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Abstract

Threshold signatures improve both availability and security of digital signatures by splitting the
signing key into N shares handed out to different parties. Later on, any subset of at least T parties can
cooperate to produce a signature on a given message. While threshold signatures have been extensively
studied in the pre-quantum setting, they remain sparse from quantum-resilient assumptions.

We present the first efficient lattice-based threshold signatures with signature size 13 KiB and com-
munication cost 40 KiB per user, supporting a threshold size as large as 1024 signers. We provide an
accompanying high performance implementation. The security of the scheme is based on the same as-
sumptions as Dilithium, a signature recently selected by NIST for standardisation which, as far as we
know, cannot easily be made threshold efficiently.

All operations used during signing are due to symmetric primitives and simple lattice operations;
in particular our scheme does not need heavy tools such as threshold fully homomorphic encryption or
homomorphic trapdoor commitments as in prior constructions. The key technical idea is to use one-time
additive masks to mitigate the leakage of the partial signing keys through partial signatures.
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1 Introduction
A threshold signature scheme [Des90, DF90] is a specific type of multiparty computation that aims at issuing
digital signatures, for which any subset of T parties among N signers are able to sign a message, but (T − 1)
cannot. This ability to distribute trust among several parties has sparked widespread interest from the
blockchain ecosystem, and also from governmental bodies such as NIST [PB23].

In the pre-quantum world, there exist practical threshold signature solutions [Bol03, LJY14, KG20,
BCK+22, CKM21, Lin22, RRJ+22, ANO+22, Sho00] based on Schnorr, ECDSA, RSA or BLS [BLS01]
signatures. They have reached a high level of maturity and often satisfy advanced functionality and security
features such as robustness, identifiable-aborts, small round complexity and backward compatibility with
existing constructions.

Unfortunately, there are far fewer post-quantum threshold signature schemes. Some solutions have been
proposed, but few have been implemented, and those who have suffer from major inefficiencies, such as large
signatures, slow signing times, and sometimes both. More details are provided in Section 1.2.

In January 2023, the US agency NIST released a call for multi-party threshold schemes [PB23]. Quantum
resistance is repeatedly listed as an important criterion [PB23, Sections 3.2 and 3.3], with a deadline for
submissions expected for the first half of 2024. The exploratory state of post-quantum threshold sig-
natures stands in stark contrast with the timeline of NIST’s call for proposals. It also contrasts with
the comparative maturity of standard post-quantum signatures; NIST has standardised two post-quantum
(statefull) signatures [CAD+20], has announced the future standardisation of three other (stateless) signa-
tures [CAD+20, AAC+22], and recently, in June 2023, had an additional call for proposals [NIS22].

The focus of this work is thus to construct a practically efficient post-quantum threshold signature and
to close the gap between the classical setting.

1.1 Our Contributions
We propose TRaccoon: a practical three-round lattice-based threshold signature assuming the hardness of
the MLWE and MSIS problems.1 Our threshold signature is based on a variant of the Lyubashevsky’s
(non-thresholdised) signature scheme [Lyu09, Lyu12] and departs from prior constructions that utilise heavy
cryptographic tools such as threshold fully homomorphic encryption (FHE) or trapdoor homomorphic com-
mitments [BGG+18, DOTT21, DOTT22, ASY22]. Moreover, it can be viewed as a thresholdised version of
Raccoon [dPEK+23], a lattice-based signature scheme by del Pino et al., submitted to the additional NIST
call for proposals [NIS22] (see Section 2 for more detail). In particular, the verification algorithm of both
schemes is identical. Meaning that if we were to parametrize TRaccoon with compatibility in mind, obtaining
a signature that can be used as a signature of Raccoon is feasible.2 This is a desirable property for threshold
signatures as it allows to seamlessly use TRaccoon in an ecosystem that relies on Raccoon.

At a birds eye’s view, we follow the folklore construction of a three-round threshold signature from
Schnorr’s signature scheme [Sch90, Sch91] and Shamir’s secret sharing protocol [Sha79a]. However, as it is
well-known in the lattice community, a naive translation does not work since, unlike in the classical setting,
the signing key and signatures must satisfy additional size constraints. Indeed, the folklore construction
ported to the lattice setting would leak too much information about the (distributed) signing keys and lead
to practical attacks. The key technical ingredient we use to mitigate this leakage is the use of pairwise one-
time additive masks that are non-interactively shared between each pair of users at each signing procedure
and recombined in a way that allows individual users to hide their response while preserving correctness.
More details are provided in Section 2.

We complement our theoretical design by providing concrete parameters, along with a high performance
implementation. For example, for a bit-security level κ = 128, a number of signers T = 10243, and a

1More precisely, we rely on the recent Hint-MLWE problem by Kim et al. [KLSS23] and the SelfTargetMSIS problem underlying
the security of Dilithium [KLS18]. Both problems are known to be as hard as the MLWE and MSIS problems, respectively.

2We choose not to do so yet as the parameters of both schemes are still subject to improvements.
3This is an upper limit of the “large” requirements of NIST preliminary call for threshold [PB23]. Note that our parameters

support any 1 ≤ T ≤ N ≤ 1024.
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maximum number of signatures QSign = 260, our verification key and signatures sizes are about 4 and 13 KiB,
respectively. In addition, creating a signature requires 116 ms of single-core computation from each signer,
ignoring possible communication latencies and enabling 4.5 GHz turbo on an i7-12700. More details are
provided in Tables 2 and 3, illustrating that our scheme is very efficient compared to existing works, even when
broadening the scope to recent lattice-based multi-signatures [FSZ22, DOTT21, DOTT22, BTT22, Che23a].
This brings us within an order of magnitude of Dilithium, whose verification key and signatures are about
1.3 and 2.4 KiB, respectively. Finally, we note that the communication complexity of our distributed signing
protocol is also very competitive; the total communication cost of producing a signature is about 40 KiB per
party.

1.2 Related Works
Threshold signatures are an extremely dynamic research topic and several threshold signature schemes have
been proposed in the recent years. However, most of these threshold signatures are based on Schnorr
signatures, such as FROST [KG20, BCK+22] and ROAST [RRJ+22], or on ECDSA, such as [ANO+22].
As a result, they are not post-quantum. On the other hand, there exist comparatively fewer post-quantum
threshold signatures. We survey the main approaches.
Lattice-based Threshold Signature. To our knowledge, the most concrete proposal of a lattice-based
threshold signature is a recent work by Agrawal, Stehlé, and Yadav [ASY22]. They optimize the one-round
threshold signature by Boneh et al. [BGG+18] based on threshold FHE, using a more fine-grained analysis
on the noise growth using Rényi divergence [Rén61]. They further show how to turn the selectively secure
scheme by Boneh et al. into a (partially) adaptive scheme. While the construction of [ASY22] is round-
optimal, the use of threshold FHE will likely incur significant computation and communication overheads as
they require a full FHE evaluation of a standard signature scheme.
Lattice-based Multi-Signatures. A multi-signature is a special type of N -out-of-N threshold signature
that allows multiple signatures for the same message but from independent signers to be aggregated into a
single signature.

Recent works have built elegant solutions for lattice-based multi-signatures [FSZ22, DOTT21, DOTT22,
BTT22, Che23b]. Boschini et al. [BTT22] and Chen [Che23b] are the state-of-the-art for lattice-based multi-
signatures following the Fiat-Shamir with aborts paradigm [Lyu09, Lyu12]. They construct a two-round
protocol based on the MSIS and MLWE assumptions, achieving a signature size about 107 KiB and 31 KiB,
respectively, for 1024 users [Che23b]. While Boschini et al. has a larger signature size, it has an appealing
offline-online feature where the first round is independent of the message. Moreover, the verification algorithm
of their scheme is the same as the underlying signature scheme (similarly to [BGG+18, ASY22] and ours),
while Chen includes an additional commitment randomness in the signature. Fleischhacker et al. [FSZ22]
introduced a multi-signature based on the ring SIS assumption that does not require interaction between the
signers to aggregate the signatures at the expense of some preprocessing. They achieve a signature size of
572 KiB for 1024 users. We note that none of these multi-signature solutions can be trivially extended to
threshold signatures.
Post-quantum Threshold Signatures. Besides lattices, threshold signatures based on other post-quantum
families have been designed. Khaburzaniya et al. [KCLM22] proposed a STARK-based approach for ag-
gregating and thresholdising hash-based signatures. For N = 1024 and a bit-security κ = 128, they report
signatures of about 170 KiB with an aggregation time of 4 to 20 seconds.

The isogeny-based scheme CSI-FiSh by Beullens et al. [BKV19] has been thresholdised in two works.
Cozzo and Smart [CS20] proposed a distributed key generation procedure, while de Feo and Meyer [DM20]
proposed a distributed signing procedure. However, both works [CS20, DM20] are inherently sequential and
the round complexity scales with the number of users. Moreover, all three works [BKV19, CS20, DM20]
rely on the CSIDH cryptographic group action, whose underlying quantum security is subject to debate
[BLMP19, Pei20, BS20, CSCJR22].
Concurrent and Independent Work. Very recently, Gur, Katz, and Silde [GKS23] construct a two-round
lattice-based threshold signature. It is an optimisation of the threshold signature by Agrawal, Stehlé, and
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Yadav [ASY22]. They minimise the computation required by the threshold FHE to only linear computation
by tailoring the construction to a specific underlying signature scheme and adding one additional round.
They report a signature size of 11.5 KiB and a communication cost of 1.5 MB per users for the 3-out-of-5
case. Considering that they use homomorphic trapdoor commitments, similarly to Damgård et al. [DOTT21,
DOTT22], we expect the signature size to become much larger as (T,N) grows. In their work, they further
propose a distributed key generation algorithm, removing the need of a trusted setup.

2 Our Techniques
Schnorr’s signature scheme has been a successful tool to construct threshold signature schemes in the classical
setting. Our goal is to replicate this in the post-quantum setting building on (a variant of) Lyubashevsky’s
signature scheme [Lyu09, Lyu12], a lattice-based signature scheme based on the Fiat-Shamir transform.

2.1 Recap: Lyubashevsky’s Signature Without Abort
We first recall Lyubashevsky’s signature scheme, the starting point for our threshold signature scheme.

Let (A, t) be the public key where A ∈ Rk×ℓ
q is a matrix, t ∈ Rk

q is a vector, and Rq denotes some
polynomial ring. The signing key is a tuple of vectors (s, e) ∈ Rℓ

q ×Rk
q such that t = A · s + e, and (s, e)

are “short.” Specifically, (s, e) is a solution to the MLWE instance defined by (A, t). To sign a message msg,
the signature scheme proceeds as follows:

(A.1) Sample ephemeral randomness (r, e′) from an appropriate distribution and compute a commitment
w = A · r+ e′.

(A.2) Next, generate a challenge c ∈ Rq using a hash function Hc as c← Hc(vk,msg,w), where c has small
coefficients.

(A.3) Compute a response (z,y) = (c · s+ r, c · e+ e′).

(A.4) Check if (z,y) satisfies some size constraints. If not, abort and restart from Item (A.1). Otherwise,
output (c, z,y) as the signature.

(A.5) To verify, check that (z,y) satisfies some size constraint and that c = Hc(vk,msg,A · z+ y − c · t).

Item (A.4) is the so-called rejection sampling [Lyu12] step, which happens with a non-negligible probability.
This is one of the key differences between Schnorr. Informally, this check ensures that the distribution of the
signature does not leak information about the “short” signing key, a concern that is non-existing in classical
Schnorr signatures. This has minimal effect on a standard (non-thresholdised) signature since the signer
can restart locally until no rejection occurs.4 In contrast, this becomes problematic when extending it to
a threshold signature scheme. Even if some signers succeed (i.e., do not abort), in order to ensure privacy
of the shared signing key, everybody must restart the distributed signing protocol in case any single signer
aborts. As the signer set grows, such a restart becomes increasingly difficult to handle in practice.

To this end, we follow the common approach of adding a larger commitment noise (r, e′) to hide the
signing key (s, e) [GKPV10], so that no signer aborts the signing protocol. In the context of threshold
signatures such an approach was taken by Agrawal, Stehlé, and Yadav [ASY22], and more recently by Gur,
Katz, and Slide [GKS23]. Both works rely on the Rényi divergence to statistically bound the leakage of the
signing key; compared to the more standard statistical distance, it is known to provide better statistical
bounds. In contrast, in our work, we rely on the hint MLWE (Hint-MLWE) assumption recently introduced
by Kim et al. [KLSS23] to computationally bound the leakage of the signing key. This results in a simpler
and better bound compared to using the Rényi divergence, which we believe to be of an independent interest.

4From a security proof perspective, a proof with rejection sampling requires slightly more work due to subtle issues [DFPS23,
BBD+23].
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Additionally, for practical parameters, we perform several optimisations such as bit-dropping, similarly
to Dilithium [DKL+18], a highly optimised signature based on Lyubashevsky’s signature scheme, soon to be
standardised by NIST under the name ML-DSA [NIS23]. Looking ahead, the way we perform bit-dropping is
based on Raccoon [dPEK+23], a lattice-based signature scheme by del Pino et al., submitted to the additional
NIST call for proposals [NIS22]. Their bit-dropping is more natural and easier to implement compared to
Dilithium. See Section 5 for more details. Throughout this section, we ignore these optimisations for
simplicity. Moreover, for ease of presentation, we refer to Lyubashevsky’s signature scheme without the
rejection sampling step as Raccoon (Item (A.4)).

2.2 Naive Extension to Lattices
Due to the similarity between Schnorr’s signature scheme and Raccoon, we can try to apply the common
approach used in the classical setting [Sho00, KY02, Bol03] to build threshold signatures starting from
Schnorr. Below, let us explain what a naive (insecure) (T,N)-threshold signature from Raccoon would look
like.

We first secret share Raccoon’s signing key (s, e) using Shamir’s secret sharing scheme [Sha79b]. Namely,
s is encoded as the constant term of a degree T − 1 polynomial P , and the partial signing key of user i ∈ [N ]
is defined as the evaluation si = P (i) ∈ Rℓ

q along with a freshly sampled short vector ei. Each users’ partial
signing key (implicitly) defines a partial public key ti = A · si + ei, which is an MLWE instance. Here, note
that given any T partial signing keys (si, ei)i∈act, where act ⊂ [N ] and |act| = T , we can use the Lagrange
coefficients (λact,i)i∈act (see Section 3.5 for definition) to recompute the signing key as:

s =
∑
i∈act

λact,i · si. (1)

For any set act of T signers, the distributed signing protocol proceeds as follows:

(B.1) User i ∈ act computes wi = A · ri+e′i. To protect against rushing adversaries it initially only outputs
a hash commitment Hcom(wi).5

(B.2) After obtaining the hash commitment from all users in act, user i reveals wi and checks the correctness
of all other reveals.

(B.3) User i collects all the commitments and locally generates a challenge c ← Hc(vk,msg,w), where
w =

∑
j∈act wj .

(B.4) User i computes a response (zi,yi) = (c · λact,i · si + ri, c · ei + e′i) and outputs (zi,yi) as its partial
signature.

(B.5) The final signature is (c, z,y) = (c,
∑

j∈act zj ,
∑

j∈act yj), verified as in Raccoon by checking the equal-
ity c = Hc(vk,msg,A · z+ y − c · t).

A routine calculation using Eq. (1) shows that the signature is valid.

Difficulty of Handling Lagrange Coefficients.

While correct, the above construction admits an attack. This stems from the fact that Lagrange coefficients
are large and can be chosen adaptively by the adversary.

In more detail, looking at Item (B.4) carefully, we can alternatively view user i as generating a signature
with a signing key (λact,i · si, ei). Importantly, si is scaled by the Lagrange coefficient λact,i. Since the
user i provides a valid Raccoon signature — a partial signature of the threshold scheme — this allows the
adversary to obtain information on the corresponding scaled partial public key tact,i = λact,i ·A · si+ei. The

5This step prevents the adversary from maliciously generating its commitment after learning all the honest users commitments
(see for instance [BN06]).
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adversary can adaptively ask user i to sign on a scaled public key of its choice by specifying a different signer
set act ⊂ [N ]. By collecting enough tact,i with specifically crafted Lagrange coefficients λact,i, the partial
signing key si can be recovered via simple linear algebra. In the classical setting where the noise vector ei
does not exist, the above attack does not apply since all the obtained scaled partial public keys are linearly
dependent.

This phenomenon is not new to our work. Lattice-based cryptography has always had a hard time
handling Lagrange coefficients, see for example [ABV+12, BLMR13, BGG+18]. This has led work to rely on
an alternative secret sharing scheme know as the {0, 1}-linear (or {−1, 0, 1}-linear) secret sharing scheme, see
e.g., [LST18, BGG+18, DLN+21, ASY22, CSS+22, CCK23]. While this gets around the issue with Lagrange
coefficients, the downside is that the reconstruction algorithm becomes much more complex and individual
shares grow by at least O(N4) [Val84]. Alternatively, we can blow up the modulus size q to scale with O(N !2)
to argue that large Lagrange coefficients become relatively small to q [ABV+12, BGG+18, CCK23]. However,
it is clear that such an approach leads to impractical parameters. Recently, Albrecht and Lai [AL21, Section
3.1] defines the Lagrange interpolating polynomial on specific elements in Rq to handle the blowup more
granularly, however, the concrete gain is unclear for a general T -out-of-N threshold.

2.3 Our Solution: Masking the Commitments
We sidestep all these prior hurdles by using a very simple idea, exploiting the fact that threshold signatures
are interactive. In more detail, assume for now that every two pairs of users i, j ∈ act privately share two
one-time random masks (mact,i,j ,mact,j,i) ∈ (Rℓ

q)
2. We modify the signing protocol of the naive threshold

signature scheme as follows:

(C.1) User i ∈ act computes a commitment wi = A · ri + e′i, a (public) row mask mact,i =
∑

j∈act mact,i,j ,
and outputs (Hcom(wi),mact,i).6

(C.2) After obtaining the hash commitment and row mask from all users in act, user i reveals wi.

(C.3) User i collects all the commitments and locally generate a challenge c := Hc(vk,msg,w), where w =∑
i∈act wi.

(C.4) User i computes a (private) column mask m∗act,i =
∑

j∈act mact,j,i and response (zi,yi) = (c · λact,i ·
si + ri +m∗act,i, c · ei + e′i), and outputs (zi,yi) as its partial signature.

(C.5) The final signature is (c, z,y) = (c,
∑

j∈act(zj −mact,j),
∑

j∈act yj) and is verified as in Item (A.5).

Notice the sum of the row masks and column masks are equal:
∑

j∈act mj,act =
∑

j∈act m
∗
j,act. When all

the users are honest, it can be checked that the aggregated response becomes z =
∑

j∈act(zj −mact,j) =∑
j∈act(c ·λact,j ·sj+rj+(m∗act,j−mact,j)) = c ·s+

∑
j∈act rj , a Raccoon signature as desired (see Item (A.3)).

Intuition of the Security Proof.

A typical security proof of a Lyubashevsky signature consists of invoking honest-verifier zero-knowledge of
the (implicit) underlying identification protocol and programming the random oracle. At a high level, the
reduction first samples a challenge c and response (z,y) distributed independently from the signing key,
and simulates the commitment w = A · z + y − c · t (see Item (A.5)). Informally, if the commitment
randomness (r, e′) are sufficiently larger than the scaled signing key (c · s, c · e), such a reduction remains
indistinguishable from the real world. It is worth highlighting that (r, e′) cannot be too large since the
response (z,y) must be “short,” unlike in the classical Schnorr signature. Finally, it programs the random
oracle as Hc(vk,msg,w) := c.

Let us consider porting this proof to the threshold setting. To illustrate the effect of our masking idea,
we explain what happens without them. Without the mask, user i outputs a partial signature (zi,yi) =

6See Fig. 1 for why we call it row and column masks.
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m1,1 + m1,2 + m1,3 + m1,4 + m1,5 = m1

+ + + + + +

m2,1 + m2,2 + m2,3 + m2,4 + m2,5 = m2

+ + + + + +

m3,1 + m3,2 + m3,3 + m3,4 + m3,5 = m3

+ + + + + +

m4,1 + m4,2 + m4,3 + m4,4 + m4,5 = m4

+ + + + + +

m5,1 + m5,2 + m5,3 + m5,4 + m5,5 = m5

= = = = = =

m∗1 + m∗2 + m∗3 + m∗4 + m∗5 = m

Figure 1: Relationships between mi,j ,mi and m∗j , where we drop the subscript act = {1, 2, 3, 4, 5} for
readability.

• The row masks mi (blue, dotted pattern) are all public.

• An adversary corrupting the user set {1, 2, 3} learns the set (mi,j)min(i,j)≤3 and can infer the column
masks (m∗j )j≤3 (red).

(c · λact,i · si + ri, c · e + e′i). To perform the above proof strategy, the reduction must sample the response
(zi,yi) and simulate the commitment as wi = A · zi +yi− c · tact,i without the partial signing key si, where
tact,i = Asi + ei is the (implicit) partial public key. However, notice the above proof strategy falls apart
since the scaled partial signing key c · λact,i · si is not guaranteed to be small compared to the commitment
randomness ri as the Lagrange coefficients λact,i can become arbitrarily large modulo q. Moreover, we cannot
just sample ri random over Rℓ

q since this breaks the condition that the response zi is short. Recall here that
this is not an artifact of the proof strategy since there is a concrete attack, as we explained above.

