On the bijectivity of the map χ

Anna-Maurin Graner ${ }^{* 1}$, Björn Kriepke ${ }^{\dagger 1}$, Lucas Krompholz ${ }^{\ddagger 1}$, and Gohar M. Kyureghyan ${ }^{81}$
${ }^{1}$ Institute of Mathematics, University of Rostock, Germany

February 7, 2024

We prove that for $n>1$ the map $\chi: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$, defined by $y=\chi(x)$ with $y_{i}=x_{i}+x_{i+2} \cdot\left(1+x_{i+1}\right)$ for $1 \leq i \leq n$, is bijective if and only if $q=2$ and n is odd, as it was conjectured in [8].

1 Introduction

Let q be any prime power and n a positive integer. Several cryptographic primitives, including ASCON [4] and SHA-3 [6], use the map $\chi: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ given by $y=\chi(x)$ with

$$
y_{i}=x_{i}+x_{i+2} \cdot\left(1+x_{i+1}\right)
$$

for $1 \leq i \leq n$, where the indices are computed modulo n. Let the symbol \odot denote the element wise multiplication of two vectors (also known as the Hadamard product), i.e., $z=x \odot y$ with $z_{i}=x_{i} \cdot y_{i}$ for all $i=1, \ldots, n$. Further, denote by S the cyclic left shift operator on \mathbb{F}_{q}^{n}, that is $\mathrm{S}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{2}, \ldots, x_{n}, x_{1}\right)$. Let S^{j} denote the j-th iterate of S for $j \geq 0$. Note that S^{0} is the identity map. Then χ can also be written as

$$
\chi(x)=x+\mathrm{S}(x) \odot \mathrm{S}^{2}(x)+\mathrm{S}^{2}(x) .
$$

It is known that $\chi: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is bijective if and only if n is odd $[2]$. Some partial results are proved about bijectivity of χ for $q \neq 2$. In [8] it was shown that for $k \geq 1$ the map χ is not a permutation, when

- q is odd,

[^0]- $q=2^{k}$ and n is even,
- $q=2^{2 k}$ and $n>1$ is odd,
- $q=2^{3 k}$ and $n>1$ is odd.

In 7 the following additional parameters were ruled out using an approach based on Gröbner basis:

- $q=2^{5 k}$ or $q=2^{7 k}$ and n is a multiple of 3 or 5 .

It was conjectured in [8] that χ is not a permutation in all other cases except when $q=2$ and n odd. We confirm this conjecture using linear algebra methods. More precisely, we prove in Lemmas 3 to 5 that the following result holds:

Theorem 1. For $q=2$ the map χ is a permutation if and only if n is odd. For any prime power $q>2$, the map $\chi: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ is a permutation if and only if q is even and $n=1$.

We conclude our note with a short proof for the rank of the linear part of $\chi(x+a)+\chi(x)$, which appears in the study of the differential properties of the map $\chi: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$.

2 Deriving the linear system

The map χ is not a permutation if and only if there exist vectors $a, x \in \mathbb{F}_{q}^{n}$ with $a \neq 0$ such that

$$
\begin{equation*}
\chi(x+a)-\chi(x)=0 . \tag{1}
\end{equation*}
$$

Note that for any j the map S^{j} is linear over \mathbb{F}_{q}. Furthermore, the Hadamard product is commutative and distributive with respect to addition, i.e. $x \odot y=y \odot x$ and $x \odot(y+z)=$ $x \odot y+x \odot z$ for all $x, y, z \in \mathbb{F}_{q}^{n}$. Moreover, we have $\mathrm{S}^{j}(x \odot y)=\mathrm{S}^{j}(x) \odot \mathrm{S}^{j}(y)$. Using these properties, we obtain

