
FileDES: A Secure, Scalable and Succinct
Decentralized Encrypted Storage Network

Minghui Xu†¶, Jiahao Zhang†, Hechuan Guo†, Xiuzhen Cheng†, Dongxiao Yu†, Qin Hu‡, Yijun Li∗, Yipu Wu∗
† School of Computer Science and Technology, Shandong University

¶ ETH Zurich
‡ Department of Computer and Information Science, Indiana University-Purdue University Indianapolis

∗ BaishanCloud

Abstract—Decentralized Storage Network (DSN) is an emerg-
ing technology that challenges traditional cloud-based storage
systems by consolidating storage capacities from independent
providers and coordinating to provide decentralized storage
and retrieval services. However, current DSNs face several
challenges associated with data privacy and efficiency of the
proof systems. To address these issues, we propose FileDES
(Decentralized Encrypted Storage), which incorporates three
essential elements: privacy preservation, scalable storage proof,
and batch verification. FileDES provides encrypted data storage
while maintaining data availability, with a scalable Proof of
Encrypted Storage (PoES) algorithm that is resilient to Sybil and
Generation attacks. Additionally, we introduce a rollup-based
batch verification approach to simultaneously verify multiple
files using publicly verifiable succinct proofs. We conducted a
comparative evaluation on FileDES, Filecoin, Storj and Sia under
various conditions, including a WAN composed of up to 120
geographically dispersed nodes. Our protocol outperforms the
others in terms of proof generation/verification efficiency, storage
costs, and scalability.

Index Terms—Decentralized storage network, blockchain, data
sharing, proof of storage, scalability, Sybil attacks.

I. INTRODUCTION

Blockchain technology has brought about a significant inno-
vation in distributed storage. Decentralized storage networks
(DSNs) represent a novel approach that can aggregate available
storage spaces from independent providers, allowing for coor-
dinated and reliable storage and retrieval of data. Several well-
known DSN projects, including Filecoin [1], Sia [2], Storj [3],
and Swarm [4], have demonstrated various advantages of
DSNs, including storage capacity expansion, data sharing
promotion, and data security enhancement. By incentivizing
storage providers with cryptocurrency rewards, DSNs can
achieve larger capacity than traditional distributed storage
networks [5]. The use of blockchain ensures consistency and
immutability, improving the security and robustness of ser-
vices provided by mutually untrusted storage providers. DSNs
have proven to be a valuable building block for applications
such as Web 3.0 [6]. However, three open challenges [C1-C3],
as illustrated in Fig. 1, still exist, which significantly impede
the performance and security of today’s DSNs.
[C1] Data privacy leakage. A fundamental goal of DSNs is to
promote data sharing. Nevertheless, current solutions present
two primary options for data storage, namely, plaintext and
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Fig. 1: Open challenges faced by today’s DSNs.

simple encrypted data. The former approach, which has been
widely adopted, permits the direct storage of non-sensitive
plaintext by users [7]. However, it falls short of adequate
safeguards for data privacy. The latter option, exemplified by
the ChainSafe Files [8], allows for the storage of encrypted
data, which are exclusively visible only to designated users.
As a result, this approach adversely affects data availability,
thereby hindering data sharing. Thus, there is a pressing need
to develop a DSN solution that can guarantee robust data
privacy and high data availability.
[C2] Costly or security-weakened proof system. Proof of
Space (PoS) and Proof of Spacetime (PoSt) are essential com-
ponents of the proof system of a DSN. These protocols enable
the network to validate whether a storage miner has offered
legitimate storage services by issuing real-time challenges
and demanding responses as the corresponding proofs [9].
Nonetheless, generating a proof can be a time-intensive and
hardware-demanding process [10], [11], [12], [13], or require
the compromise of security for efficiency. In the Filecoin
network, for instance, the proof generation (i.e., the SEALING

process) involves a complex data structure called a Stacked
Depth Robust Graph, making it computationally expensive.
Thus, a minimum hardware configuration of 256GB RAM
and a GPU with 11GB VRAM is required to participate in
storage services 1. Other DSNs, such as Sia [2], Storj [3], and
Swarm [4], have simplified their proof systems to enhance

1https://lotus.filecoin.io/storage-providers/get-started/hardware-
requirements/



efficiency at the expense of sacrificing security. Specifically,
Sia and Swarm only provide proofs for partial data (256KB
sector in Sia and 1MB stipe in Swarm), while Storj’s proof
system is based on node reputation, leading to non-negligible
false positives [3]. Overall, the efficiency and security of
DSNs’ proof systems are crucial to ensuring the system’
viability and adoption.
[C3] Low efficiency of recurrent proof verification. In
DSNs, one of the recurrent tasks is verifying the PoS and PoSt.
This verification process can pose significant computational
challenges, especially in the following two situations. (1)
The challenger frequently challenges the storage miners to
verify that they have not violated any rule in storing files.
For example, the Filecoin mainnet challenges a file every 30
minutes, 48 times daily [14], to verify enormous proofs. (2)
Managing multiple versions of a file can be a complex task,
requiring the verification of several versions simultaneously.
This is essential to ensure that historical files of a project are
not lost. Such situations are prevalent, particularly in software
updates [15] and medical records maintenance [16]. To expe-
dite the frequent verification process in these applications, an
efficient proof system is indispensable.

