {0, 1}
takes as input a key K, an element X, and a tag T and outputs 1 indicating that the
input is valid, or otherwise 0. Throughout this work, we consider K = {0, 1}κ and
X = {0, 1}∗. Correctness of a MAC means that for any (K, X) ∈ K × X , it holds that
Ver(K, X, Tag(K, X)) = 1.

The N-schemes [NRS14] construct an AE scheme from a symmetric encryption scheme
and a MAC. Figure 1 illustrates the schemes N1, N2, and N3, while their pseudocodes are
provided in Figure 15.

Sponges. Sponges are a tool to construct primitives. They rely on an n-bit state S that
is constantly updated by applying a permutation π : {0, 1}n → {0, 1}n or a transformation
ρ : {0, 1}n → {0, 1}n to it. A P-Sponge is centered around a permutation whereas a
T-Sponge is centered around a transformation. In this work, we focus on the latter. In
between two invocations of the permutation/transformation the sponge can absorb an
input by XORing it to the first r bits of the state S or squeeze an output by outputting the
first r bits of the state S. In the simplest setting—which is all we need in this work—the
sponge will first absorb the whole input by constantly absorbing it r bits at a time and

5

K

IV
ρ ρ ρ ρS1 Sl−1 Sl Sl+1Y0 Y1 Yl−1 Yl

. . .

. . .

X1 Xl−1 Xl

r
/

r
/

r
/

r
/

c
/

c
/

c
/

c
/

z ρ ρ ρS1 S2 Sl−1 Sl

. . .

. . .

Z1 Z2 Zl−1 Zl

r
/

r
/

r
/

r
/

c
/

c
/

c
/

N

IV
ρ ρ

A1

. . .

. . .

ρ

Aα

ρ

C1

1 ∥ 0c−1

ρ

C2

ρ

Cγ

. . .

. . .

H

Figure 3: Illustration of the sponge-based primitives SlFunc, SPrg, and SvHash.

then squeeze the output r bits at a time. The capacity c = n− r is the part of the state
that is neither modified by the input during the absorption phase nor outputted in the
squeezing phase. For the sponge-based proofs, the underlying transformation is assumed
to be ideal, i.e., a random transformation to which the adversary gets oracle access.

In this work, we consider the sponge-based AE scheme Slae [DJS19], more precisely,
its underlying components. Slae follows the generic construction FGHF′ [DJS19,KS20],
which constructs an AE scheme (via N2) from a symmetric encryption scheme Se[F ,G]
and a MAC Mac[H,F ′] (cf. Figure 2), which in turn are composed of functions F and F ′,
a PRG G, and a hash function H. The AE scheme Slae is obtained by instantiating F/F ′,
G, and H with the sponge-based primitives SlFunc, SPrg, and SvHash, respectively.
The primitives SlFunc, SPrg, and SvHash are illustrated in Figure 3, while their
pseudocodes are given in Figure 17. The pseudocodes of the composed encryption scheme
SlEnc and the MAC SlMac are provided in Figure 16.

3 Committing Security and Generic Composition
In this section, we analyze the committing security of the different generic composi-
tion paradigms. In Section 3.1, we analyze the three N-schemes N1, N2, and N3,
given in [NRS14]. We continue with the generic encryption scheme Se[F ,G] and MAC
Mac[H,F ′] [DJS19,KS20] in Section 3.2, and its sponge-based instantiation in Section 3.3.

3.1 Committing Security of the N-Schemes
In this section, we analyze the committing security of N1, N2, and N3. We focus on the
strongest form of committing security, which we define below. It asks the adversary to
output two different contexts and messages that encrypt to the same ciphertext.

6

Game CMT
(K, N, A, M), (K, N, A, M)← A()
if (K, N, A) = (K, N, A)

return 0
(C, T)← Enc(K, N, A, M)
(C, T)← Enc(K, N, A, M)
return ((C, T) = (C, T))

Figure 4: Security game CMT for authenticated encryption schemes.

Definition 1. Let AE = (Enc, Dec) be an authenticated encryption scheme and the game
CMT be defined as in Figure 4. For any adversary A, its CMT advantage is defined as

AdvCMT
AE (A) := Pr[CMT(A)→ 1] .

3.1.1 N2 (Encrypt-then-MAC)

The following theorem shows that the N2 construction does not achieve any committing
security. Due to the fact that the N2 construction authenticates the ciphertext—compared
to the N1 and N3 construction which both authenticate the message—there is a generic
attack exploiting the fact that colliding ciphertexts are easy to find for symmetric encryption
schemes: We obtain two messages by decrypting an arbitrary ciphertext under different
keys and the same nonce, and then authenticate said ciphertext, the nonce, and arbitrary
associated data using some key for the MAC.

Theorem 1. Let Se be a symmetric encryption scheme and Mac be a MAC. Let further
N2[Se, Mac] be the authenticated encryption scheme obtained via the N2 construction
using Se and Mac. Then there exists an adversary A such that

AdvCMT
N2[Se,Mac](A) = 1 .

Proof. We construct a CMT adversary A against N2[Se, Mac] as shown in Figure 5. It
picks an encryption key Ke, a Mac key Km, a nonce N , associated data A, and a message M
at random from the respective sets and computes the ciphertext C ← Se.Enc(Ke, N, M).
After sampling a different encryption key Ke from K\{Ke} at random, A computes
M ← Se.Dec(Ke, N, C).4 Note that Se.Enc(Ke, N, M) = C as we assume the symmetric
encryption scheme to be tidy. Lastly the adversary sets K ← (Ke, Km) and K ← (Ke, Km),
and outputs (K, N, A, M), (K, N, A, M). Then A is successful as Ke ̸= Ke implies K ̸= K
and

N2[Se, Mac].Enc(K, N, A, M)
= Se.Enc(Ke, N, M) ∥Mac.Tag(Km, (N, A, Se.Enc(Ke, N, M)))
= C ∥Mac.Tag(Km, (N, A, C))
= Se.Enc(Ke, N, M) ∥Mac.Tag(Km, (N, A, Se.Enc(Ke, N, M)))
= N2[Se, Mac].Enc(K, N, A, M) .

This finishes the proof.

4Note that the messages M and M might be identical which does not affect the attack as the encryption
keys are guaranteed to be distinct.

7

Adversary A

Ke, N, M ←$K ×N ×M
C ← Se.Enc(Ke, N, M)
Ke ←$K\{Ke}
M ← Se.Dec(Ke, N, C) // by tidyness: C = Se.Enc(Ke, N, M)

(Km, A)←$K ×A
return ((Ke, Km), N, A, M), ((Ke, Km), N, A, M)

Figure 5: Our generic adversary breaking committing security for any instantiation of N2.

Game CR
(K, X), (K, X)← A()
if (K, X) = (K, X)

return 0
T ← Tag(K, X)
T ← Tag(K, X)
return (T = T)

Game wCR
(K, N, M), (K, N, M)← A()
if K = K ∨ (N, M) ̸= (N, M)

return 0
C ← Enc(K, N, M)
C ← Enc(K, N, M)
return (C = C)

Figure 6: Security game CR for MACs and wCR for symmetric encryption schemes.

3.1.2 N1 (Encrypt-and-MAC)

We first define two new security notions which enable us to show committing security
of N1: CR and wCR. The former requires the adversary to find a collision of a MAC,
i.e., two tuples of keys and inputs that differ yet result in the same tag. The latter is
similar but defined for symmetric encryption and of a more restrictive nature. Instead
of asking the adversary to find any collision, it is required to find distinct keys and
identical nonce-message pairs that result in the same ciphertext. While there are no tidy
encryption schemes that satisfy unrestricted collision resistance—as our attack against N2
illustrates—it turns out that this restricted form is achievable as we will show later.

Definition 2. Let Mac = (Tag, Ver) be a message authentication code and the game CR
be defined as in Figure 6. For any adversary A, its CR advantage is defined as

AdvCR
Mac(A) := Pr[CR(A)→ 1] .

Definition 3. Let Se = (Enc, Dec) be a symmetric encryption scheme and the game wCR
be defined as in Figure 6. For any adversary A, its wCR advantage is defined as

AdvwCR
Se (A) := Pr[wCR(A)→ 1] .

Note that, while the tag length (in game CR) is fixed, the ciphertext length (in game
wCR) is controlled by the adversary through the choice of the messages. Thus, for very
short messages the game wCR can be won easily.

The theorem below shows that the N1 construction achieves the strongest form of
committing security, i.e., CMT, given that the underlying encryption scheme and MAC
achieve our new security notions wCR and CR.

Theorem 2. Let Se be a symmetric encryption scheme and Mac be a MAC. Let further
N1[Se, Mac] be the authenticated encryption scheme obtained via the N1 construction
using Se and Mac. Then for any adversary A there exist adversaries B and C such that

AdvCMT
N1[Se,Mac](A) ≤ AdvwCR

Se (B) + AdvCR
Mac(C) .

8

Proof. Let A be a CMT adversary against N1[Se, Mac] and denote his output by
((K, N, A, M), (K, N, A, M)), where K = (Ke, Km) with Ke and Km being the encryption
key and Mac key, respectively. The same for K with encryption key Ke and MAC key
Km. Consider E to be the event that Ke ̸= Ke and (N, M) = (N, M). In the following,
we abbreviate N1[Se, Mac] with N1 as Se and Mac are clear from the context.

We construct a wCR adversary B against Se. It runs ((K, N, A, M), (K, N, A, M))←
A() and outputs ((Ke, N, M), (Ke, N, M)). If A is successful, we obtain (K, N, A, M) ̸=
(K, N, A, M) and

N1.Enc(K, N, A, M) = N1.Enc(K, N, A, M) . (1)

By definition of the N1 construction, the encryption of the scheme N1 is given by

N1.Enc(K, N, A, M) = (Se.Enc(Ke, N, M), Mac.Tag(Km, (N, A, M))) . (2)

Then we can conclude from Eq. (1) and Eq. (2) that

Se.Enc(Ke, N, M) = Se.Enc(Ke, N, M) .

Next assume that, additionally to A being successful, event E holds. Then adversary B

succeeds as Ke ̸= Ke and (N, M) = (N, M), but their respective encryptions under Se
agree. This yields

Pr[E ∧ CMT(A)→ 1] ≤ Pr[wCR(B)→ 1] .

Next, we construct a CR adversary C against Mac. It runs ((K, N, A, M), (K, N, A, M))←
A() and outputs ((Km, N, A, M), (Km, N, A, M)). If A succeeds, we can conclude from
Eq. (1) and Eq. (2) that

Mac.Tag(Km, (N, A, M)) = Mac.Tag(Km, (N, A, M)) .

