
Traitor Tracing without Trusted Authority

from Registered Functional Encryption

Pedro Branco 1, Russell W. F. Lai 2, Monosij Maitra 1,3,
Giulio Malavolta 1,4, Ahmadreza Rahimi 1, and Ivy K. Y. Woo2

1Max-Planck Institute for Security and Privacy
pedrodemelobranco@gmail.com

ahmadrezar@pm.me
2Aalto University
russell.lai@aalto.fi
ivy.woo@aalto.fi

3Ruhr-Universität Bochum
monosij.maitra@rub.de

4Bocconi University
giulio.malavolta@hotmail.it

Abstract

Traitor-tracing systems allow identifying the users who contributed to building a rogue de-
coder in a broadcast environment. In a traditional traitor-tracing system, a key authority is
responsible for generating the global public parameters and issuing secret keys to users. All
security is lost if the key authority itself is corrupt. This raises the question: Can we construct
a traitor-tracing scheme, without a trusted authority?

In this work, we propose a new model for traitor-tracing systems where, instead of having a
key authority, users could generate and register their own public keys. The public parameters are
computed by aggregating all user public keys. Crucially, the aggregation process is public, thus
eliminating the need of any trusted authority. We present two new traitor-tracing systems in
this model based on bilinear pairings. Our first scheme is proven adaptively secure in the generic
group model. This scheme features a transparent setup, ciphertexts consisting of 6

√
L+4 group

elements, and a public tracing algorithm. Our second scheme supports a bounded collusion of
traitors and is proven selectively secure in the standard model. Our main technical ingredients
are new registered functional encryption (RFE) schemes for quadratic and linear functions which,
prior to this work, were known only from indistinguishability obfuscation.

To substantiate the practicality of our approach, we evaluate the performance a proof of
concept implementation. For a group of L = 1024 users, encryption and decryption take roughly
50ms and 4ms, respectively, whereas a ciphertext is of size 6.7KB.

1 Introduction

Traitor-tracing systems [CFN94] allow identifying the users who contributed to building a rogue
decoder in a broadcast environment. In a traditional traitor-tracing system, a key authority is

1

mailto:pedrodemelobranco@gmail.com
mailto:ahmadrezar@pm.me
mailto:russell.lai@aalto.fi
mailto:ivy.woo@aalto.fi
mailto:monosij.maitra@rub.de
mailto:giulio.malavolta@unibocconi.it

responsible for generating the global public parameters and issuing user secret keys. Given the
public parameters, it is possible to encrypt a message so that any user in possession of a secret
key can decrypt it. As in standard broadcast encryption, the encrypted message is hidden from
any unauthorized user, i.e. those who do not have access to any secret key. The most important
property of a traitor-tracing system, however, is the presence of a tracing algorithm which identifies
corrupt users. More specifically, if an attacker produces a device that can decrypt ciphertexts with
some non-negligible probability, then the tracing algorithm, given black-box access to the device,
is guaranteed to identify at least one corrupt user, i.e. a member of those who contributed to the
creation of the decryption device.

Traditional traitor-tracing systems [BSW06, BW06, BZ14, NWZ16, GKW18, GKW19, KW20,
Zha20, GLW23, AKYY23] focus on the settings where an arbitrary set of users can be corrupt,
assuming that the key authority is honest. Notably, all guarantees are lost if the key authority
itself is corrupt. This limits the use cases of traditional traitor-tracing systems in the sense that
the key authority must either be the same party as the encryptor or trusted by the latter. Even
in the latter case, this limitation is clearly undesirable from a security perspective, as it introduces
a single point of failure. In fact, we speculate that this limitation has played a significant role
in preventing the adoption of traitor-tracing systems in practice, as it is identical in spirit to the
key-escrow problem of identity-based encryption [Rog15].

In light of the above limitation of traditional traitor-tracing systems, a natural question is
whether we can remove the trust assumption on the key authority.

Can we construct efficient traitor-tracing without a trusted authority?

Specifically, we are interested in constructions that achieve non-trivial efficiency (i.e. ciphertext
size sublinear in the number of users L) and are based on simple and well-understood cryptographic
structure, such as bilinear groups.

A New Model For Traitor Tracing. We envision a new model for traitor tracing without
any trusted authority, that we refer to as registered traitor-tracing. In our model, each user
samples its own pair of public and secret keys locally, without needing any interaction with any
other users. Upon collecting all the public keys (pk1, . . . , pkL), for instance in a public directory
or bulletin-board, it is possible to aggregate them into a short master public key mpk. Given
mpk, anyone can encrypt a message m in such a way that only the registered users are able
to recover it. Crucially, the aggregation of the public keys is a completely transparent and de-
terministic process, and therefore no trusted party is needed to perform this operation.1 This
model is directly inspired by recent works on registration-based encryption [GHMR18, GHM+19,
GKMR22, FKdP23, DKL+23, HLWW23, ZZGQ23, FFM+23, DP23] and distributed broadcast
[WQZDF10, BZ14, FWW23, KMW23] that adopt a similar paradigm to solve the key escrow
problem in related settings.

The distinguishing property of traitor tracing system is (public) traceability: If a malicious user
i∗ builds a decryption box D, it should be possible (for anyone) to track i∗ given only black-box
access to D. To substantiate the usefulness of this primitive, we discuss how it can be useful in
some recurrent scenarios below.

1Anyone can re-evaluate the aggregation process and check if the output is identical to what is claimed.

2

Application: Traceable Group Messaging. In a group messaging system, a group of L users
wants to broadcast messages to each other privately. Given that messages are constantly exchanged,
it is important that the size of the ciphertext should be sublinear in L, especially for large groups.
As the simplest notion of security, we want that an external observer learns no information about
the messages exchanged within the group. Furthermore, we want to protect against users leaking
their secret key, for instance by having their device compromised: In order to do this, one needs
to be able to trace the users corresponding to the leaked key, in order to exclude them from the
group.

Superficially, it may appear that group messaging is the killer application for traitor-tracing
systems. However, at present, no existing system uses traitor-tracing techniques to build their
protocols. We speculate that this is due to the presence of a trusted authority: The cost of adding
the tracing property to the system is to insert a trusted authority that can potentially decrypt
all messages of all groups! On the other hand, in registered traitor-tracing no such tradeoff is
present, and we can add traceability to groups without introducing any backdoor. We envision
that register-traitor tracing can be used as a cryptographic building block in messaging schemes to
add a traceability guarantee, which is not present in current systems. At the time of writing, the
maximum size of a Whatsapp group is L = 1024, which is well within the range of practicality of
our scheme.

1.1 Our Contributions

We construct traitor-tracing systems without a trusted authority, where users can sample their own
keys locally without interaction. Formally, we introduce a new primitive called registered traitor-
tracing (RTT) supporting an unbounded collusion of traitors. We then present two constructions
in the bounded and unbounded collusion settings.