This brings us to our masking idea. At a high level, the masking allows the reduction to move the partial
signing keys around in such a way that the response can be simulated using only the full signing key, without
the partial signing key. Effectively, we can remove the Lagrange coefficients in the reduction, and arrive
at a reduction similar to the standard non-thresholdised signature scheme. Let us explain via an example.
Assume the adversary queries a set act = {1, 2, 3, 4, 5} with two honest users 4 and 5 as in Fig. 1. Let us focus
on the four masks (mact,i,j)i,j∈{4,5} not known to the adversary. From Item (C.1), recall that the first signing
round reveals the sums

∑
j∈{4,5}mact,4,j and

∑
j∈{4,5}mact,5,j to the adversary since all (mact,i,j)min(i,j)≤3

(in red in Fig. 1) are known to the adversary. This leaves us one degree of freedom; the sums
∑

j∈{4,5}mact,j,4

and
∑

j∈{4,5}mact,j,5 are distributed uniformly random from the view of the adversary, conditioned on their
sum being

∑
i,j∈{4,5}mact,i,j . Put differently, the column masks m∗act,4 and m∗act,5 are distributed uniformly

random, conditioned on their sum being consistent with
∑

j∈{4,5}mact,j . Using this, in the proof, we can
argue that the two responses (z4, z5) generated as(

c · λact,4 · s4 + r4 +m∗act,4, c · λact,5 · s5 + r5 +m∗act,5
)

(2)

are distributed identically to responses generated asr4 +m∗act,4, c ·

 ∑
i∈{4,5}

λact,i · si

+ r5 +m∗act,5

 ,

where m∗act,4 is sampled uniformly random and m∗act,5 is set as the unique value that guarantees consistency
with the verification equations.
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Lastly, we use the fact that
∑

j∈{4,5} λact,j ·sj = s−
∑

j∈corrupt λact,j ·sj (see Eq. (1)), where the adversary
(and the reduction) controls the secrets for all users in corrupt = act\{4, 5}. Plugging this into the above,
the reduction can instead generate the responses asr4 +m∗act,4, c · s− c ·

∑
j∈corrupt

λact,j · sj + r5 +m∗act,5

 .

Since the reduction can now simulate the response c · s+ r5 of the base signature scheme only using the full
signing key s, we can rely on prior proof techniques at this point to complete the proof.

Subtle Issue with the Proof and a Fix.

While the intuition is simple, the concrete proof requires much care. One important point we glossed over
was how we guarantee Eq. (2). Recall users 4 and 5 only locally generate the challenge c := Hc(vk,msg,w),
where w =

∑
i∈act wi is the aggregated commitment (see Item (C.3)). In particular, a malicious adversary

can send users 4 and 5 with inconsistent commitments (e.g., malicious user 1 provides distinct w1 and w′1 to
users 4 and 5), in which case, the locally derived challenges c and c′ by users 4 and 5 may differ. Against such
an adversary, the reduction cannot argue Eq. (2), and incidentally, the proof breaks down. In fact, it turns
out that we can turn this idea into a concrete attack, similarly to those explained prior. This brings us to
our final construction, TRaccoon, where we fix this issue by modifying the users to authenticate their views
in the second round. One way we achieve this is to let the users add a signature to the hash commitments it
received in Item (C.2). Another way is to let the users add a MAC instead. See Section 6 for more details.

Sharing the Masks.

Lastly, we explain how pairs of users (i, j) ∈ act share the masks mact,i,j and mact,j,i during the signing pro-
tocol. We simply generate seeds (seedi,j)i,j∈[N ] during the key generation phase and give (seedi,j , seedj,i)j∈[N ]

to user i as part of their partial signing key. Once the set act is defined, user i can locally compute the
random masks mact,i,j and mact,j,i by using a PRF on seedi,j and seedj,i respectively. For the masks to never
be repeated, we assume each signing session has a unique identifier for which the PRF is called upon.

2.4 Future Work
In this work, we provide a 3-round lattice-based threshold signature TRaccoon that outperforms prior con-
structions relying on (fully) homomorphic encryptions and/or homomorphic trapdoor commitments. Our
work leaves several practical and theoretical open questions. Currently, TRaccoon requires a trusted key
generation process; for many applications, for example cryptocurrency wallet backups, this is a reasonable
assumption. However, designing a distributed key generation protocol would be relevant for settings where a
trusted setup cannot be assumed. Moreover, in case a distributed signature generation fails due to malicious
behaviour, we may require properties like robustness or identifiable abort, allowing the users to identify at
least one malicious signer. Also, as explained above, TRaccoon requires to maintain the unique identifier
for each signing session so as not to reuse the same masks. We leave a stateless signature scheme as an
important open problem. Finally, a 2-round lattice-based threshold signature without relying on heavy tools
like (fully) homomorphic encryptions seems to require new ideas; in the classical setting, we need to rely on
strong one-more-type assumptions (e.g., one-more DL) or idealised models like the algebraic group model,
something non-trivial in the lattice setting.

3 Background
We provide the background. Standard definitions are deferred in Appendix A.
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3.1 Notations
Sets, distributions and functions.

Given an integer N ∈ N, we denote by [N ] the set {i ∈ N | 1 ≤ i ≤ N}. Given a finite set S, we denote by
U (S) the uniform distribution over S. Whenever possible, we will use x ← S as shorthand for x ← U (S).
Given a deterministic (respectively randomised) procedure f and a compatible input x, we note setting the
variable y to be the result of f(x) by y := f(x) (respectively y ← f(x)). A function f : N → R is said
to be negligible (or in negl(κ)) if f(κ) = κ−ωasymp(1), where ωasymp(g) denotes a class of functions that grow
asymptotically faster than g.

Algebra and Representation of Zq Elements.

Scalars, vectors and matrices are noted in italic (i.e., x), lowercase bold (i.e., x) and uppercase bold (i.e.,
X) respectively. Let n, q ∈ N be two integers such that n is a power-of-two and the polynomial Xn +1 fully
splits over Zq. We define the ring R as Z[X]/(Xn + 1) and Rq as R/qR. We may define functions over the
domain Z or Zq, then extend their domains to R or Rq by coefficient-wise application. Similarly, we may
extend the domain to vectors or matrices with entries in R or Rq.

In this work we use the so-called canonical unsigned representation of integers modulo q. Given an integer
x ∈ Z, this representation is the unique non-negative element 0 ≤ t ≤ q− 1 such that x = t mod q. We will
generically note this element (x mod q). Conversely, given a class x+ qZ ∈ Zq, we define the corresponding
lift x̄ to the unique integer in x+ qZ ∩ [0, . . . q − 1].

For any norm ‖ · ‖ over Qn, we define the length of a (vector) class x + qZn to be minz∈x+qZn ‖z‖, and
overload the notation as ‖x + qZn‖, ‖x mod q‖ or even ‖x‖ if the context is clear enough. As for the
integers, we prefer to write simply |x| when n = 1 to refer to the absolute value. We show below that with
the choices in this definition, ‖ · ‖ is a F-norm over free modules over Zq. The only non trivial point to show
is the triangular inequality.

Lemma 3.1. For any q, n ∈ N \ {0}, and x,y ∈ Zn
q , we have

|‖x‖ − ‖y‖| ≤ ‖x+ y‖ ≤ ‖x‖+ ‖y‖ .

Proof. Take x,y ∈ Zn
q two vector classes mod q. By triangular inequality over Z, we have:

‖x+ y‖ = min
u,v∈x×y

‖u+ v‖ ≤ min
u,v∈x×y

(‖u‖+ ‖v‖) = min
u∈x

(‖u‖) + min
v∈y

(‖v‖) = ‖x‖+ ‖y‖.

We can then use it to write ‖x‖ ≤ ‖x+ y‖+ ‖−y‖ and the fact that ‖y‖ = ‖−y‖ to establish the left hand
side inequality in the lemma statement.

3.2 Modulus Rounding
Let ν ∈ N \ {0}. Any integer x ∈ Z can be uniquely decomposed as:

x = 2ν · x⊤ + x⊥ , (x⊤ , x⊥) ∈ Z× [−2ν−1, 2ν−1 − 1], (3)

which consists essentially in separating the lower-order bits from the higher-order ones, that is, it drops the
ν lower bits. We define the function

b·eν : Z→ Z s.t. bxeν = bx/2νe = x⊤ , (4)

where b·e : R 7→ Z denotes the rounding operator. More precisely the “rounding half-up” method bxe =
bx + 1

2c where half-way values are rounded up: e.g. b2.5e = 3 and b−2.5e = −2. With a slight overload
of notation, when q > 2ν , we extend b·eν to take inputs in Zq, in which case, we assume the output is an
element in Zqν where qν = bq/2νc.Formally, we define:

b·eν : Zq 7→ Zqν = Z⌊q/2ν⌋ s.t. bxeν = bx̄/2νe + qνZ = (x̄)⊤ + qνZ,
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The function b·eν naturally extends to vectors coefficient-wise.
We provide some useful bounds regarding this modular rounding operation, mainly used for establishing

correctness and bounding the SelfTargetMSIS solution size in the security proofs.

Lemma 3.2. Let ν, q be positive integers such that q > 2ν and set qν = bq/2νc. Moreover, assume q and ν
satisfy qν = bq/2νe, that is, q can be decomposed as q = 2ν · qν + q⊥ for q⊥ ∈ [0, 2ν−1 − 1]. Then, for any
x ∈ Zq, we have ∣∣∣x− 2ν · bxeν

∣∣∣ ≤ 2ν − 1. (5)

Moreover, for any x, δ ∈ Zn
q , we have∥∥∥2ν (bx+ δeν − bxeν

)
mod q

∥∥∥ ≤ ∥∥∥2ν · bδeν mod q
∥∥∥+ ‖1‖ · f(ν), (6)

where f(ν) =


3 if ν = 1
6 if ν = 2
12 if ν = 3
2ν elsewise

.

Proof. We first prove Eq. (5). Let us uniquely write x̄ = 2ν ·x⊤+x⊥ , where (x⊤ , x⊥) ∈ [0, qν ]×[−2ν−1, 2ν−1−
1] (using the assumption on the values of q and ν to write x⊤ ≤

⌊
q
2ν

⌉
= qν). Then:

bxeν = x⊤ mod qν =

{
0 if x⊤ = qν
x⊤ elsewise .

In the first case, we have:

|x− 2νbxeν | = |x| (replacement using that 0 mod qν = 0 mod q)

= |x⊥ + 2νqν | (x⊤ = qν)

= |x⊥ − q⊥| (q = 2nqν + q⊥)

≤ |x⊥|+ |q⊥| ≤ 2ν − 1 (taken over Z)

.

In the second case, we simply have (x− 2ν · bxeν) mod q = x⊥ mod q, concluding the proof.

We next turn to Eq. (6). The problem being cyclic module 2ν , we can treat the first three cases (ν =
1, 2, 3), by exhausting all possible cases. For larger values as we before, let us uniquely decomposes x̄ =
2ν · x⊤ + x⊥ , where (x⊤ ,x⊥) ∈ [0, qν ]

n × [−2ν−1, 2ν−1 − 1]n, and define δ⊤ and δ⊥ similarly.
Remark that each of the coefficients of x+ δ is bounded by 2q, so that we can write bx+ δeν as

b2ν · (x⊤ + δ⊤) + x⊥ + δ⊥ −α · qeν = b2ν · (x⊤ + δ⊤ −α · qν) + x⊥ + δ⊥ −α · q⊥eν

where α ∈ {0, 1}L such that αi = 1 if xi + δi > q− 1 and αi = 0 otherwise. Put differently, if the i-th entry
of x+ δ is larger than q, we perform a modulo q reduction, where note that each entry is smaller than 2q by
definition. We thus have

bx+ δeν − bxeν =
(
(x⊤ + δ⊤ −α · qν + γ)− x⊤

)
= (δ⊤ + γ)− ϵ · qν ,

where the right hand side is over the integers and (γ, ϵ) ∈ {−1, 0, 1}L × {0, 1}L. More specifically, we have

γi =

 −1 if x⊥,i + δ⊥,i −αi · q⊥ ≤ −2ν−1 − 1
0 if x⊥,i + δ⊥,i −αi · q⊥ ∈ [−2ν−1, 2ν−1 − 1]
1 if x⊥,i + δ⊥,i −αi · q⊥ ≥ 2ν−1

, (7)
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where note that these are the only values γi can take since for any i ∈ [L], |x⊥,i + δ⊥,i −αi · q⊥ | ≤ 3·2ν−1−1.
Moreover, we can be more precise:

ϵi =

{
0 when δ⊤,i + γi ∈ {0, · · · , qν − 1}
1 when (δ⊤,i,γi) ∈ {(qν − 1, 1), (qν , 0), (qν , 1)}

Notice that we can’t have (δ⊤,i,γi) = (0,−1), i.e., ϵi = −1. Namely, when δ⊤,i = 0, we must have
δ⊥,i ≥ 0 since we use the canonical non-negative representative for Zq. From Eq. (7), we also need αi = 1,
q⊥ > 0 and x⊥,i + δ⊥,i < 0 for γi = −1. However, this contradicts xi + δi > q − 1, which is required for
αi = 1, since 0 ≤ xi < 2ν · qν + q⊥ .

We thus have, when δ⊤ 6= qν :∥∥∥2ν · ( bx+ δeν − bxeν
)

mod q
∥∥∥ =

∥∥2ν · (δ⊤ + γ − ϵ · qν
)

mod q
∥∥

=
∥∥∥2ν · bδeν + 2ν · γ + ϵ · q⊥ mod q

∥∥∥ , (8)

where the second equality follows from q = 2ν · qν + q⊥ .
Then, when ϵi = 0, we can use Lemma 3.1 to bound the i − th coefficient by |2ν · bδieν mod q| +

|2ν mod q| since γ ∈ {−1, 0, 1}. On the other hand, when ϵi = 1, we have three cases: (δ⊤,i,γi) ∈
{(qν − 1, 1), (qν , 0), (qν , 1)}, meaning that δ⊤,i = qν − 1, by assumption. As such, we find that the i-th
coefficient of Eq. (8) computes to 2νqν + q⊥ = q which equals 0 taken modulo q.

Now if δ⊤ = qν , we have the simple form:∥∥∥2ν · ( bx+ δeν − bxeν
)

mod q
∥∥∥ = ‖2ν · γ + (ϵ− 1) · q⊥ mod q‖ ,

If ϵi = 1, since we necessarily have γi ≥ 0, the bound holds trivially. And if ϵi = 0,
1. either γi = 0, meaning that the i th coeffcient of the right hand side is −q⊥, which will be centerly

reduced to a value smaller than 2ν .

2. either γi = 1, and the coefficient is 2ν − q⊥ mod q, which is bounded by triangular inequality by |2ν
mod q|+ |q⊥ mod q| = 2ν + |2νqν mod q| = 2ν + |2νδ⊤,i mod q|.

This concludes the proof.

Remark 3.3. One can be puzzled by the apparently arbitrary condition qν = bq/2νc = dq/2νc. This allows
to use the slightly better bound presented in the lemma (the generic bound in Eq. (5) being otherwise
2ν + 2ν−1 − 1), as our parameter choices will always satisfy the desired rounding bound. We note that
other choices of qν may lead to better bounds but we leave it for future work. For instance, setting qν =
b(q − 1)/2νe+ 1 leads to a tighter bound on Eq. (5), replacing 2ν − 1 with 2ν−1. However, it is not obvious
whether it leads to a tighter bound on Eq. (6).

3.3 Gaussians
Let ρσ(z) = exp

(
−∥z∥

2

2σ2

)
. The discrete Gaussian distribution of support S ⊆ Rk, centre v ∈ Rk and

standard deviation σ ∈ R, is defined by its probability distribution function:

DS,v,σ(z) =
ρσ(z− v)∑

z′∈S ρσ(z′ − v)
.

When the support S is clear from context, we may simply note Dz,σ. When z = 0, we may simply write
DS,σ. The following lemma is obtained by combining Minkowski’s inequality with [Lyu12, Lemma 4.4, Item
3].
Lemma 3.4. Let s← Dℓ

R,σ, and c ∈ R. Then, we have

P
[
‖c · s‖2 ≥ e1/4 ‖c‖1 σ

√
nℓ
]
≤ 2−nℓ/10.
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3.4 Hardness Assumptions
The standard definitions of the MLWE and MSIS problems and their reductions to worst-case module lattice
problems are recalled in Appendix A.1. In this work, rather than directly relying on these problems, we use
two hard problems related to the MLWE and MSIS problems. By outsourcing some of the proofs into these
problems, we are able to simplify the proof of our threshold signature scheme.

We first recall the hint MLWE (Hint-MLWE) problem [KLSS23]. It is defined similarly to MLWE, except
that the adversary also obtains some noisy leakage of the MLWE secrets. Looking ahead, this noisy leakage
corresponds to the response (i.e., third round flow) of a Lyubashevsky-type signature scheme [Lyu09, Lyu12].
While it is typical to use statistical arguments based on rejection sampling or the Rényi divergence to
simulate the response, Hint-MLWE naturally provides this through a computational argument. Kim et al
[KLSS23] showed that for specific parameter choices, Hint-MLWE is as hard as MLWE, see Lemma A.5. In
our case, the reduction of [KLSS23] is tighter than Rényi divergence-based arguments such as the ones used
by [ASY22, dPEK+23]. This effectively allows us to set better parameters.

Definition 3.5 (Hint-MLWE). Let ℓ, k, q,Q be integers, D,G be probability distributions over Rq, and
C be a set over Rq. The advantage of an adversary A against the Hint Module Learning with Errors
Hint-MLWEq,ℓ,k,Q,D,G,C problem is defined as:

AdvHint-MLWE
A (κ) =

∣∣∣Pr [1← A(A,A · s+ e, (ci, zi, z
′
i)i∈[Q]

)]
− Pr

[
1← A

(
A,b, (ci, zi, z

′
i)i∈[Q]

)]∣∣∣
where (A,b, s, e)←Rk×ℓ

q ×Rk
q ×Dℓ×Dk, ci ← C for i ∈ [Q]. Moreover, (zi, z′i) = (ci · s+ ri, ci · e+ e′i)

where (ri, e
′
i) ← Gℓ × Gk for i ∈ [Q]. The Hint-MLWEq,ℓ,k,Q,D,G,C assumption states that any efficient

adversary A has negligible advantage. We may write Hint-MLWEq,ℓ,k,Q,σD,σG ,C as a shorthand when D and
G are the discrete Gaussian distributions of standard deviation σD and σG, respectively.

We further rely on the self-target MSIS (SelfTargetMSIS) problem [DKL+18, KLS18]. This is a variant
of the standard MSIS problem, where the problem is defined relative to some hash function modeled as a
random oracle. Following a standard proof using the forking lemma [FS87, BN06], when the range of the hash
function is exponentially large, SelfTargetMSIS is shown to be as hard as MSIS in the random oracle model.7
In our work, we directly work with SelfTargetMSIS instead since it allows for a simpler proof compared to
using MSIS, while putting a focus on concrete security, ignoring the reduction loss incurred by the forking
lemma. Indeed, SelfTargetMSIS also underlies the hardness of the signature scheme Dilithium [DKL+18],
recently selected by NIST for standardisation, and widely understood to be as concretely secure as MSIS.
Formally, SelfTargetMSIS is defined as follows. The concrete hardness of SelfTargetMSIS is analysed in
Section 8.1. For completeness, we include more details on the asymptotic hardness of SelfTargetMSIS in
Appendix B.1.

Definition 3.6 (SelfTargetMSIS). Let ℓ, k, q be integers and Bstmsis > 0 be a real number. Let C be a subset
of Rq and let G : Rk

q × {0, 1}2κ → C be a cryptographic hash function modeled as a random oracle. The
advantage of an adversary A against the Self Target MSIS problem, noted SelfTargetMSISq,ℓ,k,C,Bstmsis

, is
defined as:

Adv
SelfTargetMSIS
A (κ) = Pr

[
A←Rk×ℓ

q , (msg, z∗)← AG(A), (msg, z) ∈ {0, 1}2κ ×Rℓ+k
q :(

z =

[
c
z′

])
∧ (‖z‖2 ≤ Bstmsis) ∧ G

([
A | I

]
· z, msg

)
= c
]
.

The SelfTargetMSISq,ℓ,k,C,Bstmsis
assumption states that any efficient adversary A has no more than negligible

advantage.
7As with any invocation of the forking lemma, the reduction comes with a reduction loss dependent on the number of random

oracle queries the adversary performs. We note the reduction loss can be tuned using alternative forking strategies [MR02,
OO98, PS00].
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Lastly, we define a distribution and a property that will be useful in the security proof.

Definition 3.7. For any A ∈ Rk×ℓ
q , let Dbd-MLWE

q,ℓ,k,σ,ν (A) be the distribution defined as
{
bA · s+ eeν | (s, e)←

Dℓ
σ ×Dk

σ

}
. That is, it samples an MLWEq,ℓ,k,σ instance with ν bits dropped.

Lemma 3.8. For any σ > 2n · q
1

k+ℓ+
2
nℓ and ν < log(q)− 2, we have:

Pr
A←Rk×ℓ

q

[H∞
(
Dbd-MLWE

q,ℓ,k,σ,ν (A)
)
≥ n− 1] ≥ 1− 2−n+1.