Assume that additionally to A being successful, event ¬E holds, that means either Ke = Ke

or (N, M) ̸= (N, M). If (N, M) ̸= (N, M) holds, then (Km, N, A, M), (Km, N, A, M) are
two different inputs for Mac. The same can be deduced if Ke = Ke, as A being
successful implies that (K, N, A, M) ̸= (K, N, A, M) and since the encryption keys agree,
the difference must come from the inputs to Mac. Then adversary C wins the game wCR
as it outputs two different tuples that generate the same tag. Thus we obtain

Pr[¬E ∧ CMT(A)→ 1] ≤ AdvCR
Mac(C) . (3)

Combining these results we obtain

AdvCMT
N1[Se,Mac](A) = Pr[CMT(A)→ 1]

= Pr[E ∧ CMT(A)→ 1] + Pr[¬E ∧ CMT(A)→ 1]
≤ Pr[wCR(B)→ 1] + Pr[CR(C)→ 1]
= AdvwCR

Se (B) + AdvCR
Mac(C) .

This concludes the proof.

3.1.3 N3 (MAC-then-Encrypt)

The core feature that differentiates N3 from the other two N-schemes is that the tag is no
longer appended to the ciphertext, but instead is encrypted alongside the message. This
means—at least in theory—that a valid committing attack against N3 can have T ̸= T
and C = C at the same time, which is impossible for both N1 and N2. It turns out that
this case is the problematic one for proving security of N3.

We start by considering the case that the underlying encryption scheme and MAC
fulfill the security properties wCR and CR security, respectively, which we defined for the

9

security proof of N1. While it is not clear that these security properties are fitting for
N3 as well, they seem to be a good starting point—in order to prove classical security,
coinciding assumptions are required for N1 and N3.

Under the assumption that the wCR and CR properties hold for Se and Mac, we
can show that any CMT attack with T = T is ruled out, leaving only attacks for which
T ≠ T holds. This can be checked as follows: Assume for sake of contradiction that
A is an adversary that wins the game CMT and its outputs ((Ke, Km), N, A, M) and
((Ke, Km), N, A, M) fulfill T = T . If Ke = Ke holds, at least one of the inputs to Mac
must differ by definition of CMT. This contradicts the fact that Mac is CR-secure. If
Ke ̸= Ke and (N, M) ̸= (N, M) holds, we also obtain a contradiction to Mac fulfilling
CR security. Lastly, the case that Ke ̸= Ke and (N, M) = (N, M) cannot occur either, as
it would contradict the wCR security of Se.

We can further restrict the scope of possible attacks: As T ̸= T must hold, Se
has two different messages as input (namely M ∥ T ̸= M ∥ T). By correctness, this
implies that (Ke, N) ̸= (Ke, N) must hold, as otherwise Se.Dec(Ke, N, C) would have
to equal both M ∥ T and M ∥ T . This leaves us with attacks for which T ̸= T , i.e.,
(Km, N, A, M) ̸= (Km, N, A, M) and (Ke, N) ̸= (Ke, N), holds. While this is not enough
to prove security of N3 in general, the restriction of possible attacks might aid security
proofs for certain schemes. One example where this is the case, is N3[SlEnc, SlMac], i.e.,
Slae but built following N3 instead if N2: In Section 3.3, we will see that the scheme’s
underlying components fulfill wCR and CR, hence the above argument can be applied to
N3[SlEnc, SlMac]. This implies that any attack must contain different tags while yielding
the same ciphertext. By construction of N3[SlEnc, SlMac] the tag is computed as output
of the function SlMac, which is based on a random function. Therefore, it is highly
unlikely that a pre-chosen tag can be hit by choosing the inputs fittingly. Furthermore, by
construction of SlEnc, the key stream consists of several r-bit blocks generated by SPrg
on input SlFunc(Ke, N). In particular, as the tag is inputted into SlEnc as the last
message block, one needs to find (K, N), (K, N) such that the corresponding last r-bits
blocks (R, R) from the key stream satisfy R⊕ T = R⊕ T . However, both the computation
of the key streams R, R and the tags T , T depend on the respective nonce and message.
Thus after either the tag or the key stream is computed, the choices for the remaining one
are heavily restricted and hence R⊕ T = R⊕ T is unlikely to occur.

For the rest of this analysis we drop the assumptions wCR and CR and play through a
number of general attack strategies.

1. A naive strategy in CMT attacks is to generate the target ciphertext C from randomly
sampled (K, N, A, M) and then look for a second different input tuple (K, N, A, M)
that encrypts to C as well. This approach is what [MLGR23] introduced as context
discovery and several of the attacks against the NIST LWC finalists are of this
form [KSW23]. Below, we show that context discovery attacks on the AE scheme
boil down to similar attacks on the underlying encryption scheme and MAC.

(a) One possibility for an attack is to invert the ciphertext under Ke and N , which
yields M ∥ T . This leaves the adversary with the task of finding Km and A such
that Mac(Km, N, A, M) = T . Following the context discovery notions defined
for AE schemes [MLGR23], we refer to the above as a (Km, A)-discovery attack.
While there are MACs for which this is not possible (e.g. SlMac), there are also
ones that allow this attack (e.g., the MACs underlying Elephant [BCDM21]
and Minalpher [STA+15] as well as the MAC Chaskey [MMV+14]).

(b) Furthermore, one can try to reach the target ciphertext by first computing a
second tag T using (Km, N, A, M). This leaves the task of finding Ke such
that Se.Enc(Ke, N, M ∥ T) = C. We call this a Ke-discovery attack. At first
glance, this might look like a key recovery attack, where the adversary gets

10

message-ciphertext pairs. Note, however, that the adversary only needs to find
a key that satisfies this property for one particular message-ciphertext pair.
This differentiates it from a key recovery attack and leaves the possibility for
secure scheme that allow for that—though we are not aware of such an example.

2. Another strategy is trying to produce a collision, i.e., instead of fixing a target
ciphertext and trying to match it with the second tuple, one varies the inputs of
Se simultaneously. As message, nonce, associated data, and MAC key already
need to be chosen to compute the tag as input for the encryption scheme, the
collision attack boils down to finding Ke and Ke such that Se.Enc(Ke, N, M ∥ T) =
Se.Enc(Ke, N, M ∥ T).

Overall, the results for N3 are of a heterogeneous nature: On the one hand, we identify
a possible proof strategy for schemes with wCR and CR security, on the other hand we
discuss a number of attacks. This indicates that—at least until further analysis is carried
out—an individual treatment is necessary for each scheme. However, the above results
might give a first indication to whether the scheme under consideration is committing.

3.2 Committing Security for Symmetric Encryption and MACs
Having established the positive results for N1, the question is whether there are any
schemes that satisfy the required security notions wCR and CR. In this section we analyze
the generic constructions Se[F ,G] and Mac[H,F ′]. We show that the wCR security
of Se[F ,G] reduces to its underlying components F and G. Likewise, CR security of
Mac[H,F ′] reduces to H and F ′. We first give the security notions required in this section,
starting with the definition of collision resistance of a hash function and a PRG.

Definition 4. Let H : {0, 1}∗ → {0, 1}w be a hash function with output length w. For
any adversary A, its CR advantage is defined as

AdvCR
H (A) := Pr[H(X1) = H(X2) ∧X1 ̸= X2 | (X1, X2)← A()] .

Definition 5. Let G : {0, 1}σ → {0, 1}∗ be a pseudorandom generator with associated
seed space {0, 1}σ. For any adversary A, its CR advantage is defined as

AdvCR
G (A) := Pr[G(z1) = G(z2) ∧ z1 ̸= z2 | (z1, z2)← A()] .

Remark 1. An injective pseudorandom generator trivially is collision-resistant as no collision
exists. Unlike hash functions, injectivity seems likely for PRGs as they map a short seed
into a larger pseudorandom bit string. However, collision resistance is not implied by a
secure PRG: take any secure PRG and hardcode two seeds z1 ̸= z2 to a fixed output Z.

Next, we define the so-called binding security of a keyed function. More precisely, we
give three variants of it: pbind, bind, and wbind. The first, pbind, is taken from [BH22]—
note that they call this notion bind since they do not make the same distinction as we
do—and requires the adversary to find two key-input pairs for which the outputs “partially”
agree, i.e., on their first k bits. The second, bind, is the the same except that the whole
outputs have to agree. The third, wbind, bears similarities with wCR: the adversary needs
to find distinct key and identical inputs for which the outputs agree.

Definition 6. Let F : K×{0, 1}x → {0, 1}y be a function and the games pbind, bind, wbind
be defined as in Figure 7. For any adversary A, its pbind, bind, and wbind advantages are
defined as

AdvX
F(A) := Pr[X(A)→ 1] ,

where X ∈ {pbind, bind, wbind}.

11

Game pbind
(K, X), (K, X)← A()
if (K, X) = (K, X)

return 0
Y ← F(K, X)
Y ← F(K, X)
return (⌈Y ⌉k =

⌈
Y

⌉
k
)

Game bind
(K, X), (K, X)← A()
if (K, X) = (K, X)

return 0
Y ← F(K, X)
Y ← F(K, X)
return (Y = Y)

Game wbind
(K, X), (K, X)← A()
if K = K ∨X ̸= X

return 0
Y ← F(K, X)
Y ← F(K, X)
return (Y = Y)

Figure 7: Security games pbind, bind, and wbind.

These security notions can be ordered hierarchically with respect to their strength,
namely Advwbind

F (C) ≤ Advbind
F (D) ≤ Advpbind

F (B). Details are given in Appendix B.6.
The theorem below shows that binding security of the encryption scheme Se[F ,G]

reduces to binding security and collision resistance of F and G, respectively. The details
are given in Appendix B.1.

Theorem 3. Let F : {0, 1}κ × {0, 1}ν → {0, 1}σ be a function family and G : {0, 1}σ →
{0, 1}∗ be a pseudorandom generator. Then for any wCR adversary A against Se[F ,G],
there exists a wbind adversary B against F and a CR adversary C against G such that

AdvwCR
Se[F,G](A) ≤ Advwbind

F (B) + AdvCR
G (C) .

The binding security of Mac[H,F ′] follows from the collision resistance of H and
binding security of F ′. This is formalized in the following theorem, which is proven in
Appendix B.2.

