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Abstract

Embedded Multimedia Cards (eMMCs) provide a protected memory area called the Replay Protected Memory Block (RPMB).
eMMCs are commonly used as storage media in modern smartphones. In order to protect these devices from unauthorized access,
important data is stored in the RPMB area in an authenticated manner. Modification of the RPMB data requires a pre-shared
authentication key. An unauthorized user cannot change the stored data. On modern devices, this pre-shared key is generated and
used exclusively within a Trusted Execution Environment (TEE) preventing attackers from access. In this paper, we investigate
how the authentication key for RPMB is programmed on the eMMC. We found that this key can be extracted directly from the
target memory chip. Once obtained, the authentication key can be used to manipulate stored data. In addition, poor implementation
of certain security features, aimed at preventing replay attacks using RPMB on the host system can be broken by an attacker.
We show how the authentication key can be extracted and how it can be used to break the anti-rollback protection to enable data
restoration even after a data wipe operation has been completed. Our findings show that non-secure RPMB implementations can
enable forensic investigators to break security features implemented on modern smartphones.
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1. Introduction

With the implementation of multiple types of security fea-
tures on smartphones, extracting user data from them at a digital
forensics lab is becoming more challenging day by day. The de-
tails of these features are not always disclosed, requiring digital
forensic investigators to reverse engineer the device both on the
software and hardware side. The data on modern smartphones
is encrypted by default, preventing data carving through physi-
cal data acquisition. Additionally, unlocking the device requires
knowledge of a user secret, such as a passcode or password. On
top of those security features, data wiping routines are common
on modern smartphones, which are triggered when a certain
threshold of failed password attempts is reached.

To keep track of the state of the device, smartphone manu-
facturers often make use of the Replay Protected Memory Block
(RPMB) in an embedded Multimedia Card (eMMC). eMMC
is a popular storage memory in smartphones. Writing to the
RPMB partition requires authentication, therefore a pre-shared
secret key is needed every time the host device wants to modify
information. To prevent an attacker from rolling back system
data to an older version, the smartphone System on Chip (SoC)
stores information in the RPMB area where data integrity is
guaranteed. The use of RPMB has been suggested to prevent re-
play attacks on Android-based devices [1] [2], and other Linux
based systems [3]. The security of data stored in RPMB relies
on the secure storage of the pre-shared secret key.
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While the use of RPMB for device protection against unau-
thorized access has been discussed in literature, the actual se-
curity of the RPMB implementation on memory devices has,
to the best of authors’ knowledge, not been widely researched.
By using a real world example, whereby we accidentally trig-
gered the wipe routine, we show how to recover a wiped-state
smartphone which implements RPMB anti-rollback protection.
Through hardware reverse engineering, we identified that the
RPMB authentication key is stored in flash memory in an ac-
cessible manner, making it possible for the key to be extracted.
Once the key is extracted, the RPMB data becomes editable,
thereby losing its integrity. We demonstrate how the RPMB au-
thentication key can be extracted, and how we can rollback a
device in a wiped state to a working state, by restoring a flash
data backup and modifying data stored in the RPMB.

This paper mainly makes the following contributions:

• We show the RPMB authentication key can be extracted
from an eMMC

• We provide a detailed description of a closed source TEE
implementation that utilizes the RPMB area for full-disk
encryption

• We experimentally demonstrate that a smartphone, of which
the wipe routine has been triggered, can be recovered by
recovering the RPMB authentication key, and restoring a
flash data backup

The rest of the paper is organized as follows. In section 2, we
provide the necessary background on the RPMB area and its
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use in smartphones. We then explain the implementation of the
trusted execution environment in detail, focusing on the usage
of the RPMB, in an actual target device in section 3. In section
4, we demonstrate the actual procedures to restore a wiped-state
smartphone by exploiting the RPMB data. We discuss the im-
pact of our attack in 5 followed by the related work in section
6, before concluding in section 7.