In response, we propose FileDES to address these chal-
lenges. Our major contributions can be summarized as follows:

• FileDES is a decentralized encrypted storage network
that addresses the challenges [C1-C3]. It offers unique
features such as privacy preservation, scalable storage
proof, and batch proof verification. In comparison with
Filecoin and Sia, FileDES demonstrates superior perfor-
mance under various typical conditions.

• To protect data privacy while maintaining data avail-
ability, we introduce an encrypted storage plan based
on RSA and Unidirectional Proxy Re-Encryption (PRE).
This method not only prevents Sybil and Generation
attacks but also facilitates a secure storage mechanism
without complicated PoS & PoSt schemes.

• We propose a new Proof of Encrypted Storage (PoES)
that provides unforgeable PoS & PoSt on encrypted data
in an efficient and scalable manner. To mitigate Sybil
attacks, we incorporate a random storage miner selection
algorithm as an incentive mechanism.

• To reduce storage redundancy, FileDES stores only file
increments. Additionally, we introduce a rollup-based
batch verification method that verifies multiple proofs
with only one publicly verifiable proof submitted to the
blockchain.

II. RELATED WORK

A. Decentralized Storage Networks

Currently, there exist many studies and implementations that
aim to develop a DSN. Filecoin [1] is a DSN that utilizes
InterPlanetary File System [17] (IPFS) and Expected Consen-
sus mechanism to adjust storage miner’s chances of winning
based on their storage quantity and quality. Filecoin introduces
the concept of tipsets to enable concurrent block processing,

allowing multiple blocks to be confirmed at the same block
height. Sia [2] is a DSN that employs the Proof-of-Work
consensus and creates a Merkle tree for each file, with the
root hash serving as the file identifier. Sia can verify whether
a file has been uploaded before and enable deduplication at the
directory level. It uses the Threefish [18] algorithm to encrypt
files, making it difficult to support version indexing and shar-
ing. Additionally, its ledger structure is a chain, which cannot
support concurrent block processing by nature. Storj [3] and
Swarm [4] are DSNs built on Ethereum [19]. They both make
use of the Proof-of-Stake consensus and a chain-based ledger.
FileDAG [13] is a DSN that builds on the implementation
of Filecoin. It achieves file-level deduplication when storing
multi-version files and employs the DAG-Rider [20] consensus
mechanism to create a two-layer DAG-based blockchain ledger
for flexible and storage-saving file indexing. Zhang et al. [21]
proposed a secure mechanism over decentralized storage by
employing smart contracts to incorporate the message-locked
encryption [22] (MLE) scheme, which protects data privacy
and enables secure deduplication over encrypted data. Ismail
et al. [23] evaluated the costs and latency performance of nine
state-of-the-art systems and discussed their compatibility with
the decentralized features of blockchain technology.

It is pertinent to note that the concerns raised in [C1-C3]
have not been satisfactorily addressed by the current DSNs.
In order to substantiate this claim, Table I presents a concise
comparison study over the attributes of FileDES and those
of other popular DSNs. In summary, Sia, Storj, and Swarm
have simplified their proof systems to improve efficiency, but
at the expense of security. Storj and FileDAG respectively
utilize erasure coding and incremental generation to reduce
redundancy. For privacy protection, the only approach that
can be adopted by these DSNs (except FileDES) is to apply
simple encryption but such an approach fails to guarantee data
availability for encrypted data. Sia and Swarm improve the
storage proof efficiency to enhance the scalability. FileDAG
utilizes a DAG-based blockchain to enhance the scalability of
the consensus module. Additionally, to our best knowledge,
no existing system considers batch verification.

B. Blockchain-based Data Sharing

The use of blockchain for data sharing is akin to the
traditional DSN model concerning the management of user
data in a blockchain-based system. Several viable solutions
exist to accomplish blockchain-based data sharing. For exam-
ple, MedChain [24] is a healthcare data-sharing scheme that
employs blockchain, digest chain, and structured P2P network
techniques to enhance efficiency and security in sharing health-
care data. SPDL [25] is a decentralized learning system that
employs blockchain and Byzantine Fault-Tolerant consensus to
facilitate secure and private data sharing during the machine
learning process. Ghostor [26] is a data-sharing system that
utilizes decentralized trust to safeguard user privacy and data
integrity against compromised servers. The system conceals
user identities from the server and enables users to detect
server-side integrity violations. TEMS [27] is a framework



TABLE I: Comparison of Our Work with Existing DSNs

Consensus
Algorithm Ledger Security

Level
Low

Redundancy
Privacy

Protection
Data Availability
after Encryption

Storage proof
method Scalability Batch

Verification

Filecoin[1] Expected
consensus

DAG
(tipset)  # G# # DRG+MT # #

FileDAG[13] DAG-Rider† DAG   G# # DRG+MT G# #
Storj[3] PoW Chain G# G# G# # Reputation # #
Sia[2] PoW Chain G# # G# # MT G# #
Swarm[4] PoW Chain G# # G# # MT G# #
FileDES DAG-Rider† DAG     Encryption+MT   
DRG Depth Robust Graph
MT Merkle Tree
† Modified version

that extends blockchain trust from on-chain to the physical
world by employing a Trusted Execution Environment (TEE)
system with anti-forgery data and a consistency protocol to
continuously and truthfully upload data to blockchain.