$$
\begin{aligned}
\chi(x+a) & =x+a+\mathrm{S}(x+a) \odot \mathrm{S}^{2}(x+a)+\mathrm{S}^{2}(x+a) \\
& =x+a+[\mathrm{S}(x)+\mathrm{S}(a)] \odot\left[\mathrm{S}^{2}(x)+\mathrm{S}^{2}(a)\right]+\mathrm{S}^{2}(x)+\mathrm{S}^{2}(a) \\
& =x+a+\mathrm{S}(x) \odot \mathrm{S}^{2}(x)+\mathrm{S}(x) \odot \mathrm{S}^{2}(a)+\mathrm{S}(a) \odot \mathrm{S}^{2}(x)+\mathrm{S}(a) \odot \mathrm{S}^{2}(a)+\mathrm{S}^{2}(x)+\mathrm{S}^{2}(a) \\
& =\chi(x)+a+\mathrm{S}(x) \odot \mathrm{S}^{2}(a)+\mathrm{S}(a) \odot \mathrm{S}^{2}(x)+\mathrm{S}(a) \odot \mathrm{S}^{2}(a)+\mathrm{S}^{2}(a)
\end{aligned}
$$

and therefore

$$
\chi(x+a)-\chi(x)=a+\mathrm{S}^{2}(a)+\mathrm{S}(a \odot \mathrm{~S}(x)+x \odot \mathrm{~S}(a)+a \odot \mathrm{~S}(a)) .
$$

For a fixed $a \in \mathbb{F}_{q}^{n} \backslash\{0\}$, the equation $\chi(x+a)-\chi(x)=0$ has a solution x if and only if

$$
-a-\mathrm{S}^{2}(a)=\mathrm{S}(a \odot \mathrm{~S}(x)+x \odot \mathrm{~S}(a)+a \odot \mathrm{~S}(a))
$$

has a solution, which, by applying S^{-1} on both sides, is equivalent to

$$
\begin{equation*}
-\mathrm{S}^{-1}(a)-\mathrm{S}(a)-a \odot \mathrm{~S}(a)=a \odot \mathrm{~S}(x)+x \odot \mathrm{~S}(a) \tag{2}
\end{equation*}
$$

The right-hand side of (2) is a linear map in x and hence it reduces to a system of linear equations over \mathbb{F}_{q}. We represent this system of equations using matrices:

$$
\left(\begin{array}{cccccc}
a_{2} & a_{1} & & & & \tag{3}\\
& a_{3} & a_{2} & & & \\
& & a_{4} & a_{3} & & \\
& & & \ddots & \ddots & \\
& & & & a_{n-1} & a_{n-2} \\
& & & & & a_{n} \\
& & & & & a_{n-1} \\
a_{n} & & & & & \\
a_{2} a_{3}+a_{3}+a_{1} \\
a_{3} a_{4}+a_{4}+a_{2} \\
\vdots \\
a_{1}
\end{array}\right) \cdot x=-\left(\begin{array}{c}
a_{1} a_{2}+a_{2} \\
a_{n-2} a_{n-1}+a_{n-1}+a_{n-3} \\
a_{n-1} a_{n}+a_{n}+a_{n-2} \\
a_{n} a_{1}+a_{1}+a_{n-1}
\end{array}\right)
$$

where $a=\left(a_{1}, \ldots, a_{n}\right)$. We denote the coefficient matrix in (3) by $A(a)$ and the vector in its right-hand side by $b(a)$. We abbreviate $A(a) \cdot x=b(a)$ often by $(A(a) \mid b(a))$.

Observe that the map $\chi: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ is bijective if and only if for any non-zero $a \in \mathbb{F}_{q}^{n}$ equation (3) has no solution. Our goal is now to check whether (3) has a solution x for some fixed non-zero a.

3 The case $q>2$

In this section we show that for $q>2$ the map χ is a permutation on \mathbb{F}_{q}^{n} if and only if q is even and $n=1$. We consider separately the cases $n=1,2,3$ and $n>3$.

First let us assume that $n=1$. In that case $\mathrm{S}(x)=x$ is the identity map and therefore $\chi(x)=x+\mathrm{S}(x) \odot \mathrm{S}^{2}(x)+\mathrm{S}^{2}(x)=x+x^{2}+x=x^{2}+2 x=x(x+2)$, which is a permutation if and only if q is even.