2. Background

2.1. Replay Protected Memory Block

Replay Protected Memory Block (RPMB) is a memory block
implemented in JEDEC standards for modern storage devices,
such as embedded Multi Media Card (eMMC) and Universal
Flash Storage (UFS) [4, 5]. In this paper, since the target de-
vice has an eMMC-based non-volatile memory chip, we define
the RPMB as a memory block in an eMMC, unless otherwise
specified. The RPMB area is provided to store data in an ”au-
thenticated and replay protected manner” [5]. Authentication
is performed by utilizing an authentication key, which is the
shared secret between the eMMC and the host system. At the
time of manufacturing a smartphone, the authentication key is
programmed to the device and to the eMMC in a secure envi-
ronment before it is shipped from the factory.

When the host system wants to write the RPMB, the host
must calculate a SHA-256 hash based message authentication
code (HMAC) over the message to be sent, using this authen-
tication key. The message includes the data to write, and the
write counter. The write counter of the RPMB represents the
total number of successful authenticated write operations. This
value is incremented by one every time an authenticated data
write operation is performed. The counter value is stored in the
eMMC in an area inaccessible via the external interface to pre-
vent it from being reset. The write counter provides protection
against replay attacks. If it is not implemented, an attacker can
monitor the communication between the host and the eMMC,
and then reproduce the same communication at a later time, al-
lowing modification of data stored in the eMMC.

Once a message is received, the eMMC calculates the HMAC
over the received message using its own stored authentication
key to check if the message is from the authenticated host.
Only when the calculated HMAC matches with the received
one, and the provided counter matches the stored value, a data
write operation to the RPMB is authorized. Since a RPMB data
write operation requires the correct authentication key and write
counter value, the stored data can be tamper-resistant and can
be protected against replay attacks.

2.2. RPMB Use Cases in Digital Devices

Since the RPMB area is a tamper-resistant memory block,
it is often used in modern digital devices to store information
that can help prevent unauthorized access to the system [2, 6, 7,
8]. Common use cases include anti-rollback protection, unlock
protection, and secure data storage.

2.2.1. Anti-Rollback Protection
Smartphone manufacturers are constantly upgrading soft-

ware running on their products to patch reported vulnerabilities.
Once software is upgraded, the device is generally not allowed
to downgrade to the previous version. This is to protect user
data from unauthorized access by exploiting known vulnerabil-
ities. To keep track of the latest software version, the RPMB
area can be used to store the version-related data. When a user
attempts to install a piece of software to the target device, the
host system checks the current version of the software using
the data stored in the RPMB. If the stored software version is
higher than the one to be installed, the system rejects the soft-
ware installation.

2.2.2. Unauthorized Device Unlocking Prevention
Another use case of RPMB is unauthorized unlock preven-

tion. To prevent unauthorized access, a user can lock the device
with a unique passcode or password. The passcode/password
is stored in the device at creation time. Once getting physical
access to the device, an attacker might try all possible combina-
tions to unlock it. This type of attack can be automated through
the use of software. To prevent brute-forcing, RPMB can be
used to store a counter that keeps track of the failed number
of password attempts. If the counter exceeds a certain thresh-
old, the system can initiate a security measure, such as wiping
user data or enforcing an increasingly long wait time. Since
data in RPMB cannot be overwritten without the authentication
key, the attacker cannot reset or decrement the failed attempts
counter.

2.2.3. Secure Data Protection
In modern smartphones, the integrity of all critical software

components is enforced by secure boot. Different variations ex-
ist, but the general approach is to store the hash of a certificate,
containing a public key, in immutable memory. The stored hash
serves as a root of trust, since it authenticates the public key that
verifies the signature of the next component in the boot chain.

RPMB can also be used as a root of trust, since it is consid-
ered authenticated storage. As an example, the Android Veri-
fied Boot (AVB) public key, which authenticates the bootloader,
can be stored in RPMB by the Trusty Trusted Execution Envi-
ronment (TEE) [9].