III. MODELS AND PRELIMINARIES

A. The DSN Model

The DSN under our study comprises of four distinct entities,
namely client, storage miner, retrieval miner, and rollup miner.
A client serves as a media for users to interact with the storage
system. A DSN design must incorporate fundamental func-
tionalities, i.e., Put, Get, and Manage, that can be executed
by both clients and miners.

DSN = (Put,Get,Manage).

• Put(F,SM) → CID: A client executes the Put protocol
to upload the file F to a storage miner SM for storing the
file in the DSN, and obtain a file identifier CID.

• Get(CID,ReM)→ F. A client executes the Get protocol
to send the file identifier CID to a retrieval miner ReM
to retrieve data from the DSN.

• Manage(F,SM,ReM,RoM). This protocol coordinates
the network participants to control the available storage,
audit services, and repair potential faults. A rollup miner
RoM is capable of generating aggregated proofs for DSN
management.

B. Adversary Model

FileDES considers the presence of a Byzantine adversary
who is restricted to controlling no more than 1/3 of the
total number of nodes. If this particular constraint is violated,
achieving a consensus becomes impossible due to the Byzan-
tine General Problem [28]. The adversary has at its disposal
a variety of attack forms, including Sybil attacks, Generation
attacks, falsifying proofs, and collusion. Among the critical
issues associated with such attacks are the vulnerabilities
caused by Sybil and Generation attackers. Sybil attackers can
manipulate the system by creating multiple Sybil identities
to receive various replications of a file, while Generation
attackers can manipulate the system with a small seed or a
program to re-generate a replica they claim to store. To provide

a better understanding of these two attacks, we formally define
them as follows.

Definition 1 (Sybil Attack). The Sybil Attack is a type of
security threat in which an attacker, referred to as Asybil,
creates multiple fake identities, known as Sybil identities,
denoted as {P0...Pn}. The attacker claims to have stored m
different copies of a file F, but in reality, it only stores m′ < m
copies. The objective of the Sybil attacker is to successfully
forge m valid proofs for the m replicas, which can convince
any verifier V that F is stored as m independent replications
by the attacker.

Definition 2 (Generation Attack). The Generation Attack is
a type of security threat in which an attacker, referred to as
Agen, claims to store a replica of a file F, but in reality it does
not. The attacker succeeds by generating the replica using a
small seed or a program, which is much smaller in storage
space compared to that of the replica, every time it needs to
produce a proof of the replica.

Sybil and Generation attacks are two distinct types of
security threats. Asybil generates a large number of Sybil
identities, to make multiple claims of storing different replicas
of a file. The attack is profitable when Asybil abandons some
replicas of the file it claims to store. In contrast, the Generation
Attack entails a small seed or a program to generate a replica
of a file, which the attacker, Agen, claims to store. This type
of attackers aims to conserve storage space by eliminating
redundant data, while being capable of restoring the file at
any time using the aforementioned malicious program.

C. Preliminaries

1) Unidirectional Proxy Re-Encryption (PRE): A unidirec-
tional Predicate Encryption (PRE) scheme can be formally
defined as a set of algorithms

PRE = (KeyGen,ReKeyGen,Enc,ReEnc,Dec).

In FileDES, the PRE scheme facilitates a storage miner to
transform a ciphertext encrypted using one key into a new
ciphertext with a different key, without requiring access to
the plaintext. This functionality enables a data owner to share
encrypted data with multiple recipients, eliminating the need
for it to re-encrypt the data for each recipient.



2) zk-SNARK: The Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge (zk-SNARK) enables
the verification of the authenticity of a relation, while
keeping confidential information undisclosed. We employ
zk-SNARK in the creation of compact, fixed-length PoS &
PoSt. Essentially, a zk-SNARK is a non-interactive argument

ZK = (Setup,Prove,Verify)

for a relation R; it upholds the properties of complete-
ness, soundness, zero-knowledge, and succinctness. Note that
ZK.Setup decides a set of public parameters.

IV. THE DESIGN OF FILEDES

This section first presents the encryption mechanism as
a means to safeguard against Sybil and Generation attacks,
which simultaneously ensures data privacy. The primary com-
ponents of FileDES are PoES and Rollup, which are intro-
duced in Sections IV-B and IV-C, respectively.

A. Encrypted Storage

The encrypted storage designed for FileDES provides a
dual-purpose solution. Firstly, the encryption serves as a
preventative measure to counter Sybil attacks and Generation
attacks – once agreed to store encrypted replicas, a Sybil
(or Generation) attacker without knowledge of the secret
keys is unable to reproduce the replicas with plaintext (or a
seed/malicous program). Secondly, encryption enhances data
privacy, which addresses the privacy issues highlighted in [C2]
– encrypted data is unreadable without proper authorization,
which helps to protect data privacy and prevent data breaches.