Theorem 4. Let H : {0, 1}∗ → {0, 1}w be a hash function and F ′ : {0, 1}κ × {0, 1}w →
{0, 1}τ be a function family. Then for any CR adversary A against Mac[H,F ′], there
exists a CR adversary B against H and a bind adversary C against F ′ such that

AdvCR
Mac[H,F ′](A) ≤ AdvCR

H (B) + Advbind
F ′ (C) .

The following composition theorem shows committing security of the N1 construction,
when instantiating it with Se[F ,G] and Mac[H,F ′] which in turn are instantiated with F ,
G, H, and F ′. It follows by combining the previous results and is proven in Appendix B.3.

Theorem 5. Let F : {0, 1}κ×{0, 1}ν → {0, 1}σ, F ′ : {0, 1}κ×{0, 1}w → {0, 1}τ be function
families, G : {0, 1}σ → {0, 1}∗ be a pseudorandom generator, and H : {0, 1}∗ → {0, 1}w be
a hash function. Then for any CMT adversary A against N1[Se[F ,G], Mac[H,F ′]], there
exists a wbind adversary B against F , a CR adversary C against G, a CR adversary D

against H and a bind adversary E against F ′ such that

AdvCMT
N1[Se[F,G],Mac[H,F ′]](A) ≤ Advwbind

F (B) + AdvCR
G (C) + AdvCR

H (D) + Advbind
F ′ (E) .

3.3 An Instantiation from Sponges
Having established Theorem 5, we now give concrete bounds for the sponge-based instan-
tiations of F , G, H, and F ′. Recall that n is the size of the sponge state while c is its
capacity.

The theorem below bounds the pbind, bind, and wbind advantages of the sponge-based
function SlFunc. Its proof can be found in Appendix B.4.

12

Theorem 6. Let SlFunc be the sponge-based function as displayed in Figure 3. Then for
any adversary A making q queries to ρ, it holds that

Advpbind
SlFunc(A) ≤ q2 − q

2c+1 + q2 − q

2k+1 and Advwbind
SlFunc(A) ≤ q2 − q

2n+1 .

In particular, for k = n we have

Advbind
SlFunc(A) ≤ q2 − q

2c+1 + q2 − q

2n+1 .

Next, we give a bound on the collision-resistance of SPrg, the proof is given in
Appendix B.5.

Theorem 7. Let SPrg : {0, 1}n → {0, 1}m be the sponge-based pseudorandom generator
as displayed in Figure 3. Then for any adversary A making q queries to ρ, it holds that

AdvCR
SPrg(A) ≤ q2 − q

2m+1 .

Collision resistance of the sponge-based hash function SvHash has been shown
in [DJS19]. We recall this result below.

Theorem 8 ([DJS19]). Let SvHash be the hash function as displayed in Figure 3 with
output length w. Then for any adversary A making q queries to ρ, it holds that

AdvCR
SvHash(A) ≤ q(q − 1)

2w+1 + q(q + 2)
2c−1 .

Using Theorem 5 together with Theorem 6, Theorem 7, and Theorem 8, we obtain the
committing security of N1[SlEnc, SlMac].

Theorem 9. Let SlFunc, SPrg, and SvHash be the function family, PRG, and hash
function described in Figure 3, respectively. Let further N1[SlEnc, SlMac] be the AE
scheme constructed via N1 construction from SlEnc and SlMac, which in turn are
constructed from SlFunc, SPrg, and SvHash as described in Figure 16. Then for any
CMT adversary A against Ae, making q queries to ρ, it holds that

AdvCMT
N1[SlEnc,SlMac](A) ≤ q2 − q

2n
+ q2 − q

2m+1 + q2 − q

2w+1 + q2 + 2q

2c−1 + q2 − q

2c+1 .

Remark 2. Note that, in order to obtain a reasonable bound, the length of the messages
outputted by A should satisfy m ≥ min{w, c}. Otherwise, q2−q

2m+1 becomes the dominant
term, which can be trivial for very small m. However, this is a non-restrictive requirement,
as real-world committing attacks [DGRW18] usually have this property.

4 Committing Security and Leakage Resilience
In this section, we develop a generic transformation that turns an arbitrary AE scheme
into an AE scheme that is both leakage-resilient and committing. We start with the
required background on leakage-resilient security notions in Section 4.1 followed by the
transformation in Section 4.2.

13

Game LAE
b←$ {0, 1}
K ←$K

b′ ← A
Enc,LEnc,Dec,LDec()

return (b′ = b)

oracle Enc(N, A, M)
C ← Enc(K, N, A, M)
if b = 0

return C ←$ {0, 1}|C|

return C

oracle LEnc(N, A, M, L)
Λ← L(K, N, A, M)
C ← Enc(K, N, A, M)
return (C, Λ)

oracle Dec(N, A, C)
if b = 0

return ⊥
M ← Dec(K, N, A, C)
return M

oracle LDec(N, A, C, L)
Λ← L(K, N, A, C)
M ← Dec(K, N, A, C)
return (M, Λ)

Figure 8: Security game LAE.

4.1 Leakage Security Notions
For the leakage model, we use [BMOS17] which is based on [DP08], following the “Only
Computation Leaks Information” assumption [MR04]. In this model, the adversary obtains
challenge oracles that do not leak—representing the goal of the adversary—and leakage
oracles that do leak—representing the power of the adversary to obtain side-channel
leakage. For the leakage oracles, the adversary can choose a leakage function from some
predetermined set of leakage functions. Alongside the output of the functionality that the
leakage oracle represents, the adversary receives the evaluation of the leakage function. In
case the scheme is composed of different components, the leakage of the composed scheme
is the composition of the leakage from the individual components, i.e., for a primitive C
composed of A and B, the leakage set of C is LC = LA × LB for LA and LB the leakage
sets of A and B, respectively. An assumption that we are making is that comparison of
values is leak-free, for instance, when a given tag is compared with the correct, recomputed
tag. This assumption is made for Slae and its generic construction FGHF′ [DJS19,KS20].
Methods to achieve this are presented in [DM21].

Our target is LAE security as defined in [BMOS17]. In the notion, the adversary
gets four oracles: Two challenge oracles which either implement the real encryption and
decryption or their idealized counterparts, i.e., outputting random ciphertext (for the
encryption oracle) and rejecting any query (for the decryption oracle). In addition, the
adversary gets two leakage oracles, one for encryption and one for decryption, which always
implement the real algorithm. The leakage oracle takes a leakage function as additional
input whose output models the side-channel leakage that the adversary receives. Classical
security for AE schemes is obtained by discarding the leakage oracles for the adversary.
The security notion is formalized below.

Definition 7 (LAE Security). Let Ae = (Enc, Dec) be an authenticated encryption scheme
with associated data and the game LAE be as defined in Figure 8. For any nonce-respecting
adversary A that never forwards or repeats queries to or from the oracles Enc and Dec and
only makes encryption and decryption queries containing leakage functions in the set LAE ,
describing the leakage sets for authenticated encryption, its corresponding LAE advantage
is given by

AdvLAE
Ae (A,LAE) := |Pr[ALAE ⇒ 1 | b = 1]− Pr[ALAE ⇒ 1 | b = 0]| .

In addition to LAE security, we need LPRF security which corresponds to the standard
PRF security enhanced with leakage: The adversary gets a challenge oracle, which
implements either the real function or a random function. On top of that, the adversary
gets a leakage oracle, which always implements the real function that also returns leakage,

14

based on the leakage function queried by the adversary. The definition of LPRF security
is given below.

Definition 8 (LPRF Security). Let F : K × X → Y be a function family indexed by K
over the domain X and let the game LPRF be as defined in Figure 9. For any adversary A

that never forwards or repeats queries to or from the oracle F and only queries leakage
functions in the set LF , describing the leakage set for the function, its corresponding
LPRF advantage is given by

AdvLPRF
F (A,LF) := |Pr[ALPRF ⇒ 1 | b = 1]− Pr[ALPRF ⇒ 1 | b = 0]| .

Game LPRF
b←$ {0, 1}
K ←$K

b′ ← A
F,LF()

return (b′ = b)

oracle F(X)
if b = 0

return Y ←$ Y
else

return F(K, X)

oracle LF(X, L)
Λ← L(K, X)
Y ← F(K, X)
return (Y, Λ)

Figure 9: Security game LPRF.

4.2 A Generic Transformation
Our results so far show that one can construct committing authenticated encryption
via generic composition, more precisely by following the Encrypt-and-MAC paradigm.
However, our analysis also revealed that the Encrypt-then-MAC approach can never yield
committing authenticated encryption. This presents a stark contrast to the results that
are known in the realm of leakage-resilient AE schemes via generic composition: Barwell et
al. [BMOS17] showed that only the Encrypt-then-MAC paradigm yields leakage-resilient
AE schemes whereas the other two approaches suffer from inherent weaknesses. The
key problem is that in both Encrypt-and-MAC and MAC-then-Encrypt, adversaries can
obtain decryption leakage even for invalid ciphertexts, as the ciphertext needs to be
decrypted in order to be validated. In contrast, Encrypt-then-MAC schemes can validate
the ciphertext before decrypting it, thereby guaranteeing that decryption can leak only for
valid ciphertexts.

In total, our results on the committing security of the generic composition methods
combined with the existing ones on their leakage-resilience, expose that we cannot build
AE schemes with both properties from generic composition. On our quest for committing
and leakage-resilient AE schemes, we hence turn towards transformations that achieve the
security notions.

To the best of our knowledge, there are two transformations that achieve CMT security:
the combination of UtC and HtE from [BH22] and the CTX construction from [CR22].
Other transformations PaddingZeros, KeyHashing, and CAU-C1 [BH22] only achieve
weaker forms of committing security.

Both constructions are shown to achieve CMT security while maintaining the security
of the underlying AE scheme.5 Here, however, security is to be understood only with
respect to classical AE security. Thus, when applying the transformation to any AE scheme
that achieves LAE security, it is unclear whether the resulting scheme still achieves LAE
security. Note that both transformations feed the key K as input into a hash function
H. If the hash function is not leakage-resilient, the adversary might be able to learn
the key which would render the scheme insecure. In particular, we are not aware of any

5Note that [BH22] also provides a transformation RtC that maintains nonce-misuse resistance.