2.3. Target Device
During our forensic analysis at the forensic lab, we acci-

dentally triggered the wipe routine on a Blackphone 2 while
developing a brute-force method. Restoring a backup of the
flash data did not return the device to a working state, therefore
extensive research on the implemented anti-rollback protection
was needed. The Blackphone 2 is a smartphone focused on se-
curity and privacy, first produced in 2015. The device itself is
built around the Qualcomm Snapdragon 615 (MSM8939) SoC
and runs a modified version of the Android operating system
called “Silent OS”. In 2016 Silent Circle released “Silent OS 3”
based on Android 6.0.1 (Marshmallow), which was the last ver-
sion available for the Blackphone 2. The user data of the Black-
phone 2 is protected using full disk encryption (FDE). The FDE
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implementation on Android devices is vendor specific, but they
commonly require the user password and a hardware bound key
to derive the correct decryption key. On top of the encryption,
the Blackphone 2 seemed to use an anti-rollback counter stored
in the RPMB area to prevent an attacker from restoring a data
backup after a device had been wiped. Because we needed to
break this security feature, and had to restore the device to a
working condition, we selected the Blackphone 2 as our target
for researching RPMB authentication.

3. Dissecting the Use of RPMB on the Target Device

We applied various software and hardware reverse engi-
neering techniques to determine the use of RPMB on the tar-
get device. The software reverse engineering effort focused on
the RPMB implementation in the TEE and FDE key deriva-
tion scheme. We also analyzed the physical architecture of
the eMMC chip to recover the RPMB pre-shared key to enable
write access to the RPMB partition.

3.1. Software

The implemented FDE scheme on the target device, includ-
ing the use of an anti-rollback counter in the RPMB partition,
is vendor specific. We used static and dynamic analysis tech-
niques to determine the key derivation process and the role of
the counter value. The key derivation process is implemented
almost exclusively in the Qualcomm Secure Execution Envi-
ronment (QSEE) for which, to our knowledge, no source code
is currently publicly available.

3.1.1. Qualcomm Secure Execution Environment (QSEE)
Qualcomm TrustZone technology enables the separation of

a non-secure operating system (e.g. Android) and a secure oper-
ating system such as QSEE on the same device. TrustZone tech-
nology is implemented according to the “Advanced Trusted En-
vironment: OMTP TR1” [10] standard, and therefore has miti-
gations against software and hardware attacks. The non-secure
operating system is said to be running in the Rich Execution
Environment (REE) or “normal world”. The secure operating
system runs in the Trusted Execution Environment (TEE) or
“secure world”. This separation ensures that certain operations
can be performed securely even when an attacker compromised
the Android operating system. The secure operating system has
full control over the device, while the normal operating system
can only access non-secure memory assigned to it. This sep-
aration is not only enforced by the memory management unit
(MMU) in the application processor (AP) but also on the data
bus itself by the TrustZone Address Space Controller (TZASC)
[11].

Code executed on the AP runs at different privilege levels,
defined by ARM as “exception levels”. Those levels are used
both in the REE and the TEE as follows:

• EL0: User space

• EL1: Supervisor

• EL2: Hypervisor

• EL3: Secure channel monitor

The secure channel monitor is used to relay messages be-
tween the REE and the TEE. Only the Linux kernel running at
EL1 (or the hypervisor) is permitted to send messages to QSEE
through the secure monitor. Therefore, normal applications can
only communicate with QSEE through the Linux kernel. Fig. 1
shows the flow of message from the Linux kernel in the REE to
QSEE in TEE. QSEE can also run trusted applications (TA’s),
shared libraries and drivers (TD’s). We refrain from going into
details of those features since it is outside the scope of this pa-
per.

The QSEE kernel implements a handler that executes a func-
tion according to the secure monitor call (SMC) identifier sent
by the Linux kernel. There is also a separate command handler
for processing requests originating from TA’s. On our target
device all relevant functionality, concerning key derivation and
user authentication, is implemented within the QSEE kernel it-
self.

Figure 1: A simplified overview of the TZ architecture. Left: REE (Green)
Right: TEE (Red)

3.1.2. Android Volume Daemon
The Android Volume Daemon (vold) is responsible for mount-

ing storage media, including the userdata partition. The oper-
ating system on the target device shared many similarities with
CyanogenMod 13, of which multiple relevant code repositories
are available on GitHub [12, 13, 14].

By analyzing the available source code, we determined that
the first thing vold does after the user entered their password
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is to check the encryption type stored in the footer partition.
When set to aes-xts, the Qualcomm specific implementation is
used exclusively, instead of including the Android Keymaster
Hardware Abstraction Layer (HAL).