Our main technical ingredients are new constructions of registered functional encryption (RFE)
for quadratic and linear functions from bilinear groups. Prior works either built general-purpose
RFE based on indistinguishability obfuscation (iO) [FFM+23, DP23], or specialised RFE for inner-
product predicates from bilinear groups [FFM+23]. In more detail, our contributions are summarised
as follows:

(1) A New Model for Traitor-Tracing. We introduce the notion of registered traitor-tracing
(RTT) as a new model to build traitor-tracing systems without a trusted authority. We propose
appropriate security definitions for RTT and show compilers (inspired by the literature in non-
registered setting) that allows us to reduce the problem of constructing RTT to building a weak
form of RFE for quadratic functions and an RFE for linear functions. We also discuss efficient
strategies to revoke traitors.

(2) Unbounded-Collusion RTT. We propose a new RFE for quadratic functions (RQFE),
in a weaker setting where all functions to be registered are known during setup. This weaker
form of RQFE is nevertheless sufficient for RTT supporting an unbounded collusion of traitors. The
resulting RTT scheme has a transparent setup, ciphertext size 6

√
L+4 in number of group elements,

and a public tracing algorithm. The scheme is based on prime-order groups and is adaptively secure
in the generic (bilinear) group model (GGM).

3

(3) Bounded-Collusion RTT. We present an RFE for linear functions (RLFE), in the ordinary
setting where functions to be registered can be adaptively chosen after setup. This scheme is
sufficient for RTT supporting a bounded collusion, where the maximum number of traitors is fixed
at setup. We prove that our RLFE is secure, against an arbitrary subset of selectively corrupted
users, in the standard model. The security of this scheme rests upon a static q-type assumption,
which we show to hold in the GGM. As a bonus, we further show how our RLFE enables other
new applications, such as registered threshold encryption (RTE) for t-out-of-L thresholds, where
ciphertexts are of size O(t) in number of group elements. RTE generalises the notion of distributed
broadcast [WQZDF10, BZ14, FWW23, KMW23] to t-out-of-L thresholds.

(4) Prototype Implementation. We provide an open-source prototype implementation of our
RTT scheme with unbounded collusion. For a group of L = 1024 users (which is currently the
maximum size of a Whatsapp group chat), our benchmarks demonstrate that our scheme is quite
practical: The key generation, encryption, and decryption algorithms take 553ms, 51ms, and 4ms,
respectively, whereas a ciphertext is of size 6.7KB.

1.2 Related Work

Traitor Tracing. Traitor tracing was first introduced in [CFN94], and ever since it has become
one of the most studied topics in cryptography, with a large body of literature improving on the
original proposal. Works on traitor tracing, e.g. [BSW06, BW06, BZ14, NWZ16, GKW18, GKW19,
KW20, Zha20, GLW23, AKYY23], focus on constructing schemes with sublinear2 efficiency, in
terms of size of public parameters and/or ciphertexts. This is possible by leveraging computational
assumptions in bilinear groups or lattices.

To the best of our knowledge, most prior traitor tracing schemes require a trusted setup to
generate the public parameters and secret keys. An exception is a very recent work of Luo [Luo22]
that constructs a Broadcast, Trace and Revoke (or simply Trace and Revoke) system in the setting
without a trusted authority, where each party samples its own keys. This work achieves essentially
asymptotically optimal parameters, but relies on indistinguishability obfuscation [BGI+01, JLS21],
and thus it is not concretely efficient. Trace and Revoke schemes integrate the notion of revocation
in traitor-tracing, where the functionality allows one to revoke decryption rights for any subset
of users whose secret keys have been compromised. This notion has been extensively studied
[NNL01, NP01, DF03, KHL03, BW06] in the setting with a centrally trusted authority.

Furthermore, a series of work has explored the related notion of distributed broadcast encryp-
tion [WQZDF10, BZ14, FWW23, KMW23], which does not concern traceability.

Registered Cryptography. Registered cryptography is a paradigm introduced by Garg et
al. [GHMR18, GHM+19] to remove the key-escrow from advanced forms of encryption that re-
quire a trusted setup. The paradigm has recently gained attention and a series of works have
improved its functionality [GV20] and efficiency [CES21], ultimately leading to practical construc-
tions from pairings [GKMR22, FKdP23] and lattices [DKL+23]. The notion of registration-based
encryption (RBE) was recently extended to the settings of attribute-based [HLWW23, ZZGQ23]
and functional encryption [FFM+23, DP23].

2There exists a “trivial” traitor-tracing scheme where each party samples a public-key encryption individually, the
master public key consists of the concatenation of the L public keys, and the ciphertext is simply the concatenation
of encryptions under each individual key.

4

Closest to our work is the scheme introduced by [FFM+23], which builds RFE for inner product
predicates: Here keys are associated with vectors y and a ciphertext encrypts vector x and a message
m, and security requires that the message m (but nothing else) is revealed if and only if xTy = 0.3

We emphasise that this is different from the setting of inner product functions that we consider in
this work (also known as inner product FE), where (for the case of linear functions) the ciphertext
reveals the inner product xTy itself, regardless on whether it is 0 or not. The two functionalities
are incomparable, in the sense that there is no obvious reduction in either direction. In the non-
registered settings, this difference is analogous to the distinction between [KSW08] and [ABDP15].

1.3 Discussion

Interactive vs Non-Interactive Solution. An alternative (generic) solution to remove trusted
authorities in traitor-tracing systems, or in general any cryptographic systems, is to let participants
simulate the trusted authority with a secure multi-party computation (MPC) protocol: All users
run an MPC where they jointly sample the master secret key, and the output of each user consist of
its tracing key, as well as the master public parameters. While this solution effectively bypasses the
need for a trusted authority, it is undesirable for several reasons: (i) All users must be simultaneously
online to run the MPC. Even a single user failing would stall the entire process. As the number
of users in the system grows, this solution scales poorly. (ii) It is harder to support dynamic joins
of new users, since for every new user that joins a new MPC protocol must be jointly run by all
participants. (iii) MPC protocols require interaction, which adds latency to the key registration
process. (iv) Running the key generation of a traitor-tracing scheme as an MPC is computationally
intense, making this solution computationally very expensive.

In this work we focus on the non-interactive settings, where users sample their own keys locally,
and simply upload it to a public bulletin board once they are done. Different users do not even have
to be aware of each other’s existence, and it is much easier to support a dynamic set of participants
(more discussion on this later). For these reasons, we believe that the non-interactive settings is
both theoretically more elegant and preferable from a practical standpoint.