Remark 2. Note that for $n=1$ in odd characteristic $\chi(0)=\chi(-2)$. In general for any n it holds that $\chi(0, \ldots, 0)=\chi(-2, \ldots,-2)$ and therefore χ is never a permutation in odd characteristic, as noted in [8]. Therefore, from now on we could restrict ourselves to even characteristic. However, the rest of the proof presented here is valid independently of the characteristic of \mathbb{F}_{q}, with the minor exception in the case $n=3$.

We continue with $n=2$. In this case (3) has the form

$$
\left(\begin{array}{cc|c}
a_{2} & a_{1} & -a_{1} a_{2}-2 a_{2} \\
a_{2} & a_{1} & -a_{1} a_{2}-2 a_{1}
\end{array}\right)
$$

This has a solution for example in the case $a=(1,1)$ which shows that χ is not a permutation.

Next, let $n=3$. Now the system (3) looks like

$$
\left(\begin{array}{ccc|c}
a_{2} & a_{1} & & -a_{1} a_{2}-a_{2}-a_{3} \\
& a_{3} & a_{2} & -a_{2} a_{3}-a_{3}-a_{1} \\
a_{3} & & a_{1} & -a_{3} a_{1}-a_{1}-a_{2}
\end{array}\right)
$$

Note that the determinant of the coefficient matrix is $2 a_{1} a_{2} a_{3}$. Therefore, if q is odd, we can choose a_{1}, a_{2}, a_{3} all nonzero and the corresponding system always has a solution. In the case q even, assume that $a_{2} \neq 0$. Using the Gaussian elimination, we obtain

$$
\left(\begin{array}{cc|c}
a_{2} & a_{1} & \tag{4}\\
& a_{3} & a_{2}
\end{array} a_{1} a_{2}+a_{2}+a_{3}, a_{2} a_{3}+a_{3}+a_{1} .\right.
$$

This system has a solution if there exist choices of $a_{1}, a_{2}, a_{3} \in \mathbb{F}_{q}$ such that $a_{2}, a_{3} \neq 0$ and

$$
\begin{equation*}
a_{1}^{2}+\left(a_{2}+a_{3}+a_{2} a_{3}\right) a_{1}+\left(a_{2} a_{3}+a_{2}^{2}+a_{3}^{2}\right)=0 \tag{5}
\end{equation*}
$$

which is a quadratic equation in a_{1}. Having in mind, that in binary fields a quadratic equation $X^{2}+u X+v=0$ has always a solution if $u=0$, we put $a_{2}+a_{3}+a_{2} a_{3}=0$ in (5). Equivalently, by adding 1 on both sides, $\left(a_{2}+1\right)\left(a_{3}+1\right)=1$. As $q>2$, we can choose an element $a_{3} \in \mathbb{F}_{q} \backslash\{0,1\}$ and then $a_{2}=\frac{1}{a_{3}+1}+1=\frac{a_{3}}{a_{3}+1} \neq 0$. For these $a_{2}, a_{3} \neq 0$ the quadratic equation (5) has a solution $a_{1} \in \mathbb{F}_{q}$, implying the existence of $\left(a_{1}, a_{2}, a_{3}\right) \neq 0$ for which the linear system (4) has a solution x.

We have thus proved the following lemma.
Lemma 3. Let $q>2$. If $n=1$ then χ is a permutation if and only if q is even. If $n=2,3$ then χ is not a permutation.

Let now $n>3$. Again, we show that for certain choices of the vector $a \in \mathbb{F}_{q}^{n} \backslash\{0\}$ the equation (3) admits a solution x. Let $a_{n}=0$. Then the linear system (3) reduces to

$$
\left(\begin{array}{ccccccc|c}
a_{2} & a_{1} & & & & & & -a_{1} a_{2}-a_{2} \\
& a_{3} & a_{2} & & & & & -a_{2} a_{3}-a_{3}-a_{1} \\
& & a_{4} & a_{3} & & & & -a_{3} a_{4}-a_{4}-a_{2} \\
& & & \ddots & \ddots & & & \vdots \\
& & & & a_{n-1} & a_{n-2} & 0 & -a_{n-2} a_{n-1}-a_{n-1}-a_{n-3} \\
& & & & 0 & 0 & a_{n-1} & -a_{n-2} \\
& & & & 0 & 0 & a_{1} & -a_{1}-a_{n-1}
\end{array}\right) .
$$