Figure 2: A simplified overview of the vold function.

The vold process is linked to the libQSEEComAPI.so shared
library which provides communication with QSEE through the
Linux kernel. It uses the /dev/qseecom special device which
is exposed by the Linux kernel for communication with QSEE.
Once communication between the vold process and QSEE is es-
tablished through /dev/qseecom, the QSEECOM IOCTL CREA
TE KEY REQ ioctl() call is executed with the disk encryption
type and user password as the arguments, as shown in Fig. 2.
The kernel function handling this request forwards it to QSEE
by executing an SMC. As shown in Section 3.1.1, the secure
channel monitor, which runs at the highest possible privilege
level (EL3), handles this communication between the Linux
kernel and QSEE. Once the request is received by QSEE, one
of the values shown in Table 1 is returned through ioctl() de-
pending on the password attempt status.

Table 1: Returned values from ioctl() after password attempt

Return value Decimal Meaning
0xFFFFFFF6 -10 Max. password attempts reached
0xFFFFFFF9 -7 Invalid password attempt

0 0 Correct password

When the correct password has been entered, the decryption
key is set in the crypto engine (CE) of the SoC. This ensures the
AP can never read the key used in the decryption process. Com-
munication with the CE happens exclusively within QSEE. The
dm-crypt device mapper can only decrypt the userdata partition
after the correct key is set in the CE.

3.1.3. RPMB Usage in User Authentication and Key Derivation
QSEE uses a data structure called the keystore for securely

storing security sensitive information, including the FDE key
and the number of failed password attempts. Fig. 3 shows the
communication flow between the Android and QSEE during
user authentication procedures. The keystore itself is saved in
the partition named SSD on flash. This is a proprietary parti-
tion specified by Qualcomm. The partition data is encrypted

using a key derived from a hardware bound key (HBK). The
tz ks ns generate key function residing in QSEE is responsible
for adding the FDE encryption key to the keystore if it does
not already exist. If the keystore has not yet been loaded in
memory, it is read from flash storage first. QSEE uses a com-
bination of listeners and shared memory buffers to transfer data
from flash memory and the RPMB partition by communicat-
ing with the qseecomd user space process. The encrypted key-
store consists of one or more entries, starting with a header
including an HMAC used to authenticate the encrypted data.
The HMAC is calculated over the encrypted data and also in-
cludes the anti-rollback counter stored in the RPMB partition
of the target eMMC. Authentication will fail if the anti-rollback
counter cannot be read from the eMMC, or if the read counter
value is incorrect. Once authentication succeeds, the encrypted
entry data is decrypted using a key derived from the HBK.

When the keystore entries are authenticated and decrypted,
the kernel tries to load the FDE key into the CE by calling the
tz ce pipe key select ns function in QSEE. This function calls
tz ks dy get key, which performs the actual key derivation. If
the user enters thirty wrong passwords, the FDE key is removed
from the keystore. The keystore is then re-encrypted and writ-
ten back to flash. The anti-rollback counter is also incremented
and written back to the RPMB partition. This prevents an at-
tacker from writing back an earlier version of the keystore since
the entries it holds can no longer be authenticated.

When QSEE is loaded, it checks if the RPMB authentica-
tion key is programmed in the eMMC. If this it not the case, it
starts a provisioning routine, which first checks an eFuse value
to determine if an authentication key has been programmed be-
fore. If the authentication key has never been programmed on
the eMMC, the SoC executes the key programming procedure.
This procedure is performed only once in the device’s lifetime.

The reason for this behavior is most likely because the au-
thentication key is derived from a number of static values, en-
crypted by the CE using the AES algorithm with a hardware
bound key. This means that the authentication key is always the
same. The authentication key is dynamically generated when
needed and never stored. If the key were to be programmed
multiple times, an attacker might be able to extract the authen-
tication key by replacing the eMMC whose RPMB partition
has never been programmed, and monitor the key programming
procedure.

The QSEE initialization routine also reads the current write
counter value directly from the eMMC, and stores it in volatile
memory. The counter value does not appear to be stored in
any type of non-volatile memory for later use. If an RPMB
write request executed by QSEE fails, the write counter is read
again from the eMMC and updated in memory accordingly. We
did not find any evidence that the write counter is ever checked
against a stored value to detect tampering with RPMB data.