Common Reference String vs Trusted Authority. We acknowledge that, in line with the
literature on registered/distributed cryptography, our schemes are in the common reference string
model, where all parties are assumed to receive a common reference string that was sampled in
a trusted manner. However, we also highlight the fact that our RQFE scheme has a transparent
setup, meaning that the common reference string is just a collection of random bits. In practice,
this is desirable since there are very simple protocols to sample such strings (e.g. hash some fixed
bitstring). On the other hand, our RLFE has a structured setup. We claim that, even for the case
of a non-transparent setup, this model is substantially better than having a trusted authority, since
there is no long-term secret that needs to be stored. It also resolves questions about the availability
of the trusted authority, and how parties can establish secure communication channels for receiving
their keys.

Static Joins vs Dynamic Joins. Throughout this work, we will always assume that the set of
users that register their keys is fixed ahead of time, and the public parameters are aggregated only

3Although we note that a revised work [DPY23], developed concurrently with our work, presents an RLFE scheme
and proves it secure in the GGM.

5

after all users have registered their keys. That is, we assume that the set of users participating
in the protocol is static, and if a new user joins the system, the master public key needs to be
recomputed and all users have to be notified of this change, and (possibly) must update their
information. [HLWW23] refers to this as the slotted setting.

In practice, it is desirable to allow users to join the system dynamically, and one does not want
to re-initialise the public parameters and/or to notify all existing users. Fortunately, it is possible
to generically move from the slotted/static settings to support dynamic joins, while minimising
the number of updates. Informally, the transformation works by partitioning the users in sets of
exponentially increasing cardinality, e.g. {Si : |Si| = 2i}i∈[log(L)], and filling those sets as users
join, starting from the smaller ones. Updates then only need to be issued when a set is filled up
and needs to be transferred to the next empty set. It is easy to see that each user receives at
most log(L) updates throughout its lifetime. Variants of this transformation have been described
many times in the literature [GHMR18, GHM+19, GKMR22, HLWW23, FFM+23, KMW23] and
we refer the reader to these works for more details. In what follows, we will only describe schemes
in the slotted/static settings, with the understanding that dynamic joins can be supported with
this transformation.

2 Technical Highlights

We highlight the technical innovations of our work. We begin by showing how constructing RTT
boils down to building the right notion of RQFE, then we present our RFE schemes. We conclude
by outlining registered threshold encryption as another new application of RFEs.

2.1 Registered Traitor-Tracing

To set some context, let us make more concrete the desiderata for an RTT scheme. In an RTT
scheme, the setup outputs a (preferably unstructured) common reference string crs. Each party i
starts by generating its own pair of public and secret keys (pki, ski) relative to crs. Upon collecting
all the public keys (pk1, . . . , pkL), anyone can use the crs to compute a short master public key mpk
and the helper decryption key hski for each user i. Given mpk, anyone can encrypt m in such a
way that only a registered user i is able to obtain the message, using its secret key ski and helper
key hski. Additionally, RTT should fulfill a strong traceability property: If a malicious user i∗

builds a decryption box D (which receives ciphertexts and outputs the corresponding message with
non-negligible probability), then the user i∗ can be caught given only black-box access to D. The
RTT scheme is said to be bounded-collusion secure if the setup additionally inputs the maximum
number of traitors, else it supports an unbounded collusion.

TT via Functional Encryption. To better understand the challenge of constructing (R)TT, it
is useful to recall how to construct traditional traitor-tracing schemes (with a trusted authority).
The work of Boneh, Sahai, and Waters [BSW06] reduces this problem to a simpler cryptographic
primitive called private linear broadcast encryption (PLBE) and shows how to generically turn
a PLBE scheme into a traitor-tracing scheme. In a nutshell, a PLBE is a broadcast encryption
scheme with an additional trace-encrypt algorithm. This algorithm takes as input an index i ∈ [L]
and a message, and generates an ordinary-looking ciphertext of the message which can only be
decrypted by user ℓ ≥ i. Importantly, this ciphertext must keep the index i hidden (except to users

6

i and i + 1, who can trivially test the position of the index). The trace-encrypt algorithm can be
used in a linear scan to identify the user with the smallest index who contributed to creating a
rogue decryption device.

Abstracting even further, it turns out that PLBE is nothing but a special case of functional
encryption (FE) [Gay16], where keys are associated with an index ℓ and a predicate Fℓ(i,m) such
that

Fℓ(i,m) :=

{
m if i ≤ ℓ
0 otherwise

whereas ciphertexts contain information about the message m and the index i. This connection is
made explicit in [Gay16] where they show that an FE for quadratic functions (QFE) is sufficient to
implement the above comparison predicate, and consequently PLBE, with ciphertext size O(

√
L).

Thus, the problem of traitor tracing is nothing but QFE in disguise.4

For the (weaker) bounded-collusion setting, Agrawal et al. [ABP+17] show how to reduce the
problem of traitor-tracing (with revocation) to that of bounded-collusion FE for linear functions
(LFE).

Registered FE: Removing the Authority. Via the aforementioned series of transformations,
we have reduced the task of constructing traitor-tracing without authority to that of constructing
QFE/LFE without authority. This notion was recently introduced under the name of registered
functional encryption (RFE) [FFM+23, DP23] as a natural generalisation of registration-based
encryption [GHMR18]. In short, RFE provides a mechanism to publicly aggregate L independent
key-function tuples (pk1, f1), . . . , (pkL, fL) into a digest, so that a ciphertext of m generated with
respect to the digest can be decrypted by skj to recover fj(m).

For the remainder of this overview, we will focus on describing our RFE schemes (for quadratic
and linear functions), along with other applications. Extending the transformation from QFE/LFE
to traitor-tracing in the registered settings require some care, but the main ideas are analogous to
the traditional settings. Therefore we omit them here, and refer the reader to Section 5 for more
details.

2.2 RQFE in the GGM

Our first observation that facilitates our task is that one does not need the full power of (R)QFE
to build traitor tracing. Since the functions f1, . . . , fL depend only on the identity of each user, it
suffices to build a scheme where all functions associated with secret keys are known ahead of time.
In other words, we can assume that each user knows all the other functions during key generation.
With this observation in mind, we describe our RQFE below.

Conceptually, we build our RQFE by compiling a traditional QFE into a registered one, provided
that it satisfies a master secret key homomorphism. In other words, we want the master public key
of the scheme to be some encoding of the master secret key, that satisfies the following homomorphic
relation:

Encode(msk0)︸ ︷︷ ︸
mpk0

∗Encode(msk1)︸ ︷︷ ︸
mpk1

= Encode(msk0 +msk1)

4Note that linearising a quadratic polynomial achieves the desired functionality, but nullifies the efficiency of the
transformation. In particular, the resulting PLBE scheme would have ciphertexts linear in L, which does not improve
over trivial constructions.