Our design incorporates two encryption options based on
either RSA or PRE. The rationale for deploying two encryption
tools is to cater to the various data sharing scenarios: data
can be accessed freely with RSA or under permission through
authorization with PRE. In each of these methods, a client
encrypts a file with multiple secret keys to create differ-
ent encrypted replicas, which are then uploaded to storage
miners. The replicas, as ciphertexts, appear to be random to
a Generation attacker, making it challenging to partially or
completely delete a replica and re-generate it with a malicious
program, unless the attacker can manage to steal the secret
key. In addition, the best way for a Sybil attacker to succeed
in breaking FileDES is to generate all encrypted replicas
from the one piece of plaintext. However, even if an attacker
knows the plaintext (in RSA-based option) of a replica, it
cannot restore all other replicas without the corresponding
secret keys. Apart from encryption, FileDES also makes use
of a random selection algorithm to mitigate Sybil attacks
leveraging a fairness guarantee. A detailed and formal security
analysis of FileDES considering Generation and Sybil attacks
is elaborated in Section V.

B. Proof of Encrypted Storage (PoES)

To enhance data privacy and improve the proof system, we
propose the Proof of Encrypted Storage (PoES) algorithm.
PoES enables a storage miner SM to store encrypted data

and efficiently provide PoSs and PoSts at low cost. The
PoES algorithm is represented by a set of polynomial-time
algorithms, denoted as

PoES = (Setup,Prove,CycleProve,Verify),

illustrated in Algorithm 1. The PoES.Prove algorithm is uti-
lized to provide PoSs, whereas the PoES.CycleProve algorithm
is intended for PoSts. Further details are provided below.
PoES.Setup(F, ctr, pk,

−→
SM)→

−−→
CID: The process of upload-

ing a file F to storage miners involves several steps. First, the
client checks the version of F and calculates the incremental
changes between the current version and the previous version.
We denote each incremental change as F[i], where F[0] is the
initial version. The client then creates ctr different encrypted
replicas of F[i] using either RSA (Plan A) or PRE (Plan B)
for various data sharing purposes. Each replica is assigned
a unique content identifier CID[i,j], indicating that it is the
jth replica of the ith increment. Next, the RandomSelect
algorithm is called to randomly select a storage miner, denoted
as SMr, from a list of storage miners

−→
SM. Finally, the client

uploads the replica Fj
E to SMr using the DSN.Put protocol.

The content identifier of each replica is recorded in
−−→
CID for

future verification and retrieval purposes.
RandSelect(

−→
SM) → SMr: The algorithm responsible for

selecting a storage miner to store an uploaded replica is
invoked by PoES.Setup. The client initially calculates

−→
P by

traversing each storage miner [line 15-19]. Within each loop,
the client obtains the consensus power of a storage miner SMi,
denoted as POWSMi

, which describes the service quality of
SMi. Subsequently, the block height difference ∆H between
the current height and the last confirmed storage deal of
SMi is calculated. Then Γ̃(POWSMi ,∆H) is computed, which
comprises of two steps: (1) WSMi = w

POWSMi∑|
−→
SM|
i=1 SMi

+(1−w)∆H
H ;

and (2) PSMi
=

WSMi∑|
−→
SM|
i=1 WSMi

, where w ∈ (0, 1) is an adjusted

weight parameter set by the client. The normalized probability
PSMi ∈ (0, 1) represents the likelihood of selecting the storage
miner SMi as a storage provider. After PSMi is successfully
obtained for each SMi, the client generates a random number
and selects a storage miner SMr based on the probability
distribution

−→
P [line 20-22]. This stochastic process can effec-

tively mitigate Sybil attacks, as it is arduous for an attacker
to simultaneously obtain the tasks of storing replicas of a file.
PoES.Prove(c,CID)→ πPOS: The proof algorithm involves

a storage miner who generates a proof of storage (πPOS) for
an encrypted replica that has been stored locally. Initially, the
miner retrieves the replica F̃E from its local storage using
CID. Then the miner computes a Merkle tree M whose
root is rt for F̃E . The process of creating the Merkle tree
involves partitioning F̃E into 256-byte chunks, and each chunk
is treated as a leaf of M. The storage miner then selects a
specific leaf in the tree using the random challenge c and
determines a path τc from that leaf to rt. Finally, the miner
utilizes ZK.Prove to produce a succinct proof πPOS for the



Algorithm 1: Proof of Encrypted Storage (PoES)

1 ▷ PoES.Setup (by a client)
2 Inputs: ctr, pk,F,

−→
SM

3 Outputs:
−−→
CID

4 Calculate the ith increment F[i] for F
5 # generate j replicas for the ith increment
6 while j ≤ ctr do

7 Fj
E ←

{
RSA.Enc(skj ,F[i]), Plan A
PRE.Enc(pkj ,F[i]), Plan B

8 Generate the file identifier CID[i,j] for Fj
E

9 SMr ← RandomSelect(
−→
SM)

10 DSN.Put(Fj
E ,SMr)

11
−−→
CID[i][j] = CID[i,j]

12 ▷ RandSelect (by a client)
13 Inputs:

−→
SM

14 Output: SMr

15 for SMi in
−→
SM do

16 Get its consensus power POWSMi

17 ∆H ← DealTime(SMi)

18 PSMi
← Γ̃(POWSMi

,∆H)

19 Add PSMi to
−→
P

20 while b = 0 do
21 r ← Gen(1k) and SMr ← Select(r,

−→
P )