15

UtC*[H, F, Ae].Enc(K, N, A, M)
X ← H(N, A)
(P, K′)← F(K, X)
(C, T)← Enc(K′, N, A, M)
return (P, C, T)

UtC*[H, F, Ae].Dec(K, N, A, (P ∗, C, T))
X ← H(N, A)
(P, K′)← F(K, X)
if P ∗ ̸= P

return ⊥
return Dec(K′, N, A, (C, T))

Figure 10: Our modified transform UtC*.

leakage-resilient hash function. While sponge constructions can achieve leakage resilience
by reducing the rate to a minimum [DEM+17,DEM+20,DJS19], for hash functions such a
change seems impractical.

This raises the question whether there are other transformations without this drawback.
In the following we answer this question in the affirmative: We give a modified version of
the transformation from [BH22] which transforms an arbitrary AE scheme (even without
any leakage resilience) into an AE scheme that is both leakage-resilient and achieves CMT
security. The transformation is shown in Figure 10. It is as simple as the one in [BH22] and
imposes the same ciphertext expansion. First, the nonce N and the associated data A are
hashed together. The resulting hash value is fed into a keyed function F that uses the key
K and outputs a commitment P and a session key K ′. Finally, the message is encrypted
using K ′ and the resulting ciphertext is outputted together with the commitment P .

In the theorem below, we show that: (1) if H is a collision-resistant hash function and
F is a partially binding function, then the AE scheme UtC*[H, F, Ae], resulting from the
transformation, achieves CMT security and (2) if H is a collision-resistant hash function, F
is a leakage-resilient pseudorandom function, and Ae is a secure AE scheme, then the AE
scheme UtC*[H, F, Ae] achieves LAE security. At the core lies the underlying function
F, which needs to achieve both pbind and LPRF security—for the other components, we
require only standard security properties.

Theorem 10. Let Ae be an authenticated encryption scheme, F : K×{0, 1}x → {0, 1}k×K
be a function, and H : {0, 1}∗ → {0, 1}x be a hash function with associated leakage sets LAe,
LF, and LH, respectively.. Let further UtC*[H, F, Ae] be the authenticated encryption
scheme resulting from H, F, and Ae via the modified UtC transformation (cf. Figure 10)
with associated leakage set L = LH × LF × LAe. Then for any adversary A0 there exist
adversaries B0 and C0, such that

AdvCMT
UtC*[H,F,Ae](A0) ≤ Advpbind

F (B0) + AdvCR
H (C0) ,

and for any nonce-respecting adversary A1, making q queries to its challenge oracles, there
exist adversaries B1, C1, and D, such that

AdvLAE
UtC*[H,F,Ae](A1,L) ≤ AdvLPRF

F (B1,LF) + 2AdvCR
H (C1) + qAdvAE

Ae(D) .

Proof. We start by showing the first part of the statement. The proof uses the games G
and G described in Figure 11. The former is game CMT instantiated with the scheme
UtC*[F, Ae, H] that is composed of the function F, the AE scheme Ae, and the hash
function H. The latter game is similar, except that the adversary looses if its outputs
constitute a collision in the hash function H. By a game hopping argument, we have

AdvCMT
UtC*[H,F,Ae](A0) = Pr[G(A0)→ 1]

≤ |Pr[G(A0)→ 1]− Pr[G (A0)→ 1]|+ Pr[G (A0)→ 1] .

16

The games G and G are identical until Bad, i.e., a collision of H, occurs. We construct C0
that runs A0 to obtain (K, N, A, M), (K, N, A, M) and simply outputs (N, A), (N, A). It
then holds that

|Pr[G(A0)→ 1]− Pr[G (A0)→ 1]| ≤ Pr[Bad] = AdvCR
H (C0) .

Let A be an adversary winning the game G . This means that A outputs (K, N, A, M) ̸=
(K, N, A, M), which fulfill

UtC*[H, F, Ae].Enc(K, N, A, M) = (⌈F(K, H(N, A))⌉k , C)
= (

⌈
F(K, H(N, A))

⌉
k

, C)
= UtC*[H, F, Ae].Enc(K, N, A, M) .

We construct adversary B0 which runs A0 and outputs (K, H(N, A)) and (K, H(N, A)).
Using the above, we get that B0’s output satisfies ⌈F(K, H(N, A))⌉k =

⌈
F(K, H(N, A))

⌉
k
.

It remains to argue that its output is valid, i.e., F(K, H(N, A)) ̸= F(K, H(N, A)). In case
that A0’s output satisfies K ̸= K, this holds trivially. In the case that A0’s output satisfies
K = K it must hold that (N, A) ̸= (N, A) and H(N, A) ̸= H(N, A), as otherwise A0 would
not be an adversary winning the game G . Thus, in both cases, we have that B0’s output
is valid and conclude with

Pr[G (A0)→ 1] = Advpbind
F (B0) .

Collecting the above finishes the first part of the proof.
Next, we prove the second part of the statement. For this we consider a sequence of

games G0, G0 , G1, G2, and G3 (see Figure 12). Game G0 (respectively G3) is the game
LAE with secret bit fixed to 1 (respectively 0). G0 is similar to G0, except that queries
constituting a collision in the hash function are rejected. Game G1 equals G0 , up to the
fact that the step (P, K ′)← F(K, H(N, A)) is replaced by (P, K ′)← F1(K, H(N, A)) for
some random function F1. In G2 this is further changed to (P, K ′) ← F2(K, N, A) for
some random function F2. Throughout all games, the leakage oracles remain the same.
The choice of G0 and G3 allows the following computation

AdvLAE
UtC*[H,F,Ae](A1) = |Pr[ALAE

1 ⇒ 1 | b = 1]− Pr[ALAE
1 ⇒ 1 | b = 0]|

= |Pr[AG0
1 ⇒ 1]− Pr[AG3

1 ⇒ 1]|

≤ |Pr[AG0
1 ⇒ 1]− Pr[AG0

1 ⇒ 1]|+ |Pr[AG0
1 ⇒ 1]− Pr[AG1

1 ⇒ 1]|
+ |Pr[AG1

1 ⇒ 1]− Pr[AG2
1 ⇒ 1]|+ |Pr[AG2

1 ⇒ 1]− Pr[AG3
1 ⇒ 1]| .

Note that for all game hops in the rest of the proof, the leakage ΛAe of the AE scheme
Ae and the leakage ΛH of the hash function H will be computed locally by the respective
reduction. In the following, we consider this computations as implicitly given. Similary,
the computation of ΛF will be conducted locally with the exception being the game hop
from G0 to G1, where the reduction uses its own leakage oracle from the game LPRF. We
start by giving a bound for the first summand. The games G0 and G0 are identical until
Bad, i.e., a collision of H, occurs. We construct C1 that outputs the tuples (N, A), (N, A)
with which A1 triggered Bad. It then holds that

|Pr[AG0
1 ⇒ 1]− Pr[AG0

1 ⇒ 1]| ≤ Pr[Bad] = AdvCR
H (C1) .

To bound the second summand, we construct the following LPRF adversary B1 against
F: For queries (N, A, M) to Enc by A1, the adversary B1 computes H(N, A) locally and
then invokes its own challenge oracle F on H(N, A) to obtain (P, K ′). B1 then computes

17

Ae.Enc(K ′, N, A, M) = C locally and sends (P, C) back to A1. Queries (N, A, (P ∗, C)) to
Dec are answered similarly: B1 computes H(N, A) and invokes F on H(N, A) to obtain
(P, K ′). If P ∗ ̸= P , it returns ⊥ and otherwise M ← Ae.Dec(K ′, N, A, C) is computed
and M sent to A1.

For queries (N, A, M, L = (LH, LF, LAe)) to the leakage oracle LEnc, B1 computes
H(N, A) locally. Then it invokes its own leakage oracle LF(H(N, A), LF) and obtains ΛF
and (P, K ′). Lastly, the adversary B1 computes C = Ae.Enc(K ′, N, A, M) and sends (P, C)
and (ΛH, ΛF, ΛAe) back to A1. Queries (N, A, (P ∗, C), L) to LDec are handled similarly:
B1 follows the same steps to obtain H(N, A), ΛF, and (P, K ′). If P ∗ ̸= P it returns ⊥,
otherwise it computes M ← Ae.Dec(K ′, N, A, C) and sends M and (ΛAe, ΛH, ΛF) back
to A1.

We have defined B1 such that it perfectly simulates G0 or G1—depending on the
value of the secret bit—for A1. In particular, note that both games return ⊥ in case
the adversary triggers a hash collision with its queries. This guarantees that B1 makes
no forbidden queries, i.e., it never queries the same value to its challenge oracle twice.6
Therefore, we can conclude

|Pr[AG0
1 ⇒ 1]− Pr[AG1

1 ⇒ 1]| = |Pr[BLPRF
1 ⇒ 1 | b = 1]− Pr[BLPRF

1 ⇒ 1 | b = 0]|
= AdvLPRF

F (B1,LF) .

Next, we bound the game hop between G1 and G2. Since in both G1 and G2 the pair
(P, K ′) is sampled randomly, adversary A1 can not distinguish G1 and G2 except if there
is a collision of the hash function. Then, the encryption oracle (or the decryption oracle,
respectively) of G1 outputs ⊥, whereas for G2 this is not the case. Then we can construct C1
that outputs the tuples (N, A), (N, A) with which A1 triggered Bad, i.e., a hash collision.
Hence, we obtain

|Pr[AG1
1 ⇒ 1]− Pr[AG2

1 ⇒ 1]| ≤ Pr[Bad] = AdvCR
H (C1) .

Lastly, we bound the game hop between G2 and G3. Due to the fact that UtC* uses
different session keys—computed from the context—for the underlying AE scheme Ae, we
cannot simply reduce to the security of Ae. To accommodate for that, we do a hybrid
argument over the distinct session keys.7 For this, we define a sequence of hybrid games
H0, . . . , Hq, which are described in Figure 13. Here, q denotes the number of distinct
(N, A)-pairs that A1 queries to either Enc or Dec. In Hi, the first i distinct (N, A)-pairs
are answered as in G3, while the remaining queries are handled as in G2. Observe that
H0 = G2 and Hq = G3, which yields

|Pr[AG1
1 ⇒ 1]− Pr[AG2

1 ⇒ 1]| = |Pr[AH0
1 ⇒ 1]− Pr[AHq

1 ⇒ 1]|

≤
q∑

i=1
|Pr[AHi−1

1 ⇒ 1]− Pr[AHi−1
1 ⇒ 1]| .

For each i = 1, . . . , q, we construct an AE adversary Di to bound the game hop between
Hi−1 and Hi. First, the adversary Di samples a key K to simulate the oracles LEnc, and
LDec for A1. If a pair of nonce and associated data is queried twice, special care is applied
to ensure that the same session key is used. More precisely, after a pair of nonce and
associated data (N, A) is queried for the first time, the computed key commitment P and
session-key K ′ are stored and reused for further queries containing (N, A).