7

and furthermore for all functions f :

KGen(msk0, f)︸ ︷︷ ︸
sk

(0)
f

∗KGen(msk1, f)︸ ︷︷ ︸
sk

(1)
f

= KGen(msk0 +msk1, f).

The exact specifications of the encoding function Encode and the group operation ∗ are irrelevant
for this explanation. To define the master public key of the scheme, each user samples a local key
pair (mpki,mski) and we define the global master public key as

m̃pk = mpk1 ∗ . . . ∗mpkL = Encode(msk1 + . . .+mskL)

which can be computed publicly using the master public keys published by each user. In effect,
the L users are sharing (in the sense of additive secret-sharing) the master secret key of the new

combined key m̃pk. The users will then also publish enough information to help the i-th user
computing a functional secret key under the new master public key. Here is where we leverage the
fact that all functions are known in advance, and we ask each user to publish, along with their
mpkj all functional keys, except for their own function. In other words, the j-th user also outputs{

sk
(j)
fi

= KGen(mskj , fi)
}
i ̸=j

.

Arranging all of these public information in matrix form, and applying the homomorphic operator
row-wise, we obtain:

⊥ sk
(1)
f2

. . . sk
(1)
fL

sk
(2)
f1

⊥ . . . sk
(2)
fL

...
...

. . .
...

sk
(L)
f1

sk
(L)
f2

. . . ⊥

 ∗−−→

KGen(

∑
j ̸=1mskj , f1)

KGen(
∑

j ̸=2mskj , f2)
...

KGen(
∑

j ̸=Lmskj , fL)

Note that the i-th combined key is almost a valid functional secret key for fi under m̃pk, except
that it is missing the contribution of mski. However, the i-th user is the one that sampled mski in
the first place, and therefore it can easily fill the missing value to obtain

s̃kfi = KGen

∑
j ̸=i

mskj , fi

 ∗ KGen(mski, fi)

= KGen

∑
j

mskj , fi

 .

At this point, decryption and encryption correctness simply follow by the correctness of the original
FE scheme, except that we now have substituted the key authority with a fully distributed setup.

Instantiating the Transformation. Given this general template outlined above, all that is left
is to look into the literature of traditional QFE schemes, and find a compatible one. It turns out
that a handful of schemes satisfy this homomorphic property. However, while all schemes obtained

8

via this transform are correct, not all of them can be proven secure. For instance, the RQFE
scheme obtained by transforming the QFE of Wee [Wee20] is unfortunately broken due to linear
attacks. The only QFE scheme which we are aware of that survives the transformation is that of
Baltico et al. [BCFG17], which was only proven to be secure in the GGM. Consequently, our RQFE
inherits the security in the GGM. Proving security of this template turns out to be a nuanced task,
since we have to deal with potentially malformed keys and adaptive corruption queries. We refer
to Section 4.2 for more technical details.

2.3 RLFE in the Standard Model

Our RFE construction for linear functions is conceptually similar to the recent works of [HLWW23,
ZZGQ23] on registered attribute-based encryption (RABE)5 and can be summarised by the follow-
ing idea. Starting with a base FE scheme, the major challenge is to construct a one-user RFE which
is correct and secure. Given this, we can construct an L-user RFE by running L parallel instances
of the one-user RFE, where the digest mpk aggregates all individual mpki from the L instances.
To ensure decryption correctness, the Aggr algorithm outputs helper keys which correspond to the
cross-terms due to

(
mpkj

)
j ̸=i

in mpk for each user i.

Our RLFE. While the above general strategy can be applied to various existing linear FEs,
adapting their security proofs to the registered setting is tricky. We settle at basing on the scheme
of [ABDP15] due to its simplicity, which we recall:

mpk = [wT], msk = wT, sky = wTy, ctx =
(
[s], [swT + xT]

)
for some w,x,y ∈ Zn

p and s ∈ Zp. To decrypt, compute

[swT + xT]y − [s]wTy = [xTy].

We turn this into a one-user RLFE for a given function y with the following steps. Fix [wT] in
the crs and let mpk′ = [wTy]. Correspondingly, let ctx =

(
[swTy], [swT + xT]

)
, so that the same

decryption equation (and both correctness and security of the base scheme) applies:

[swT + xT]y − [swTy] = [xTy].

Crucially, mpk′ “Pedersen-commits” the function y using the “key” wT, which is then inherited in
ct, so that no one can decrypt to xTy′ for y′ ̸= y. This yields a “public RLFE” that anyone can
decrypt via the above equation, and to make this available only to the registered user, the idea is
to (additively) secret-share the commitment key. We let pk = [v], sk = v, and the new commitment
key be w + v, shared by crs and the user. The resulting one-user RLFE has

crs = [wT], mpk = [(wT + vT)y], pk = [vT],

sk = vT, ctx =
(
[s], [s(wT + vT)y], [swT + xT]

)
and decryption follows from

[swT + xT]y + [s]vTy − [s(wT + vT)y] = [xTy].

5Actually our RLFE setting is slightly simpler than their RABE setting, since composite-order group (or an
additional layer of transformation to prime-order group) is not necessary for security.

9

In a nutshell, security follows from two facts: Only the user who knows the share v can access
the “public RLFE”; furthermore decrypting to only xTy is safeguarded by the other share w.
From here, we apply the L-parallel-instances compiler to obtain an L-user RLFE. To prevent
mix-and-match of helper keys, i.e. cross-terms across the L instances, a randomisation factor for
each user is introduced and bound to their helper keys, which is done via pairing. The scheme
of [ABDP15] is proven from DDH with selective-security. Our scheme inherits the same security
and the randomisation in helper keys lead to our q-type assumption (for q = L number of users),
which is essentially a q-type variant of DDH generalised into the pairing setting. We give our full
RLFE construction in Section 4.3.

2.4 Registered Threshold Encryption

As a bonus application, we discuss how RLFE helps in removing the trusted setup in threshold
encryption. In other words, we show how to build registered threshold encryption (RTE). Recall
that, in traditional threshold encryption, the public parameters of the system are generated together
with L users’ secret keys. Given an encryption ct of a message m, each user can compute partial
decryption shares using its secret key. Once we have t partial decryption shares, where the recovery
threshold t ≤ L is specified in the public parameters, the message m can be recovered. In terms
of security, we want that an adversary holding less than t secret keys is unable to break semantic
security of the scheme. In RTE, parties generate their own public keys and these are later aggregated
into a short master public key. The system should preserve the “threshold decryption” functionality
as in traditional threshold encryption.