22 Create a deal with SMr and set b = 1 if succeed

23 ▷ PoES.Prove (by a storage miner)
24 Inputs: c,CID
25 Outputs: πPOS

26 Get F̃E from the local storage by CID

27 Compute a Merkle tree M with root rt for F̃E

28 Compute a path τc as a part of the proof
29 πPOS ← ZK.Prove(τc, rt, c)
30 ▷ PoES.CycleProve (by a storage miner)
31 Inputs: c, t,CID
32 Outputs: πPOST

33 Get F̃E from the local storage by CID

34 Compute a Merkle tree M with root rt for F̃E

35 Set πPOST =⊥
36 for i = 1...t do
37 c′ = H(πPOST||c||i)
38 πPOS = PoES.Prove(c′,CID)
39 πPOST = ZK.Prove(πPOS, πPOST, rt, c, i)

40 ▷ PoES.Verify (by a smart contract)
41 Inputs: πPOS (or πPOST), rt, c
42 Outputs: b
43 b = 0
44 if ZK.Verify(πPOS (or πPOST), rt, c) =⊥ then
45 Penalize the storage miner who provides the proof

46 else
47 b = 1

entire process. This proof is vital in verifying the accuracy of
the process [line 27-29].
PoES.CycleProve(c, t,CID) → πPOST: In the cycle prove

algorithm, a storage miner is required to generate a proof
of spacetime (πPOST) to demonstrate that it is continuously
storing the data. This proof can be quickly verified by
other miners. PoES.CycleProve is analogous to a multi-round
PoES.Prove. In each round, the storage miner first generates
a round-challenge c′ using the input challenge c, the round
number i, and the proof of spacetime from the previous round.
Then, the storage miner calls PoES.Prove, which takes c′ and
CID as inputs, to generate a storage proof πPOS. Finally, the
storage miner calls ZK.Prove to generate a temporal proof
for the current round i. After t rouunds, PoES.CycleProve()
outputs the final πPOST.
PoES.Verify(πPOS (or πPOST) , rt, c) → 1/0: The smart

contract checks if a proof (πPOST or πPOS) is a valid zk proof
using the verify process of zk-SNARK. If the proof passes
the verification process, the algorithm outputs 1; otherwise
outputs 0 and panelizes (e.g, broadcast a message to suggest
PSMi = 0) the storage miner who provides the proof.

C. Batch Verification and File Retrieval

To tackle the issue stated in [C3], we suggest a novel
batch verification approach that relies on the concept of zk-
rollup. Batch verification entails transferring the verification of
many proofs to an aggregated succinct proof, which effectively
reduces the computational and verification workload on the
blockchain. Our proposed batch verification and file retrieval
scheme comprises of a set of polynomial-time algorithms,
denoted as

Rollup = (Prepare,Collect,Aggregate),

as well as a function Retrieve().
Rollup.Prepare(CID,RoM): Rollup miners have the duty of

producing aggregated proofs for a number of files. A storage
miner executes Rollup.Prepare to request rollup miners to
aggregate proofs. It sends a CID to a rollup miner RoM, and
waits for the corresponding aggregated proof confirmed on
blockchain.
Rollup.Collect(

−−→
CID, t)→ −−−→πPOST: Rollup miners are permit-

ted to continuously gather πPOST to produce an aggregated
proof. The Rollup.Collect algorithm takes a vector of content
identifiers

−−→
CID and t as inputs to compute πPOST. Initially,

the rollup miner identifies the storage miners that keep the file
increments indicated by

−−→
CID, one miner for each CID. Then

the rollup miner asks each storage miner for a proof using a
challenge value c. The rollup miner receives the proofs using
AsyncWait and maintains the valid proofs in −−−→πPOST.
Rollup.Aggregate(−−−→πPOST)→ πROLL: We employ the aggre-

gate algorithm to calculate a succinct proof πROLL of 256 bytes
in length. This proof is based on multiple valid proofs −−−→πPOST.
To generate the πROLL, we utilize a rollup circuit that varies in
size depending on the size of −−−→πPOST. Specifically, the circuit is
pre-configured with different sizes, for example, a combination
of {1KB, 4KB, 8KB, · · · }. The resulting proof (πROLL) is then



Algorithm 2: Batch Verification and File Retrieval

1 ▷ Rollup.Prepare (by a storage miner)
2 Inputs: CID,RoM
3 Send a CID to a rollup miner RoM
4 Wait for an aggregated proof confirmed on chain
5 ▷ Rollup.Collect (by a rollup miner)
6 Inputs:

−−→
CID, t

7 Output: −−−→πPOST

8 Get the
−→
SM who stores the increments implied by

−−→
CID

9 for each SM (storing CID) in
−→
SM do

10 Obtain a random challenge c
11 Request the SM execute

PoES.CycleProve(c, t,CID)
12 AsycWait for a reply πPOST

13 if πPOST is valid then
14 Add πPOST to −−−→πPOST

15 ▷ Rollup.Aggregate (by a rollup miner)
16 Inputs: −−−→πPOST

17 Output: πROLL

18 Get a prepared rollup circuit according to |−−−→πPOST|
19 Input −−−→πPOST to circuit and obtain πROLL

20 Submit πROLL to a smart contract
21 ▷ Retrieve (by a client)
22 Inputs:

−−→
CID

23 Outputs: F
24 Fetch from blockchain the πROLL corresponding to

−−→
CID

25 if πROLL is a valid rollup proof then
26 for each CID[i,j] in

−−→
CID do

27 FE ←
{

DSN.Get(CID[i,j],ReM), Plan A
GetReEnc(CID[i,j],ReM), Plan B

28 FD ←
{

RSA.Dec(pk,FE), Plan A
PRE.Dec(sk,FE), Plan B

29 Add FD to F⃗[i]

30 Recover F by aggregating F⃗

31 else
32 F =⊥

transmitted to a smart contract for final confirmation. A brief
proof is also recorded on the blockchain to facilitate on-chain
verification when the corresponding file is retrieved.