3.2. Hardware
The target device uses a Hynix embedded Multichip Pack-

age (eMCP) H9TQ26ADFTMCUR as its storage memory. The
eMCP chip has the eMMC and DRAM in one package. In this
section, we describe how we identified the hardware structure
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Figure 3: Communication between Android and QSEE for user authentication
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of the chip and identified how the RPMB authentication key is
stored in flash memory.

3.2.1. eMMC Structure
The eMMC embedded in an eMCP consists of managed

NAND flash memory. The dedicated flash memory controller
is embedded in the chip together with flash memory and pro-
vides an external interface following the JEDEC eMMC stan-
dard [4]. Therefore the SoC can access the storage memory by
using JEDEC standardized commands. Since the internal flash
controller manages wear leveling, error correction, and other
operations required for interfacing with flash memory, the SoC
does not need to implement flash memory vendor specific com-
mands. Instead it can use the JEDEC interface as a hardware
abstraction layer to flash memory.

We started observing the internal structure of the chip through
radiographic inspection. We obtained a few eMCPs which have
the same part number as the target device, and worked on those
reference chips to perform reverse engineering. Fig. 4b shows
the X-ray image of the target chip. The location of each sili-
con die is annotated. By tracing the electrical paths of each die,
one can find that the flash memory controller and DRAM are
connected to the standard interface. The standard interface is
established through the silver pads shown in Fig. 4a. On the
other hand, flash memory dies are not exposed to those pins.
Instead they are traced to the technical pins [3]. The pinout of
the technical pins was identified as shown in Fig. 4c.

(a) Bottom View (b) X-ray Inspection

(c) Flash Memory Pinout

Figure 4: Hynix H9TQ26ADFTMCUR visual observation

To monitor the controller behavior while the RPMB authen-
tication key is being programmed, we connect the technical pins
to a logic analyzer. This setup is shown in Fig. 5. The commu-
nication between the flash memory controller and flash mem-

ory, while programming the authentication key, was captured
using this method. Using the mmc-util package with the rpmb
write-key option [15], we programmed the key “1234567890
1234567890123456789ABC” (in ASCII) to a reference eMCP
chip. Meanwhile, the logic analyzer is configured to capture the
communication once the Command Latch Enable (CLE) pin of
the flash memory is enabled.

Figure 5: Hardware setup to monitor communications between flash memory
and the flash memory controller.

The captured result is shown in Fig. 6a. Multiple communi-
cations are captured between the controller and flash memory.
During the first half of the monitored communications, multi-
ple read commands are issued from the controller to various
addresses in flash memory. We assume that the controller is
checking the current status of the RPMB during this phase. Af-
ter reading the values from flash memory, the controller starts
writing values to flash memory. For example, if we zoom in
the red square shown in Fig. 6a, we find the command shown
in Fig. 6b. Command 0x80 is issued followed by the address
data while the Address Latch Enable (ALE) pin is pulled high.
According to the ONFI standard [16], command code 0x80 is
defined as a page program operation, as shown in Fig. 6c. In the
captured communication, the page program operation is issued
to the flash memory page address 0x0E00.

3.2.2. Physical Memory Dump and Authentication Key Extrac-
tion

Now with the purpose of identifying what data is written
to the flash memory while programming the authentication key,
we connect the technical pins to a flash memory reader. The
read operation was performed using single-level-cell (SLC) mode
provided by Rusolut Visual NAND Reconstructor [17]. Given
the reliability issues with multi-level-cell (MLC) flash mem-
ory, which stores more than 2 bits of data per flash memory
cell, flash memory manufacturers offer SLC mode in MLC flash
memory. When set to SLC mode, the flash memory cell is
forced to store only 1 bit per cell at the specified address. This
way, the host can store important data, such as system data,
to the SLC area in a reliable manner. The SLC mode data
read/write operation is implemented as a proprietary command,
therefore the implementation details differ per manufacturer.
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(a) Communication between the flash memory controller and flash memory in the
eMMC