To compile an RLFE into an RTE, each party i simply runs the RLFE key generation on a vector
i = (1, i, . . . , it−1) ∈ Zt

p. To encrypt a message m ∈ {0, 1}, the encryptor first performs Shamir
secret sharing, i.e. sampling a random degree-(t − 1) polynomial P over Zp such that P (0) = m.
Let p ∈ Zt

p be the coefficient vector of P . The encryptor encrypts p using the underlying RLFE
scheme. By the security of the RLFE, a party holding a secret key ski learns ⟨i,p⟩ = P (i) and
nothing else about the polynomial P . Once we have t different evaluations of the polynomial, we
can recover P (0) = m by Lagrange interpolation. In Section 6.2 we detail our RTE construction.

One subtle issue that we omitted so far is that the RLFE decryption actually allows a party i to
recover the inner product ⟨i,p⟩ = P (i) in the exponent of a target group GT element [P (i)]T from
the underlying bilinear pairing. This does not create an issue as Lagrange interpolation is a linear
function and thus, we can perform it in the exponent to recover [P (0)]T. Since P (0) = m ∈ {0, 1},
we can brute-force m from [m]T.

3 Preliminaries

Notation. We denote the security parameter by λ ∈ N throughout this paper and assume it
as an implicit input to all algorithms. We write [n] = {1, . . . , n} and [0, n] = {0} ∪ [n] for any
n ∈ N. Capital and small bold-face letters (like M and x) denote matrices and (column) vectors
respectively. Capital and small letters (such as S and x) in general denote sets and concrete
algebraic variables respectively (with any exceptions being stated explicitly). A tuple T = (ti)i∈[n]
defines an ordered set with elements indexed from [n] for any n ∈ N. Accordingly, |S| and |x|
respectively denotes the cardinality of set S and the length of a vector x. We write x ←$ X
to denote sampling an element x from X uniformly at random. We write A for a probabilistic

10

polynomial time (PPT) adversary that runs in time polynomial in λ. A function in λ, denoted by
negl(λ) : N 7→ R, is called negligible if it vanishes faster than the inverse of any polynomial in λ,
i.e. negl(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ).

Prime-Order Bilinear Groups. Throughout this work, we use cyclic groups of prime order p
with an asymmetric bilinear map endowed on them. We assume a PPT bilinear group generator
algorithm GGen that takes λ ∈ N as input and outputs G = (G1,G2,GT, p, g1, g2, e), where p is
a prime of Θ(λ) bits, G1 = ⟨g1⟩,G2 = ⟨g2⟩,GT = ⟨gT⟩ = ⟨e(g1, g2)⟩ are cyclic groups of order
p with e : G1 × G2 → GT being a non-degenerate bilinear map. We use the implicit (bracket)
notation for group elements: for M,M′ ∈ Zk1×k2

p , define [M]t = gMt :=
(
g
mi,j

t

)
and [M]t + [M′]t :=

[M+M′ mod p]t for t ∈ {1, 2,T} and k1, k2 ∈ N. We also denote [1]1 := g1, [1]2 := g2, and
abbreviate “e” with “·”, i.e. for matrices M1,M2 of appropriate dimensions, e ([M1]1 , [M2]2) is

written as [M1]1 [M2]2 = [M1M2]T = gM1M2
T . We express sampling a bilinear group instance as

G := (G1,G2,GT, p, [1]1 , [1]2 , ·)← GGen(1λ).

4 Registered Functional Encryption

We define and construct the core building blocks for our applications, namely registered functional
encryption (RFE) for quadratic and linear functions. In particular, we define the syntax and
security of RFE in Section 4.1. Then, Sections 4.2 and 4.3 provide schemes for weak RFE and
RFE for quadratic and linear functions respectively. Both our RFE schemes are proven secure in
presence of well-formed keys. Appendix A describes generic and concrete ways of tackling malicious
keys to transcend this limitation.

4.1 Definitions

We define RFE and a variant which we call weak RFE. The main difference between the two is
that, in the weak variant, the set of functions to be registered is known already at setup time.
Below we primarily define RFE and describe the difference of the weak variant inline.

Definition 4.1 (Registered Functional Encryption). A registered functional encryption (RFE)
scheme for message spaceM, ciphertext space C, function class F and number of users L consists
of the following tuple of PPT algorithms (Setup,KGen,Aggr,Enc,Dec):

• crs ← Setup(1λ): On input the security parameter 1λ, the setup algorithm outputs a common
reference string crs.

• (pkℓ, skℓ)← KGen(crs, ℓ ∈ [L]): The key generation algorithm outputs a pair of public and secret
keys (pkℓ, skℓ) for user ℓ.

• (mpk, (hskℓ)ℓ∈[L]) ← Aggr(crs, (pkℓ, fℓ)ℓ∈[L]): On input crs and the tuple of public key pkℓ and
function fℓ ∈ F of all users ℓ ∈ [L], the deterministic aggregation algorithm outputs a master
public key mpk and a tuple of helper secret keys (hskℓ)ℓ∈[L].

• ct ← Enc(mpk, µ): On input mpk and a message µ ∈ M, the encryption algorithm outputs a
ciphertext ct ∈ C.

11

• µ′ ← Dec(skℓ, hskℓ, ct): On input a ciphertext ct together with a secret key skℓ and a helper secret
key hskℓ, the decryption algorithm outputs µ′.

A weak RFE has the same syntax as an RFE, except that the tuple of functions (fℓ)ℓ∈[L] is input
to Setup instead of to Aggr.

Definition 4.2 (Correctness). An RFE scheme is said to be correct, if for all λ ∈ N, L ∈ poly(λ),
µ ∈M, k ∈ [L], (fℓ)ℓ∈[L] ∈ FL, crs ∈ Setup(1λ), (pkk, skk) ∈ KGen(crs, k), it holds that

Pr

µ′ = fk(µ)

∣∣∣∣∣∣∣
(mpk, (hskℓ)ℓ∈[L])← Aggr(crs, (pkℓ, fℓ)ℓ∈[L])

ct← Enc(mpk, µ)

µ′ ← Dec(skk, hskk, ct)

 = 1.

Correctness of a weak RFE is defined analogously with the only differences being that (fℓ)ℓ∈[L] is
input to Setup instead of to Aggr.

Definition 4.3 (Strong Compactness). An RFE is said to be strongly compact, if for all λ ∈ N,
L ∈ poly(λ), (fℓ)ℓ∈[L] ∈ FL, crs ∈ Setup(1λ), (pkℓ, skℓ) ∈ KGen(crs, ℓ), and (mpk, (hskℓ)ℓ∈[L]) ∈
Aggr(crs, (pkℓ, fℓ)ℓ∈[L]), it holds that |mpk|, |hskℓ|, |ct| are of size poly(λ, logL).6 Strong compact
weak RFEs are defined analogously.