Retrieve(
−−→
CID) → F: This process is performed by a client

who wants to retrieve a certain file. The client first fetches
πROLL corresponding to

−−→
CID and verifies whether the proof is

valid. Then for each file piece required to recover the complete
file, the client requests it from the retrieval miners by calling
DSN.Get or FE ← GetReEnc(CID[i,j],ReM), and decrypts it
locally to obtain FD. All the file pieces are collected in F⃗[i].
The client finally recovers the file by putting all file pieces
together. Figure 2 illustrates the execution of the FileDES
protocols.

SM RoM ReMSCClient

1.2 PoES.Prove

DSN.Put

RandomSelect
1.1 PoES.Setup

Store file

Compute πPOS

Upload πPOS

2.1 PoES.CycleProve

Send challenge 𝑐

Compute πPOST

Upload πPOST

2.2 PoES.Verify

3.1 Rollup.Prepare
Send data

Fetch πPOST

Compute πROLL

3.2 Rollup.Collect

3.3 Rollup.Aggregate
Upload πROLLDSN.Get

4 Retrieve Dec & Recover

Fig. 2: An example of executing all protocols

V. SECURITY ANALYSIS

A. Security of PoES

Theorem 1 (Unforgeability of πPOS/πPOST/πROLL). An honest
storage miner SM or rollup miner RoM can convince storage
challengers by sending them valid πPOS/πPOST or πROLL; an
adversary A without honestly storing files cannot forge a valid
proof based on the public information.

Proof. The generation of πPOS is carried out by PoES.Prove,
which is executed as a sub-process in creating πPOST through
PoES.CycleProve. Additionally, πROLL represents a zero-
knowledge proof of multiple πPOS instances. Firstly, we
demonstrate that πPOS is unforgeable.

Our model assumes that the adversary A can act arbitrarily
as a Byzantine node. The unforgeability of πPOS can be
defeated by A who is able to devise a π′

POS that can convince
a challenger. A valid πPOS is generated through πPOS ←
ZK.Prove(τc, rt, c), where τc denotes the Merkle path acting
as a private input to the circuit. The zero-knowledge property
of zk-SNARK ensures that the adversary A cannot acquire or
deduce τc based on the public information provided by the
SMs. Moreover, the completeness of zk-SNARK guarantees
that an honest SM with a valid πPOS can always convince
the storage challenger SC. In the case of a malicious SM,
the soundness of zk-SNARK makes it impossible for the SM,
with probabilistic polynomial-time (PPT) witness extractor E ,
to provide a fake Merkle path (used to forge πPOS) to deceive
SC, as depicted in Eq. (1). In other words, the challenger
can determine whether the storage miner provides a fake
private input based on public parameters, such as the common
reference string crs(pk, vk), the proof π, and the public inputs.

Pr

C(τc, w⃗) ̸= R

Verify(vk, τc, π, w⃗) = 1

∣∣∣∣∣
Setup(1λ, C)→ (pk, vk)

A(pk, vk)→ (τc, π)

E(pk, vk)→ (w⃗)


≤ negl(λ)

(1)



where pk and vk are respectively the proving and verification
keys of zk-SNARK. The zero knowledge property of zk-
SNARK guarantees that the probability of a malicious PPT SM
forging a π′

POS that can convince a challenger is negligible.
To create a πPOST, a storage miner periodically executes

PoES.CycleProve, which recursively calls PoES.Prove, and
outputs a valid πPOST. The only private input τc is still
preserved. Similar to πPOS, the completeness, soundness, and
zero-knowledge properties guarantee that the πPOST cannot
be forged. The Rollup.Aggregate bundles multiple πPOS’s or
πPOST’s into batches and employs the blockchain to ensure
unforgeability. Once the blockchain confirms a proof, it be-
comes tamper-proof. Furthermore, all nodes have consistent
views of the blockchain ledger, which ensures that the output
of Rollup.Aggregate is consistent and deterministic. It is worth
noting that a πPOS/πPOST/πROLL is of short size due to the
succinctness property of zk-SNARK.

Theorem 2 (Sybil and Generation Attack Resistance). Given
the assurance of security offered by the public key infras-
tructure and the zero-knowledge proof system, the probability
of Probabilistic Polynomial-Time (PPT) adversaries Asybil or
Agen, achieving success is negligible.

Proof. We first investigate the security of FileDES against
Generation attacks. Generation attackers aim to replicate a
file using a small seed or a program. This seed or program
is much smaller than the actual file in size. Recall that each
leaf of a Merkle tree is a data chunk of 256 bytes. When
a challenge is received, the Generation attacker Agen needs
to provide the path from a leaf to the Merkle root. Since
there are O(2h) = O(2

√
N ) possible paths, where N is

the number of leaves, the probability of hitting a valid path
is O( 1

2
√

N
), which is negligible. If Agen stores a constant

number of paths to deceive the challenger, the probability of
success remains negligible. However, if Agen stores a sufficient
number of paths, e.g., covering O(

√
N) or O(N)nodes on

the Merkle tree, to increase its winning probability, it will
suffer significant storage overhead, which violates its original
intention of saving space via a small-sized seed or program.