Proof. Let qν = bq/2νc. We first consider a restricted distribution in which we only output the first poly-
nomial in Dbd-MLWE

q,ℓ,k,σ,ν (A), i.e for a ∈ R1×ℓ
q the first row of A and (r, e′)← Dℓ+1

σw
, we consider the distribution

ϕ = b〈a, r〉+ e′eν . A direct consequence of the Data Processing inequality is that applying a deterministic
function to a distribution can only reduce its min-entropy, Hence:

H∞
(
Dbd-MLWE

q,ℓ,k,σ,ν (A)
)
≥ H∞(ϕ).

We now use the regularity lemma of Lyubashevsky et al. [LPR13, Corollary 7.5] to state that the distri-
bution of 〈a, r〉+ e′ is statistically close to uniform with probability 1− negl(κ) over the choice of a. Making
the constant in the Ω(n) asymptotic of the aforementioned paper explicit we get:

∆(〈a, r〉+ e′,U (Rq)) ≤ 2−n ℓ+1 + ℓ 21−2n ≤ 2−n.

Using the data processing inequality for the statistical distance we have:

∆(ϕ, bU (Rq)eν) ≤ ∆(〈a, r〉+ e′,Unif(Rq)) = 2−n.

By definition of the min-entropy:

2−H∞(ϕ) = max
y∈Rqν

ϕ(y)

≤ max
y∈Rqν

bU (Rq)eν (y) + 2−n

≤
(
2ν + 1

q

)n

+ 2−n

≤ 2−n(log qν−1) + 2−n

≤ 2−n+1.

Where the third line comes from the fact that the probability of bU (Rq)eν (y) is equal to the number of
elements in Rq mapped to y by rounding, divided by q. Which is at most 2ν + 1. Collecting all the bounds
gives the desired result.

3.5 Linear Secret Sharing
In our (T,N)-threshold signature construction, the secret is distributed as the constant term of a degree
T − 1 polynomial over Rq. The reconstruction is later done via polynomial interpolation using Lagrange
polynomials evaluated at zero. This methodology is also known as Linear Shamir Secret Sharing [Sha79b].

Let N < q be an integer such that for distinct i, j ∈ [N ], (i−j) is invertible over Zq. Let S ⊆ [N ] be a set
of cardinality at least T . Then, given i ∈ S, we define the Lagrange coefficient λS,i as λS,i :=

∏
j∈S\{i}

−j
i−j .

Let s ∈ Rq be a secret to be shared, P ∈ Rq[X] a degree T −1 polynomial such that P (0) = s. Given any
set of evaluation points E = {(i, yi)}i∈S such that yi = P (i) for all i ∈ S, we note that: s =

∑
i∈S λS,i · yi.

The notations naturally extend to secrets that are in vector form. With a slight abuse of notation, we say
that P ∈ Rℓ

q[X] is of degree T − 1 if each entry of P is a degree T − 1 polynomial. Moreover, P(x) denotes
the evaluation of each entry of P on the point x.
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4 Definitions of Threshold Signature
Here we provide the definition of threshold signatures. In Section 4.1, we first prepare some notations that
allows simplifying the notations of threshold signatures. We then define the syntax and security notions in
Section 4.2.

4.1 User States and Session States
For clarity and compactness sake, the definitions of threshold signatures use different objects to structurally
store information. A user state (Definition 4.1) is an internal state that each user maintains during their
lifetime in a distributed system. Most of the stored information is set at KeyGen: the total number of users,
the threshold bound, the index of the user and their signing key and the global verification key. Meanwhile,
the last part contains the list of previously run sessions by user idx, mostly to avoid the reuse of nonce parts
(as per the session id sid that should not be reused).

This session state (Definition 4.1) is updated during the lifetime of a signing session. It consists of an
agreed-on session ID, the information about the current session, and the contributions of every signing user
for each round.

Definition 4.1 (User and session states). The UserState (resp. Session) class defines a blueprint for storing
all information relative to a specific user in a set of signers (resp. a specific user’s view of a specific signing
session).

An object state ∈ UserState (resp. session ∈ Session) contains these fields:

state:

• N : The total number of parties

• T : The signing threshold

• idx: The index of the current user

• sk: The signing key skidx of idx

• vk: The public key

• sessions: A dictionary (sessionsid)sid of past and
active sessions

session:

• sid: ID of the signing session

• act ⊆ [N ]: Set of active signers

• msg: The message being signed

• round ∈ [rnd]: The current round

• internal: The internal state of idx

• contribi: The contribution of
all users in act during round i

4.2 Threshold Signatures
A threshold signature scheme is parameterised with a number N ≥ 1 of signers and a reconstruction threshold
T . While we construct a 3-round threshold signature, below we define a general rnd-round scheme with
rnd ∈ N. Formally, an rnd-round (T,N)-threshold signature scheme is a tuple of PPT algorithms (KeyGen,
{ShareSigni}i∈[rnd],Verify,Combine) such that:

(vk, (ski)i∈[N ])← KeyGen(pp, T,N):
The key generation algorithm takes as inputs common public parameters, a reconstruction threshold
T , and a total number of signers N such that 1 ≤ T ≤ N . It returns a full public key vk and secret key
shares sk1, . . . , skN . It also initializes any hash functions modeled as a random oracle in the security
proof. Signatures under vk can only be generated by parties that control at least T secret key shares.

(statej , sessionsid, contrib1[j])← ShareSign1(statej , sid, act,msg):
The first round signing algorithm run by user j takes as inputs an internal state statej (including a
secret key share), a session id sid, an active signing set act ⊆ [N ] of size at least T , and a message
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msg. It returns its first round contribution contrib1[j], initializes a new session sessionsid and updates
its internal state statej . Here, we assume sid includes act and msg.

(statej , contribi[j])← ShareSigni(statej , contribi−1):
The i-th round signing algorithm for i ≥ 2 run by user j takes as inputs an internal state (including
a secret key share and all contributions from the previous rounds) and a contribution of all the users
from round i − 1. It returns its own part of the i-th round contribution contribi[j] and updates its
internal state statej .

sig← Combine(vk, sid,msg, (contribi)i∈[rnd]):
This algorithm takes as inputs the public key vk, the session identifier sid, the message msg, and the
contributions from all rounds. It outputs a signature sig for the message msg under public key vk.

0/1← Verify(vk,msg, sig):
This deterministic algorithm takes as inputs the public key vk, a message msg, and a signature sig. It
outputs 1 (resp. 0) if sig is deemed to be a valid (resp. invalid) signature.

In our construction, we use different hash functions parameterised by a value HashParams. This information
is part of public parameters pp that is implicitly given as input to all algorithms (besides KeyGen, where it
is explicitly stated). For completeness, correctness is defined in Appendix A.4.

For unforgeability, we focus on interactive schemes where the set of active signers (act) and the message
(msg) are determined in the first round of the protocol. We formally define unforgeability in Definition 4.2,
allowing the adversary to individually query each partial signing oracle following [BCK+22]. We assume that
parties maintain states and that the security game updates party states implicitly during algorithm calls.
The command assert(x) immediately outputs ⊥ if x is false and does nothing otherwise.

Definition 4.2 (Unforgeability). Let pp(κ) be a parameter generating algorithm that takes as input the
security parameter 1κ. We define Gamets-ufA in Fig. 2 for an adversary A. We say a threshold signature scheme
is unforgeable if for any efficient A, the following advantage of A is negl(κ): Advts-ufA = Pr[Gamets-ufA (κ) = 1].

Remark 4.3 (QSign-Bounded Scheme). While our construction of threshold signature supports an unbounded
polynomially many signing queries, we would require a super-polynomial sized modulus q, making the scheme
impractical. To this end, we consider a more fined grained bounded scheme where unforgeability holds
against any adversary making at most QSign = poly(κ) signing queries to OSgn1. As per NIST’s 2022 call for
additional (post-quantum) signatures [NIS22], we set QSign ≈ 264 for our concrete instantiation.

Some discussion on the assumed communication channel between the signers is provided in Appendix A.5.

5 Underlying Signature Scheme
In this section, we describe a standard non-thresholdised signature, underlying our threshold signature
in Section 6. As explained in Section 2.1, the signature scheme is a variant of Lyubashevsky’s signature
scheme [Lyu09, Lyu12]. Conceptually, the signature scheme we consider is closest to Raccoon [dPEK+23], a
lattice-based signature scheme by del Pino et al., submitted to the additional NIST call for proposals [NIS22].8
The main difference between Lyubashevsky’s signature scheme is that Raccoon no longer performs rejection
sampling, similarly to [ASY22, GKS23], while simultaneously performs several optimisations, similarly to
Dilithium.

In this work, we consider a slight variant of Raccoon where the noise distribution is a discrete Gaussian,
rather than a sum of uniforms. del Pino et al. considered sum of uniforms as they are simpler to sample
in a context where side-channel attacks are important. As thresholdisation is the main focus of our work,

8This is not to be confused with [dPPRS23], having the same signature name Raccoon. While [dPPRS23] also considers a
variant of the Lyubashevsky’s signature scheme without rejection sampling, [dPEK+23] can be viewed as a major simplification
and refinement of it.
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Gamets-ufA (1κ)

1: LSign, LH := ∅
2: (N,T, corrupt)← A(pp(1κ))
3: assert{ corrupt ⊆ [N ] } ▷ Set of corrupt parties
4: assert{ |corrupt| < T }
5: honest := [N ]\corrupt ▷ Set of honest parties
6: (vk, (ski)i∈[N ])← KeyGen(pp, T,N) ▷ Trusted key generation
7: for i ∈ honest do ▷ Maintaining state
8: statei.sk := ski
9: statei.vk := vk

10: (msg, sig)← AH,(OSgni(·))i∈[rnd] (vk, (ski)i∈corrupt)
▷ Run adversary, which eventually outputs a forgery

11: if (msg ∈ LSign) or Verify(vk,msg, sig) = 0 then ▷ Check msg not queried, sig valid
12: return 0
13: return 1

OSgn1(j, sid, act,msg)

1: assert{ j ∈ honest ∩ act ∧ act ⊆ [N ] } ▷ User j is honest and signing set act is valid
2: LSign := LSign ∪ {msg} ▷ Add msg to query set
3: (statej , sessionsid, contrib1[j])← ShareSign1(statej , sid, act,msg) ▷ Compute contribution
4: return contrib1[j]

OSgnk(j, sid, contribi−1), for k ∈ {2, . . . , rnd}
1: assert{ j ∈ honest ∩ act ∧ act ⊆ [N ] }
2: (statej , contribk[j])← ShareSigni(statej , contribk−1) ▷ Compute contribution
3: return contribk[j]

H(str, digest)

1: assert{ str ∈ pp.HashParams } ▷ Check domain string
2: if (str, digest, r) ∈ LH then
3: return r ▷ Check if already queried
4: else
5: Sample r randomly
6: LH := LH ∪ {(str, digest, r)} ▷ Add to query set
7: return r

Figure 2: Unforgeability game for threshold signatures. The adversary A wins if Gamets-ufA returns 1.
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we use discrete Gaussians instead. Using nice properties of discrete Gaussians, such as convolution lemmas,
we are able to achieve a more efficient scheme. Specifically, we provide a new security proof using the
recently introduced hint MLWE (Hint-MLWE) assumption by Kim et al. [KLSS23]. This allows to sidestep
the complex Rényi divergence argument in the proof of Raccoon, making the proof much simpler as an added
bonus. The new proof may be of an independent interest as it can be used to optimise other variants of
Lyubashevsky’s signature scheme not relying on rejection sampling [ASY22, GKS23].

Alg. 1: KeyGen(1κ)
1: A←Rk×ℓ

q ▷ Uniform matrix
2: (s, e)← Dℓ

t ×Dk
t ▷ Small secret and noise

3: t := bA · s+ eeνt
▷ Part of public key in Rk

qt
4: return vk := (A, t), sk := s

Alg. 2: Sign(vk, sk,msg)

1: (r, e′)← Dℓ
w ×Dk

w ▷ Small randomness and noise
2: w := bA · r+ e′eνw

▷ (Rounded) commitment in Rk
qw

3: c := Hc(vk,msg,w) ▷ Challenge
4: z := c · s+ r ▷ Response in Rℓ

q

5: y := bA · z− 2νt · c · teνw
▷ Intermediate value in Rk

qw

6: h := w − y ▷ Hint in Rk
qw

7: return σ := (c, z,h)

Alg. 3: Verify(vk,msg, σ)

1: (c, z,h) := parse(σ)
2: c′ := Hc(vk,msg, bA · z− 2νt · c · teνw

+ h)
3: if {c = c′} and {‖(z, 2νw · h)‖2 ≤ B2} then
4: return 1
5: return 0

Figure 3: A variant of the Raccoon signature scheme [dPEK+23] where the noise is sampled from a discrete
Gaussian, rather than from a sum of uniforms.

Construction Overview.

Let qt = bqeνt
and qw = bqeνw

. The public parameters include the security parameter κ, a ring R, and a
hash function

Hc : V ×M×Rk
qw → C,

that maps a public key vk ∈ V , message msg ∈ M and a commitment w ∈ Rk
qw to the challenge space C

defined as:
C := {c ∈ Rq | ‖c‖∞ = 1 ∧ ‖c‖1 = ω}. (9)

In the security proof, Hc is modeled as a random oracle.
The key generation algorithm takes as input the public parameters and randomly selects a public matrix A

and secret vectors (s, e). The public key is given by vk := (A, t) for t := bA · s+ eeνt
∈ Rk

qt where e is a small
noise and we perform bit dropping to compress the public key. It is worth noting that, while conceptually
similar, the way Raccoon performs bit-dropping is much simpler and easier to implement compared to those
performed by Dilithium.
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To sign, the signer samples small ephemeral errors (r, e′) and generates an MLWE commitment w :=
bA · r+ e′eνw

∈ Rk
qw . A challenge is then computed by hashing the public key, message, and w together.

Finally, a response z := c ·s+r ∈ Rℓ
q is computed together with a hint h := w−bA · z− 2νt · c · teνw

∈ Rk
qw .

Here, the hint h is used to compensate for the bit dropping in the commitment and we multiply c · t by 2νt

to compensate for the bit dropping in the public key. The signature is given by (c, z,h), where note that
we send c instead of w because it is smaller. Importantly, we do not perform rejection sampling and always
output the response z.

Lastly, the verifier checks that ‖(z, 2νw · h)‖2 is small and that the challenge is consistent with z and h:

c = Hc(vk,msg, bA · z− 2νt · c · teνw
+ h).

To be more precise, when we check the size of 2νw ·h, we check the size of (2νw · h̄ mod q). That is, we first
lift h over Rqw to {0, 1, · · · , qw−1} (i.e., it’s canonical unsigned representation), multiply it by 2νw over the
integers, map it to Rq, and finally consider the norm over modulo q. A similar comment for 2νt · c · t holds,
where we compute 2νt · c · t to be more precise. We opt using the simplified notation for better readability.
As noted in Section 3.2, these will be handled with much more care in the relevant security proofs.

Correctness and Security Proof.

We prove the correctness and security of the signature scheme given in Fig. 3 under the Hint-MLWE and
SelfTargetMSIS assumptions as shown in Theorem 5.1. The proof and the asymptotic parameters for which
the reduction hold are deferred in Appendix C.

Theorem 5.1. The signature scheme in Fig. 3 is correct. Moreover, for any efficient adversary making at
most QSign signing queries, it is unforgeable under the Hint-MLWEq,ℓ,k,QSign,σt,σw,C and SelfTargetMSISq,ℓ+1,k,C,Bstmsis

assumptions.

6 TRaccoon: Our Threshold Signature Scheme
Our 3-round threshold signature, named TRaccoon, is given formally in Figs. 4 and 5 and proven secure in
Theorem 7.2. We assume the presence of a trusted centralised party to run the key generation algorithm
KeyGen. This can also be achieved with a distributed key generation algorithm; the design of a suitable
DKG is outside of the scope of this work. The key generation runs Shamir’s Secret Sharing algorithm in
order to derive a Raccoon public key along with N secret key shares such that any T are sufficient to sign.9
It takes as inputs the system parameters pp(κ), a threshold T , and a total number of parties N .

6.1 Key Generation
The key generation algorithm is defined formally in Fig. 4. As a threshold version of the plain Raccoon
signature, the key generation algorithm (see Fig. 3) generates the public key in the same manner. A short
secret (s, e)← Dℓ

t ×Dk
t is sampled and the public key is (A, bAs+ eeνt

). The main changes are the use of
secret sharing and pairwise shared seeds.

Secret Sharing.

The secret s is be shared between users in a threshold-friendly manner. To achieve (T,N)-threshold signa-
tures, s is shared using Shamir Secret Sharing as the evaluations of a polynomial of degree T − 1 over the
set [N ].

9Strictly speaking, the underlying signature scheme is not Raccoon as we use discrete Gaussians instead of sum of uniforms.
However, we attribute Raccoon as the core features (i.e., removing rejection sampling and optimisations) are the same.
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Alg. 4: KeyGen (pp, T,N)

1: A←Rk×ℓ
q ▷ Sample matrix

2: (s, e)← Dℓ
t ×Dk

t ▷ Small secret and noise
3: t := bA · s+ eeνt

▷ Part of public key in Rk
qt

4: vk := (A, t)
5: P←Rℓ

q[X] with deg(P) = T − 1, P(0) = s ▷ Shamir Secret Sharing
6: (si)i∈[N ] := (P(i))i∈[N ] ▷ Secret shares
7: for i ∈ [N ] do
8: (vksig,i, sksig,i)← KeyGensig(1

κ) ▷ Standard signature keys for each user
9: for j ∈ [N ] do

10: seedi,j ← {0, 1}κ ▷ Pairwise-shared seeds
11: for i ∈ [N ] do
12: ski := (si, (vksig,i)i∈[N ], sksig,i, (seedi,j , seedj,i)j∈[N ])

13: return (vk, (ski)i∈[N ])

Figure 4: Centralised key generation for TRaccoon. In above, we assume the key generation algorithm
initialises the state of each user j.

Pairwise Shared Seeds.

Moreover, to ensure the unforgeability of the signing procedure, the individual responses by the users are
additively hidden with private column mask vectors (m∗i )i∈act. These are later subtracted from the aggregated
response with the publicly computable row mask vectors

∑
i∈act mi. These mask vectors can be viewed as a T -

out-of-T shared secret that is non-interactively computed on-the-fly during the individual ShareSign protocols,
and its shared values are recomputed by the combine algorithm using the communication transcript. These
shares are to be pairwise shared between users and have to be unique between sessions. To achieve this, we
generate them as the result of a pseudorandom function PRF from a seed and the session id: PRF(seedi,j , sid)
with the seeds (seedi,j)(i,j)∈[N ]×[N ] that are generated and given to the corresponding users during the key
generation.

Signing Keys.

To ensure that users agree on the view of the signing session in Round 2, they sign their view under a personal
signing key. The key generation chooses a personal verification and signing key for all parties, (vksig,i, sksig,i).
Alternatively, key generation can use N2 shared symmetric keys so that all parties are pairwise linked. Then
the view is authenticated using T MACs per party. This is more efficient when T is small because MACs are
much smaller than post quantum digital signatures. Such symmetric keys may be derived from the pairwise
shared seeds explained above.

6.2 Distributed Signing Procedure
Signing proceeds in 3 rounds. In essence, we use two T -out-of-T secret sharings. The first one is of the
commitment w and the second is a masking term m that is used to mask the distributions of the partial
responses in the Fiat-Shamir transform underlying Raccoon. Over the first two rounds, this commitment
w is exchanged in a commit-reveal manner to prevent potential attacks from rushing adversaries. We note
that some important yet tedious consistency checks (e.g., check whether session for sid exists) in our signing
protocol is outsourced to Appendix D, Fig. 19 for better readability.
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Alg. 5: ShareSign1(state, sid, act,msg)

1: assert{ ConsistCheck1(state, sid, act,msg) } ▷ Consistency checks
2: (rj , e

′
j)← Dℓ

w ×Dk
w ▷ Sample small ephemeral randomness and small noise

3: wj := A · rj + e′j ▷ MLWE commitment in Rk
q without rounding

4: cmtj := Hcom(sid, act,msg,wj) ▷ Hash commitment
5: Fetch (seedj,i)i∈act from state.sk
6: mj :=

∑
i∈act PRF(seedj,i, sid) ▷ Compute row blinder in Rℓ

q

7: state.session[sid] :=
{
sid, act,msg, 1, {rj ,wj , cmtj ,mj}, ∅

}
▷ New session state

8: return contrib1[j] := (cmtj ,mj)

Alg. 6: ShareSign2(state, sid, contrib1)
1: assert{ ConsistCheck2(state, sid, contrib1) } ▷ Consistency checks
2: Fetch sksig,j from state.sk
3: σj ← Signsig(sksig,j , sid || act ||msg || contrib1)

▷ Sign first-round contribution with standard signature
4: Fetch wj from state.sessions[sid].internal ▷ Recall wj from ShareSign1
5: state.session[sid] :=

{
sid, act,msg, 2, {rj ,wj , cmtj ,mj}, contrib1

}
▷ Update session state

6: return contrib2[j] := (wj , σj)

Alg. 7: ShareSign3(state, sid, contrib2)
1: assert{ ConsistCheck3(state, sid, contrib2) } ▷ Consistency checks
2: Let session = state.sessions[sid]
3: Fetch (sid, act,msg) from session
4: Fetch rj from session.internal and sj , (vksig,i)i∈[N ], (seedi,j)i∈act from state.sk
5: Fetch contrib1 = (cmti,mi)i∈act from session.contrib1
6: Parse contrib2 = (wi, σi)i∈act
7: for i ∈ act do
8: assert{ cmti = Hcom(sid,msg, act,wi) }

▷ Check consistency of hash commitments
9: assert{ Verifysig(vksig,i, sid || act ||msg || contrib1, σi) = 1 }

▷ Check users used same first-round contribution
10: w :=

⌊∑
i∈act wi

⌉
νw

▷ Aggregated rounded commitment in Rk
qw

11: c := Hc(state.vk,msg,w) ▷ Global challenge
12: m∗j :=

∑
i∈act PRF(seedi,j , sid) ▷ Compute column blinder in Rℓ

q

13: zj := c · λact,j · sj + rj +m∗j ▷ Individual response in Rℓ
q

14: return contrib3[j] := zj

Alg. 8: Combine(vk, sid,msg, contrib1, contrib2, contrib3)

1: Parse contrib1 = (cmti,mi)i∈act, contrib2 = (wi, σi)i∈act, contrib3 = (zi)i∈act
2: Parse vk = (A, t)
3: w :=

⌊∑
i∈act wi

⌉
νw

▷ Aggregated rounded commitment in Rk
qw

4: z :=
∑

i∈act(zi −mi) ▷ Aggregated response shifted by column blinders in Rℓ
q

5: c := Hc(vk,msg,w) ▷ Global challenge
6: y := bA · z− 2νt · c · teνw

▷ Intermediate value in Rk
qw

7: h := w − y ▷ Hint in Rk
qw

8: return sig := (c, z,h)

Figure 5: Signing procedure for TRaccoon. In above, we omit the subscript and assume state is the state of
party j ∈ act. The consistency checks are described in Fig. 19.
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First round.