Further, let all a_{1}, \ldots, a_{n-1} be non-zero and assume

$$
\operatorname{det}\left(\begin{array}{cc}
a_{n-1} & a_{n-2} \\
a_{1} & a_{1}+a_{n-1}
\end{array}\right)=0
$$

or equivalently, $a_{n-1}\left(a_{1}+a_{n-1}\right)=a_{1} a_{n-2}$. Under this assumption there is a solution $x \in \mathbb{F}_{q}^{n}$. Indeed we can choose x_{n-1} arbitrarily, for example $x_{n-1}=1$, and then $x_{n}=$ $-\frac{a_{n-2}}{a_{n-1}}$. The remaining components are obtained by simple back substitution, as the other diagonal entries are all nonzero.

Now it remains to see that there are non-zero $a_{1}, a_{n-1}, a_{n-2} \in \mathbb{F}_{q}$ such that the assumption $a_{n-1}\left(a_{1}+a_{n-1}\right)=a_{1} a_{n-2}$ is satisfied. Note that because $n>3$ the components
a_{1}, a_{n-1}, a_{n-2} do not coincide. Let $a_{n-1}=1$ and choose $a_{1} \in \mathbb{F}_{q} \backslash\{0,-1\}$ arbitrarily. Then $a_{1}+1 \neq 0$ and $a_{n-2}=\frac{a_{1}+1}{a_{1}} \neq 0$, fulfilling the requirements.

We have thus proved the following result.
Lemma 4. Let $q>2$ and $n>3$. Then $\chi: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ is not a permutation.

4 The special case $q=2$

It is known that for $q=2$ the map $\chi: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is bijective if and only if n is odd. If n is even it is easy to see that χ is not a permutation. Indeed,

$$
\chi(1,0,1,0, \ldots, 1,0)=(0, \ldots, 0)=\chi(0, \ldots, 0),
$$

as it has been noted in [2]. The fact that χ is a permutation for n odd was proved in [2] by using a seed-and-leap method to compute the preimage of a given element $y \in \mathbb{F}_{2}^{n}$. A more detailed proof of this approach can be found in [3]. Another method to compute the inverse of χ for n odd is given in Appendix D of [1], however without a proof. In [5] an explicit inverse formula of χ is given and proved.

To have a unified proof for Theorem 1, we present here a short proof for the statement that $\chi: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is bijective if n is odd, applying the method developed in the previous sections.

Let now n be odd. If $n=1$ then $\chi(x)=x^{2}=x$ which is a permutation. So now assume $n \geq 3$. Let $a \in \mathbb{F}_{2}^{n} \backslash\{0\}$ be arbitrary. We aim to show that there is no solution x to $\chi(x)+\chi(x+a)=0$. It can be easily seen that χ is shift-invariant, i.e. $\mathrm{S}(\chi(x))=\chi(\mathrm{S}(x))$ for all $x \in \mathbb{F}_{2}^{n}$. Therefore, if $\chi(x)+\chi(x+a)=0$ has a solution, then it follows that also

$$
0=\mathrm{S}(0)=\mathrm{S}(\chi(x)+\chi(x+a))=\chi(\mathrm{S}(x))+\chi(\mathrm{S}(x)+\mathrm{S}(a))
$$

and there also exists a solution $\mathrm{S}(x)$ for $\mathrm{S}(a)$.
In the following we show that (3) has no solution by considering three cases. First we assume that a has two consecutive entries which are zero. Next we will assume that a has a zero entry such that the entries before and after are both nonzero. And finally we will assume that a only has nonzero entries.

Suppose now (3) has a solution x for a non-zero a with $a_{i}=a_{i+1}=0$ for some $1 \leq i \leq n$. Since χ is shift-invariant, by considering an appropriate shift of a, we may assume without loss of generality that $a_{n}=a_{1}=0$. The last row of (3) then looks as follows:

$$
\left(\begin{array}{cc}
0 & 0 \mid a_{n-1}
\end{array}\right)
$$

As the system has a solution x, it then follows that $a_{n-1}=0$. However, then by considering the $(n-1)$-th row, it follows that also $a_{n-2}=0$. By repeating this argument we obtain $a=0$, a contradiction.