(b) Zoomed in flash memory command captured during the authenti-
cation key programming

(c) Data write command timing defined by ONFI [16]

Figure 6: Captured communication between the flash memory controller and
flash memory

The extracted raw flash memory data is XORed with a scram-
bling pattern. The scrambling pattern is extracted from the
reference device, where all plain-text data is 0x00. Reverse-
engineering of the scrambling pattern can also be performed
[18, 19], however for our experiment, identifying one page of
the pattern was enough to extract the required key informa-
tion. Using the scrambling pattern from the empty sectors, the
plain text data was successfully extracted. By analyzing the
de-scrambled data, we found that the authentication key data is
stored in plain text after the flag [PASS] as shown in Fig. 7.

Figure 7: RPMB key stored plain-text in flash memory.

4. Restoring the Wiped-state Smartphone by Exploiting the
RPMB

Based on the results we obtained through reverse engineer-
ing, it is clear that the RPMB data is used to store the anti-
rollback counter. Once the investigator extracts the RPMB au-
thentication key from the eMMC, it allows the investigator to
modify the RPMB content, which makes the anti-rollback pro-
tection compromised. In order to evaluate our findings and ap-
ply them to the case devices, we executed an arbitrary data-wipe
operation and experimentally performed a data restore opera-
tion on a Blackphone 2. To reproduce our accidental data wipe
incident, we performed wrong password attempts in an auto-
mated manner until the data wiping operation was initiated,
while monitoring how the data was modified on the target de-
vice.

4.1. Device Setup

4.1.1. Hardware Modification
To perform the required eMMC read and write operations,

some hardware modifications were required on the target de-
vice. First, the eMCP chip was detached from the PCB by
using a heat gun and melting the underlying solder between
the eMCP chip and the circuit board of the target device. The
eMCP was then connected to a Linux based computer through
an eMCP-SD adapter in order to check its contents. The result
of the dmesg command showed that the target eMMC is rec-
ognized as mmc0, and it contained the following four physical
partitions:

• mmcblk0
The main partition, and had a size of 29GB with Android
related data, which is partitioned into 32 partitions.

• mmcblk0boot0
4KB in size, all bytes were 0x00.

• mmcblk0boot1
4KB in size, all bytes were 0x00.

• mmcblk0rpmb
RPMB partition, 4KB in size.

Running mmc-utils with the rpmb read-counter option sho-
wed that the RPMB had been written 155 times. Following the
NIST guideline [20], we performed image acquisition from all
partitions, and saved the images as our baseline data.
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The flash memory interface (technical pins) of the target
chip was then connected to a flash memory reader to extract
the RPMB authentication key. The key is stored at the same
address as the reference eMCP as discussed in Section 3.2.2.
In order to keep track of data modification on the RPMB while
triggering the wipe routine, header pins for In System Program-
ming (ISP) were installed at the same time as re-mounting the
eMCP onto the PCB. Specifically, the CLK, CMD, and D0 lines
of the eMMC were extended using thin wires. With this setup,
the eMMC data can be accessed directly without detaching the
chip from the PCB. This way we can read and write the RPMB
partition directly.

4.1.2. Software
As discussed in Section 3.1.1, root privileges are required to

enable communication with QSEE through the secure channel
monitor. Therefore, we first need to find a way to run unsigned
code. On our target, including other old Android devices, part
of the device configuration is stored in the devinfo partition,
including the unlock state of the bootloader. As reported by
Hay [21], by modifying the values at offsets 0x10 and 0x18 in
this partition to 0x01, the bootloader is considered unlocked.
Through this modification, an attacker can run arbitrary code
on the target device with EL0 or EL1 privileges.

Qualcomm devices can boot into “Emergency Download
Mode” (EDL) either by holding a specific button combination
or automatically when the initialization of certain hardware com-
ponents fail. This mode is used for diagnostic purposes by up-
loading a signed secondary boot stage, also called a “program-
mer” or “loader” enabling custom code execution. We used a
leaked programmer [22] to read/write to eMMC memory and
replace the devinfo partition with our modified version. This
operation can also be performed physically since the eMMC is
connected to ISP pins.