A Sybil attack Asybil can cheat in two ways. (1) Asybil only
stores m′ < m (m′,m ∈ Z) replicas to save space. Once
requested to provide a PoSt, A reproduces m replicas and
then creates proofs based on them. After accomplishing the
proof procedure, A deletes (m−m′) replicas and stores only
m′ < m replicas. (2) Asybil stores m′ < m replicas; and once
queried, A forges a PoSt and cheats the verifiers. However,
the first case is infeasible since A would need to decrypt the
encrypted file in order to generate a proof, which would require
the client’s private key. Breaking the security of RSA or PRE
is computationally hard under the assumption that they are
secure against a PPT attacker. The success probability in the
second case is also negligible, according to Theorem 1, which
prohibits A from forging proofs. To mitigate Sybil attacks, a
random selection mechanism is introduced, in which the client
selects a subset of m storage miners from n available ones.
A could create fake nodes, but the probability of m storage

miners being selected from the true miner pool is high, which
is at least 1− m

n .

B. Consistency of FileDES

Ensuring data consistency is a critical aspect for DSNs, as
it guarantees that all storage miners have the same view on
the stored files. FileDES achieves this objective, as proved by
the following theorem.

Theorem 3 (Consistency). If an honest node proclaims a
version of a file as stable, other honest nodes, if queried,
either report the same result or report error messages. Here
“stable” means that the file version is stored by FileDES and
permanently recorded on the blockchain.

Proof. A file version can be verified via the on-chain proofs
stored in the blockchain, which has been proven by Theorem 2
and Theorem 1 to be resilient against adversaries. Conse-
quently, all on-chain proofs are deemed authentic. However,
as the system is decentralized, inconsistencies in the proofs
may occur. For example, different clients may observe various
states of the same file simultaneously, resulting in significant
issues when retrieving the file. To address this concern,
FileDES employs DAG-Rider, a robust and efficient consen-
sus algorithm that can tolerate byzantine faults. The DAG-
Rider constitutes an atomic broadcast algorithm possessing
the properties of agreement, integrity, validity, and total order.
The first three properties guarantees a dependable broadcast,
ensuring that all processes in a distributed system receive
the same group of messages. Thus, any two nodes in the
DSN attain consensus on the same set of increments and
proofs. Furthermore, the total order attribute guarantees that
any two increments (along with their corresponding proofs) are
comparable, generating a deterministic and consistent causal
history of the file updates.

VI. EVALUATION

A. Implementation

The section introduces the development of FileDES, which
incorporates innovative client and miner modules, along with
the enhanced public service modules from Filecoin. The
architectural layout of FileDES is illustrated in Figure 3, in
which modules shaded in gray represent the adapted ones from
Filecoin, modules shaded in blue refer to those modified or
improved from Filecoin, and modules shaded in green denote
newly developed ones.

B. Experiment Setup

Our experimental study is comprised of two main segments.
In the first segment, we establish a DELL PowerEdge R740
server operating on Ubuntu 22.04 LTS. The server is equipped
with two 12-Core CPUs, 16GB memory, and 300GB SSD. We
deploy four DSNs, namely FileDES, Filecoin, Storj, and Sia,
on the server. To make a fair comparison, we let each DSN
system prove on all sectors of a file. We exclude FileDAG and
Swarm mentioned in TABLE I from our evaluation because
FileDAG adopts the proof system of Filecoin while that of
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Fig. 3: The system architecture of FileDES

Swarm is not open-sourced. Our dataset consists of text files
(.txt) and binary files (Android .apk) from various real-world
projects, including git, go-ipfs, Minecraft, and Netflix. We
observe analogous conclusions that are irrespective of the file
types. Therefore, we present typical outcomes concerning text
files to better elaborate on the performance of FileDES. We
also incorporate supplementary test data in the appendix for
further scrutiny. This segment of study involves three tests:

• the proof generation time with different file sizes;
• the storage cost with different size and varied number of

total versions;
• the proof generation and verification time with variable

number of total file versions.
In the second segment, we deploy FileDES, Filecoin, Sia,

and Storj in a Wide Area Network (WAN) consisting of
120 ecs.t5-lc1m4.large instances. Each instance is equipped
with a 2-Core CPU, 4GB memory, and 40GB SSD, and is
configured with Ubuntu 22.04 LTS. The bandwidth capacity
of each instance is 100Mbps, and a single node is established
on each instance. Out of the 120 instances, 100 instances are
designated as storage miners while the remaining 20 instances
are clients. The evaluation criteria for this phase includes the
following:

• the throughput of proof generation as the number of
clients increases;

• the correlation between latency and throughput.