For (N1, A1), . . . , (Nq, Aq) the q distinct pairs of nonce and associated data, Di proceeds
as follows: If the j-the query, for j ≤ i, is a query to Enc, Di samples (Pj , Cj) randomly and

6Rather than repeating a query, B1 will simply return ⊥ to A1.
7In [BH22], the same problem occurs, though they resolve this using multi-user security [BT16].

18

Games G and G
(K, N, A, M), (K, N, A, M)← A()
if (K, N, A) = (K, N, A)

return 0
if (N, A) ̸= (N, A) ∧H(N, A) = H(N, A)

Bad← true
return 0

(P, C, T)← UtC*[H, F, Ae].Enc(K, N, A, M)
(P, C, T)← UtC*[H, F, Ae].Enc(K, N, A, M)
return ((P, C, T) = (P, C, T))

Figure 11: Games G and G used in the proof of Theorem 10.

sends it to A1. If it is a query to Dec, it returns ⊥ to A1. If the i-th query is a query to Enc,
i.e., of the form (Ni, Ai, Mi), Di invokes its own encryption oracle on (Ni, Ai, Mi) to obtain
Ci, which is sent to A1 together with a randomly sampled Pi. If it is a query to Dec, i.e.,
of the form (Ni, Ai, (P ∗

i , C)), a random pair (P ∗,K ′) is sampled. If P ∗
i ̸= Pi, ⊥ is returned,

otherwise Di invokes its own decryption oracle on (K ′
i, Ni, Ai, Ci). If the j-the query, for

j ≥ i, is a query to Enc, (Pj , K ′
j) is sampled randomly and Ae.Enc(K ′

j , Nj , Aj , Mj) is
computed locally. Then (Pj , Cj) is returned to A1. If it is a query to Dec, i.e., of the form
(Ni, Ai, (P ∗

i , C)), a random pair (P ∗,K ′) is sampled. If P ∗
i ̸= Pi, ⊥ is returned, otherwise

Ae.Dec(K ′, N, A, C) is computed locally.
For each query (N, A, M, L = (LH, LF, LAe)) to LEnc, Di computes X = H(N, A),

(P, K ′) = F(K, X), LF(K, X), and C = Ae.Enc(K ′, N, A, M) locally. It sends (P, C) and
(ΛH, ΛF, ΛAe) to A1. Queries to LDec are handled analogously with C being used instead
of M . Note, however, that P ∗ = P needs to be checked as it was done for queries to Dec.

We observe that Di simulates Hi−1 and Hi for the secret bit being 1 and 0, respectively.
Note further that Di queries a nonce N to its encryption oracles (either challenge or
leakage) if and only A queries N to its encryption oracles. Thus the nonce-respecting
property of Di follows from A being nonce-respecting. Furthermore, we observe that any
encryption/decryption query by Di stems from a query by A. If any of the queries by Di

would be prohibited, we would immediately get that A made queries that are forbidden.
Thus, we can conclude

|Pr[AHi−1
1 ⇒ 1]− Pr[AHi−1

1 ⇒ 1]| = |Pr[DAE
i ⇒ 1 | b = 1]− Pr[DAE

i ⇒ 1 | b = 0]|
= AdvAE

Ae(Di) .

We define D to be the adversary that picks i from {1, . . . , q} randomly and then acts like
Di. By a standard hybrid argument, we get

|Pr[AG2
1 ⇒ 1]− Pr[AG3

1 ⇒ 1]| ≤
q∑

i=1
|Pr[AHi−1

1 ⇒ 1]− Pr[AHi−1
1 ⇒ 1]| ≤ qAdvAE

Ae(D) .

In total, we have shown

AdvLAE
UtC*[F,Ae,H](A1,LAe) ≤ AdvLPRF

F (B1,LF) + 2AdvCR
H (C1) + qAdvAE

Ae(D) .

This finishes the proof.

19

Games G0, G1, G2, G3

b←$ {0, 1}
K ←$K
S1, S2 ← ∅

b′ ← A
Enc,Dec,LEnc,LDec()

return (b′ = b)

oracle Enc(N, A, M) in G0

X ← H(N, A)
if X ∈ S1 ∧ (N, A) /∈ S2

Bad← true

return ⊥
S1 ← S1 ∪ {X}
S2 ← S2 ∪ {(N, A)}
(P, K′)← F(K, X)
C ← Ae.Enc(K′, N, A, M)
return (P, C)

oracle Enc(N, A, M) in G1

X ← H(N, A)
if X ∈ S1 ∧ (N, A) /∈ S2

Bad← true
return ⊥

S1 ← S1 ∪ {X}
S2 ← S2 ∪ {(N, A)}
(P, K′)← F1(K, X)
C ← Ae.Enc(K′, N, A, M)
return (P, C)

oracle Enc(N, A, M) in G2

(P, K′)← F2(N, A)
C ← Ae.Enc(K′, N, A, M)
return (P, C)

oracle Enc(N, A, M) in G3

(P, K′)← F2(K, N, A)
C ← F3(K′, N, A, M)
return (P, C)

oracle Dec(N, A, (P ∗, C)) in G0

X ← H(N, A)
if X ∈ S1 ∧ (N, A) /∈ S2

Bad← true

return ⊥
S1 ← S1 ∪ {X}
S2 ← S2 ∪ {(N, A)}
(P, K′)← F(K, X)
if P ∗ ̸= P

return ⊥
return Ae.Dec(K′, N, A, C)

oracle Dec(N, A, (P ∗, C)) in G1

X ← H(N, A)
if X ∈ S1 ∧ (N, A) /∈ S2

Bad← true
return ⊥

S1 ← S1 ∪ {X}
S2 ← S2 ∪ {(N, A)}
(P, K′)← F1(K, X)
if P ∗ ̸= P

return ⊥
return Ae.Dec(K′, N, A, C)

oracle Dec(N, A, (P ∗, C)) in G2

(P, K′)← F2(K, N, A)
if P ∗ ̸= P

return ⊥
return Ae.Dec(K′, N, A, C)

oracle Dec(N, A, (P ∗, C)) in G3

return ⊥

Figure 12: Games G0, G1, and G2 used in the proof of Theorem 10. The leakage oracles
are shown in Figure 14.

20

Game Hi

c← 0
b←$ {0, 1}
K ←$K
S ← ∅

b′ ← A
Enc,Dec,LEnc,LDec()

return (b′ = b)

oracle Enc(N, A, M) in Hi

S ← S ∪ {(N, A)}
if #S ≤ i

(P, C)←$ {0, 1}∗ × {0, 1}m

else
if p[N, A] = ⊥

p[N, A]←$ {0, 1}κ

(P, K′)← p[N, A]
C ← Ae.Enc(K′, N, A, M)

return (P, C)

oracle Dec(N, A, (P ∗, C)) in Hi

S ← S ∪ {(N, A)}
if #S ≤ i

M ← ⊥
else

if p[N, A] = ⊥
p[N, A]←$ {0, 1}κ

(P, K′)← p[N, A]
if P ∗ ̸= P

M ← ⊥
M ← Ae.Dec(K′, N, A, C)

return M

Figure 13: Hybrid games Hi used in the proof of Theorem 10. The leakage oracles are
shown in Figure 14. By p[·, ·], we denote a table, with each entry initially set to ⊥. Note
that we do not use the table to generate (P, C) in the first if-branch of Enc but instead also
sample a fresh tuple. This is no problem as our adversary is nonce-respecting, meaning
that every query will result in a new entry of the table anyway.

oracle LEnc(N, A, M, (LH, LF, LAe))
X ← H(N, A)
(P, K′)← F(K, X)
C ← Ae.Enc(K′, N, A, M)
ΛH ← LH(N, A)
ΛF ← LF(K, X)
ΛAe ← LAe(K′, N, A, M)
return (C, (ΛH, ΛF, ΛAe))

oracle LDec(N, A, (P ∗, C), (LH, LF, LAe))
X ← H(N, A)
(P, K′)← F(K, X)
if P ∗ ̸= P

return ⊥
M ← Ae.Dec(K′, N, A, C)
ΛH ← LH(N, A)
ΛF ← LF(K, X)
ΛAe ← LAe(K′, N, A, C)
return (M, (ΛH, ΛF, ΛAe))

Figure 14: The leakage oracles LEnc and LDec used in the proof of Theorem 10. These
oracles are shared across all games G0, . . . , G3 and H0, . . . , Hq.

21

5 Conclusion and Instantiation/Implementation Aspects
Our analysis reveals that the generic composition paradigms are not suitable for construct-
ing AE schemes that are simultaneously committing and leakage-resilient. However, we
identify another way to obtain such schemes by means of a generic transformation. The
latter can be applied to any secure AE scheme, i.e., it does not require any committing or
leakage resilience guarantees on the scheme to begin with. In particular, this allows to
apply the UtC* transformation to AE schemes built from generic composition without
needing the underlying symmetric encryption scheme and MAC to fulfill binding or leakage
resilience properties. While we just require standard AE security for the scheme that is to
be transformed, the transformation uses a function F that needs to be partially binding
and an LPRF. A possible instantiation for this is the sponge-based function SlFunc
(cf. Figure 3) which was shown to be an LPRF in [DJS19] and binding in Theorem 6. Note
that, in order to obtain a good bound on the LPRF security, the rate r needs to be very
small and is typically set to 1. Further, for any practical instantiation, one needs to chose a
concrete non-invertible permutation for ρ. Following [DJS19], a candidate can be obtained
using Keccak-P: define ρ(x) = Keccak-P(x) ⊕ x, where the additional XOR ensures
non-invertibility. An alternative candidate is the tagging algorithm of the leakage-resilient
MAC given in [BMOS17]8 which is an LPRF but has yet to be analyzed with respect to its
binding security. Bellare and Hoang [BH22] provide a construction of a binding function
which they call “Counter-then-XOR” (CtX). The CtX construction, which relies on a
block-cipher, is also an alternative but not yet analyzed in the leakage setting.

Coming back to Slae, which was used as an example throughout this work, we can now
provide a committing and leakage-resilient variant: This is achieved by applying the UtC*
transformation, using SvHash and SlFunc, to Slae, where ρ(x) = Keccak-P(x)⊕ x
as described above. While Slae is leakage-resilient to start with, due to a very small rate
in the underlying function SlFunc, this is not a necessary prerequisite for applying the
UtC* transformation. Thus, it is even possible to use Slae with a bigger rate in SlFunc
as input to UtC*, while the SlFunc instance used in the transformation deploys r = 1
to ensure the leakage-resilient guarantees.