Definition 4.4 (Security). An RFE scheme Π is said to be secure, if for any PPT A it holds that∣∣∣Pr[Exp0Π,A(1
λ) = 1

]
− Pr

[
Exp1Π,A(1

λ) = 1
]∣∣∣ ≤ negl(λ),

where ExpbΠ,A is defined in Fig. 1. The security of a weak RFE is defined analogously, with the only
difference that (fℓ)ℓ∈[L] is declared by A upfront and input to Setup instead of to Aggr.

We also consider the notion of selective-security with static corruption, where the experiment
is same as that in Fig. 1, except that A declares the messages (µ0, µ1) and the set of corrupt users
C ⊆ [L] at the beginning of the experiment (i.e. the corruption oracle CorrO is withheld from A).

Remark 4.5 (On Malicious Keys and Key Queries). In Definition 4.4 we require A to output the
randomness (rℓ)ℓ∈M for keys generated by A, the setting which our RFEs will be proven secure. We
defer handling malicious keys without this requirement to Appendix A, where the relevant IsValid
algorithm and completeness property are also introduced. For simplicity we only allow a single key
query per user ℓ. The mildly stronger notion of allowing multiple key queries per user is implied
so long as KGen is stateless (so that the same reduction still applies when simulating multiple keys
for the same user) and holds true for both of our RFE schemes.

4.2 Weak RFE for Quadratic Functions

We build a weak RFE scheme for quadratic functions with a transparent setup, i.e. the crs is
constructed with public randomness.

6Our definition is stronger than existing RFE compactness [FFM+23], since it additionally requires succinct
ciphertexts.

12

ExpbΠ,A(1
λ)

crs← Setup(1λ)(
µ0, µ1, (pkℓ, fℓ)ℓ∈[L], (rℓ)ℓ∈M

)
← ACorrO(·),KGenO(·)(crs)

// A provides randomness for set M of maliciously generated keys

assert [L] \M ⊆ K
assert pkℓ ∈ KGen(crs, ℓ; rℓ) ∀ℓ ∈M
assert fℓ(µ0) = fℓ(µ1) ∀ℓ ∈ C ∪M
(mpk, (hskℓ)ℓ∈[L])← Aggr(crs, (pkℓ, fℓ)ℓ∈[L])

ct∗ ← Enc(mpk, µb)

b′ ← A(ct∗)
return b′

KGenO(ℓ)

if K[ℓ] = ⊥
(pkℓ, skℓ)← KGen(crs, ℓ)

K[ℓ] := (pkℓ, skℓ)

(pkℓ, skℓ)← K[ℓ]

return pkℓ

CorrO(ℓ)

C := C ∪ {ℓ}
(pkℓ, skℓ)← K[ℓ]

return skℓ

Figure 1: Security experiment for RFE.

Let n1, n2, L ∈ poly(λ). For any (G1,G2,GT, p, [1]1 , [1]2 , ·) output by GGen(1λ), we construct
an RFE for the message spaceM = Zn1

p × Zn2
p , the class of quadratic functions F being{(

f :M→ [Zp]T , f(x,y) 7→
[
xTFy mod p

]
T

)
: F ∈ Zn1×n2

p

}
,

and (an upper bound of) L number of users. Since for any f ∈ F , f(x,y) 7→
[
xTFy mod p

]
T
is fully

described by F,GT and p whereas GT, p are publicly fixed, we simply write F for such. Further,

for any ℓ ∈ N and Fℓ ∈ F we denote its (i, j)-th entry as f
(ℓ)
i,j ∈ Zp.

Theorem 4.6. RQFE (Fig. 2) is strongly compact (Definition 4.3).

Proof. Assuming that the groups description G and each element in Zp,G1,G2,GT are of description
size poly(λ), we count the size of mpk, hskℓ, and ct: |mpk|, |ct| = (n1 + n2) · poly(λ), and |hskℓ| =
n1n2 · poly(λ). Notably, they are of size independent of L.

Theorem 4.7. RQFE (Fig. 2) is correct (Definition 4.2).

Proof. Recall [s]1 =
[∑

ℓ∈[L] sℓ

]
1
, [w]1 =

[∑
ℓ∈[L]wℓ

]
1
. For a user k ∈ [L], its secret key is skk =[

sTkFkt+ γkwk

]
2
and its helper key hskk =

([∑
ℓ∈[L]\{k} s

T
ℓFkt+ γkwℓ

]
2
, [γk]2 ,Fk

)
. User k ∈ [L]

decrypts to

[D0]T = [α]1

[sTkFkt+ γkwk

]
2
+

 ∑
ℓ∈[L]\{k}

sTℓFkt+ γkwℓ

2

= [α]1

∑
ℓ∈[L]

sTℓFkt+ γkwℓ

2

=
[
αsTFkt+ αγkw

]
T
,

[D1]T = [αw]1 [γk]2 = [αγkw]T

13

Setup(1λ, (Fℓ)ℓ∈[L])

G := (G1,G2,GT, p, [1]1 , [1]2 , ·)← GGen(1λ)

for ℓ ∈ [L] : γℓ ←$ Zp

t←$ Zn2
p

return crs :=
(
G, (Fℓ)ℓ∈[L] , ([γℓ]2)ℓ∈[L]

, [t]2

)
Aggr(crs, (pkℓ)ℓ∈[L])

[s]1 :=
[∑

ℓ∈[L] sℓ

]
1
; [w]1 :=

[∑
ℓ∈[L] wℓ

]
1

for k ∈ [L] :

[h1,k]2 :=
[∑

ℓ∈[L]\{k} dkℓ,k
]
2

[h2,k]2 := [γk]2
mpk := (G, [s]1 , [w]1 , [t]2)
hskk :=

(
[h1,k]2 , [h2,k]2 ,Fk

)
return (mpk, (skk)k∈[L])

KGen(crs, ℓ)

sℓ ←$ Zn1
p ; wℓ ←$ Zp

for k ∈ [L] :

[dkℓ,k]2 :=
[
sTℓFkt+ γkwℓ

]
2

pkℓ :=
(
[sℓ]1 , [wℓ]1 ,

(
[dkℓ,k]2

)
k∈[L]\{ℓ}

)
skℓ := [dkℓ,ℓ]2
return (pkℓ, skℓ)

Dec(skk = [K]2 , hskk, ct)

[D0]T := [C1]1 ([K]2 + [h1]2)

[D1]T := [C2]1 [h2]2

[D2]T :=

n1∑
i=1

n2∑
j=1

f
(k)
i,j ·

([
CT

3,i

]
1
[C4,j]2

)
return [D0]T − [D1]T + [D2]T

Enc(mpk, (x,y))

parse [s]1 = ([s1]1 , . . . , [sn1]1)

parse [t]2 = ([t1]2 , . . . , [tn2]2)

parse (x,y) = (x1, . . . , xn1 , y1, . . . , yn2)

α←$ Zp

M←$ GL2(Zp)

[C1]1 := [α]1
[C2]1 := [αw]1

[C3,i]1 :=

[
(M−1)T ·

(
xi
αsi

)]
1

,∀i ∈ [n1]

[C4,j]2 :=

[
M ·

(
yj
−tj

)]
2

,∀j ∈ [n2]

ct :=
(
[C1]1 , [C2]1 ,

(
[C3,i]1

)
i∈[n1]

,
(
[C4,j]2

)
j∈[n2]

)
return ct

Figure 2: Weak RQFE construction.