Next, we created a modified boot image using Magisk, which
starts an Android Debug Bridge (ADB) shell with root privi-
leges without booting the Android operating system. The fast-
boot mode provided by the Android bootloader enables the user
to run a custom boot image. Using this method, we acquired
root privileges on the device and could communicate with QSEE
from user space through ioctl() calls.

4.2. Initiating Data Wipe
After establishing a baseline for our target device, we then

unlocked the bootloader and started a custom boot image using
the method described in Section 4.1.2. By connecting to the
device using the ADB, we were able to perform multiple pass-
word attempts using the command vdc cryptfs checkpw

<password>. After 30 failed attempts, the wipe routine in
QSEE was executed, the device rebooted and started erasing
data.

After the target device completed the wipe routine, we made
another physical image of the eMMC including the RPMB par-
tition through the use of ISP. Fig. 8 shows the difference in data
stored in the RPMB partition before and after the data wiping
routine. The value stored at offset 0x20C has been incremented
by 1 from 0x10 to 0x11 after the device was wiped.

After observing this data modification triggered by the data
wipe routine, we restored the whole contents of the eMMC
main partition, which was 29GB in size, as mentioned in Sec-
tion 4.1.1. This hardware partition contains the entire filesys-
tem including the SSD partition, containing the encrypted key-
store. The device booted normally. However, after entering
the correct password, the device showed a notification that the
password was correct, but the data could not be decrypted, as
shown Fig. 9.

This behaviour validates our reverse engineering findings,
since we cannot boot the device even after restoring the original
keystore data. At this point, only the incremented anti-rollback
counter stored in the RPMB partition differed from the original
eMMC data.

4.3. Data Restore

To recover the target device, we again restored the whole
eMMC contents to its original state. This time, we also restored
the RPMB partition data to the one acquired in section 4.1.1. In
case of the RPMB data, only the anti-rollback counter at offset
0x20C was effectively changed to 0x10. It is worth mentioning
that the value at offset 0x20C was incremented again by 1 to
0x12 by booting the device with the restored eMMC data and
the wrong RPMB partition data, as explained in Section 4.2.
By rewriting the RPMB partition data with the RPMB authen-
tication key extracted from the eMMC, the write counter value
stored in the eMMC was also incremented. Nevertheless, our
tampering remained undetected by the SoC, enabling us restore
the target device to the state it was before the wipe routine was
performed. The target device booted successfully, with its orig-
inal data intact.

5. Discussion

5.1. RPMB Authentication Key Storage in the eMMC

As shown in section 3.2.2, the RPMB authentication key
can be extracted by reading the internal flash memory of the
target eMMC. Since the key is stored in plain text with no ob-
fuscation or read protection, the key data is essentially acces-
sible by attackers. While the flash memory interface is not ex-
posed on eMMCs, it is still accessible through chip-off analysis,
which has been popularly performed in digital forensic anal-
ysis [18, 3]. The authentication key of the target device was
stored at the same location as the reference device. We also
found that the key data is duplicated at multiple locations. Us-
ing a similar technique, the authors have successfully extracted
RPMB authentication keys from a Samsung KLMAG2GE4A-
A001 and Sandisk SDIN8DE4-16G, which were used in other
smartphones. Each model uses different address to store the au-
thentication key information. Therefore sniffing the flash write
operation during the key programming is necessary. In an ex-
ample where the RPMB is used to prevent a software down-
grade, an attacker can edit the version information stored in the
RPMB to a lower value, following our procedure. Then an at-
tacker can downgrade the running software with the purpose
of exploiting a known vulnerability. Once exploited, the target

8



(a) RPMB data before user data being wiped. (b) RPMB data after user data being wiped.

Figure 8: RPMB data comparison

Figure 9: Decryption unsuccessful

device is no longer secured against unauthorized access. The
attack itself requires de-soldering of the eMMC chip with hot
air, and microsoldering with thin wires, which can be done by a
skilled engineer. Therefore the attack is feasible on other digital
devices containing eMMCs with an RPMB.

In JEDEC Standard [4], it is defined that the authentication
key should be stored in a “one time programmable” authen-
tication key register, which cannot be overwritten, erased or
read. Nevertheless, there exists commercially available prod-
ucts where the RPMB key can be deleted and the write counter
can be cleared. Therefore the hardware implementation of the
RPMB in eMMCs is not always secure.