Every party j inside the signing set act generates their (rounded) MLWE commitment share wj encoding the
ephemeral randomness rj . In parallel, they use their pairwise-shared seeds (seedj,i)i∈act and the session id
sid to compute a public row mask mj =

∑
i∈act PRF(seedj,i, sid). We recall Fig. 1 for a pictorial explanation

of the mask term. They then publish mj , as well as a hash commitment cmtj of wj .

Second round.

Each party j reveals their MLWE commitment share wj . Additionally they sign their current view of the
signing session under their personal secret keys sksig,j (or MAC key). The commit-reveal is a standard
technique so that the adversary does not generate its commitments in accordance with those of the honest
users (see for instance [BN06]).

Third round.

All parties checks that the received commitment share wj is consistent with the hash commitments in the
first round and that all the signatures from the second round verify. It then computes the resulting global
commitment w as

⌊∑
i∈act wi

⌉
νw

using the messages they received from the first two rounds. Then, parties
compute the signature challenge c = Hc(vk,msg,w) for themselves.

The parties further compute a secret column mask m∗j =
∑

i∈act PRF(seedi,j , sid) using their pairwise-
shared seeds (seedi,j)i∈act and the session id sid. They use this to define their response share zj = c · λact,j ·
sj + rj +m∗j for sj their secret share and λact,j a Lagrange coefficient corresponding to the active signing set
act. Since

∑
i∈act λact,i · si = s sums to the full secret s, these shares sum to a valid response shifted by the

column masks. Here, the main observation is that
∑

i∈act mi =
∑

i∈act m
∗
i (see Fig. 1). Lastly, they return

the response share zj .

Combination.

Once all parties have completed all rounds, the coordinator runs a combine algorithm to compute the
signature. This algorithm simply rounds the sum of the MLWE commitments to get the full commitment
w =

⌊∑
i∈act wi

⌉
νw

. The challenge is c = Hc(vk,msg,w). The response is the sum of the response shares,
subtracted with the sum of the public column masks: z =

∑
i∈act(zi −mi). Finally, the hint is computed as

h = w − bA · z− 2νt · c · teνw
where vk = (A, t). It returns a signature (c, z,h) of Raccoon.

Verification.

We do not explicitly define the verification algorithm since it is identical to those of the plain Raccoon
signature scheme in Fig. 3.
Remark 6.1 (Statefullness). The signing algorithm requires signers never to respond with respect to the same
session ID twice. They must store all session IDs that they have used previously and abort if they receive a
repeated request.

7 Correctness and Security Reduction
In this section, we provide the correctness and security proofs of our threshold signature scheme TRaccoon
as described in Theorem 7.2.

7.1 Asymptotic Parameters
We first give a asymptotic parameter for which the scheme can be proven correct and secure. For reference,
we recall the set of parameters used by the scheme in the following Table 1. Note the restriction on (qt, qw)
allows us to perform rounding operations nicely (see Lemma 3.2).

23



Parameter Explanation
Rq Polynomial ring Rq = Z[X]/(q,Xn + 1)

(k, ℓ) Dimension of public matrix A ∈ Rk×ℓ
q

(Dt, σt) Gaussian distribution with width σt used for the verification key t

(Dw, σw) Gaussian distribution with width σw used for the commitment w

νt Amount of bit dropping performed on verification key
νw Amount of bit dropping performed on (aggregated) commitment

(qt, qw) Rounded moduli satisfying (qt, qw) := (⌊q/2νt⌋, ⌊q/2νw⌋) = (⌊q/2νt⌉ , ⌊q/2νw⌉)
(C ⊂ Rq, ω) Challenge set {c ∈ Rq | ∥c∥∞ = 1 ∧ ∥c∥1 = ω} s.t. |C| ≥ 2κ

B2 Two-norm bound on the signature

Table 1: Overview of parameters used in the (variant of) Raccoon signature.

For unforgeability, we require the Hint-MLWEq,ℓ,k,QSign,σt,σw,C and SelfTargetMSISq,ℓ+1,k,C,Bstmsis
problems

to be hard. More specifically, we require the following constraints.

• σ ≥
√
ℓ · ωasymp(

√
log n) for Lemma A.3 (hardness of MLWE).

• Bhint = QSign · ω ·
(
1 + n 1√

QSign

(κ+ 1 + 2 log(n))

)
and 1

σ2 = 2 ·
(

1
σ2
t
+ Bhint

σ2
w

)
for Lemmas A.5 and B.2

(reduction from Hint-MLWE to MLWE).

• q > Bmsis

√
nk · ωasymp(log(nk)) for Lemma A.4 (hardness of MSIS).

• Bmsis = 2Bstmsis for Lemma B.1 (reduction from SelfTargetMSIS to MSIS).

In the above, note that QSign denotes the maximum signature query an adversary can perform.

Candidate Asymptotic Parameters. We give a set of asymptotic parameters which fit the above con-
straints. The only difference between the asymptotic parameter selections from the non-thresholdised Rac-
coon signature is that we have a factor of

√
T in the bound B (see Appendix C.1). This is caused by

aggregating T commitments (wi)i∈act for act ⊆ [N ]∧ |act| = T . In particular, we recover the same paramet-
ers as the non-thresholdised Raccoon signature by setting T = 1.

• n, ℓ, k = poly(κ) such that n ≥ κ.

• ω = ωasymp(1) for |C| ≥ 2κ for Lemma B.1 (hardness of MSIS).

• (σt, σw) =
(
2
√
ℓ · log n, 2

√
Bhint · ℓ · log n

)
.

• νt, νw = O(log λ), where νw ≥ 4 for correctness (see Section 7.2).

• B2,T = e1/4 · (ω σt +
√
T σw)

√
n(k + ℓ) + (ω · 2νt + 2νw+1) ·

√
nk for correctness (see Section 7.2).

• Bstmsis = B2,T +
√
ω + (ω · 2νt + 2νw+1) ·

√
nk for Lemma 7.4.

• q is the smallest prime larger than 2Bstmsis ·
√
nk · log(nk)2 such that (q, νt, νw) satisfy the condition

in Table 1.

7.2 Correctness
The following establishes the correctness of the threshold signature scheme TRaccoon as described in The-
orem 7.2
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Lemma 7.1 (Correctness). The threshold signature scheme TRaccoon in Theorem 7.2 is correct if νw ≥ 4
and:

B2,T = e1/4 · (ω σt +
√
T σw)

√
n(k + ℓ) + (ω · 2νt + 2νw+1) ·

√
nk. (10)

Proof. It is clear that the check {c = c′} holds. In the proof, we focus on the check of the L2-norm of the
signature. First of all, the aggregated response satisfies

z =
∑
i∈act

(zi −mi) =
∑
i∈act

(c · λact,i · si + ri +m∗i −mi) = c · s+
∑
i∈act

ri︸ ︷︷ ︸
=:rsid

,

where the third equality follows from the correctness of the Shamir secret sharing scheme and the fact that∑
i∈act mi =

∑
i∈act m

∗
i . Moreover, the aggregate commitment satisfies

w =

⌊∑
i∈act

wi

⌉
νw

=

A ·
∑
i∈act

ri +
∑
i∈act

e′i︸ ︷︷ ︸
=:e′

sid


νw

.

It is now easy to see that sig = (c, z,h) can be viewed as a non-thresholdised standard (Raccoon) signature
where the noise is amplified. In particular, the threshold signature scheme outputs a signature that is
identical to the Raccoon signature with the only difference that the commitment w is generated from a sum
of T discrete Gaussians Dw. Using convolution of discrete Gaussian distributions, we can simply replace σw

with
√
T σw in Lemma C.1. We note that the standard deviation is well above the smoothing parameter for

convolution of discrete Gaussians to be justified. This completes the proof.

7.3 Unforgeability
In this section, we prove the security of our threshold signature scheme TRaccoon as described in Theorem 7.2.
The statement assumes the asymptotic parameter selections in Section 7.1.

Theorem 7.2. The threshold signature scheme TRaccoon described in Fig. 5 is unforgeable under the unforge-
ability of the (non-thresholdised) signature scheme, pseudorandomness of PRF, the Hint-MLWEq,ℓ,k,QSign,σt,σw,C
and SelfTargetMSISq,ℓ+1,k,C,Bstmsis

assumptions.
Formally, for any adversary A against the unforgeability game making at most QH and QSign queries to the

random oracles Hc,Hcom and the signing oracle, respectively, there exists adversaries BSign, BPRF, B, and B′
against the unforgeability of the signature scheme, pseudorandomness of PRF, and Hint-MLWEq,ℓ,k,QSign,σt,σw,C
and SelfTargetMSISq,ℓ+1,k,C,Bstmsis

problems, respectively, such that

Gamets-ufA (κ) ≤ N · Advsig-uf
BSign

(κ) + AdvPRFBPRF
(κ) +

(QH + 1) ·QSign

2n−1

+
QH +Q2

H

22κ
+ AdvHint-MLWE

B (κ) + Adv
SelfTargetMSIS
B′ (κ)

where Time(BSign),Time(BPRF),Time(B),Time(B′) ≈ Time(A).

To prove Theorem 7.2, we proceed using a series of hybrid games. The aim is to arrive at a hybrid in which
a reduction can fully simulate the adversaries view given just a SelfTargetMSIS challenge. The techniques
used in this reduction are new to this work. Before providing the full formal proof of Theorem 7.2, let us
provide an overview.

Proof Overview. The aim of the hybrids is to switch into a setting where the masking sums mj , commitments
wj and responses zj effectively contain no useful information. We proceed as follows.
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1. Hybrid1 corresponds to the real unforgeability game.

2. Hybrid2 asserts that all honest parties in a session have signed the state. This switch is indistinguishable
assuming the signature scheme is unforgeable. In Hybrid2 an adversary cannot cause honest parties to
have a differing view of the signing transcript during the second round of the signing procedure. Here,
we note that we can instead use MACs to authenticate their states (see Remark 7.5 for detail).

3. Hybrid3 switched to a game in which the masks mi,j are randomly sampled from the full domain
whenever both i and j are honest. Distinguishing this game from the previous one allows breaking the
pseudorandomness of the PRF used during seed generation.

4. Hybrid4 samples the honest parties full masks mj and m∗j uniformly at random (apart from the last
honest m∗j which is chosen to be consistent). This hybrid is statistically indistinguishable from the
previous.

5. Hybrid5 switches to a game in which the reduction only chooses the full nonce w in OSgn2, after the
adversary has committed itself to its partial nonces during the first signing round. We program Hcom

for consistency. This will later allow us to program the signature challenge inside the signing oracle
before the adversary can learn w.
This game remains identical to the previous game unless we have to reprogram a value that has
already been queried by the adversary. The value being programmed is sampled from the Dbd-MLWE

q,ℓ,k,σ,ν (A)
distribution (see Definition 3.7); the chance of collision is small because the distribution has high
min-entropy.

6. Hybrid6 selects the challenge c in OSgn1, before revealing the full nonce w. The full nonce is determined
only after the last honest party in the signing session, party h, reveals its partial nonce wh. We program
Hc for consistency. This is indistinguishable from Hybrid5 provided that the adversary has not queried
Hc on the nonce w before and provided that the adversary is uniquely committed to its own partial
nonces wi. Both are true provided the Dbd-MLWE

q,ℓ,k,σ,ν (A) distribution has high min-entropy and the image
of Hcom is large enough.

7. Hybrid7 changes how the reduction is simulating the signatures such that it chooses zh before wh. Here
the hth party is the last honest party in the signing session, wh is their partial nonce, and zh is their
partial response. This is statistically identical to Hybrid6.

8. Hybrid8 chooses the partial responses zj for all honest j 6= h randomly and edits how the m∗h are
sampled for consistency. Here the hth party is the last honest party in the signing session. This hybrid
crucially relies on the fact that all honest parties have a consistent view of the signing transcript, which
is guaranteed due to the modification we made in Hybrid2. This is statistically identical to Hybrid7.

9. Hybrid9 is more interesting; in essence we simulate the honest signers such that they only use the secret
key in the form of an Hint-MLWE sample. In the Hybrid8 we have

wh := A · (zh −m∗h)− c · λact,h ·A · sh + e′h

zh := c · λact,h · sh + rh +m∗h

for h the last honest party in the signing session and λact,h the h-th Lagrange coefficient. Recall that
Lagrange coefficients are not small. The reduction does not have the means to compute c · A · sh
without also introducing a large error term λact,h · c · e. This is where our key insight comes in. In
Hybrid9 we instead compute

wh := A · zsid − c · t̂+ z′sid

zh := zsid − c ·
∑

i∈corruptsid

λact,i · si + terms independent of sh
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where (c, zsid, z
′
sid) is a Hint-MLWE sample.

This alternative computation is statistically equivalent. The private masking m∗h term set in Hybrid8
includes a

∑
i∈honest,i ̸=h c ·λact,i · si term where i is taken over honest parties with i 6= h. We thus move

the interesting dependence on si into a single honest signing party for each session. This means that
wh and zh can be alternatively computed to have a dependence on

∑
i∈act (λact,i · c ·A · si). By design

this is equal to c ·A · s.

10. The final Hybrid10 samples the public key and corrupt secret key shares randomly, and in particular
it does not retain secret key shares for the honest parties. The Hint-MLWE samples required for
computing OSgni responses are generated using some (s, e) which are independent from the public
key. In particular this means that all challenger responses in the hybrid are now independent from
the public key. This is indistinguishable from Hybrid9 by the Hint-MLWE assumption and we formally
show indistinguishability in Lemma 7.3.
Finally, we reduce Hybrid10 from SelfTargetMSIS directly. We formally give the reduction in Lemma 7.4.

This completes the proof overview.

We now provide the full formal proof of Theorem 7.2 following the proof structure explained above.

Proof. Let A be an adversary against the unforgeability of the threshold Raccoon signature scheme. We use
a series of hybrid games where Hybrid1 corresponds to the original unforgeability game. The final Hybrid10
is designed such that a reduction B′ can simulate the hybrid game given a SelfTargetMSIS instance, and
extract a solution of this problem from a successful adversary.

Hybrid1. This is the unforgeability security game.

Hybrid2. In this hybrid, the challenger checks all the signatures observed in the third round was generated
by the challenger. This is formally depicted in Fig. 6.

The asserted condition can be checked to hold in a straightforward manner by invoking the unforgeability
of the (non-thresholdised) signature scheme. In particular, we can construct an adversary BSign against the
unforgeability of the signature scheme such that∣∣∣AdvHybrid2A (κ)− Adv

Hybrid1
A (κ)

∣∣∣ ≤ N · Advsig-uf
BSign

(κ).

The reduction BSign takes as input a challenge public key vksig and aims to output a forgery. It has access
to a signing oracle. Then BSign simulates the view of the Hybrid1 challenger to A by:

1. Computing vk = (A, t) and (si)i∈[N ] the same as in Hybrid1;

2. Choosing random i∗ ∈ honest and setting vksig,i∗ = vksig.

3. Sampling (vksig,i, sksig,i)← KeyGensig(1
κ) for i ∈ honest, i 6= i∗;

and running AH,(OSgni)i∈[3](vk, (ski)i∈corrupt).
When A queries its signing oracles it responds the same as in Hybrid1 except that signatures from i∗ are

generated by querying the signing oracle. IfA provides a signature σ on some message (sid, act,msg, contrib1) 6∈
Signed[i∗] then BSign returns ((sid, act,msg, contrib1), σ) as its forgery.

Since i∗ is information theoretically hidden from A, the probability that B correctly guesses which public
key A provides a forgery for is 1

N .
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Hybrid2

1: Signed[·] := ⊥ ▷ List to maintain standard signature of honest users
2: LSign, LH := ∅
3: (N,T, corrupt)← A(pp)
4: honest := [N ]\corrupt
5:
(
vk, (ski)i∈[N ]

)
← KeyGen (pp, T,N)

6: (msg, sig)← AH,(OSgni(·))i∈[3](vk, (ski)i∈corrupt)
7: if (msg ∈ LSign) or Verify(vk,msg, sig) = 0 then
8: return 0
9: return 1

OSgn1(j, sid, contrib1)

▷ ▷ ▷ Identical to Hybrid1.OSgn1 ◁ ◁ ◁

OSgn2(j, sid, act,msg)

1: Fetch sksig,j from state.sk
2: σj ← Signsig(sksig,j , sid || act ||msg || contrib1)
3: Signed[j]← Signed[j] ∪ {(sid, act,msg, contrib1)}
4: Fetch wj from state.sessions[sid].internal
5: return contrib1[j] := (wj , σj)

OSgn3(j, sid, contrib2)

1: Fetch (sid, act,msg) from session
2: Fetch contrib1 = (cmti,mi)i∈act from session.contrib1
3: for i ∈ act do
4: for i ∈ honestsid do
5: assert{ (sid, act,msg, contrib1) ∈ Signed[i] }

▷ Check no signature was forged
▷ ▷ ▷ Otherwise, identical to Hybrid1.OSgn3 ◁ ◁ ◁

Figure 6: The second hybrid game used in the proof of Theorem 7.2. Differences from the previous hybrid
are highlighted . Throughout the proof, honestsid and corruptsid denote honest ∩ act and corrupt ∩ act for
session id sid. For readability, we omit the consistency checks and do not explicitly discuss how the hybrids
update their state.
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Hybrid3
▷ ▷ ▷ Identical to Hybrid2 ◁ ◁ ◁

OSgn1(j, sid, act,msg)

1: LSign ← LSign ∪ {msg}
2: (rj , e

′
j)← Dℓ

w ×Dk
w

3: wj := A · rj + e′j
4: cmtj := Hcom(sid, act,msg,wj)
5: Fetch (seedj,i)i∈act from state.sk
6: for i ∈ corruptsid do
7: mj,i := PRF(seedj,i, sid)

8: for i ∈ honestsid do
9: mj,i ←Rk

q ▷ Sample individual mask uniformly when j, i ∈ honestsid

10: mj :=
∑

i∈act mj,i

11: return contrib1[j] := (cmtj ,mj)

OSgn2(j, sid, contrib1)

▷ ▷ ▷ Identical to Hybrid2.OSgn2 ◁ ◁ ◁

Figure 7: The third hybrid game used in the proof of Theorem 7.2. Differences from the previous hybrid
are highlighted . For readability, we omit OSgn3 in all the remaining hybrids as we use the same description
as those of Hybrid2.

Hybrid3. In this hybrid, for all (i, j) ∈ honestsid := honest∩act, the challenger samples mi,j ←Rk
q as opposed

to as the output of a pseudorandom function. This is formally depicted in Fig. 7. Similarly to the previous
hybrid, it is easy to check that assuming the pseudorandomness of the PRF, this hybrid is indistinguishable
from Hybrid2. In particular, we can construct an adversary BPRF against the pseudorandomness of PRF such
that ∣∣∣AdvHybrid3A (κ)− Adv

Hybrid2
A (κ)

∣∣∣ ≤ AdvPRFBPRF
(κ).

Here, note that we do not incur the factor N reduction loss as we rely on the multi-instance version of
pseudorandomness (see Definition A.6).

Hybrid4. In this hybrid, the challenger samples the row and column masks mi and m∗i , respectively, at
random for all honest parties except h (the last honest party in the signing set) where it is uniquely defined
by the other m values. (See Fig. 1 for a pictorial example of the masks.) This is formally depicted in Fig. 8,
where the challenger uses two lists Committed[·] and LastSigner[·] to maintain how many honest signers opened
a specific session sid. Here, note that by the consistency check (see Fig. 19), sid includes the active signer
set act and the only honest users that can generate a valid first-round message are limited to honestsid ⊆ act.
Moreover, we generate the column masks mi in the first round but this is without loss of generality as they
are fixed once sid is defined.