Finally, recall that we assume the comparison of values to be leak-free. This assumption
is crucial for Theorem 10, when the given P ∗ is compared with the recomputed P . Any
implementation of UtC* needs to make sure that this assumption is not violated, e.g.,
by hardening this step with proper counter measures like masking [CJRR99]. Otherwise,
the results can be misused, as was the case in [USS+20], which used the FGHF′ con-
struction [DJS19,KS20] but did not take into account the leak-free assumption—this was
pointed out in [BMPS21]. Dobraunig and Mennink [DM21] also provide methods on how to
achieve this assumption, which are often readily available in the implementation anyway.

References
[ADG+22] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and

Sophie Schmieg. How to abuse and fix authenticated encryption without key
commitment. In Kevin R. B. Butler and Kurt Thomas, editors, USENIX
Security 2022, pages 3291–3308. USENIX Association, August 2022.

[BBC+20] Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun
Guo, Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. Mode-level vs. implementation-level physical security in symmetric
cryptography - A practical guide through the leakage-resistance jungle. In

8This MAC is inspired by the one given in [MOSW15], which, while achieving unpredictability, is not
pseudorandom in the leakage setting (LPRF). This makes it unsuitable for the UtC* transformation.

22

Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I,
volume 12170 of LNCS, pages 369–400. Springer, Heidelberg, August 2020.

[BCDM21] Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Mennink. Elephant.
Technical report, National Institute of Standards and Technology, 2021. Avail-
able at https://csrc.nist.gov/projects/lightweight-cryptography/
finalists.

[Ber23] Francesco Berti. Reconsidering generic composition: The modes A10, A11
and A12 are insecure. In ACISP 2023, 2023.

[BGP+19] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. TEDT: a leakage-resistant AEAD mode. IACR
TCHES, 2020(1):256–320, 2019. https://tches.iacr.org/index.php/
TCHES/article/view/8400.

[BGPS21] Francesco Berti, Chun Guo, Thomas Peters, and François-Xavier Standaert.
Efficient leakage-resilient MACs without idealized assumptions. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part II, volume
13091 of LNCS, pages 95–123. Springer, Heidelberg, December 2021.

[BH22] Mihir Bellare and Viet Tung Hoang. Efficient schemes for committing au-
thenticated encryption. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 845–875. Springer,
Heidelberg, May / June 2022.

[BMOS17] Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Authen-
ticated encryption in the face of protocol and side channel leakage. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624
of LNCS, pages 693–723. Springer, Heidelberg, December 2017.

[BMPS21] Olivier Bronchain, Charles Momin, Thomas Peters, and François-Xavier
Standaert. Improved leakage-resistant authenticated encryption based on
hardware AES coprocessors. IACR TCHES, 2021(3):641–676, 2021. https:
//tches.iacr.org/index.php/TCHES/article/view/8988.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm. In
Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages
531–545. Springer, Heidelberg, December 2000.

[BPP18] Francesco Berti, Olivier Pereira, and Thomas Peters. Reconsidering generic
composition: The tag-then-encrypt case. In Debrup Chakraborty and Tetsu
Iwata, editors, INDOCRYPT 2018, volume 11356 of LNCS, pages 70–90.
Springer, Heidelberg, December 2018.

[BPPS17] Francesco Berti, Olivier Pereira, Thomas Peters, and François-Xavier Stan-
daert. On leakage-resilient authenticated encryption with decryption leakages.
IACR Trans. Symm. Cryptol., 2017(3):271–293, 2017.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor, EU-
ROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, Heidelberg,
May / June 2006.

23

https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://tches.iacr.org/index.php/TCHES/article/view/8400
https://tches.iacr.org/index.php/TCHES/article/view/8400
https://tches.iacr.org/index.php/TCHES/article/view/8988
https://tches.iacr.org/index.php/TCHES/article/view/8988

[BT16] Mihir Bellare and Björn Tackmann. The multi-user security of authenticated
encryption: AES-GCM in TLS 1.3. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 247–276.
Springer, Heidelberg, August 2016.

[CFGI+23] Yu Long Chen, Antonio Flórez-Gutiérrez, Akiko Inoue, Ryoma Ito, Tetsu
Iwata, Kazuhiko Minematsu, Nicky Mouha, Yusuke Naito, Ferdinand Sibleyras,
and Yosuke Todo. Key committing security of AEZ and more. In ToSC 2023,
2023.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 398–412. Springer,
Heidelberg, August 1999.

[CR19] John Chan and Phillip Rogaway. Anonymous AE. In Steven D. Galbraith and
Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume 11922 of LNCS,
pages 183–208. Springer, Heidelberg, December 2019.

[CR22] John Chan and Phillip Rogaway. On committing authenticated-encryption.
In Vijayalakshmi Atluri, Roberto Di Pietro, Christian Damsgaard Jensen, and
Weizhi Meng, editors, ESORICS 2022, Part II, volume 13555 of LNCS, pages
275–294. Springer, Heidelberg, September 2022.

[DEM+17] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP – towards side-channel secure authenticated
encryption. IACR Trans. Symm. Cryptol., 2017(1):80–105, 2017.

[DEM+20] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink, Robert Primas, and Thomas Unterluggauer. ISAP v2.0. IACR
Trans. Symm. Cryptol., 2020(S1):390–416, 2020.

[DFG23] Jean Paul Degabriele, Marc Fischlin, and Jérôme Govinden. The indifferen-
tiability of the duplex and its practical applications. In ASIACRYPT 2023,
2023.

[DGRW18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage.
Fast message franking: From invisible salamanders to encryptment. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume
10991 of LNCS, pages 155–186. Springer, Heidelberg, August 2018.

[DJS19] Jean Paul Degabriele, Christian Janson, and Patrick Struck. Sponges resist
leakage: The case of authenticated encryption. In Steven D. Galbraith and
Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume 11922 of LNCS,
pages 209–240. Springer, Heidelberg, December 2019.

[DM19] Christoph Dobraunig and Bart Mennink. Leakage resilience of the duplex con-
struction. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019,
Part III, volume 11923 of LNCS, pages 225–255. Springer, Heidelberg, Decem-
ber 2019.

[DM21] Christoph Dobraunig and Bart Mennink. Leakage resilient value comparison
with application to message authentication. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of
LNCS, pages 377–407. Springer, Heidelberg, October 2021.

24

[DMVA23] Joan Daemen, Silvia Mella, and Gilles Van Assche. Committing authenticated
encryption based on SHAKE. IACR Cryptol. ePrint Arch., 2023:1494, 2023.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography.
In 49th FOCS, pages 293–302. IEEE Computer Society Press, October 2008.

[FKOS22] Sebastian Faust, Juliane Krämer, Maximilian Orlt, and Patrick Struck. On
the related-key attack security of authenticated encryption schemes. In SCN
2022, 2022.

[GPPS20] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Towards low-energy leakage-resistant AE from the duplex sponge. IACR Trans.
Symm. Cryptol., 2020(1):6–42, 2020.

[IKM+21] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, Thomas Peyrin,
and Chun Guo. Romulus. Technical report, National Institute of Stan-
dards and Technology, 2021. Available at https://csrc.nist.gov/projects/
lightweight-cryptography/finalists.

[KS20] Juliane Krämer and Patrick Struck. Leakage-resilient authenticated encryption
from leakage-resilient pseudorandom functions. In Guido Marco Bertoni and
Francesco Regazzoni, editors, COSADE 2020, volume 12244 of LNCS, pages
315–337. Springer, Heidelberg, April 2020.

[KSW23] Juliane Krämer, Patrick Struck, and Maximiliane Weishäupl. Committing AE
from sponges - security analysis of the NIST LWC finalists. IACR Cryptol.
ePrint Arch., 2023:1525, 2023.

[LGR21] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning oracle attacks.
In Michael Bailey and Rachel Greenstadt, editors, USENIX Security 2021,
pages 195–212. USENIX Association, August 2021.

[MLGR23] Sanketh Menda, Julia Len, Paul Grubbs, and Thomas Ristenpart. Context
discovery and commitment attacks - how to break CCM, EAX, SIV, and more.
In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part IV,
volume 14007 of LNCS, pages 379–407. Springer, Heidelberg, April 2023.

[MMV+14] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart
Preneel, and Ingrid Verbauwhede. Chaskey: An efficient MAC algorithm for
32-bit microcontrollers. In Antoine Joux and Amr M. Youssef, editors, SAC
2014, volume 8781 of LNCS, pages 306–323. Springer, Heidelberg, August
2014.

[MOSW15] Daniel P. Martin, Elisabeth Oswald, Martijn Stam, and Marcin Wójcik.
A leakage resilient MAC. In Jens Groth, editor, 15th IMA International
Conference on Cryptography and Coding, volume 9496 of LNCS, pages 295–310.
Springer, Heidelberg, December 2015.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended
abstract). In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages
278–296. Springer, Heidelberg, February 2004.

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Recon-
sidering generic composition. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 257–274. Springer,
Heidelberg, May 2014.

25

https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists

[STA+15] Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara,
Yumiko Murakami, Mitsuru Matsui, and Shoichi Hirose. Minalpher v1.1.
Technical report, Submission to the CAESAR Competition, 2015. Available
at https://competitions.cr.yp.to/round2/minalpherv11.pdf.

[USS+20] Florian Unterstein, Marc Schink, Thomas Schamberger, Lars Tebelmann,
Manuel Ilg, and Johann Heyszl. Retrofitting leakage resilient authenticated
encryption to microcontrollers. IACR TCHES, 2020(4):365–388, 2020. https:
//tches.iacr.org/index.php/TCHES/article/view/8687.

[VCS22] Corentin Verhamme, Gaëtan Cassiers, and François-Xavier Standaert. Ana-
lyzing the leakage resistance of the NIST’s lightweight crypto competition’s
finalists. In CARDIS 2022, 2022.

A Additional Background
The pseudocode for the N-schemes is given in Figure 15. Figure 16 provides the pseu-
docode of the sponge-based encryption scheme SlEnc and MAC SlMac in terms of their
underlying components SlFunc, SPrg, and SvHash, whose pseudocodes are presented
in Figure 17.