Next we assume that there exists an index $i \in\{1, \ldots, n\}$ such that $a_{i}=0$ and $a_{i-1}=a_{i+1}=1$. Again, by considering shifts of a, we may assume that $i=n$. From
the last two rows of (3) it then immediately follows that $a_{n-2}=x_{n}=0$. If $a_{n-3}=0$, then we are in the previous case. Otherwise, we can repeat this argument and obtain that $a_{n-2 k}=0$ for all integers k. However, using that $n=2 m+1$ is odd, we then also obtain $a_{n-2 m}=a_{1}=0$, a contradiction to the assumption that $a_{1} \neq 0$.

Finally, we need to consider $a=(1, \ldots, 1)$. In this case (3) reduces to

$$
\left(\begin{array}{ccccccc|c}
1 & 1 & & & & & & 1 \\
& 1 & 1 & & & & & 1 \\
& & 1 & 1 & & & & 1 \\
& & & \ddots & \ddots & & & \vdots \\
& & & & 1 & 1 & & 1 \\
& & & & & 1 & 1 & 1 \\
1 & & & & & & 1 & 1
\end{array}\right)
$$

By adding every of the first $n-1$ rows to the last one, we obtain (using that $n-1$ is even) the row

$$
\left(\begin{array}{ll}
0 & 0 \mid 1
\end{array}\right)
$$

which means that the equation has no solution.
The above considerations imply the following result:
Lemma 5. The map $\chi: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is a permutation if and only if n is odd.

5 Rank of the coefficient matrix $A(a)$ over \mathbb{F}_{2}

The equation (3) appears in the study of differential and linear properties of χ. In particular, the ranks of matrices $A(a)$ allow to determine the Walsh spectrum of χ. In [8) the following proposition is proved:
Proposition 6. For any $a \in \mathbb{F}_{2}^{n}$ the rank of the matrix $A(a)$ over \mathbb{F}_{2} is given by

$$
\operatorname{rank} A(a)=\omega(a):= \begin{cases}n-1, & a=(1, \ldots, 1) \\ \operatorname{wt}(a)+\mathrm{r}(a), & \text { otherwise }\end{cases}
$$

where $\operatorname{wt}(a)$ is the Hamming weight and $\mathrm{r}(a)$ is the number of 001-patterns in a. More precisely, $\mathrm{r}(a)$ is the number of indices $i=1, \ldots, n$ such that $\left(a_{i}, a_{i+1}, a_{i+2}\right)=(0,0,1)$ where the indices are computed modulo n.

We present a shorter proof of this fact using induction on n.
Claim 7. Proposition 6 is true for $n=1,2,3$.
Proof. For $n=1$, observe that $A\left(a_{1}\right)=\left(2 a_{1}\right)=(0)$, and $\operatorname{rank} A(0)=\operatorname{rank} A(1)=0=$ $\omega(1)=\omega(0)$. For $n=2$ we have

$$
A\left(a_{1}, a_{2}\right)=\left(\begin{array}{cc}
a_{2} & a_{1} \\
a_{2} & a_{1}
\end{array}\right) .
$$

It is easily seen that, $\operatorname{rank} A(0,0)=0=\omega(0,0)$ and $\operatorname{rank} A(1,1)=\operatorname{rank} A(1,0)=$ $\operatorname{rank} A(0,1)=1=\omega(1,1)=\omega(1,0)=\omega(0,1)$. Let $n=3$, in which case

$$
A\left(a_{1}, a_{2}, a_{3}\right)=\left(\begin{array}{ccc}
a_{2} & a_{1} & \tag{6}\\
& a_{3} & a_{2} \\
a_{3} & & a_{1}
\end{array}\right)
$$

Using the shift-invariance of the rank of $A(a)$, we only need to consider the cases when a equals $(0,0,0),(1,0,0),(1,1,0)$, or $(1,1,1)$. It is easily seen that rank $A(0,0,0)=$ $0=\omega(0,0,0)$ and $\omega(1,0,0)=2=\operatorname{rank} A(1,0,0)$ and $\omega(1,1,0)=2=\operatorname{rank} A(1,1,0)$ and $\omega(1,1,1)=2=\operatorname{rank} A(1,1,1)$.