C. Performance

Proof Generation Time. The processes of generating PoS
and PoSt were examined across various file sizes. As depicted
in Figure 4(a), the PoS generation times in FileDES, Sia,
and Storj increase with file size, while Filecoin exhibits
stability. This can be attributed to the changeable sector size
in FileDES, where files are padded to different sizes to create
a balanced Merkle tree. The PoS generation times in Sia
and Storj increase linearly due to the increasing number of
proofs required with the increase of the file size. Filecoin
and Swarm, on the other hand, have a fixed sector size of
8MB, which necessitates padding files with random data to
obtain the required size. Our results indicate that the proof
generation time for FileDES is shorter than those of Filecoin
and Storj, and close to that of Sia. However, Sia’s security
strength is weaker compared to that of FileDES due to its
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Fig. 5: The storage cost of storage miners

implementation of the Merkle tree with 64-byte leaves, which
is larger than the one used in FileDES. This results in a
reduced number of leaves generated by Sia. Our analysis,
as presented in Section V, reveals that the security level is
determined by O(2

√
N ), with N representing the number of

leaves. Figure 4(b) shows that the PoSt generation time in
FileDES is shorter than those in Filecoin and Storj, and close
to that of Sia. Since PoSt in Filecoin does not involve a
sealing process, its generation is faster than PoS. The latencies
of FileDES and Sia are close because their PoSt processes
are similar in generating the Merkle paths on the already-
processed file sectors.

To evaluate the encryption and decryption processes, the
two encryption options were tested. RSA-based encryption
takes approximately 7.5 seconds to encrypt 1MB of data,
while PRE-based encryption takes approximately 5.8 seconds.
RSA-based encryption takes 0.35 seconds to decrypt 1MB of
data, while PRE-based encryption takes about 3.7 seconds
for decryption. The time cost for PRE-based encryption to
generate a re-encryption key is approximately 0.11 seconds.
Although the encryption process takes time, it is still reason-
able since it eases the computational burden on the storage
miners by allocating the task to end-users. Consequently, the
performance of the proof system is enhanced compared to that
of the conventional methods.

Storage Cost. An assessment on the storage cost, or real
disk usage, for storing files of varying sizes was conducted
across four systems. The results of the evaluation, presented
in Figure 5(a), indicate that FileDES has the lowest storage
cost among the four DSNs. Interestingly, the storage cost of
Filecoin is the same as that of FileDES when the file sizes
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version files

are in the range of [4,7.5] MB as both systems padded files
to 8MB. Storage costs in Sia and Storj increase linearly with
the file size due to the use of erasure code to add redundancy
to a file, resulting in an actual size of about 2.2 and 4 times
of the original file size, respectively. Furthermore, the results
shown in Figure 5(b) reveal that the storage cost in FileDES
undergoes only a minor increase with the increasing number
of versions due to the storage of only file increments whenever
a multi-version file is updated to a new version.

PoSt Generation and Verification (Multi-version Files).
Based on Figure 6(a), it is evident that FileDES has the fastest
PoSt generation time compared to Filecoin, Sia, and Storj.
The efficiency of FileDES can be attributed to its fast proof
generation process and optimized storage of file increments.
The Rollup function is responsible for consolidating the PoSts
of each version into a single proof of constant size using a zk-
SNARK circuit. However, it is crucial to limit the size of the
zk-SNARK circuit to avoid overburdening the memory usage
and CPU with small inputs. To tackle this problem, a limit on
the number of increments used to recover a file can be set,
beyond which a new base is created, thereby the maximum
number of proofs to be aggregated is restricted. Figure 6(b)
depicts the total PoSt proof verification time, which remains
constant at 4.5ms for FileDES as we create a succinct proof
to aggregate PoSts, requiring only the verification of a single
succinct proof. However, the total verification times of File-
coin, Sia, and Storj increase linearly with the total number of
versions.

Throughput and Latency in WAN. As far as our under-
standing goes, this study is the initial attempt to carry out
a thorough comparative examination on the most advanced
DSNs in an actual WAN environment. Particularly, this evalu-
ation was conducted to obtain insights into the current state-of-
the-art DSNs. In our experimental study, we manipulated the
number of clients to send requests at random intervals, where
each client dispatched 20 requests every 5 seconds. The net-
work was consisted of 100 storage miners and up to 20 clients.
The size of each uploaded file was fixed at 5MB. Our primary
objective was to compare the throughputs of PoS and PoSt
generation in four different Decentralized Storage Networks.
Our results indicate that FileDES outperforms the other three
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in terms of PoS and PoSt throughputs (refer to Figure 7).
Specifically, the throughput of FileDES is 3.02 and 1.79 times
higher than that of Filecoin in PoS and PoSt, respectively.
Hence, one can infer that FileDES exhibits better scalability
than the other three DSNs. The latency-throughput graph of the
four DSNs is depicted in Figure 8, which reveals that FileDES
consistently achieves superior performance compared to the
other three DSNs under various settings. Furthermore, the
latency of FileDES increases only slightly with the throughput
for both PoS and PoSt generations.

VII. CONCLUSION

This study introduces FileDES, a novel protocol that in-
tegrates three key elements: privacy preservation, scalable
storage proof, and batch proof verification, for decentralized
storage. The proposed protocol aims to address the exiting
challenges faced by pioneers of DSN, such as data privacy
leakage, costly storage proof, and low efficiency of recurrent
proof verification. FileDES outperforms the state-of-the-arts
in several aspects, including the proof generation/verification
efficiency, storage cost, and scalability.
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