Enc(K, N, A, M) in N1
(Ke, Km)← K

C ← EncS(Ke, N, M)
T ← Tag(Km, N, A, M)
return (C, T)

Dec(K, N, A, (C, T)) in N1
(Ke, Km)← K

M ← DecS(Ke, N, C)
if Ver(Km, N, A, M, T) = 0

return ⊥
return M

Enc(K, N, A, M) in N2
(Ke, Km)← K

Ce ← EncS(Ke, N, M)
T ← Tag(Km, N, A, C)
return (C, T)

Dec(K, N, A, (C, T)) in N2
(Ke, Km)← K

if Ver(Km, N, A, C, T) = 0
return ⊥

M ← DecS(Ke, N, C)
return M

Enc(K, N, A, M) in N3
(Ke, Km)← K

T ← Tag(Km, N, A, M)

C ← EncS(Ke, N, M ∥ T)
return C

Dec(K, N, A, C) in N3
(Ke, Km)← K

M ∥ T ← DecS(Ke, N, C)
if Ver(Km, N, A, M, T) = 0

return ⊥
return M

Figure 15: Pseudocode of N1 (left), N2 (middle), and N3 (right) in terms of a symmetric
encryption scheme (EncS , DecS) and a MAC (Tag, Ver).

B Full Proofs
B.1 Proof of Theorem 3
Proof. Let A be a wCR adversary against Se[F ,G] with output ((K, N, M), (K, N, M)).
We define E to be the event that F(K, N) = F(K, N).

Firstly, we construct a wbind adversary B against F . It runs ((K, N, M), (K, N, M))←
A() and outputs ((K, N), (K, N)). If A is successful, we have both K ̸= K and (N, M) =
(N, M). Next assume that additionally to A being successful, event E holds, that means
F(K, N) = F(K, N). Then adversary B is successful in game wbind, as K ̸= K and
N = N , but they map to the same element under F . Hence we have shown

Pr[E ∧ wCR(A)→ 1] ≤ Pr[wbind(B)→ 1] .

26

https://competitions.cr.yp.to/round2/minalpherv11.pdf
https://tches.iacr.org/index.php/TCHES/article/view/8687
https://tches.iacr.org/index.php/TCHES/article/view/8687

SlEnc-Enc(Ke, N, M)
z ← SlFunc(Ke, N)
C ← SPrg(z, |M |)⊕M

return C

SlEnc-Dec(Ke, N, C)
z ← SlFunc(Ke, N)
M ← SPrg(z, |C|)⊕ C

return M

SlMac-Tag(Km, N, A, C)
H ← SvHash(N, A, C)
T ← SlFunc(Km, H)
return ⌈T ⌉τ

SlMac-Ver(Km, N, A, C, T)
H ← SvHash(N, A, C)
T ← SlFunc(Km, H)
if T ̸= T

return ⊥
return ⊤

Figure 16: Pseudocode of the encryption scheme SlEnc = (SlEnc-Enc, SlEnc-Dec) and
the MAC SlMac = (SlMac-Tag, SlMac-Ver) in terms of the sponge-based primitives
SlFunc, SPrg, and SvHash.

Secondly, we construct a CR adversary B against G. It runs ((K, N, M), (K, N, M))← A()
and outputs (F(K, N),F(K, N)). If A is successful, then K ̸= K and (N, M) = (N, M),
and Se[F ,G].Enc(K, N, M) = Se[F ,G].Enc(K, N, M). By definition of Se[F ,G] the latter
is equivalent to G(F(K, N)) ⊕M = G(F(K, N)) ⊕M . As M = M , this implies that
G(F(K, N)) = G(F(K, N)). Next assume that additionally to A being successful, event
¬E holds, that means F(K, N) ̸= F(K, N). Then adversary C is successful, as he has
found a collision for G. Thus we obtain

Pr[¬E ∧ wCR(A)→ 1] ≤ Pr[CR(C)→ 1] .

In total, one can conclude

AdvwCR
Se[F,G](A) = Pr[wCR(A)→ 1]

= Pr[E ∧ wCR(A)→ 1] + Pr[¬E ∧ wCR(A)→ 1]
≤ Pr[wbind(B)→ 1] + Pr[CR(C)→ 1]
= Advwbind

F (B) + AdvCR
G (C) ,

which finishes the proof.

B.2 Proof of Theorem 4
Proof. Let A be a CR adversary against Mac[H,F ′] with output ((K, X), (K, X)) and
let E be the event that K = K and H(X) = H(X).

Firstly, we construct a CR adversary B against H. It runs ((K, X), (K, X)) ← A()
and outputs (X, X). If A is successful, we know in particular that (K, X) ̸= (K, X). Next
assume that additionally to A being successful, event E holds, that means K = K and
H(X) = H(X). Thus adversary B is successful as X, X are different but map to the same
element under H. Hence we have shown

Pr[E ∧ CR(A)→ 1] ≤ Pr[CR(B)→ 1] .

Secondly, we construct a bind adversary C against F ′. It runs ((K, X), (K, X)) ← A()
and outputs ((K,H(X)), (K,H(X))). If A is successful, then (K, X) ̸= (K, X) and
Mac[H,F ′].Tag(K, X) = Mac[H,F ′].Tag(K, X). By definition of Mac[H,F ′] the latter
is equivalent to F ′(K,H(X)) = F ′(K,H(X)). If additionally to A being successful, event

27

SlFunc(K, X)
X1, . . . , Xl

r←− X

Y ← K ∥ IV
S ← ρ(Y)
for i = 1, . . . , l

Y ← (⌈S⌉r ⊕Xi) ∥ ⌊S⌋c
S ← ρ(Y)

return S

SPrg(z, L)
l←

⌈
L
r

⌉
Z ← ε

S ← z

Z ← Z ∥ ⌈S⌉r
for i = 1, . . . , l − 1

S ← ρ(S)
Z ← Z ∥ ⌈S⌉r

return ⌈Z⌉L

SvHash(N, A, C)
A1, . . . , Aα

r←− pad10∗ (A, r)

C1, . . . , Cγ
r←− pad10∗ (C, r)

Y ← N ∥ IV
S ← ρ(Y)
for i = 1, . . . , α

Y ← (⌈S⌉r ⊕Ai) ∥ ⌊S⌋c
S ← ρ(Y)

S ← ⌈S⌉r ∥ (⌊S⌋c ⊕ (1 ∥ 0c−1))
for i = 1, . . . , γ

Y ← (⌈S⌉r ⊕ Ci) ∥ ⌊S⌋c
S ← ρ(Y)

H ← ⌈S⌉w
return H

Figure 17: Pseudocode of the sponge-based function SlFunc, pseudorandom generator
SPrg, and hash function SvHash, constructed from a random transformation ρ : {0, 1}n →
{0, 1}n, where n = r + c.

¬E holds, we know that either K ̸= K or H(X) ̸= H(X). Therefore adversary C is
successful, because (K,H(X)) ̸= (K,H(X)) and F ′(K,H(X)) = F ′(K,H(X)). This
yields

Pr[¬E ∧ CR(A)→ 1] ≤ Pr[bind(C)→ 1]

and in total we can conclude

AdvCR
Mac[H,F ′](A) = Pr[CR(A)→ 1]

= Pr[E ∧ CR(A)→ 1] + Pr[¬E ∧ CR(A)→ 1]
≤ Pr[CR(B)→ 1] + Pr[bind(C)→ 1]
= AdvCR

H (B) + Advbind
F ′ (C) .

This finishes the proof.

B.3 Proof of Theorem 5
Proof. Consider a CMT adversary A against N1[Se[F ,G], Mac[H,F ′]]. By Theorem 2,
there exist adversaries A1 and A2 such that

AdvCMT
N1[Se[F,G],Mac[H,F ′]](A) ≤ AdvwCR

Se[F,G](A1) + AdvCR
Mac[H,F ′](A2) .

Applying Theorem 3 for adversary A1, then yields adversaries B and C such that

AdvwCR
Se[F,G](A1) ≤ Advwbind

F (B) + AdvCR
G (C) .

Analogously, Theorem 4 for adversary A2 gives adversaries D and E such that

AdvCR
Mac[H,F ′](A2) ≤ AdvCR

H (D) + Advbind
F ′ (E) .

Combining these results shows the claim.

28

B.4 Proof of Theorem 6
Proof. Let A be a pbind adversary against SlFunc with output ((K, N), (K, N)). For
the proof we will refer to the different states of the sponge as Si and Yi as shown in
Figure 3 (upper part). We show that the probability for A to win is bounded above by
the probability that for different inputs, the respective outputs of ρ collide in the first k
bits (we call this a k-collision) or in the last c bits (this is referred to as an inner collision).
For this we define C to be the event that there are Y ≠ Y such that ⌈ρ(Y)⌉k =

⌈
ρ(Y)

⌉
k

or ⌊ρ(Y)⌋c =
⌊
ρ(Y)

⌋
c

for all states Y and Y occurring during the evaluation of the tuples
outputted by A. Then we can split up the probability of A winning the game pbind as
follows

Pr[pbind(A)→ 1] = Pr[C ∧ pbind(A)→ 1] + Pr[¬C ∧ pbind(A)→ 1] . (4)

As a next step we show that Pr[¬C ∧ pbind(A) → 1] = 0. For this consider E to be the
event that N ̸= N and observe that

Pr[¬C ∧ pbind(A)→ 1] = Pr[E ∧ ¬C ∧ pbind(A)→ 1]
+ Pr[¬E ∧ ¬C ∧ pbind(A)→ 1] . (5)

We proceed by showing that both summands in the above equation are zero.
First we show Pr[E∧¬C∧pbind(A)→ 1] = 0. We assume that ¬C holds, hence we know

in particular that for all i ∈ {0, . . . , l} with Yi ̸= Y i it holds that ⌈ρ(Yi)⌉k ̸=
⌈
ρ(Y i)

⌉
k

and
⌊ρ(Yi)⌋c ̸=

⌊
ρ(Y i)

⌋
c
. As A is successful, we know that (K, N) ̸= (K, N) and ⌈Sl+1⌉k =

SlFunc(K, N) = SlFunc(K, N) =
⌈
Sl+1

⌉
k
. Furthermore E holds, which implies that

N ̸= N . We distinguish the following two cases:

1. K ̸= K: In this case, we have Y0 = K ̸= K = Y 0, hence we obtain that ⌊ρ(Y0)⌋c ̸=⌊
ρ(Y 0)

⌋
c

since C holds. This implies that Y1 ̸= Y 1, because ⌊Y1⌋c = ⌊ρ(Y0)⌋c ≠⌊
ρ(Y 0)

⌋
c

=
⌊
Y 1

⌋
c
. Repeating this argument for all i ∈ {1, . . . , l − 1} yields Yl ̸= Y l.