Let us analyze the distribution of the masks. First, the row masks (mi)i∈honestsid were distributed uniformly
at random in Hybrid3 because these masks include the individual masks mi,i used nowhere else. This is
identical to Hybrid4. Further, in Hybrid3, for all i ∈ honestsid and i 6= h := LastSigner[sid], the column
mask m∗i =

∑
j∈act mj,i includes mh,i, used nowhere before user h is invoked on OSgn1. Therefore, m∗i is
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Hybrid4

1: Committed[·], LastSigner[·] := ⊥ ▷ Lists to maintain simulation state for sid

▷ ▷ ▷ Remaining lines are identical to Hybrid3 ◁ ◁ ◁

OSgn1(j, sid, act,msg)

1: Committed[sid]← Committed[sid] ∪ {j} ▷ Store honest users starting session sid

2: LSign ← LSign ∪ {msg}
3: (rj , e

′
j)← Dℓ

w ×Dk
w

4: wj := A · rj + e′j
5: cmtj := Hcom(sid, act,msg,wj)

6: mj ←Rk
q ▷ Sample row masks uniformly random

7: if Committed[sid] 6= honestsid then ▷ User j is not the last honest signer
8: m∗j ←Rk

q ▷ Sample column masks uniformly random
9: else ▷ User j is the last honest signer

10: LastSigner[sid]← j

11: Fetch (seedi,j , seedj,i)i∈act from state.sk
12: for i ∈ corruptsid do
13: mi,j := PRF(seedi,j , sid)
14: mj,i := PRF(seedj,i, sid)

15: m∗j :=
∑

i∈honestsid

mi −
∑

i∈honestsid
i ̸=j

m∗i +
∑

i∈honestsid
i′∈corruptsid

(mi′,i −mi,i′)

▷ Set the last column mask consistently
16: return contrib1[j] := (cmtj ,mj)

OSgn2(j, sid, contrib1)

▷ ▷ ▷ Identical to Hybrid2.OSgn2 ◁ ◁ ◁

Figure 8: The fourth security hybrid game used in the proof of Theorem 7.2. Differences from the previous
hybrid are highlighted .
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distributed uniformly at random as in Hybrid4. It remains to argue that the m∗h terms are sampled from the
same distribution in both hybrids. In Hybrid3 the column mask m∗h is computed as

m∗h :=
∑
i∈act

mi,h,

where mi,j := PRF(seedi,j , sid). On the other hand, in Hybrid4 they are computed as

m∗h :=
∑

i∈honestsid

mi −
∑

i∈honestsid,i ̸=h

m∗i +
∑

i∈honestsid
i′∈corruptsid

(mi′,i −mi,i′).

We see that these distributions are the same because in Hybrid3:∑
i∈honestsid

mi −
∑

i∈honestsid,i ̸=h

m∗i +
∑

i∈honestsid
i′∈corruptsid

(mi′,i −mi,i′)

=
∑

i∈honestsid
i′∈act

mi,i′ −
∑

i∈honestsid,i ̸=h
i′∈act

mi′,i +
∑

i∈honestsid,
i′∈corruptsid

(mi′,i −mi,i′)

=
∑

i∈honestsid
i′∈honestsid

mi,i′ −
∑

i∈honestsid,i ̸=h
i′∈honestsid

mi′,i +
∑

i′∈corruptsid

mi′,h

=
∑

i∈honestsid
i′∈honestsid

mi,i′ −
∑

i∈honestsid
i′∈honestsid,i′ ̸=h

mi,i′ +
∑

i′∈corruptsid

mi′,h

=
∑

i∈honestsid

mi,h +
∑

i′∈corruptsid

mi′,h

=
∑
i∈act

mi,h.

Hence the distributions are identical and

Adv
Hybrid4
A (κ) = Adv

Hybrid3
A (κ).

Hybrid5. In this hybrid, the challenger reprograms the random oracle Hcom when a new session sid is queried
to the second-round signing query. Effectively, it delays the computation of the commitment wh for the last
honest signer h = LastSigner[sid] to the second-round. This is formally depicted in Fig. 9, where the challenger
uses two lists Commitments[·] and Opened[·] to maintain the commitments generated by the honest users and
to check if a second-round signing query was made for a specific session sid, respectively.

The signing responses in Hybrid5 are identically distributed to Hybrid4 unless the bad event occurs in
which OSgn1() is required to program a value that has already been queried by the adversary. Where wh

is sampled as an MLWEq,k,ℓ,Dw sample, this collision happens with maximum probability QH/2
H∞(Dk

w) in
each signing query. Due to Lemma 3.8 and our parameter selection, since bit dropping can only decrease
the min-entropy, we have∣∣∣AdvHybrid5A − Adv

Hybrid4
A

∣∣∣
≤1−

(
1−QH · 2−H∞(Dk

w)
)QSign

≤
(
1−

(
1−QH · 2−n+1

)QSign
)
· (1−QSign · 2−n+1) +QSign · 2−n+1

≤ (QH + 1) ·QSign

2n−1
.

31



Hybrid5

1: Committed[·], LastSigner[·],Commitments[·],Opened[·] := ⊥
▷ Lists to maintain simulation state for sid

▷ ▷ ▷ Remaining lines are identical to Hybrid2 ◁ ◁ ◁

OSgn1(j, sid, act,msg)

1: Committed[sid]← Committed[sid] ∪ {j}
2: LSign ← LSign ∪ {msg}
3: mj ←Rk

q

4: if Committed[sid] 6= honestsid then ▷ User j is not last honest signer
5: (rj , e

′
j)← Dℓ

w ×Dk
w

6: wj := A · rj + e′j ▷ Create commitment only if j is not last signer

7: cmtj := Hcom(sid, act,msg,wj)

8: Commitments[sid]← Commitments[sid] ∪ {wj}
9: m∗j ←Rk

q

10: else ▷ User j is the last honest signer
11: LastSigner[sid]← j

12: cmtj ← {0, 1}2κ ▷ Set hash commitment to a random string
13: Fetch (seedi,j , seedj,i)i∈act from state.sk
14: for i ∈ corruptsid do
15: mi,j := PRF(seedi,j , sid)
16: mj,i := PRF(seedj,i, sid)

17: m∗j :=
∑

i∈honestsid

mi −
∑

i∈honestsid
i ̸=j

m∗i +
∑

i∈honestsid
i′∈corruptsid

(mi′,i −mi,i′)

18: return contrib1[j] := (cmtj ,mj)

OSgn2(j, sid, contrib1)

1: Fetch sksig,j from state.sk
2: σj ← Signsig(sksig,j , sid || act ||msg || contrib1)
3: Signed[j]← Signed[j] ∪ {(sid, act,msg, contrib1)}
4: if Opened[sid] = ⊥ ∧ Committed[sid] = honestsid then

▷ First second-round signing
▷ query on sid and all honest users completed first round

5: Opened[sid]← >
6: h := LastSigner[sid]

7: (rh, e
′
h)← Dℓ

w ×Dk
w ▷ Create last honest signer’s commitment

8: wh := A · rh + e′h ▷ Challenger stores wh into user h’s state
9: Hcom(sid, act,msg,wh) := cmth ▷ Program random oracle

10: Fetch wj from state.sessions[sid].internal
11: return contrib2[j] := (wj , σj)

Figure 9: The fifth security hybrid game used in the proof of Theorem 7.2. Differences from the previous
hybrid are highlighted . We assume the game aborts and outputs 0 in case Hcom is already defined when
executing OSgn2. The list Commitments[·] is explicitly used in the next hybrid.32



The last line follows from the Bernoulli’s inequality ((1+x)r ≥ 1+ rx for any integer r ≥ 0 and real number
x > −1).

Hybrid6. In this hybrid, whenever A has correctly committed to wi for all corrupt parties corruptsid, the
challenger replaces non-programmed random oracle outputs to Hc in the second-round signing oracle with
programmed outputs. This is formally depicted in Fig. 10, where the challenger uses a list Challenge[·] to
maintain the challenges it sampled for a specific session sid. For each sid, the challenger samples an element
c uniformly at random from the challenge space C. When querying the second-round signing oracle on sid
for the first time, the challenger checks if the first-round contribution contrib1 includes the contributions of
all the honest users in honestsid. It further checks if all the first-round contributions of the corrupt users
in corruptsid has an associating commitment wi that uniquely explains the hash commitment cmti. If so, it
collects all the commitments (wi)i∈act that explains the hash commitments included in contrib1, computes
the aggregated commitment w, and programs Hc(vk,msg,w) := c. If any of the above checks fails, then the
challenger will not use the sampled c and remains identical to the previous hybrid.

Note that the signing responses in Hybrid6 are identically distributed to Hybrid5 unless: a) the bad
event occurs in which OSgn2() is required to program Hc on a value that has already been queried by the
adversary; or b) the bad event occurs that A successfully queries OSgn3() when A has incorrectly committed
to wi for some corrupt party. As w comes from the contribution of a party as a Dbd-MLWE

q,ℓ,k,σw,νw
(A) sample, as

in Definition 3.7, the first event happens with maximum probability QH · 2−n+1 in each signing query by
Lemma 3.8, with all but probability QSign · 2−n+1.

The second bad event happens if A :
• Breaks the preimage resistance of the random oracle Hcom. Specifically, a bad event occurs when Hcom

has not output cmti in the second-round but Hcom(sid, act,msg,wi) = cmti in the third signing round.
This happens with probability as most QH

22κ .

• Breaks the collision resistance of the random oracle Hcom. Namely there is a collision such that Hcom

maps both (sid, act,msg,wi) and (sid, act,msg,w′i) to the same cmti. This happens with probability
as most Q2

H/2
2κ.

Following the same bound in the previous hybrid, we have

∣∣∣AdvHybrid6A − Adv
Hybrid5
A

∣∣∣ ≤ (QH + 1) ·QSign

2n−1
+

QH +Q2
H

22κ

Hybrid7. In this hybrid, whenever A has correctly committed to wi for all corrupt parties corruptsid, the
challenger creates the commitment wh and response zh of the last honest user h = LastSigner[sid] in reverser
order. This is formally depicted in Fig. 11. When queried the third-round signing oracle on user h with sid,
the challenger uses the already computed zh.

In Hybrid6, zh was set as zh = c′ · λact,h · sh + rh + m∗h, where c′ = Hc(vk,msg,w′), msg is included in
sid, and w′ is the aggregated commitment constructed with the individual commitments (w′i)i∈act included
in the first-round contribution contrib1. Notice that if we can guarantee c = Challenge[sid] = c′, then it is
easy to check that wh and zh in both hybrids are distributed identically. To check this, we need to make
sure that w′ used in Hybrid6 is identical to w used to program the random oracle Hc in Hybrid7.

Notice in Hybrid6, for user h to output a response, all honest users in honestsid must have signed the
same first-round contribution contrib1 (see assert condition on Lines 6 in OSgn3). Moreover, the hash
commitments included in the individual contributions can be opened with a unique commitment (w′i)i∈act
(see if condition on Line 11 of OSgn2 and the assert condition on Line 4 in OSgn3). Thus, we are guaranteed
that (w′i)i∈act = (wi)i∈act. Hence,

Adv
Hybrid7
A (κ) = Adv

Hybrid6
A (κ).
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Hybrid6

1: Committed[·], LastSigner[·],Commitments[·],Opened[·],Challenge[·] := ⊥
▷ Lists to maintain simulation state for sid

▷ ▷ ▷ Remaining lines are identical to Hybrid2 ◁ ◁ ◁

OSgn1(j, sid, act,msg)

1: if Challenge[sid] = ⊥ then
2: c← C ▷ Sample challenge for sid to be used later
3: Challenge[sid]← c

▷ ▷ ▷ Remaining lines are identical to Hybrid5.OSgn1 ◁ ◁ ◁

OSgn2(j, sid, contrib1)

1: Fetch sksig,j from state.sk
2: σj ← Signsig(sksig,j , sid || act ||msg || contrib1)
3: Signed[j]← Signed[j] ∪ {(sid, act,msg, contrib1)}
4: if Opened[sid] = ⊥ ∧ Committed[sid] = honestsid then
5: Opened[sid]← >
6: h := LastSigner[sid]
7: (rh, e

′
h)← Dℓ

w ×Dk
w

8: wh := A · rh + e′h
9: Hcom(sid, act,msg,wh) := cmth

10: Parse contrib1 = (cmti,mi)i∈act ▷ Check if adversary committed honestly in first round
11: if ∀i ∈ corruptsid, ∃ unique (Hcom, (sid, act,msg,wi), cmti) ∈ LH then
12: c := Challenge[sid]

13: (wi)i∈honestsid\{h} ← Commitments[sid]

14: w :=
⌊∑

i∈act wi

⌉
νw

15: Hc(vk,msg,w) := c ▷ Program random oracle
16: Fetch wj from state.sessions[sid].internal
17: return contrib2[j] := (wj , σj)

OSgn3(j, sid, contrib2)

1: Fetch (sid, act,msg) from session
2: Fetch contrib1 = (cmti,mi)i∈act from session.contrib1
3: for i ∈ act do
4: assert{ ∃unique (Hcom, (sid, act,msg,wi), cmti) ∈ LH }
5: for i ∈ honestsid do
6: assert{ (sid, act,msg, contrib1) ∈ Signed[i] }

▷ ▷ ▷ Remaining lines are identical to Hybrid2.OSgn3 ◁ ◁ ◁

Figure 10: The sixth security hybrid game used in the proof of Theorem 7.2. Differences from the previous
hybrid are highlighted . We assume the game aborts and outputs 0 in case Hcom and Hc are already defined
when executing OSgn2.

34



Hybrid7
▷ ▷ ▷ Identical to Hybrid2 ◁ ◁ ◁

OSgn1(j, sid, act,msg)

// Identical to Hybrid6

OSgn2(j, sid, contrib1)

1: Fetch sksig,j from state.sk
2: σj ← Signsig(sksig,j , sid || act ||msg || contrib1)
3: Signed[j]← Signed[j] ∪ {(sid, act,msg, contrib1)}
4: if Opened[sid] = ⊥ ∧ Committed[sid] = honestsid then
5: Opened[sid]← >
6: h := LastSigner[sid]
7: (rh, e

′
h)← Dℓ

w ×Dk
w

8: Parse contrib1 = (cmti,mi)i∈act
9: if ∀i ∈ corruptsid, ∃ unique (Hcom, (sid, act,msg,wi), cmti) ∈ LH then

10: c := Challenge[sid]

11: zh := c · λact,h · sh + rh +m∗h
▷ Create response before commitment

12: wh := A · (zh −m∗h)− c · λact,h ·A · sh + e′h

13: Hcom(sid, act,msg,wh) := cmth
14: (wi)i∈honestsid\{h} ← Commitments[sid]

15: w :=
⌊∑

i∈act wi

⌉
νw

16: Hc(vk,msg,w) := c
17: else
18: wh := A · rh + e′h

19: Hcom(sid, act,msg,wh) := cmth

20: Fetch wj from state.sessions[sid].internal
21: return contrib2[j] := (wj , σj)

Figure 11: The seventh security hybrid game used in the proof of Theorem 7.2. Differences from the previous
hybrid are highlighted .
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Hybrid8
▷ ▷ ▷ Identical to Hybrid2 ◁ ◁ ◁

OSgn1(j, sid, act,msg)

1: if Challenge[sid] = ⊥ then
2: c← C
3: Challenge[sid]← c

4: Committed[sid]← Committed[sid] ∪ {j}
5: LSign ← LSign ∪ {msg}
6: mj ←Rk

q

7: if Committed[sid] 6= honestsid then ▷ User j is not the last honest signer
8: (rj , e

′
j)← Dℓ

w ×Dk
w

9: wj := A · rj + e′j
10: cmtj := Hcom(sid, act,msg,wj)
11: Commitments[sid]← Commitments[sid] ∪ {wj}
12: zj ←Rk

q

▷ Column mask implicitly set as m∗j := zj − rj − c · λact,j · sj
13: else ▷ User j is the last honest signer
14: LastSigner[sid]← j
15: cmtj ← {0, 1}2κ
16: Fetch (seedi,j , seedj,i)i∈act from state.sk
17: for i ∈ corruptsid do
18: mi,j := PRF(seedi,j , sid)
19: mj,i := PRF(seedj,i, sid)

20: m∗j :=
∑

i∈honestsid

mi −
∑

i∈honestsid
i ̸=j

(zj − rj − c · λact,j · sj) +
∑

i∈honestsid
i′∈corruptsid

(mi′,i −mi,i′)

▷ Replace column mask with response
21: return contrib1[j] := (cmtj ,mj)

OSgn2(j, sid, contrib1)

▷ ▷ ▷ Identical to Hybrid7.OSgn2 ◁ ◁ ◁

Figure 12: The eighth security hybrid game used in the proof of Theorem 7.2. Differences from the previous
hybrid are highlighted .
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Hybrid8. In this hybrid, the challenger samples the response zi uniformly random for all honest users
honestsid, except for the last honest user. This is formally depicted in Fig. 12. More concretely, the challenger
no longer samples the random column masks m∗i for i ∈ honestsid and i 6= LastSigner[sid], but directly prepares
the response zi; put differently, the column mask is implicitly set as m∗i := zi − ri − c · λact,i · si.

Note that the distribution of the responses are identical if the challenge c = Challenge[sid] is the challenge
that user i uses in the third-round signature query. This can be established following the same argument we
made in Hybrid7. Hence, we have

Adv
Hybrid8
A (κ) = Adv

Hybrid7
A (κ).

Hybrid9. In this hybrid, the challenger no longer generates the column mask m∗h of the last honest signer
h = honestsid and generates the commitment wh and response zh of the last honest signer h = honestsid
without using its partial secret sh or m∗h. This is formally depicted in Fig. 13.

Recall in Hybrid8, the response was set as zh := c ·λact,h · sh + rh +m∗h. Plugging in the definition of m∗h,
we have

zh = c · λact,h · sh + rh +m∗h

= c ·
(
s−

∑
i∈act\{h}

λact,i · si
)
+ rh +

∑
i∈honestsid

mi

−
∑

i∈honestsid\{h}

(zi − ri − c · λact,i · si) +
∑

i∈honestsid
i′∈corruptsid

(mi′,i −mi,i′)

= zsid − c ·
∑

i∈corruptsid

λact,i · si +mh

+
∑

i∈honestsid\{h}

(mi − zi + ri) +
∑

i∈honestsid
i′∈corruptsid

(mi′,i −mi,i′),

where the second equality follows from the correctness of the Shamir secret sharing scheme, i.e., s =∑
i∈act λact,i · si. This is exactly how zh is set in Hybrid9.
Similarly, the commitment wh in Hybrid8 is set as wh := A · (zh −m∗h)− c · λact,h ·A · sh + e′h. Plugging

in m∗h again, we have

wh = A · (zh −m∗h)− c · λact,h ·A · sh + e′h

= A · (c · λact,h · sh + rh)− c · λact,h ·A · sh + e′h

= A · (zsid − c · s) + e′h

= A · zsid − c · (A · s+ e) + c · e+ e′h

= A · zsid − c · t̂+ z′sid,

which is exactly how wh is set in Hybrid9. Hence, we have

Adv
Hybrid9
A (κ) = Adv

Hybrid8
A (κ).

Hybrid10. Finally, in this hybrid, the challenger replaces the publi key vk = (A, bA · s+ eeνt
) with (A,

⌊
t̂
⌉
νt

),

where t̂ is sampled uniformly at random from Rk
q . This is formally depicted in Fig. 14.