Claim 8. Proposition $\sqrt[6]{ }$ is true for $a=(0, \ldots, 0)$ and $a=(1, \ldots, 1)$ with $n \geq 3$.
Proof. If $a=(0, \ldots, 0)$ then $A(a)$ is the zero matrix and $\operatorname{rank} A(a)=0=\omega(a)$ is clear. If $a=(1, \ldots, 1)$, then the first $n-1$ rows of $A(a)$ are linearly independent, so $\operatorname{rank} A(a) \geq n-1$. On the other hand, $(1, \ldots, 1)$ is in the kernel of $A(a)$, so rank $A(a) \leq$ $n-1$ and therefore $\operatorname{rank} A(a)=n-1=\omega(a)$.

We now proceed by induction on n. Let $n>3$ be fixed and assume that the claim is true for all vectors $u \in \mathbb{F}_{2}^{k}$ with $k<n$. Let $a \in \mathbb{F}_{2}^{n}$. If $a=(0, \ldots, 0)$ or $a=(1, \ldots, 1)$ then the claim is true by Claim 8. Therefore, we may assume that $a \neq(0, \ldots, 0),(1, \ldots, 1)$. Note that from the shift-invariance of χ it follows that the rank of $A(a)$ is invariant under shifts of a. Equivalently, this can also be seen by switching rows and columns. Therefore, we can assume that $a_{1}=1, a_{n}=0$. We write the vector a in the following form:

$$
a=(\underbrace{1, *, \ldots, *, 0}_{=u}, \underbrace{1, \ldots, 1}_{=v}, \underbrace{0, \ldots, 0}_{=w})
$$

More precisely, let k be the last index such that $a_{k}=1$ and a_{j} be the first index such that $a_{i}=1$ for all $i=j, \ldots, k$. Then $u=\left(a_{1}, \ldots, a_{j-1}\right)=(1, *, \ldots, *, 0), v=\left(a_{j}, \ldots, a_{k}\right)=$ $(1, \ldots, 1)$ and $w=\left(a_{k+1}, \ldots, a_{n}\right)=(0, \ldots, 0)$. Note that we allow the vector u to be empty. This happens if and only if $a=(1, \ldots, 1,0, \ldots, 0)$, equivalently, $j=1$. If a contains at least one occurrence of a 001-pattern, then by shift-invariance we can assume that w contains at least two zeros. Otherwise, $w=(0)$.

Note that $\mathrm{wt}(a)=\mathrm{wt}(u)+\mathrm{wt}(v)=\mathrm{wt}(u)+(k-j+1)$. Now consider the 001-patterns. Any 001-pattern in a either is completely contained inside u, ends exactly at a_{j} or ends at a_{1}. In the first case the 001-pattern is also contained in u. In the second case we know that $u=(1, *, \ldots, *, 0,0)$ ends in at least two zeros, and it also has a 001-pattern which ends at a_{1}. The last case occurs if and only if w has at least two zeros. It follows that

$$
\mathrm{r}(a)= \begin{cases}\mathrm{r}(u)+1 & w \text { contains at least two zeros } \\ \mathrm{r}(u) & \text { otherwise } .\end{cases}
$$

Then the matrix $A(a)$ has the following form:

Note that $A(a)$ is a block diagonal matrix. The first block is the matrix $A(u)$ with $\operatorname{rank} A(u)=\omega(u)$ by the induction hypothesis. This also holds in the degenerate case that u is empty if we then define $\omega(u)=0$. The second block has rank $k-j$. Note that if $k=j$ then the second block is empty. The third block has rank 2 if w includes at least two zeros, otherwise it has the form $\binom{1}{1}$ and has rank 1. Remember that the rank of a block diagonal matrix is the sum of the ranks of the blocks on the diagonal. It follows
that

$$
\begin{aligned}
\operatorname{rank} A(a) & =\omega(u)+(k-j)+ \begin{cases}2 & w \text { contains at least two zeros } \\
1 & \text { otherwise }\end{cases} \\
& =\mathrm{wt}(u)+(k-j+1)+\mathrm{r}(u)+ \begin{cases}1 & w \text { contains at least two zeros } \\
0 & \text { otherwise }\end{cases} \\
& =\mathrm{wt}(a)+\mathrm{r}(a)=\omega(a) .
\end{aligned}
$$

For clarity, we also write down how (7) looks in the degenerate cases, namely that u empty, $j=k$ or both. We keep the horizontal and vertical lines to show which blocks vanish. If u is empty and $j<k$, then $a=(1, \ldots, 1,0, \ldots, 0)$ and

If u is not empty and $j=k$, then $a=(1, *, \ldots, *, 0,1,0, \ldots, 0)$ and

$$
A(a)=\left(\begin{array}{cccc|cccc}
a_{2} & a_{1} & & & & & & \\
& \ddots & \ddots & \\
& & 0 & a_{j-2} & & & & \\
\\
& & & 1 & 0 & & & \\
\hline & & & 0 & 1 & & & \\
& & & & & 0 & 0 & \\
& & \ddots & \ddots & \\
& & & & & & & 0 \\
0 & & & & & & & 1
\end{array}\right) .
$$

If u is empty and $j=k$, then $a=(1,0, \ldots, 0)$ and

$$
A(a)=\left(\begin{array}{c|cccc}
\hline \hline 0 & 1 & & & \\
& 0 & 0 & & \\
& & \ddots & \ddots & \\
0 & & & 0 & 0 \\
0 & & & 1
\end{array}\right)
$$

References

[1] Alex Biryukov, Charles Bouillaguet, and Dmitry Khovratovich. Cryptographic Schemes Based on the ASASA Structure: Black-box, White-box, and Public-key. Cryptology ePrint Archive, Paper 2014/474. 2014. URL: https://eprint.iacr.org/ 2014/474 (visited on 01/18/2024).
[2] Joan Daemen. "Cipher and hash function design strategies based on linear and differential cryptanalysis". PhD thesis. KU Leuven, 1995.
[3] Joan Daemen, René Govaerts, and Joos Vandewalle. "An efficient nonlinear shiftinvariant transformation". In: Proceedings of the 15th Symposium on Information Theory in the Benelux. Werkgemeenschap voor Informatie- en Communicatietheorie, 1994.
[4] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. "Ascon v1.2: Lightweight Authenticated Encryption and Hashing". In: Journal of Cryptology 34.3 (June 2021), p. 33. ISSN: 1432-1378. DOI: 10/gtfgst.
[5] Fukang Liu, Santanu Sarkar, Willi Meier, and Takanori Isobe. "The Inverse of χ and Its Applications to Rasta-Like Ciphers". In: Journal of Cryptology 35.4 (Oct. 2022), p. 28. ISSN: 1432-1378. DoI: $10 / \mathrm{gtfgn7}$.
[6] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. Tech. rep. Federal Information Processing Standard (FIPS) 202. U.S. Department of Commerce, Aug. 2015. doi: 10.6028/NIST.FIPS.202.
[7] Kamil Otal. A Solution to a Conjecture on the Maps $\chi_{n}^{(k)}$. Cryptology ePrint Archive, Paper 2023/1782. 2023. URL: https://eprint.iacr.org/2023/1782 (visited on 01/18/2024).
[8] Jan Schoone and Joan Daemen. Algebraic properties of the maps χ_{n}. Cryptology ePrint Archive, Paper 2023/1708. 2023. URL: https://eprint.iacr.org/2023/ 1708 (visited on 01/18/2024).

[^0]: *anna-maurin.graner@uni-rostock.de
 ${ }^{\dagger}$ bjoern.kriepke@uni-rostock.de
 ${ }^{\ddagger}$ lucas.krompholz@uni-rostock.de
 §gohar.kyureghyan@uni-rostock.de