2. K = K: In this case, we use the fact that N ̸= N implies the existence of a smallest
m ∈ {1, . . . , l} with Nm ≠ Nm. Since the keys we start with are the same and
Ni = N i holds for all i < m, we can deduce that Sm = Sm. Then Nm ̸= Nm yields
Ym ̸= Y m. Therefore we obtain ⌊ρ(Ym)⌋c ̸=

⌊
ρ(Y m)

⌋
c

since C holds, which implies
that ⌊Ym+1⌋c = ⌊ρ(Ym)⌋c ̸=

⌊
ρ(Y m)

⌋
c

=
⌊
Y m+1

⌋
c
. Thus in particular it holds that

Ym+1 ̸= Y m+1 and repeating this argument for all i ∈ {m + 1, . . . , l − 1} shows
Yl ̸= Y l.

For both cases, we have shown that Yl ̸= Y l. Hence, since C holds, we can deduce that
⌈Sl+1⌉k = ⌈ρ(Yl)⌉k ̸=

⌈
ρ(Y l)

⌉
k

=
⌈
Sl+1

⌉
k
, which contradicts the assumption that A is

successful. Therefore the probability Pr[E ∧ ¬C ∧ pbind(A)→ 1] must be zero.
Next we show that also Pr[¬E∧¬C∧ pbind(A)→ 1] = 0. For this, note that event C is

composed of the event that there is a k-collision, denoted by Ck, and the event that there
is an inner collision, denoted by Cc. More precisely, we have C = Ck ∨ Cc, which implies
that ¬C = ¬Ck ∧ ¬Cc holds. Using this, we obtain that

Pr[¬E ∧ ¬C ∧ pbind(A)→ 1] = Pr[¬E ∧ ¬Ck ∧ ¬Cc ∧ pbind(A)→ 1]
≤ Pr[¬E ∧ ¬Ck ∧ pbind(A)→ 1] (6)

and hence it suffices to show Pr[¬E ∧ ¬Ck ∧ pbind(A)→ 1] = 0, which will be done in the
following.

Since A wins game bind, we can deduce that (K, N) ̸= (K, N) and ⌈Sl+1⌉k =
SlFunc(K, N) = SlFunc(K, N) =

⌈
Sl+1

⌉
k
. By assumption event ¬E holds, that means

29

N = N , which in turn implies that K ̸= K. By construction of SlFunc, we have
Y0 = K ̸= K = Y 0 and hence ⌈ρ(Y0)⌉k ̸=

⌈
ρ(Y 0)

⌉
k

as ¬Ck holds. Then we know in
particular that S1 = ρ(Y0) ̸= ρ(Y 0) = S1. By assumption, we have N = N and thus
obtain

Y1 = S1 ⊕ (N1 ∥ 0c) ̸= S1 ⊕ (N1 ∥ 0c) = Y 1 ,

where N1 = ⌈N⌉r and N1 =
⌈
N

⌉
r
. This puts us in the same situation we started with

and by repeating the above argument for all i ∈ {1, . . . , l − 1}, we get Yl ̸= Y l and hence
⌈Sl+1⌉k = ⌈ρ(Yl)⌉k ̸=

⌈
ρ(Y l)

⌉
k

=
⌈
Sl+1

⌉
k
. This contradicts the assumption that A is a

successful adversary hence the probability that A wins the game pbind and simultaneously
¬E and ¬Ck hold is zero. Hence we have shown

Pr[¬E ∧ ¬Ck ∧ pbind(A)→ 1] = 0 , (7)

which proves by Eq. (6), that also Pr[¬E∧¬C∧ pbind(A)→ 1] = 0. Note that for this part
of the proof, we split up C into Ck and Cc to emphasize that we need just the absence of
k-collisions (i.e., ¬Ck) to show Pr[¬E∧¬C∧ pbind(A)→ 1] = 0. This will become relevant
later in the proof when the bound for the wbind advantage is proven.

As both summands in Eq. (5) were shown to be zero, Eq. (4) simplifies to

Pr[pbind(A)→ 1] = Pr[C ∧ pbind(A)→ 1] ≤ Pr[C] .

For an adversary A with q queries to the random transformation ρ, the probability to find
a k-collision is

q−1∑
j=1

j2n−k

2n
=

q−1∑
j=1

j

2k
= q2 − q

2k+1

and the probability to find an inner collision is

q−1∑
j=1

j2n−c

2n
=

q−1∑
j=1

j

2c
= q2 − q

2c+1 .

As C is the event that there is either a k-collision or an inner collision, we obtain

Advwbind
SlFunc(A) = Pr[pbind(A)→ 1] ≤ Pr[C] = q2 − q

2k+1 + q2 − q

2c+1 ,

which proves the first part of the theorem.
From this we can easily derive the bound for the pbind advantage, as for k = n it holds

that game pbind equals game bind and thus

Advbind
SlFunc(A) = Advpbind

SlFunc(A) ≤ q2 − q

2c+1 + q2 − q

2n+1 .

It is left to prove the bound for the advantage of a wbind adversary A. Note that for such
an A we have k = n and the event E can never occur. The latter is the case, as K ̸= K,
N = N , and Sl+1 = Sl+1 has to hold for the output of A, otherwise A loses game pbind.
Therefore it holds that

Pr[pbind(A)→ 1] = Pr[E ∧ pbind(A)→ 1] + Pr[¬E ∧ pbind(A)→ 1]
= Pr[¬E ∧ pbind(A)→ 1] .

30

As before, we let Cn be the event that there is a n-collision, i.e., that there a are two
different inputs such that the respective outputs of ρ collide. Then we obtain

Pr[¬E ∧ pbind(A)→ 1] = Pr[¬E ∧ ¬Cn ∧ pbind(A)→ 1] + Pr[¬E ∧ Cn ∧ pbind(A)→ 1]
≤ Pr[¬E ∧ ¬Cn ∧ pbind(A)→ 1] + Pr[Cn]
= Pr[Cn] ,

where the last equality holds by Eq. (7) for k = n. Putting together the above results, and
using the bound that was computed for the probability of n-collisions, yields

Advwbind
SlFunc(A) = Pr[pbind(A)→ 1] = Pr[¬E ∧ pbind(A)→ 1] ≤ Pr[Cn] = q2 − q

2n+1 .

This finishes the proof of the theorem.

B.5 Proof of Theorem 7
Proof. For sake of simplicity, we assume that m is a multiple of the rate r and we set
l = m

r . Finding a collision for SPrg equals finding distinct states z1 ̸= z2 that agree on
their outer state (first r bits) for l invocations of ρ. It holds that

AdvCR
SPrg(A) = Pr

[
⌈z1⌉r = ⌈z2⌉r ∧

⌈
ρ1(z1)

⌉
r

=
⌈
ρ1(z2)

⌉
r

∧ . . . ∧
⌈
ρl(z1)

⌉
r

=
⌈
ρl(z2)

⌉
r
| z1, z2 ← Aρ()

]
.

We define events E0, E1, . . . , El, where Ei equals
⌈
ρi(z1)

⌉
r

=
⌈
ρi(z2)

⌉
r
, for z1, z2 ← Aρ().

Thus

AdvCR
SPrg(A) = Pr [E0 ∧ E1 ∧ . . . ∧ El]

≤ Pr [E1 ∧ . . . ∧ El]
= Pr[E1] · Pr[E2 |E1] · . . . · Pr[El |E1 ∧ . . . ∧ El−1]

= Pr[E1] ·
l∏

i=2
Pr[Ei |E1 ∧ . . . ∧ Ei−1] .

Bounding event E1 is a simple counting argument. Since A makes q queries to ρ, let Xi be
the event that the i-th query to ρ triggers E1. It holds that

Pr[E1] ≤
q∑

i=1
Pr[Xi] =

q∑
i=1

(i− 1)2c

2n
=

q∑
i=1

i− 1
2r

= q2 − q

2r+1 .

Note that only the probability for E1 depends on q as A can only influence the outcome
of the first application of ρ with his queries. For the remaining events (E2, . . . , El), the
fact that ρ is a random function yields that the events are independent from one another
which gives for all i ∈ {2, . . . , l}

Pr[Ei |E1 ∧ . . . ∧ Ei−1] = Pr[Ei] ≤
1
2r

.

Collecting the above finally provides

AdvCR
SPrg(A) ≤ Pr[E1] ·

l∏
i=2

Pr[Ei |E1 ∧ . . . ∧ Ei−1] ≤ q2 − q

2r+1 ·
l∏

i=2

1
2r

= q2 − q

2m+1 .

This finishes the proof.

31

B.6 Hierarchy of Binding Notions
The following theorem describes the relation between the different binding notions.

Theorem 11. Let F : K × {0, 1}x → {0, 1}y be a function. Then for any adversary A

there exists an adversary B such that

Advbind
F (A) ≤ Advpbind

F (B)

and for any adversary C there exists an adversary D such that

Advwbind
F (C) ≤ Advbind

F (D) .

Proof. For the first part, we consider a bind adversary A against F and construct a pbind
adversary B against F. It runs ((K, X), (K, X))← A and outputs ((K, X), (K, X)). If A
succeeds then (K, X) ̸= (K, X) and F(K, X) = F(K, X). The latter implies in particular
that ⌈Y1⌉l = ⌈Y2⌉l for Yi ← F(Ki, Xi). Thus B is also successful in game pbind.

For the second part, let C be a wbind adversary against F and construct a bind
adversary D against F. It runs ((K, X), (K, X))← A and outputs ((K, X), (K, X)). If C
succeeds then K ̸= K and F(K, X) = F(K, X). Note that the first condition implies in
particular that (K, X) ̸= (K, X) and hence D is successful as well.

32

	Introduction
	Contribution
	Related Work

	Preliminaries
	Committing Security and Generic Composition
	Committing Security of the N-Schemes
	N2 (Encrypt-then-MAC)
	N1 (Encrypt-and-MAC)
	N3 (MAC-then-Encrypt)

	Committing Security for Symmetric Encryption and MACs
	An Instantiation from Sponges

	Committing Security and Leakage Resilience
	Leakage Security Notions
	A Generic Transformation

	Conclusion and Instantiation/Implementation Aspects
	References
	Additional Background
	Full Proofs
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Hierarchy of Binding Notions