In Lemma 7.3, we show that we can construct an adversary B against the Hint-MLWEq,ℓ,k,QSign,σt,σw,C
problem such that ∣∣∣AdvHybrid10A (κ)− Adv

Hybrid9
A (κ)

∣∣∣ ≤ AdvHint-MLWE
B (κ).
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Hybrid9
▷ ▷ ▷ Identical to Hybrid2 ◁ ◁ ◁

OSgn1(j, sid, act,msg)

1: if Challenge[sid] = ⊥ then
2: c← C; Challenge[sid]← c

3: Committed[sid]← Committed[sid] ∪ {j}; LSign ← LSign ∪ {msg}
4: mj ←Rk

q

5: if Committed[sid] 6= honestsid then ▷ User j is not the last honest signer
6: (rj , e

′
j)← Dℓ

w ×Dk
w; wj := A · rj + e′j

7: cmtj := Hcom(sid, act,msg,wj)
8: Commitments[sid]← Commitments[sid] ∪ {wj}
9: zj ←Rk

q

10: else ▷ User j is the last honest signer
11: LastSigner[sid]← j; cmtj ← {0, 1}2κ

12: return contrib1[j] := (cmtj ,mj)

OSgn2(j, sid, contrib1)

1: Fetch sksig,j from state.sk
2: σj ← Signsig(sksig,j , sid || act ||msg || contrib1)
3: Signed[j]← Signed[j] ∪ {(sid, act,msg, contrib1)}
4: if Opened[sid] = ⊥ ∧ Committed[sid] = honestsid then
5: Opened[sid]← >
6: h := LastSigner[sid]
7: (rh, e

′
h)← Dℓ

w ×Dk
w

8: Parse contrib1 = (cmti,mi)i∈act
9: if ∀i ∈ corruptsid, ∃unique (Hcom, (sid, act,msg,wi), cmti) ∈ LH then

10: c := Challenge[sid]

11: (zsid, z
′
sid) := (c · s+ rh, c · e+ e′h)

▷ ▷ ▷ We remove user h’s partial secret sh and column mask m∗h from response and
commitment ◁ ◁ ◁

12:

zh := zsid−c·
∑

i∈corruptsid

λact,i·si+mh+
∑

i∈honestsid\{h}

(mi−zi+ri)

+
∑

i∈honestsid
i′∈corruptsid

(mi′,i −mi,i′)

13: wh := A · zsid − c · t̂+ z′sid ▷ t̂ := As+ e, i.e., non-rounded t

14: Hcom(act,msg,wh) := cmth
15: (wi)i∈honestsid\{h} ← Commitments[sid]

16: w :=
⌊∑

i∈act wi

⌉
νw

17: Hc(vk,msg,w) := c

18: else
19: wh := A · rh + e′h
20: Hcom(sid, act,msg,wh) := cmth

21: return contrib2[j] := (wj , σj)

Figure 13: The ninth security hybrid game used in the proof of Theorem 7.2. Differences from the previous
hybrid are highlighted .
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Hybrid10
1: Committed[·], LastSigner[·],Commitments[·],Opened[·],Challenge[·] := ⊥
2: Signed[·] := ⊥
3: LSign, LH := ∅
4: (N,T, corrupt)← A(pp)
5: honest := [N ]\corrupt

▷ ▷ ▷ Rewriting KeyGen(pp, T,N) ◁ ◁ ◁
6: A←Rk×ℓ

q

7: (s, e)← Dℓ
t ×Dk

t

8: t̂←Rℓ
q ▷ In Hybrid9, we set t̂ = A · s+ e

9: t :=
⌊
t̂
⌉
νt

10: vk := (A, t) ▷ Set random public key
11: for i ∈ corrupt do
12: si ←Rℓ

q ▷ Sample random secret key shares for corrupt users

13: for i ∈ [N ] do
14: (vksig,i, sksig,i)← KeyGensig(1

κ)
15: for j ∈ [N ] do
16: seedi,j ← {0, 1}κ

17: for i ∈ honest do
18: ski := (⊥, (vksig,i)i∈[N ], sksig,i, (seedi,j , seedj,i)j∈[N ])

19: for i ∈ corrupt do
20: ski := (si, (vksig,i)i∈[N ], sksig,i, (seedi,j , seedj,i)j∈[N ])

21: (msg, sig)← AH,(OSgni(·))i∈[3](vk, (ski)i∈corrupt)
22: if (msg ∈ LSign) or Verify(vk,msg, sig) = 0 then
23: return 0
24: return 1

OSgn1(j, sid, act,msg)

// Identical to Hybrid8

OSgn2(j, sid, contrib1)

▷ ▷ ▷ Identical to Hybrid9.OSgn2 ◁ ◁ ◁

Figure 14: The final security hybrid game used in the proof of Theorem 7.2. Differences from the previous
hybrid are highlighted .
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So as not to interrupt the main proof, we postpone the proof of Lemma 7.3.
Now that the public key is a random vector and the challenger no longer requires the signing key for the

unforgeability game, we are finally ready to invoke the SelfTargetMSIS problem. In Lemma 7.4, we show
that we can construct an adversary B′ against the SelfTargetMSISq,ℓ+1,k,C,νw,Bstmsis

problem such that

Adv
Hybrid10
A (κ) ≤ Adv

SelfTargetMSIS
B′ (κ)

Collecting all the bounds, we obtain the following bound, which is the desired bound in the theorem state-
ment.

Adv
Hybrid1
A (κ) ≤ N · Advsig-uf

BSign
(κ) + AdvPRFBPRF

(κ) +
(QH + 1) ·QSign

2n−1

+
QH +Q2

H

22κ
+ AdvHint-MLWE

B (κ) + Adv
SelfTargetMSIS
B′ (κ)

To complete the proof, it remains to prove the following Lemmas 7.3 and 7.4.

Lemma 7.3. There exists an adversary B against the Hint-MLWEq,ℓ,k,QSign,σt,σw,C problem such that∣∣∣AdvHybrid10A (κ)− Adv
Hybrid9
A (κ)

∣∣∣ ≤ AdvHint-MLWE
B (κ)

with Time(B) ≈ Time(A).

Proof. Let us provide the description of B. B is given
(
A,b, (ci, zi, z

′
i)i∈[QSign]

)
as the Hint-MLWE problem,

where b is either As+ e or random over Rk
q . It simulates the view of the Hybrid9 challenger to A by

• Setting t̂ := b;

• Sampling secret shares si ←Rℓ
q for i ∈ corrupt;

• Sampling (vksig,i, sksig,i)← KeyGensig(1
κ) for i ∈ [N ];

• Sampling seedi,j , seedj,i ← {0, 1}κ for i ∈ corrupt, j ∈ [N ];

• Setting ski = (si, (vksig,i)i∈[N ], sksig,i, (seedi,j , seedj,i)j∈[N ]) for i ∈ corrupt;

and running AH,(OSgni)i∈[3](vk, (ski)i∈corrupt). All random oracle queries are simulated identically to the chal-
lenger.

WhenA queries the signing oracle OSgn1 on (j, sid, act,msg) for the n-th (n ∈ [QSign]) time, if Challenge[sid] =
⊥ then B retrieves the n-th unused tuple (cn, zn, z

′
n) and sets Challenge[sid] = cn. After B proceeds as in the

real hybrid for lines 4 onwards.
When A queries the signing oracle OSgn2 on j, sid, contrib1[j] then B computes lines 1-10 as in the

real Hybrid. In line 11 then B looks up Challenge[sid] = cn and the corresponding (cn, zn, z
′
n), and sets

(zsid, z
′
sid) = (zn, z

′
n). After B proceeds as in the real hybrid for lines 12 onwards.

When A queries the signing oracle OSgn3 then B proceeds as in the real hybrid.
Finally, when A outputs a valid signature that breaks unforgeability, B outputs 1.
It is clear that the signing oracle is perfectly simulated using the noise leakage provided by the Hint-MLWE

problem. Thus, B perfectly simulates Hybrid9 when b is a valid MLWE sample and Hybrid10 otherwise.

Lemma 7.4. There exists an adversary B′ against the SelfTargetMSISq,ℓ+1,k,C,Bstmsis
problem such that

Adv
Hybrid10
A (κ) ≤ Adv

SelfTargetMSIS
B′ (κ)

with Time(B′) ≈ Time(A).
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Proof. The proof is identical to those of the non-threshold signature since the forgery output by the adversary
A must satisfy the conditions checked by the same verification algorithm. See Lemma C.4 for the proof.

This completes the proof of Theorem 7.2.

Remark 7.5 (Using MACs Instead of Signatures). Notice that since every users share a pair-wise independent
PRF seed, they can use that to authenticate themselves, rather than using signatures. The benefit of using
MACs is that they may be faster to implement compared to signatures and for small thresholds, it leads to
better communication costs.

Here, we provide a sketch of how the above proof will be altered. The only modification is Hybrid3, where
we invoked the security of the signature scheme. Alternatively, if one is using MACs, then the challenger
checks all the MACs observed in the third round were generated by the challenger. Then the asserted
condition can be checked to hold by invoking the unforgeability of the MAC scheme.

In particular, we can construct an adversary BMAC against the unforgeability of the MAC scheme such
that ∣∣∣AdvHybrid2A (κ)− Adv

Hybrid1
A (κ)

∣∣∣ ≤ QSign ·N2 · AdvMAC-uf
BMAC

(κ).

The reduction BMAC has access to an authenticating oracle and aims to output a forgery. Then BMAC

simulates the view of the Hybrid1 challenger to A by:

1. Computing vk = (A, t) and (si)i∈[N ] the same as in Hybrid1;

2. Choosing random i∗, j∗ ∈ honest and random k∗ ∈ [QSign]

3. Sampling mackeyi,j ← KeyGenMAC(1
κ) for i, j 6= i∗, j∗;

and running AH,(OSgni)i∈[3](vk, (ski)i∈corrupt). Here, note that we can simply assume all the users are given
dedicated mackeys or derive them from the provided PRF seeds.

When A queries its signing oracles it responds the same as in Hybrid1 except that MACs between i∗, j∗

are generated by querying the MAC oracle. If A provides MACs on some message (sid, act,msg, contrib1) 6∈
Signed[i∗] during the k∗th signing query then BMAC returns ((sid, act,msg, contrib1),MACj∗) as its forgery for
MACj∗ the j∗th MAC.

Since i∗, j∗, k∗ is information theoretically hidden from A, the probability that B correctly guesses which
public key and signing query A provides a forgery for is 1

QSignN2 . Note here we additionally guess the signing
query because B cannot verify the MACs correctness.

8 Concrete Instantiation
The goal of this section is to translate our main theorem (Theorem 7.2) in concrete parameters sets for our
threshold signature scheme. We recall the main equation of Theorem 7.2, with added annotations:

Adv
Hybrid1
A (κ) ≤

(A1)︷ ︸︸ ︷
N · Advsig-uf

BSign
(κ) +

(A2)︷ ︸︸ ︷
AdvPRFBPRF

(κ) +

(A3)︷ ︸︸ ︷
(QH + 1) ·QSign

2n−1

+
QH +Q2

H

22κ︸ ︷︷ ︸
(A4)

+ AdvHint-MLWE
B (κ)︸ ︷︷ ︸

(A5)

+ Adv
SelfTargetMSIS
B′ (κ)︸ ︷︷ ︸

(A6)

(11)

Recall that we allow the adversary QSign signing queries and QH hash queries. As is standard, we must
divide the probability of success of an adversary by its running time TA ≥ QSign +QH when computing the
bit-security.
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First, it is clear from the main equation that the terms in (A1), (A2) and (A4), once normalised by TA,
are smaller than 2−κ. The term in (A3) is conditioned on the initial conditions of Lemma 3.8 being satisfied;
we ensure throughout parameter selection that this is the case. Since n ≥ 512, (A3) is smaller than 2−κ for
all parameter sets we consider.

It only remains to bound the terms (A5) and (A6). These are studied in Section 8.2 and Section 8.1,
respectively. Both can be translated naturally in terms of problems over module lattices, which are struc-
tured. This additional structure does not seem to provide meaningful improvements to the state-of-the-art
attacks. Therefore, we ignore this structure in Sections 8.1 and 8.2 and treat these problems as unstructured
lattice problems of equivalent dimensions.

8.1 Direct Forgery and SelfTargetMSISq,ℓ+1,k,C,Bstmsis

One of the two main ways an adversary can break our scheme is by breaking the SelfTargetMSISq,ℓ+1,k,C,Bstmsis

assumption, corresponding to the term (A6) in Eq. (11). Concretely, this corresponds to breaking unforge-
ability directly, given only a valid verification key. The adversary needs to find zsol such that:(

zsol =

[
c
z′

])
∧ (‖zsol‖2 ≤ Bstmsis) ∧ Hc

([
−t̂ | A | I

]
· zsol, msg

)
= c
]
. (12)

Bstmsis is set according to the analysis in Section 7.3:

Bstmsis = B2,T +
√
ω + (ω · 2νt + 2νw+1) ·

√
nk,

where B2,T = e1/4 · (ω σt +
√
T σw)

√
n(k + ℓ) + (ω · 2νt + 2νw+1) ·

√
nk.

Following [LDK+22, Section C.3], we assume that the best way to solve (12) is either by (i) breaking the
second preimage resistance of Hc or by (ii) generating w at random, computing c = Hc (w, msg), and finally
solving the inhomogenous SIS instance:([

A | I
]
· z′ = w − c · t̂

)
∧ (‖z′‖ ≤ Bstmsis − ω) . (13)

We highlight that we do not consider the reduction loss appearing in Appendix B.1 when setting the para-
meters as it does not seem to reflect any concrete attacks. This is the same approach taken by Dilith-
ium [LDK+22, Section C.3] and Raccoon [dPEK+23, Section 4.3.5].

Below, we study both items (i) and (ii) in two separate paragraphs.

8.1.1 Solving Inhomogeneous MSIS.

Eq. (13) is an inhomogeneous MSIS problem. The state-of-the-art for solving this problem is an optimised
analysis by Chuengsatiansup et al. [CPS+20]. Under the geometric series assumption (GSA), [CPS+20]
states that we need to enforce the condition:

Bstmsis ≤ min
ℓn≤m≤(k+ℓ)n

(
δmq

k n
m

)
, for δ =

(
(π · βbkz)

1/βbkz · βbkz

2πe

)1/(2(βbkz−1))

Note that B2
stmsis is affine in the number of signers T . Since the hardness of SelfTargetMSIS is a decreasing

function of Bstmsis, this needs to be compensated by increasing other parameters (such as the dimensions).
Therefore, the signature size is an increasing function of T . However, both the communication cost and the
signature size are completely independent of the total number of parties N .

8.1.2 Challenge Space.

We need the hash function H to be second preimage resistant. To guarantee this we ensure that |C| > 2κ.
Considering how C is defined in Eq. (9) it is enough to set ω such that:

(
n
ω

)
· 2ω ≥ 2κ.
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8.2 Pseudorandomness of the Verification Key and Hint-MLWE

The second main way an adversary can break our scheme is by breaking the Hint-MLWEq,ℓ,k,QSign,σt,σw,C
assumption, which corresponds to the term (A5) in Eq. (11). Concretely, this means distinguishing the
verification key vk from uniform, given vk and a number QSign of valid signatures. Lemmas A.5 and B.2
state that this assumption is at least as hard as MLWEq,ℓ,k,σ, where 1

σ2 = 2 ·
(

1
σ2
t
+ Bhint

σ2
w

)
and Bhint is set as

in Lemma B.2.
Going forward, we can now rely on the large body of existing litterature on the cryptanalysis of MLWE.

To this day, the state-of-the-art for estimating the concrete hardness of MLWE remains the lattice estimator
(https://github.com/malb/lattice-estimator), first developed in [APS15]. According to it, the best
known attacks are the primal uSVP attack by Alkim et al. [ADPS16] and the dual/hybrid attack by Espitau
et al. [EJK20]. Finally, we can apply the dimensions for free optimisation by Ducas [Duc18] to gain a few
additional bits when using a sieve-based BKZ.

The hardness of MLWEq,ℓ,k,σ is an increasing function in σ, which means it is a decreasing function of
Bhint and therefore of the total number of signing queries QSign. Concretely, this means that the security of
our parameter sets are conditioned to a strict limit on QSign.

8.3 Parameter Sets
Despite the many variables, parameters are easy to set in a systematic way. The crucial variables are
(k, ℓ, n, q, σw). We then set ω from Section 8.1, and set (νt, νw, σt) large but such that ω · 2νt + 2νw+1 =

O
(
σw

√
T (1 + ℓ/k)

)
and σt = o(σw/ω). The resulting parameters are in Table 2.

Table 2: Parameter sets. The sizes |vk| and |sig| are provided in kilobytes. All parameter sets satisfy
(blog qe, n, σt,maxT ) = (49, 512, 220, 1024).

κ QSign σw

√
T νt νw ℓ k ω |vk| |sig| |trans|/T

128 260 242 37 40 4 5 19 3.9 12.7 40.8
192 264 242 36 40 6 7 31 5.8 18.9 59.6
256 260 242 35 41 7 8 44 7.2 21.6 69.1

9 Implementation and Experiments
We have developed a high-performance implementation of TRaccoon which can easily accomodate T = 1024
simulated signers (with the parameters in Table 2.) If we ignore possible communication latencies and enable
4.5 gHz turbo on an i7-12700, creating a signature (the three steps of ShareSign, κ = 128) requires from 11.1
ms (T = 4) to 116 ms (T = 1024) of single-core computation from each signer. The verification function is
independent of T and N , and requires approximately 0.230 ms. Table 3 contains more detailed benchmarking
results.

This implementation recycles components such as NTT and signature serialisation from the Raccoon
NIST submission [dPEK+23]. It uses κ-bit MACs keyed with pairwise seedi,j (and sid) to authenticate
contributions, as discussed in Section 6.1. The Uniform and Gaussian random samplers, MACs and PRFs
are built from the SHAKE128 [NIS15] extensible output function. This function (or, more precisely, its
Keccak permutation component) dominates the overall running time, requiring up to 80% of cycles. This is
despite the code utilizing an AVX2 SIMD Keccak that computes four permutations at the same time.

The distributions Dt and Dw are in a region σ ≥ 220 where table-based Discrete Gaussian samplers
perform poorly. Furthermore, σw may change between signatures as it depends on

√
T . Hence a sampler

based on rounded Gaussians [HLS18] is used in this implementation. The sampler is based on Marsaglia-
Bray polar method [MB64], and can be made side-channel secure if needed. A keen reader may be interested
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Table 3: TRaccoon (κ = 128) Cycle counts on a single core of an Intel i7-12700 CPU with “turbo boost”
disabled. The units are millions of cycles; divide by 2.1 (fixed clock frequency in gHz) to obtain millisecond
numbers. Measurements for KeyGen, Combine, and Verify are for the entire process, while ShareSigni is per
signer (when signing is a parallel process, this is equivalent to the elapsed time).

T KeyGen ShareSign1 ShareSign2 ShareSign3 Combine Verify
4 0.592 20.092 0.539 1.588 1.128 1.094

16 0.417 20.076 2.102 5.559 1.209 1.093
64 0.817 21.830 8.216 21.350 1.579 1.100

256 2.838 33.549 32.788 84.333 3.186 1.095
1024 11.491 67.213 131.887 338.614 11.571 1.106

in the discrepancy between the theory and the implementation; the former using a discrete Gaussian, while
the latter using the rounded Gaussian. For completeness, we provide in Appendix E that this discrepancy
only incurs a negligible difference for our choices of parameters.

At κ = 128, public key is |vk| = 3856 bytes. Due to non-uniform distributions, the actual signature encod-
ing size is variable, but can be (with high probability) upper bounded at |sig| ≤ 12736 bytes. Communicating
the secret key shares and PRF/MAC seed pairs to each of the N potential signers requires 12556 + 32N
bytes with this implementation. The signing bandwidth requirements (in bytes) are 1

T |contrib1| = 12576,
1
T |contrib2| = 15680+16T , and 1

T |contrib3| = 12544, bringing the total per-signer contribution to 40800+16T
bytes. If asymmetric signatures rather than pairwise MACs were used, each signer contribution would have
a size asymptotically independent of T .
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A Deferred Definitions
In this section, we provide the deferred definitions from Section 3.

A.1 Hardness of Lattice-Related Problems
Here we provide all the omitted details on the lattice-related hardness problems. We first introduce the
MLWE and MSIS problems below.

Definition A.1 (MLWE). Let ℓ, k, q be integers and D be a probability distribution over Rq. The advantage
of an adversary A against the Module Learning with Errors MLWEq,ℓ,k,D problem is defined as:

AdvMLWE
A (κ) = |Pr [1← A(A,A · s+ e)]− Pr [1← A(A,b)]|

where (A,b, s, e)←Rk×ℓ
q ×Rk

q×Dℓ×Dk. The MLWEq,ℓ,k,D assumption states that any efficient adversary A
has negligible advantage. We may write MLWEq,ℓ,k,σ as a shorthand for MLWEq,ℓ,k,D when D is the Gaussian
distribution of standard deviation σ.

Definition A.2 (MSIS). Let ℓ, k, q be integers and Bmsis > 0 a real number. The advantage of an adversary
A against the Module Short Integer Solution MSISq,ℓ,k,Bmsis problem is defined as follows:

AdvMSIS
A (κ) = Pr

[
A←Rk×ℓ

q , s← A(A) : 0 < ‖s‖2 ≤ Bmsis ∧
[
A | I

]
· s = 0 mod q

]
.

The MSISq,ℓ,k,Bmsis assumption states that any efficient adversary A has negligible advantage.

The following two results relate the MLWE and MSIS problems to certain worst-case lattice problems,
where recall n is the dimension of Rq and all the parameters are implicitly a function of the security
parameter.

Lemma A.3 (Hardness of MLWE ([LS15])). For any integers ℓ, k, q, n and real σ such that q ≤ poly(nℓ),
k ≤ poly(ℓ), and σ ≥

√
ℓ · ωasymp(

√
log n), the MLWEq,ℓ,k,σ problem is as hard as the worst-case lattice

Generalised-Independent-Vector-Problem (GIVP) in dimension N = nℓ with approximation factor
√
8Nℓ ·

ωasymp(
√
log n) · q/σ.
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Lemma A.4 (Hardness of MSIS ([LS15])). For any integers ℓ, k, q, n and positive real Bmsis such that
q > Bmsis

√
nk · ωasymp(log(nk)), ℓ, log q ≤ poly(nk), the MSISq,ℓ,k,Bmsis problem is as hard as the worst-case

lattice Generalised-Independent-Vector-Problem (GIVP) in dimension N = nk with approximation factor
Bmsis

√
N · ωasymp(

√
logN).

Lastly, we recall the following result establishing the hardness of the Hint-MLWE problem based on the
MLWE problem. Below, s1(c) denotes the spectral norm of c ∈ Rq and c∗ denotes the Hermitian adjoint of
c (see Appendix B.2 for more details on the spectral norm of ring elements).

Lemma A.5 (Hardness of Hint-MLWE [KLSS23]). For any integers ℓ, k, q, n,Q, set C ⊂ Rq, and positive
reals Bhint, σ, σD, σG such that Pr[s1(

∑
i∈[Q] ci · (ci)∗) < Bhint : ci ← C] ≥ 1 − negl(κ), σ = ωasymp(

√
log n),

and 1
σ2 = 2 ·

(
1
σ2
D
+ Bhint

σ2
G

)
, the Hint-MLWEq,ℓ,k,Q,σD,σG ,C problem is as hard as the MLWEq,ℓ,k,σ problem.

A.2 Pseudorandom Function
Here, we define pseudorandom functions PRF. Below, we define a multi-instance variant where the adversary
can query many PRF seeds.