5.2. Use of the RPMB Write Counter

As discussed in Section 2, authentication of RPMB write is
performed by computing the HMAC over the message which
includes the RPMB write counter. The RPMB write counter is
implemented as one of the security features to prevent attackers
from performing a replay attack. Therefore, even if the RPMB
authentication key is leaked, once the write counter value does
not match, we would expect the authentication to fail. After
we edited the RPMB partition, the RPMB write counter of the
eMMC was incremented, as mentioned in Section 4.3. There-
fore we expected that the QSEE would detect tampering of the
RPMB partition data. However, it turned out that QSEE always
uses the write counter provided by the eMMC, and even re-
requests it from the eMMC when an RPMB write fails. In the
end, the RPMB write counter is not used as part of the authen-
tication scheme, allowing us to arbitrarily edit the RPMB data.
This design decision might be made because it would not lock
out the user when a non-malicious mismatch occurs, for exam-
ple because of data corruption. Further research is required to
determine if this is a valid concern.

5.3. RPMB Authentication Key Generation

The way the RPMB authentication key is currently gener-
ated on the target device, does not prevent an attacker from
swapping the eMMC chip. Since the authentication key is hard-
ware bound, only written once, and assumed to be inaccessible,
it is supposed to be tied to a single eMMC. Meaning that if
the eMMC fails, it cannot be replaced. However, even if the
SoC stores the write counter value and detected our tampering
with the RPMB data, it would be possible to reprogram an-
other chip with the correct authentication key, and increment its
write counter to the desired value. This would work since cur-
rently the SoC cannot distinguish different eMMC chips. One
way to make the device more resilient against the proposed at-
tack might be to derive the RPMB authentication key from the
eMMC device-specific information such as Card Identification
(CID) register, which is an unique identification number as-
signed to each eMMC chip. The SoC may also keep track of
eMMCs that it programmed before, to prevent leaking the key.
Ultimately, however, the authentication key should be stored
in immutable non-volatile memory (such as eFuses) within the
controller to prevent it from being read directly. Without this
measure, all other mitigations onOly add an additional level of
complexity but with only a trivial increase in security.

5.4. Responsible Disclosure

The authors have reached out to Silent Circle and SK Hynix
in June 2023 and July 2023, respectively, to report our findings
and to share the possible vulnerabilities.

6. Related Work

Western Digital published a white paper on vulnerabilities
in the eMMC RPMB [23] in 2020, and suggested that by per-
forming a “man-in-the-middle” attack, one can trick the host
system to make it behave as the intended data has never been
written to the RPMB area. This attack would only work to pre-
vent the anti-rollback counter from being updated. It is not fea-
sible in our scenario since the device is already in a wiped state.

Skorobogatov showed that password brute-forcing on a smart-
phone is possible by mirroring the whole content of the stor-
age memory and restoring its state to reset the number of failed
password attempts [24]. Theoretically, the same attack works
on our target. However, since our target was in a wiped-state
protected with RPMB anti-rollback authentication, an additional
RPMB exploit is required to restore the device to a working
state to enable the reported brute-force attack.

Multiple use cases of RPMB in smartphones are suggested
through literature. [25, 3, 2]. However, none of them have
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looked at the actual hardware implementation of the RPMB key
storage on the eMMC side.

7. Conclusion

We show that the current RPMB implementation on a smart-
phone can be exploited due to a non-secure implementation of
the RPMB on the hardware and its use in software. We suc-
cessfully extracted the RPMB authentication key from the tar-
get device. By writing back the original data and modifying the
RPMB data, we were able to restore the wiped-state smartphone
back to a working state. Our proposed attack can be expanded
to other smartphones using the RPMB for anti-rollback protec-
tion. Given that the anti-rollback protection is a generic imple-
mentation used by the SoC manufacturers, we expect that our
method is applicable on a wider range of smartphones. We have
observed that other manufacturers make use of the RPMB par-
tition on newer devices (e.g. Google/Samsung/Xiaomi), which
can be the subject of further research.
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