[D2]T =

n1∑
i=1

n2∑
j=1

f
(k)
i,j

([
(xi, αsi)M

−1
]
1

[
M ·

(
yj
−tj

)]
2

)

=

 n1∑
i=1

n2∑
j=1

xiyjf
(k)
i,j − αsitjf

(k)
i,j

T

=
[
xTFky − αsTFkt

]
T
,

hence yielding the desired output

[D0]T − [D1]T + [D2]T =
[
αsTFkt+ αγkw

]
T
− [αγkw]T +

[
xTFky − αsTFkt

]
T

=
[
xTFky

]
T
.

Theorem 4.8. RQFE (Fig. 2) is secure (Definition 4.4) in GGM.

Proof. We start with some notations and definitions for generic and symbolic bilinear group models.

Generic Bilinear Group Model. Our definitions for generic bilinear group model is adapted
from [BCFG17]. Let G = (G1,G2,GT, p, [1]1 , [1]2 , ·) be a bilinear group setting, L1,L2,LT be lists
of group elements in G1,G2, and GT respectively. Let D be a distribution over L1,L2,LT. The
generic group model for a bilinear group setting G and a distribution D is described in Fig. 3.
In this model, the challenger first initialises the lists L1,L2,LT by sampling the group elements
according to D, and the adversary receives handles for the elements in the lists. For t ∈ {1, 2,T},
Lt[h] denotes the h-th element in the list Lt. The handle to this element is simply the pair (t, h).
An adversary A running in the generic bilinear group model can apply group operations and the
bilinear map to the elements in the lists. To do this, A has to call the appropriate oracle specifying
handles for the input elements. A also gets access to the internal state variables of the challenger
via handles, and we assume that the equality queries are “free”, in the sense that they do not count
when measuring the computational complexity of A. For t ∈ {1, 2,T}, the challenger computes the
result of a query, say δ ∈ Gt, and stores it in the corresponding list as Lt[pos] = δ where pos is its

14

next empty position in Lt, and returns to A its (newly created) handle (t, pos). Handles are not
unique (i.e. the same group element may appear more than once in a list under different handles).
The equality test oracle in [BCFG17] is replaced with the zero-test oracle ZtT(·) that, on input a
handle (t, h), returns 1 if Lt[h] = 0 and 0 otherwise only for the case t = T.

State: Lists L1,L2,LT over G1,G2,GT respectively.

Initializations: Lists L1,L2,LT sampled according to distribution D.

Oracles: The oracles provide black-box access to the group operations, the bilinear map, and
zero-tests.

• ∀t ∈ {1, 2,T}: Addt(h1, h2) appends Lt[h1] + Lt[h2] to Lt and returns its handle (t, |Lt|).

• ∀t ∈ {1, 2,T}: Negt(h) appends −Lt[h] and returns its handle (t, |Lt|).

• Map(h1, h2) appends [L1[h1]]1 [L2[h2]]2 and returns its handle (T, |LT|).

• ZtT(h) returns 1 if LT[h] = 0 and 0 otherwise.

All oracles return ⊥ when given invalid indices.

Figure 3: GGM for bilinear group setting G = (G1,G2,GT, p, [1]1 , [1]2 , ·) and distribution D.

Symbolic Bilinear Group Model. The symbolic bilinear group model (SGM) for a bilinear
group setting G and a distribution D gives to the adversary the same interface as the corresponding
generic group model (GGM), except that internally the challenger stores lists of elements from
the ring Zq[x1, . . . , xk] instead of lists of group elements, where {xk}k∈N are indeterminates. The
oracles Addt(·, ·),Negt(·),Map(·, ·),ZtT(·) compute addition, negation, multiplication, and zero tests
respectively in the ring. For our proof, we will work in the ring Zq[x1, . . . , xk]. Note that any element
Φ ∈ Zq[x1, . . . , xk] can be represented as

Φ(x1, . . . , xk) =
∑
∈Zk

ηc

k∏
i=1

xcii with c = (c1, . . . , ck) ∈ Zk

using {ηc ∈ Zq}c∈Zk , where ηc = 0 for all but finite c ∈ Zk. Note that this expression is unique.
We now begin our proof for Theorem 4.8 below.

At a high level, the proof proceeds in a sequence of hybrids, where the first one (resp. the last
one) encrypts (x(0),y(0)) ∈ Zn1+n2

p (resp., (x(1),y(1)) ∈ Zn1+n2
p). We will show that these hybrids

are statistically indistinguishable from each other.
W.l.o.g., the challenger C simulates all the generic bilinear group oracle queries for A. In

particular, C stores actual computed elements in the list Lt based on its group type t ∈ {1, 2,T}.
Note that there is no element from GT in our scheme. So w.l.o.g., we will explicitly specify only the
elements that C stores in L1 or L2. However, the only way A can learn information in the GGM are
via calls to ZtT(·) by providing handles (T, h) to elements in LT. Therefore, we will specify such
elements from GT explicitly as and when needed in the proof. The handle to an actual element
stored in any of these lists are just a tuple (t, pos) specifying the group type t and its position in the

15

table Lt. Since our scheme contains several variables, we will refrain from explicitly specifying the
handles to the actual elements for convenience. Further, when we move to the SGM, we will denote
any literal variable v as v and composite terms like v1v2 (resp., v1

v2
) as v1v2 (resp., v1

v2
) to represent

an individual monomial in a (possibly multivariate) polynomial. For variables denoted with Greek
alphabets, say α, β, γ, we represent their corresponding formal variables as α,β,γ. Assume A issues
an arbitrary polynomial number Qzt(λ) of ZtT(·) queries in each of these three hybrids.

Hybrid H0: This is the game corresponding to bit b = 0 in the GGM which goes as follows.

• Setup phase: A declares the set of functions (Fℓ)ℓ∈[L] to be registered. The challenger

samples G = (G1,G2,GT, p, [1]1 , [1]2 , ·)← GGen(1λ) and initialises three tables Lt[1] for
all t ∈ {1, 2,T} with the respective group generators [1]1 , [1]2 and [1]T. It then prepares
a tuple G′ =

(
p, {(t, 1)}t∈{1,2}

)
, where (t, 1) represents the handle to these respective

generators. Simulating the generic group oracle, it prepares to returns the crs as follows:

1. For all ℓ ∈ [L], it computes γℓ ∈ Zp and also t ∈ Zn2
p as in the real Setup algorithm.

Update L2 with the elements [γℓ]2 for all ℓ ∈ [L] and each entry from [t]2. Set
crs = (G, (Fℓ)ℓ∈[L] , {[γℓ]2}ℓ∈[L], [t]2).