Definition A.6 (Pseudorandom function (PRF)). Let n, ℓ be positive integers, implicitly a function of the
security parameter κ. We define GamePRFA in Fig. 15 for an adversary A. We say a deterministic PPT
algorithm PRF : {0, 1}κ ×{0, 1}n → {0, 1}ℓ is a pseudorandom function if for any efficient adversary A, the
following advantage of A is in negl(κ):

AdvPRFA (κ) =

∣∣∣∣Pr[GamePRFA (κ) = 1]− 1

2

∣∣∣∣ .

Alg. 35: GamePRFA (κ)

1: L[·] := ⊥
2: b← {0, 1}
3: b′ ← AOPRF(·)(κ)
4: if b = b′ then
5: return 1
6: return 0

Alg. 36: OPRF(i, x ∈ {0, 1}n)
1: if L[i] = ⊥ then
2: seed← {0, 1}κ
3: L[i]← seed

4: seed := L[i]
5: y0 ← {0, 1}ℓ
6: y1 := PRF(seed, x)
7: return yb

Figure 15: PRF security game. For simplicity, we restrict the adversary to only query an input string x of
length ℓ.

A.3 Signature Scheme
We provide the formal definition of a standard single signer signature scheme. A signature scheme is a triple
of algorithms (KeyGen, Sign,Verify) such that:

(vk, sk)← KeyGen(1κ):
The key generation algorithm takes as input the security parameter κ and outputs a public key vk and
a signing key sk.
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Alg. 37: Gamesig-uf
A (κ)}

1: (vk, sk)← KeyGen(1κ)
2: LSign := ∅
3: (msg∗, σ∗)← AOSgn(·)(vk)
4: if ∃σ′ s.t. (msg∗, σ′) ∈ LSign then
5: return 0
6: return Verify(σ∗,msg∗, vk)

Alg. 38: OSgn(msg)

1: σ ← Sign(sk,msg)
2: LSign := LSign ∪ {(msg, σ)}
3: return σ

Figure 16: Unforgeability game for signatures.

σ ← Sign(sk,msg):
The signing algorithm takes as input a signing key sk and a message msg, and outputs a signature σ.

{0, 1} ← Verify(vk,msg, σ):
The verification algorithm takes as input a public key vk, a message msg and a signature σ, and outputs
1 if the signature is accepted and 0 otherwise.

Definition A.7 (Correctness). A digital signature is correct if for any valid message msg ∈ M, it holds
that

Pr[Verify(vk,msg, Sign(sk,msg)) = 1 : (vk, sk)← KeyGen(1κ)] ≥ 1− negl(κ).

Definition A.8 (Unforgeability). We define Gamesig-uf
A in Fig. 16 for an adversary A. We say a digital

signature is unforgeable if for any efficient A, the following advantage of A is negl(κ):

Advsig-uf
A (κ) := Pr[Gamesig-uf

A (κ) = 1].

We also define a QSign-bounded scheme where any adversary is limited to make at most QSign = poly(κ)
signing queries. See Remark 4.3 for more discussion.

A.4 Correctness of Threshold Signatures
We define the correctness of a threshold signature scheme in this section.

Definition A.9 (Correctness). Let pp(κ) be a parameter generating algorithm that takes as input the security
parameter 1κ. We define Gamets-corr in Fig. 17. We say a threshold signature is correct if for any threshold
T , number of parties N , act ⊆ [N ] with |act| ≥ T , and message msg ∈ {0, 1}∗, it holds that:

Pr[Gamets-corr(1κ, T,N, act,msg) = 1] > 1− negl(κ).

A.5 Communication Channel
As with all threshold signatures, TRaccoon requires a communication network such that parties can send
messages to each other. In this work we abstract away the mechanics about the network. We do not specify
how parties receive the inputs sid, act,msg, contribi for the algorithms Signi, which ultimately is a consensus
problem.

There are two common solutions for agreeing on the parties inputs for schemes such as TRaccoon that
require at least T honest parties in order to terminate with a valid signature. Both solutions ensure that if
all parties are honest then a valid signature will eventually be produced.
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Gamets-corr(1κ, T,N, act,msg)

1: assert{ act ⊆ [N ] and |act| ≥ T }
2: (vk, (ski)i∈[N ])← KeyGen(pp(1κ), T,N)
3: for j ∈ act do
4: (statej , sessionsid, contrib1[j])← ShareSign1(statej , sid, act,msg)

5: for i ∈ {2, . . . , rnd} do
6: for j ∈ act do
7: (statej , contribi[j])← ShareSigni(statej , contribi−1)

8: sig := Combine(vk, sid,msg, (contribi)i∈[rnd])
9: return Verify(vk,msg, sig)

Figure 17: Correctness game for threshold signatures.

Synchronous broadcast channels.

The first solution is to assume a synchronous broadcast channel where all parties receive the outputs of all
other parties in each round. The adversary cannot modify messages sent over the broadcast channel, nor
prevent their delivery. Here we can assume that the protocol will terminate but not that the output will
verify. Synchronous broadcast channels are difficult to realise in practice and typically require a peer-to-peer
network and large time bounds.

Coordinator.

The second method for agreeing on inputs is to assume that the network is asynchronous with no time bounds
on when signers should respond, but that there is a coordinator i.e. an authority that routes communications
toward the correct receiver. The coordinator waits until they have received messages from all parties and
only then forward the relevant contribi back. Unforgeability holds even when the coordinator is malicious.
If a signer never responds then the session will not terminate. Similarly if a malicious coordinator aborts
then the session will not terminate and no signature will be produced.

B Deferred Proofs from Section 3
In this section, we provide the deferred proofs from Section 3.

B.1 Proof of Hardness of SelfTargetMSIS

As discussed in Section 3.4, SelfTargetMSIS is known to be as difficult as MSIS. For completeness, we provide
a reduction from SelfTargetMSIS to MSIS and display the asymptotic relations of the parameters.

Lemma B.1 (Hardness of SelfTargetMSIS). Then, for any adversary A against the SelfTargetMSISq,ℓ,k,C,Bstmsis

problem making at most QH random oracle queries, there exists an adversary B against the MSISq,ℓ,k,Bmsis

problem with Bmsis = 2Bstmsis such that

Adv
SelfTargetMSIS
A (κ) ≤

√
QH · AdvMSIS

B (κ) +
QH

|C|
,

where Time(B) ≈ 2 · Time(A).
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Proof. To construct B, we simply invoke the standard forking lemma [BN06] to run A twice. In particular,
when B receives A← Rk×ℓ

q as input, it invokes A on input A. B simulates the random oracle H on the fly
by sampling a random c← C. Eventually, A outputs (z,msg) ∈ Rℓ+k

q ×{0, 1}2κ that breaks SelfTargetMSIS.
That is (

z =

[
c
z′

])
∧ ‖z‖2 ≤ Bstmsis ∧ G

([
A | I

]
· z, msg

)
= c.

Using the forking lemma [BN06], we can argue that when B rewinds A, A outputs (ẑ, m̂sg) with a different
ĉ 6= c such that (

ẑ =

[
ĉ

ẑ′

])
∧ ‖ẑ‖2 ≤ Bstmsis ∧ G

([
A | I

]
· ẑ, m̂sg

)
= ĉ.

with the specified probability in the statement. Moreover, the forking lemma allows us to argue that the
input are the same on the challenge output. That is, we have

[
A | I

]
· z =

[
A | I

]
· ẑ.

To conclude, B simply sets z∗ = z − ẑ ∈ Rℓ+k
q as its MSIS solution. When c 6= ĉ, which happens with

probability at least 1 − QH

|C| , z∗ 6= 0ℓ+k as desired. Moreover, ‖z∗‖2 ≤ ‖z‖2 + ‖ẑ‖2 ≤ 2Bstmsis = Bmsis as
desired. Thus z∗ is a valid MSIS solution and this completes the proof.

B.2 Bounding the Spectral Norm
The spectral norm s1(M) of a matrix M is defined as the value maxx ̸=0

∥Mx∥
∥x∥ . We recall that if a matrix is

symmetric, then its spectral norm is also its largest eigenvalue. Given a polynomial c ∈ R, we may abusively
use the term “spectral norm s1(c) of c” when referring to the spectral norm of the anti-circulant matrix
M(c) associated to c. Finally, if c(x) =

∑
0≤i<n ci x

i, then the Hermitian adjoint of c, which we denote by
c∗, is defined as c∗(x) = c0 −

∑
0<i<n cn−i x

i. Note that M(c)t =M(c∗).

Lemma B.2. For j ∈ [QSign], let c[j] ← C, where C is defined as in Eq. (9). Let D =
∑

j∈[QSign]
c[j] (c[j])∗.

We then have Pr [s1(D) ≥ Bhint] ≤ 2−κ, where:

Bhint = QSign · ω ·

(
1 + n

1√
QSign

(κ+ 1 + 2 log(n))

)

Specifically, when (κn)2 = o(QSign), then s1(D) is equivalent to QSign · ω.

Proof. First, let us consider a single c← C. Let d(x) = c c∗ =
∑

0≤i<n di x
i. For each k ∈ {0, . . . , n− 1}, dk

can be expressed explicitly as:

dk =
∑

0≤i<n−k

ci ci+k −
∑

n−k≤i<n

ci ci+k−n. (14)

From Eq. (14), it is clear that:

1. d0 = ‖c‖22 = ω

2. If k 6= 0, dk is a random variable satisfying:

‖dk‖ ≤ ‖c‖22 = ω (15)
E[dk] = 0. (16)

While Eq. (15) is immediate from Eq. (14), Eq. (16) is a bit more subtle. The mapping (k, i) ∈
{0, . . . , n − 1}2 7→ (i + k mod n) is a group action. As such, its orbits form a partition of {0, . . . , n −
1}, and we note that each orbit has an even number of elements. Each orbit can be written as
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{i0 + k x mod n|x ∈ n/ gcd(k, n)}, where i0 is (say) the smallest element in this orbit. We define the
function δk : {0, . . . , n − 1} → {−1, 1} as follows: for each 0 ≤ i < n, we determine its orbit, write
i = i0 + k x in this orbit, and set δk(i) = (−1)x. Now consider the mapping φk : C → C defined as

φk :

c =
∑

0≤i<n

ci x
i

 −→
c′ =

∑
0≤i<n

δk(i) ci x
i

 . (17)

φk is an involution of C, and one can check from Eqs. (14) and (17) that (c c∗)k = −(c′ c′∗)k. Since φk

is an involution, this implies that E[dk] = 0.

Let us note d[j] = c[j] (c[j])∗. For d 6= 0, we can bound the sum Dk =
∑

j∈[QSign]
d
[j]
k by combining Hoeffding’s

inequality with Eqs. (15) and (16):

|Dk| ≤ ω
√
2QSign ((κ+ 1) log(2) + log(n)) (18)

except with probability at most 2−κ/n. From the union bound, the above inequality is true for all k 6= 0,
except with probability ≤ 2−κ. We can now bound the spectral norm of D. Since D is self-adjoint, s1(D)
is the largest eigenvalue of D, that is D(ζ) for some primitive root of unity ζ, |ζ| = 1. Therefore with
probability ≥ 1− 2−κ:

s1(D) = D(ζ) ≤ D0 +
∑
k ̸=0

|Dk|

≤ QSign ω + (n− 1)ω
√

2QSign ((κ+ 1) log(2) + log(n))

This concludes the proof after a few simplifications.

C Correctness and Security of Raccoon: Theorem 5.1
In this section, we provide the correctness and security proofs of our slight variant of Raccoon [dPPRS23].

C.1 Asymptotic Parameters
We first give a asymptotic parameter for which the scheme can be proven correct and secure. For reference,
we recall the set of parameters used by the scheme in Table 1. Note the restriction on (qt, qw) allows us to
perform rounding operations nicely (see Lemma 3.2).

For unforgeability, we require the Hint-MLWEq,ℓ,k,QSign,σt,σw,C and SelfTargetMSISq,ℓ+1,k,C,Bstmsis
problems

to be hard. More specifically, we require the following conditions.

• σ ≥
√
ℓ · ωasymp(

√
log n) for Lemma A.3 (hardness of MLWE).

• Bhint = QSign · ω ·
(
1 + n 1√

QSign

(κ+ 1 + 2 log(n))

)
and 1

σ2 = 2 ·
(

1
σ2
t
+ Bhint

σ2
w

)
for Lemmas A.5 and B.2

(reduction from Hint-MLWE to MLWE).

• q > Bmsis

√
nk · ωasymp(log(nk)) for Lemma A.4 (hardness of MSIS).

• Bmsis = 2Bstmsis for Lemma B.1 (reduction from SelfTargetMSIS to MSIS).

In the above, note that QSign denotes the maximum signature query an adversary can perform.
Candidate Asymptotic Parameters. We give a set of asymptotic parameters which fit the above con-
straints.

• n, ℓ, k = poly(κ) such that n ≥ κ.
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• ω = ωasymp(1) for |C| ≥ 2κ for Lemma B.1 (hardness of SelfTargetMSIS).

• (σt, σw) =
(
2
√
ℓ · log n, 2

√
Bhint · ℓ · log n

)
.

• νt, νw = O(log λ), where νw ≥ 4 for correctness (see Appendix C.2).

• B2 = e1/4 · (ωσt + σw)
√
n(k + ℓ) + (ω · 2νt + 2νw+1) ·

√
nk for correctness (see Appendix C.2).

• Bstmsis = B2 +
√
ω + (ω · 2νt + 2νw+1) ·

√
nk for Lemma C.4.

• q is the smallest prime larger than 2Bstmsis

√
nk log(nk)2 such that (q, νt, νw) satisfy the condition in

Table 1.

C.2 Correctness
The following establishes the correctness of the Raccoon signature scheme in Fig. 3.

Lemma C.1 (Correctness). The Raccoon signature scheme in Fig. 3 is correct if νw ≥ 4 and:

B2 = e1/4 · (ωσt + σw)
√
n(k + ℓ) + (ω · 2νt + 2νw+1) ·

√
nk.

Proof. It is clear that the check {c = c′} holds. In the proof, we focus on the check of the L2-norm of the
signature. Let us denote t̂ = As+ e and ŵ = Ar+ e′, where t =

⌊
t̂
⌉
νt

and w = bŵeνw
. Below, we will be

precise on where each values live and explicit with the lift. Let us define y as follows:

y := bA · z− 2νt · c · t̄eνw
= bc ·As+Ar− 2νt · c · t̄eνw

=

ŵ + c ·
(
t̂− 2νt ·

⌊
t̂
⌉
νt

)︸ ︷︷ ︸
=:at∈Rk

q

− c · e− e′︸ ︷︷ ︸
=:a∈Rk

q


νw

.

Plugging in the above y into h, we have∥∥2νw · h̄ mod q
∥∥
2
=
∥∥∥2νw · (w − y) mod q

∥∥∥
2

=
∥∥∥2νw · (bŵeνw

− bŵ + c · at − aeνw
) mod q

∥∥∥
2

≤
∥∥∥2νw · bc · at − aeνw

mod q
∥∥∥
2
+
√
nk · 2νw

≤ ‖c · at − a‖2 +
√
nk · 2νw+1

≤ ‖c · at‖2 + ‖a‖2 +
√
nk · 2νw+1,

where we used Lemma 3.2, Eq. (6) (resp. Eq. (5)) in the first (resp. second) inequality and Lemma 3.1 for
the last. Using the Minkowski inequality and Lemma 3.2, Eq. (5), we have:

‖c · at‖2 ≤ ‖c‖1 ·
√
nk · 2νt .

Moreover, using Lemma 3.4, the following holds with overwhelming probability:

‖(z,a)‖2 ≤ ‖c · (s, e)‖2 + ‖(r, e
′)‖2

≤ e1/4 · (‖c‖1 σt + σw) ·
√

n(k + ℓ)

Collecting all the bounds and plugging in ‖c‖1 = ω, we can check that
∥∥(z, 2νw · h̄ mod q)

∥∥
2
≤ B2 as

desired.
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C.3 Unforgeability
The following is the main theorem, stated more explicitly than Theorem 5.1, establishing the unforgeability
of the variant of the Raccoon signature scheme. The statement assumes the asymptotic parameter selections
in Appendix C.1.

Theorem C.2. The Raccoon signature scheme in Fig. 3 is unforgeable under the Hint-MLWEq,ℓ,k,QSign,σt,σw,C
and SelfTargetMSISq,ℓ+1,k,C,Bstmsis

assumptions.
Formally, for any adversary A against the unforgeability game making at most QH and QSign queries

to the random oracle Hc and the signing oracle, respectively, there exists adversaries B and B′ against the
Hint-MLWEq,ℓ,k,QSign,σt,σw,C and SelfTargetMSISq,ℓ+1,k,C,Bstmsis

problems, respectively, such that

Advsig-uf
A (κ) ≤ AdvHint-MLWE

B (κ) + Adv
SelfTargetMSIS
B′ (κ) +

(QH + 1) ·QSign

2n−1
,

where Time(B),Time(B′) ≈ Time(A).

Proof. To prove Theorem C.2, we use a series of hybrid games as defined in Fig. 18, where Hybrid1 corresponds
to the original unforgeability game. The final Hybrid4 is designed such that a reduction B′ can simulate the
hybrid game given a SelfTargetMSIS instance, and extract a solution of this problem from a successful
adversary. Our aim is thus to ensure that B′ does not need to know the secrets s or e in order to respond
to signature queries. From Hybrid1 to Hybrid3 we edit how the oracle signer OSgn(msg) will respond when
queried on a message msg, such that the response z is chosen at random independently from s. To ensure
correctness we now choose the commitment w to depend on the response z and the challenge c, and we
program the oracle to ensure the signature verifies.

In Hybrid4, we swap the public key t to be a uniformly random vector. However, this step cannot be
completed by using the standard MLWE problem since the commitment w and response z depend on the
secret key. To this end, we use the hint MLWE problem to simulate these components. Prior works had to
add a statistical step (i.e., Rényi divergence, or noise flooding) to rely on the MLWE problem, resorting to
sub-optimal parameter selections. Finally, in Hybrid5, we require that the public key t can be computed from
a SelfTargetMSIS instance. Below, let A be an adversary against the unforgeability of the signature scheme.

Hybrid1: This is the unforgeability security game.

Hybrid2: In this hybrid, the challenger replaces non-programmed random oracle outputs in the signing oracle
with programmed outputs. First the challenger samples an element c uniformly at random from the
challenge space C. Then the hash function is programmed to consistently return this value c on input
(vk,msg,w) during further interaction with the adversary.
Note that the signing responses in Hybrid2 are identically distributed to Hybrid1 unless the bad event
occurs in which OSgn(·) is required to program a value that has already been queried by the adversary.
As w is sampled randomly following the Dbd-MLWE

q,ℓ,k,σw,νw
(A) distribution as in Definition 3.7, this happens

with probability at most QH · 2−H∞(Dbd-MLWE
q,ℓ,k,σw,νw

(A)) in each signing query, except with probability
QSign ·2−n+1 using the union bound. Thus, using Lemma 3.8 and our parameter selection, we have the
following: ∣∣∣AdvHybrid2A (κ)− Adv

Hybrid1
A (κ)

∣∣∣
≤
(
1−

(
1−QH · 2−n+1

)QSign
)
· (1−QSign · 2−n+1) +QSign · 2−n+1

≤(QH + 1) ·QSign · 2−n+1,

where we have used Bernoulli’s inequality, that is, (1 + x)r ≥ 1 + rx for every integer r ≥ 0 and real
number x > −1.
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Hybrid1

1: t̂ := A · s+ e, t :=
⌊
t̂
⌉
νt

2: LSign := ∅
3: (msg, σ)← AOSgn(·)(A, t)
4: if (msg, σ) ∈ LSign return 0
5: return Verify((A, t),msg, σ)

OSgn(msg)

1: r← Dℓ
w

2: e′ ← Dk
w

3: w := bA · r+ e′eνw

4: c := Hc(vk,msg,w)
5: z := c · s+ r
6: h := w − bA · z− 2νt · c · teνw

7: LSign := LSign ∪ {msg, (c, z,h)}
8: return σ := (c, z,h)

Hybrid2

1: t̂ := A · s+ e, t :=
⌊
t̂
⌉
νt

2: LSign := ∅
3: (msg, σ)← AOSgn(·)(A, t)
4: if (msg, σ) ∈ LSign return 0
5: return Verify((A, t),msg, σ)

OSgn(msg)

1: r← Dℓ
w

2: e′ ← Dk
w

3: w := bA · r+ e′eνw

4: c← C
5: z := c · s+ r
6: h := w − bA · z− 2νt · c · teνw

7: Hc(vk,msg,w) := c

8: LSign := LSign ∪ {msg, (c, z,h)}
9: return σ := (c, z,h)

Hybrid3

1: t̂ := A · s+ e, t :=
⌊
t̂
⌉
νt

2: LSign := ∅
3: (msg, σ)← AOSgn(·)(A, t)
4: if (msg, σ) ∈ LSign return 0
5: return Verify((A, t),msg, σ)

OSgn(msg)

1: r← Dℓ
w

2: e′ ← Dk
w

3: c← C
4: z := c · s+ r
5: z′ := c · e+ e′

6: w :=
⌊
A · z− c · t̂+ z′

⌉
νw

7: h := w − bA · z− 2νt · c · teνw

8: Hc(vk,msg,w) := c
9: LSign := LSign ∪ {msg, (c, z,h)}

10: return σ := (c, z,h)

Hybrid4

1: t̂←Rk
q , t :=

⌊
t̂
⌉
νt

2: LSign := ∅
3: (msg, σ)← AOSgn(·)(A, t)
4: if (msg, σ) ∈ LSign return 0
5: return Verify((A, t),msg, σ)

OSgn(msg)

1: r← Dℓ
w

2: e′ ← Dk
w

3: c← C
4: z := c · s+ r
5: z′ := c · e+ e′

6: w :=
⌊
A · z− c · t̂+ z′

⌉
νw

7: h := w − bA · z− 2νt · c · teνw

8: Hc(vk,msg,w) := c
9: LSign := LSign ∪ {msg, (c, z,h)}

10: return σ := (c, z,h)

Figure 18: The security hybrid games used in the proof of Theorem C.2. Differences from Hybridi to Hybridi+1

are highlighted . We assume the game aborts and outputs 0 in case the random oracle Hc is already defined
when executing OSgn(·).
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Hybrid3: This game is identical to Hybrid2 with the exception that the way w is computed is modified using
the public key t instead of an MLWE sample A ·r+e′. As the challenger computes w = bAr+ e′eνw

=

bAz− c ·A · s+ e′eνw
in the previous game, one can verify that Az− c ·As+e′ = Az− c · t̂+ c ·e+e′,

which yields the equation in Hybrid3.
As it is simply a rewriting of w, it remains indistinguishable from Hybrid2:

Adv
Hybrid3
A (κ) = Adv

Hybrid2
A (κ).

Hybrid4: Finally, this game is the same as Hybrid3 with the exception that the verification key vk =

(A, bA · s+ eeνt
) is replaced by (A,

⌊
t̂
⌉
νt

) where t̂ is sampled uniformly at random from Rk
q .

In Lemma C.3, we show that we can construct an adversary B against the Hint-MLWEq,ℓ,k,QSign,σt,σw,C
problem such that ∣∣∣AdvHybrid4A (κ)− Adv

Hybrid3
A (κ)

∣∣∣ ≤ AdvHint-MLWE
B (κ).

So as not to interrupt the main proof, we postpone the proof of Lemma C.3.

Now that the public key is a random vector and the challenger no longer requires the signing key for the
unforgeability game, we are finally ready to invoke the SelfTargetMSIS problem. In Lemma C.4, we show
that we can construct an adversary B′ against the SelfTargetMSISq,ℓ+1,k,C,Bstmsis

problem such that

Adv
Hybrid4
A (κ) ≤ Adv

SelfTargetMSIS
B′ (κ).

Collecting all the bounds, we obtain the following bound, which is the desired bound in the theorem state-
ment.

Advsig-uf
A (κ) ≤ AdvHint-MLWE

B (κ) + Adv
SelfTargetMSIS
B′ (κ) +

(QH + 1) ·QSign

2n+1
.

To complete the proof, it remains to prove the following Lemmas C.3 and C.4.

Lemma C.3. There exists an adversary B against the Hint-MLWEq,ℓ,k,QSign,σt,σw,C problem such that∣∣∣AdvHybrid4A (κ)− Adv
Hybrid3
A (κ)

∣∣∣ ≤ AdvHint-MLWE
B (κ)

with Time(B) ≈ Time(A).

Proof. Let us provide the description of B. B is given
(
A,b, (ci, zi, z

′
i)i∈[QSign]

)
as the Hint-MLWE problem,

where b is either As+ e or random over Rk
q . It simulates the view of the Hybrid3 challenger to A by setting

t̂ := b and giving the public key vk = (A,
⌊
t̂
⌉
νt

) to A. All random oracle queries are simulated identically
to the challenger. When A queries the signing oracle on msg for the i-th (i ∈ [QSign]) time, B retrieves the
i-th unused tuple (ci, zi, z

′
i). It then uses this to compute the commitment w and hint h, and programs the

random oracle Hc. Finally, when A outputs a valid signature that breaks unforgeability, B outputs 1.
It is clear that the signing oracle is perfectly simulated using the noise leakage provided by the Hint-MLWE

problem. Thus, B perfectly simulates Hybrid3 when b is a valid MLWE sample and Hybrid4 otherwise. This
completes the proof.

Lemma C.4. There exists an adversary B′ against the SelfTargetMSISq,ℓ+1,k,C,Bstmsis
problem such that

Adv
Hybrid4
A (κ) ≤ Adv

SelfTargetMSIS
B′ (κ)

with Time(B′) ≈ Time(A).
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Proof. Let us provide the description of B′. B′ is given M ∈ Rk×(ℓ+1)
q as the SelfTargetMSIS problem. It

sets −t̂ as the first column and A to be the remaining ℓ columns of M, and sets the public key vk to be
(A,

⌊
t̂
⌉
νt

). B′ simulates the Hybrid4 challenger except for one difference: whenever the random oracle Hc is
invoked on an input input, B′ tries to parse it as (vk,msg,y) for some y ∈ Rk

qw . If it does not, it samples
a random output and simulates Hc as the Hybrid4 challenger. Otherwise, it queries (2νw · ȳ mod q,msg)
to the oracle G : Rk

q × {0, 1}2κ → C provided by the SelfTargetMSIS problem and uses that as the output
instead. Here, recall that ȳ is the unique lift of y ∈ Zk

qw to {0, 1, · · · , qw − 1}k. Importantly, by definition
of qw, we have 2νw · ȳ ∈ {0, 1, · · · , q − 1}k. This means that the map y 7→ (2νw · ȳ mod q) is injective,
meaning that changing how we answer the random oracle does not alter the view of A. Finally, since the
Hybrid4 challenger no longer uses the signing key, B′ can perfectly simulate the signing oracle where it uses
G instead of Hc when programming the challenge it samples. In summary, B′ perfectly simulates the view
of Hybrid4 to A.

At the end of the game, the adversary A outputs a forgery (c∗, z∗,h∗) for a message msg∗. Since this is
a valid forgery, we have

∥∥(z∗, 2νw · h∗ mod q)
∥∥
2
≤ B2 and

⌊
A · z∗ − 2νt · c∗ · t

⌉
νw

+ h∗ ∈ Rk
qw , where note

that from this point on we will be explicit with the lifting notation and where the norm is taken. Due to
how B′ simulates the random oracle, we have

c∗ = G
(
2νw ·

(⌊
A · z∗ − 2νt · c∗ · t

⌉
νw

+ h∗
)

mod q,msg∗
)
. (19)

It remains to show how B′ turns this into a SelfTargetMSIS solution. First, using Lemma 3.1 and Lemma 3.2, Eq. (5),
we have

2νt · t̄ = 2νt ·
⌊
t̂
⌉
νt

= t̂+ δt

over modulo q for some δt ∈ Rk
q with ‖δt‖∞ ≤ 2νt − 1. We also have⌊

A · z∗ − 2νt · c∗ · t
⌉
νw

+ h∗ =
⌊
A · z∗ − 2νt · c∗ · t

⌉
νw

+ h∗ − δ1

=
⌊
A · z∗ − c∗ · (t̂+ δt)

⌉
νw

+ h∗ − qw · δ1

over the integers for some δ1 satisfying ‖δ1‖∞ ≤ 1.
Plugging this into the first input of G in Eq. (19), we have

2νw ·
(
bA · z∗ − 2νt · c∗ · t̄eνw

+ h∗
)

mod q =2νw ·
(⌊

A · z∗ − c∗ · (t̂+ δt)
⌉
νw

+ h∗ − qw · δ1
)

mod q

=A · z∗ − c∗ · (t̂+ δt) + 2νw · (h∗ − qw · δ1) + δ2 mod q

=M

[
c∗

z∗

]
− c∗ · δt + 2νw · (h∗ − qw · δ1) + δ2 mod q, (20)

where the second equality holds for some δ2 with ‖δ2‖∞ ≤ 2νw −1 using Lemma 3.1 and Lemma 3.2, Eq. (5)
and the last equality follows by plugging in M = [−t̂ | A]. Finally, Eq. (20) is equivalent to [M | I] · zsol
mod q, where

zsol =

 c∗

z∗

−c∗ · δt + 2νw · (h∗ − qw · δ1) + δ2

 ∈ Rk+ℓ+1
q

Plugging this back into Eq. (19), we have

c∗ = G ([M | I] · zsol mod q,msg∗) .
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To conclude, B′ efficiently computes zsol from the forgery and outputs (zsol,msg∗) as the SelfTargetMSIS
solution, where note that we can efficiently compute (δt, δ1, δ2). Here, since the first entry of zsol is c∗, it is
in a desired format. Moreover,

‖zsol‖2 ≤ ‖c
∗‖2 +

∥∥(z∗, 2νw · h∗ mod q)
∥∥
2
+ ‖c∗ · δt‖2 + ‖2

νw · qw · δ1 mod q‖2 + ‖δ2‖2
≤ (
√
ω) + (B2) + (ω · 2νt

√
nk) + (2νw ·

√
nk) + (2νw ·

√
nk)

= Bstmsis

Hence, zsol is indeed a valid SelfTargetMSIS solution, This completes the proof of Lemma C.4.

This completes the proof of Theorem C.2.

D Omitted Consistency Check Algorithms in TRaccoon

Here we include the deferred consistency checks from the signing protocol in TRaccoon (see Fig. 5). Note
that by ConsistCheck1, we always have j ∈ act and act ⊆ [N ] for any user index j in state and act in
state.session[sid], if a session for sid exists. In particular, this check will be omitted from ConsistCheck2 and
ConsistCheck3.

E Using Rounded Instead of Discrete Gaussians
In this section, we explain the effect of using rounded Gaussians instead of discrete Gaussians. Concretely,
we bound the Rényi divergence between the rounded and discrete Gaussians. At a high level, we can
instead start our unforgeability proof using rounded Gaussians (i.e., our implementation parameters) and
then swap to a hybrid using discrete Gaussians, at which point, we can rely on the proofs we already have
in Theorem 7.2.

We note that in our implementation we use a trick from [Jan06] in which the continuous Gaussian
distribution is compensated for the 1/12 additional variance caused by integer rounding by setting σ′ =√
σ2 − 1/12. However, for the sake of simplicity, we prove a (slightly worse) bound where this trick is not

taken into account, i.e., we compute the Rényi divergence between the rounded and discrete Gaussians for
the same standard deviation.

E.1 Background
We recall some useful definitions for this section.
Gaussians. We first prepare the definition of continuous and rounded Gaussians.

Definition E.1. Let ρσ be the Gaussian function:

∀x ∈ R, ρσ(x) =
1

σ
√
2π

exp

(
− x2

2σ2

)
.

Definition E.2. We note RGσ the rounded Gaussian distribution:

∀k ∈ Z, RGσ(k) =

∫ k+1/2

k−1/2
ρσ(x)dx

=
1

σ
√
2π

∫ k+1/2

k−1/2
exp

(
− x2

2σ2

)
dx.

We also define a B-bounded variant of the discrete and rounded Gaussians.
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Alg. 40: ConsistCheck1(state, sid, act,msg)

1: assert{ sid contains (act,msg) } ▷ Check that session id sid is in correct form
2: assert{ state.session[sid] = ⊥ } ▷ Check that user never signed using sid
3: Fetch user index j from state
4: assert{ j ∈ act ∧ act ⊆ [N ] }

Alg. 41: ConsistCheck2(state, sid, contrib1)
1: assert{ state.session[sid] 6= ⊥ } ▷ The user already created a session with sid
2: Let session = state.session[sid]
3: Fetch user index j from state
4: Fetch (sid′, act, cmtj ,mj) from session
5: assert{ The set of keys (i.e. indices) in contrib1 is exactly act }

▷ Check contrib1 includes |act| number of first round messages
6: for i ∈ act do
7: assert{ contrib1[i] is of the form contrib1[i] = (cmti,mi) }

▷ Check contrib1 is defined over the indices in act and of a valid form
8: assert{ session is of the form session = {sid′, act,msg, 1, {rj ,wj , contrib1[j]}, ∅} } ▷ Check sid and

contrib1[j] is consistent with internal state

Alg. 42: ConsistCheck3(state, sid, contrib2)
1: assert{ state.session[sid] 6= ⊥ } ▷ The user already opened a session with sid
2: Let session = state.session[sid]
3: Fetch user index j from state
4: Fetch (sid′, act) from session
5: assert{ The set of keys in contrib2 is exactly act }

▷ Check contrib2 includes |act| number of second round messages
6: for i ∈ act do
7: assert{ contrib2[i] is of the form contrib2[i] = (wi, σi) }

▷ Check contrib2 is defined over the indices in act and of a valid form
8: assert{ session is of the form session = {sid′, act,msg, 2, {rj ,wj , contrib1[j]}, contrib1} } ▷ Check sid

is consistent with internal state

Figure 19: Consistency checks for Threshold Raccoon
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Definition E.3. We note Dσ[B] the tail cut discrete Gaussian distribution:

∀k ∈ Z, if |k| < B,Dσ[B](k) =
ρσ(k)∑

z∈Z,|z|<B ρσ(z)
.

if |k| > B,Dσ[B](k) = 0

Definition E.4. For any B > 1, let M(B) =
∫ ⌊B⌋+1/2

−⌊B⌋−1/2 ρσ(x)dx. We note RGσ[B] the tail-cut rounded
Gaussian distribution:

∀k ∈ Z, if |k| < B,RGσ[B](k) =

∫ k+1/2

k−1/2
ρσ(x)dx/M(B)

if |k| > B,RGσ[B](k) = 0

Lemma E.5. [[Lyu12] Lemma 4.4] Let x← Dσ (as well as x← ρσ). Then, we have

Pr [|x| > a · σ] ≤ 2e−
a2

2

Fact 1. We have the following for Gaussian functions:

d

dx
ρσ(x) = −

x

σ2
ρσ(x) (21)

d2

dx2
ρσ(x) =

(
x2

σ2
− 1

)
1

σ2
ρσ(x), (22)

d4

dx4
ρσ(x) =

(
3− 6

x2

σ2
+

x4

σ4

)
1

σ4
ρσ(x). (23)

Rényi Divergence Properties. The Rényi divergence [Rén61] is a tool from information theory which
has recently found many applications in lattice-based cryptography, see for instance [BLL+15, Pre17]. We
use the “exponential form” of the Rényi divergence, as it is common in lattice-based cryptography.

Definition E.6 (Rényi divergence). Let P,Q be two discrete distributions such that Supp(P) ⊆ Supp(Q),
and α ∈ (1;+∞). The Rényi divergence of order α is:

Rα(P;Q) =

(∑
x∈X

P(x)α

Q(x)α−1

) 1
α−1

Following Csiszár’s f -divergence framework [Csi63], (Rα−1
α − 1) is an f -divergence for f : x 7→ xα − 1.

Lemma E.7 presents some properties of the Rényi divergence; proofs can be found in van Erven and Harre-
moës [vEH14] or Bai et al. [BLR+18].

Lemma E.7. For distributions P,Q and finite families of distributions (Pi)i∈[n], (Qi)i∈[n], the Rényi diver-
gence satisfies the following properties:

1. Data processing inequality. For a (randomized) function f ,

Rα(f(P); f(Q)) ≤ Rα(P;Q).

2. Probability preservation. For any event E ⊆ Supp(Q):

P(E) ≤ Q(E)
α−1
α ·Rα(P;Q),

3. Multiplicativity. Rα(
∏

i Pi;
∏

iQi) =
∏

i Rα(Pi;Qi).
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E.2 Bounding the Divergence Between Rounded and Discrete Gaussians
The following lemma establishes that the B-bounded variant of the rounded and discrete Gaussians are close
in respect to the Rényi divergence.

Lemma E.8. Let β > ln(2) + 3, σ ≥
√
κ+ β, B ≥

√
κ+ β · σ. Then:

Rα(RGσ[B];Dσ[B]) ≤ exp

(
α

2

(
κ+ β

6σ2
+ 2−κ

)2
)

(24)

Proof. We first prove that for any a > 0, k < a · σ − 1/2:

RGσ[B](k) ·M(B) ≤ ρσ(k)

(
1− 1

12σ2
+

k2

12σ4
+

3 + a4

30σ4

)
Under Taylor’s remainder theorem, for any function f that is C∞ over R and any b, x ∈ R, there exists c
between a and x such that:

f(x) =
∑
j≤n

f (j)(b)

j!
(x− b)j +

f (n+1)(c)

(n+ 1)!
(x− b)n+1 (25)

For such a c, let us note R4(k) =
∫ k+1/2

k−1/2
f(4)(c)

4! (x− k)4dx. We have:

0 ≤ R4(k) ≤ max
k−1/2≤x≤k+1/2

f (4)(x)

4!

∫ k+1/2

k−1/2
(x− k)n

= max
k−1/2≤x≤k+1/2

f (4)(x)

4! · 80

≤ 1

1920

3 + a4

σ4
ρσ(k − 1/2)

≤ e

1920

3 + a4

σ4
ρσ(k) (26)

Setting f = ρσ and n = 3 in Eq. (25) gives:∫ k+1/2

k−1/2
ρσ(x)dx =

∫ k+1/2

k−1/2

(
f(k) + f ′(k)(x− k) +

f ′′(k)

2
(x− k)2 +

f (3)(k)

6
(x− k)3 +

f (4)(c)

24
(x− k)4

)
dx

≤
∫ k+1/2

k−1/2

(
f(k) +

f ′′(k)

2
(x− k)2

)
dx+R4(k) (27)

= ρσ(k)

∫ k+1/2

k−1/2

(
1 +

(
k2

σ2
− 1

)
1

σ2
(x− k)2

)
dx+R4(k) (28)

≤ ρσ(k)

(
1− 1

12σ2
+

k2

12σ4
+

e

1920

3 + a4

σ4

)
(29)

Since we integrate in the interval (k − 1/2, k + 1/2), the terms f(n)(k)
2 (x − k)n for odd n disappear upon

integration in Eq. (27). Then Eq. (28) follows from Eq. (22). Finally, Eq. (29) follows from Eq. (26). Since
Dσ[B](k) = Dσ(k) ·M ′(B), with M ′(B) =

∑
z∈Z,|z|<B ρσ(z), we have:∣∣∣∣RGσ[B](k)

Dσ[B](k)
− 1

∣∣∣∣ ≤ ∣∣∣∣M ′(B)

M(B)
·
(
1− 1

12σ2
+

k2

12σ4
+

e

1920

3 + a4

σ4

)
− 1

∣∣∣∣ (30)
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Since k < a · σ − 1/2, for a =
√
κ+ β and σ ≥ a, we have :

− 1

12σ2
+

k2

12σ4
+

e

1920

3 + a4

σ4
=

1

12σ2

(
a2 +

e · a4

160σ2
+

e · 3
160σ2

− 1

)
≤ a2

12σ2
(1 +

e

160
)

≤ κ+ β

6σ2

We now compute M ′(B)/M(B), first observe that M ′(B) = Dσ(Z) −
∑
|z|≥B Dσ(z) and M(B) = 1 − 2 ·∫∞

⌊B⌋−1/2 Dσ(x)dx. Hence for B ≥
√
κ+ βσ ≥

√
κ+ ln(2) + 3σ, and ϵ the smoothing parameter of Z:∣∣∣∣M ′(B)

M(B)
− 1

∣∣∣∣ = ∣∣∣∣M ′(B)−M(B)

M(B)

∣∣∣∣
≤ 1 + ϵ+ 2−κ−3 − 1 + 2−κ−3

1/2

≤ 2−κ

Finally we simplify Eq. (30) by considering that ϵ � 2−κ, and 2−κ ·
(

1
12σ2 + k2

12σ4 + e
1920

3+a4

σ4

)
� min(| −

1
12σ2 + k2

12σ4 + e
1920

3+a4

σ4 |, 2−κ) We get,∣∣∣∣RGσ[B](k)

Dσ[B](k)
− 1

∣∣∣∣ ≤ κ+ β

6σ2
+ 2−κ

We can conclude by combining Eq. (29) with [Pre17, Lemma 3].

E.3 Theorem 7.2 with Rounded Gaussians
We now sketch a reduction where our three-round threshold signature is using the rounded Gaussian instead
of the discrete Gaussian. As explained in the beginning of this section, we merely include a hybrid where
we modify the rounded Gaussian to a discrete Gaussian using an argument with Rényi divergence.

Proof sketch of Theorem 7.2 using rounded Gaussians. We only highlight the main modifications required.
Hybrid0. In this first Hybrid we consider the scheme of Fig. 5, where all Gaussians are sampled according to

rounded Gaussian distributions.

Hybrid1. In this hybrid, the Gaussians are sampled according to the tail-cut rounded distributions. Setting
β = ln(2QG) where QG = n(ℓ+k)(QS +1) is the total number of queries made to the one-dimensional
Gaussian sampler, we get:

|AdvHybrid1A (κ)− Adv
Hybrid0
A (κ)| ≤ QG ·∆(RGσ[B],RGσ) ≤ 2−κ.

Hybrid2. In this hybrid, we switch all the samples to the tail-cut discrete Gaussians, using Lemma E.8 we
get:

Adv
Hybrid2
A (κ) ≤ Adv

Hybrid1
A (κ) · exp

(
QGα

2

(
κ+ β

6σ2
+ 2−κ

)2
)
.

By setting α accordingly, the multiplicative factor is bounded by a polynomial factor.

Hybrid3. In this hybrid we replace all the tail-cut samples with regular discrete Gaussians.

|AdvHybrid3A (κ)− Adv
Hybrid2
A (κ)| ≤ QG ·∆(Dσ[B], Dσ) ≤ 2−κ.

At this point, we arrive at the protocol described in our TRaccoon described in Section 5, relying on the
discrete Gaussian.
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