2. Return to A a tuple crs′ that includes G′ along with the handles to all elements in
the same order as they are arranged in the crs above.

• Query phase: A issues its key queries and corruption queries.

• For a key query on ℓ, if K[ℓ] = ⊥, the challenger does the following:7

1. Sample sℓ ← Zn1
p , wℓ ∈ Zp.

2. Compute skℓ and pkℓ =
(
[sℓ]1 , [wℓ]1 , {[dkℓ,k]2}k∈[L]\{ℓ}

)
as in the real KGen.

3. Update L1 with ([sℓ]1 , [wℓ]1). Recall for all k ∈ [L] \ {ℓ}, [dkℓ,k]2 has the following
structure:

[dkℓ,k]2 = sTℓFk [t]2 + wℓ [γk]2 .

Even given handles to sℓ and wℓ in G1 (from pkℓ) (along with the handles to t and
γk in G2 from crs′), it is easy to see that A cannot compute a handle for dkℓ,k in
G2 on its own. Thus the challenger adds [dkℓ,k]2 to L2 for each k ∈ [L] \ {ℓ}.

4. Set K[ℓ] = (pk′ℓ, pkℓ, skℓ), where pk′ℓ is a sequence of handles to all elements in the
same order as they are arranged in pkℓ.

Then it parses (pk′ℓ, pkℓ, skℓ) from K[ℓ] and return pk′ℓ to A.
• For a corrupt query on ℓ, the challenger returns skℓ from K[ℓ] = (pk′ℓ, pkℓ, skℓ) and
update the set of corrupt indices C := C ∪ {ℓ}. Recall skℓ has the following structure:

skℓ = sTℓFℓ [t]2 + wℓ [γℓ]2 .

• Challenge phase: A specifies the following challenge information:

(pkℓ, skℓ)ℓ∈[L] , (sℓ, wℓ)ℓ∈M and ((x(0),y(0)), (x(1),y(1))) ∈ (Zn1+n2
p)2.

Check admissibility. Denote H := [L] \ M the set of indices whose keys are honestly
generated by the challenger. For each ℓ ∈ [L], the challenger checks that:

7As mentioned earlier in Definition 4.4, we only allow A to one key-query per slot. Going ahead however, for a
more complete treatment, our analysis below in Table 1 and some of the later hybrids allows A to query multiple
keys per slot. We show this explictly with a counter c ∈ [Qk], where w.l.o.g., we assumed Qk as the maximum number
of key queries per slot.

16

• For all ℓ ∈ [L], pkℓ is either honestly generated by the challenger, or maliciously
generated by A but the key generation randomness is provided, i.e. it checksH ⊆ K.

• For all ℓ ∈M whose key is maliciously generated, run (pk′ℓ, sk
′
ℓ)← KGen(crs, ℓ; sℓ, wℓ)

using the provided randomness rℓ and check that pkℓ = pk′ℓ.

• For all ℓ ∈ C ∪M , it holds that (x(0))TFℓy
(0) = (x(1))TFℓy

(1).

It aborts if any of the above is false.

Key aggregation. The challenger runs(
mpk, (hskk)k∈[L]

)
← Aggr (crs, {pk∗1, . . . , pk∗L}) , where

mpk = (G, [s]1 , [w]1 , [t]2), and hskk =
([∑

ℓ∈[L]\{k} dkℓ,k

]
2
, [γk]2 ,Fk

)
for all k ∈ [L].

Since Aggr is deterministic, A is able to compute
(
mpk, (hskℓ)ℓ∈[L]

)
on its own. In the

GGM, A computes handles for the elements in mpk and (hskℓ)ℓ∈[L]. To this end, it queries
the appropriate group oracles iteratively as per the Aggr algorithm to generate the tuples
mpk′ and each hskℓ′ as sequences of handles to all elements (except ℓ and for the ones
it already had from before) in the same order as arranged in mpk and each hskℓ for all
ℓ ∈ [L].

Compute challenge ciphertext. The challenger does the following:

1. Generate ct∗ ← Enc(mpk, (x(0),y(0))) where ct∗ =
(
[C1]1 , [C2]1 , {[C3,i]1}i∈[n1], {[C4,j]2}i∈[n2]

)
.

2. Recall [C1]1 = [α]1 , [C2]1 = [αw]1 ∈ G1. Accordingly, update L1 with [α]1 and
[αw]1.

3. Parse the message as
(
x(0),y(0)

)
=
(
x
(0)
1 , . . . , x

(0)
n1 , y

(0)
1 , . . . , y

(0)
n2

)
and

[s]1 = ([s1]1 , . . . , [sn1]1) , [t]2 = ([t1]2 , . . . , [tn2]2) .

4. Recall that the elements [C3,i]1 ∈ G1 and [C3,j]1 ∈ G2 have the following structure:

∀i ∈ [n1], [C3,i]1 =

[
(M−1)T ·

(
x
(0)
i

αsi

)]
1

=

[
1

∆M

(
d −c
−b a

)
·

(
x
(0)
i

αsi

)]
1

∀j ∈ [n2], [C4,j]2 =

[
M ·

(
y
(0)
j

−tj

)]
2

=

[(
a b
c d

)
·

(
y
(0)
j

−tj

)]
2

where ∆M = (ad− bc) denotes the determinant of M =

(
a b
c d

)
← GL2(Zp).

Accordingly, update L1 with
{[

∆−1
M

(
dx

(0)
i − cαsi

)]
1
,
[
∆−1

M

(
−bx(0)i + aαsi

)]
1

}
i∈[n1]

and L2 with
{[
ay

(0)
j − btj

]
2
,
[
cy

(0)
j − dtj

]
2

}
j∈[n2]

in order. The challenger outputs

ct∗′ to A that includes the handles to elements in ct∗ arranged in the same order as
described above.

• Output phase: A outputs a bit b′ ∈ {0, 1}.

17

Hybrid H1: In this hybrid, fix M at the outset of the experiment and replaces the generator
[1]1 ∈ G1 with [∆M]1. Accordingly, this changes all the elements in the scheme that are
generated in G1. In particular, the elements that mainly change in the actual scheme are as
follows:

1. The handle to [1]1 in crs′ points to [∆M]1.

2. For all ℓ ∈ [L], ([sℓ]1 , [wℓ]1) ∈ pkℓ changes to ([∆Msℓ]1 , [∆Mwℓ]1).

3. The modified mpk = (G, [∆Ms]1 , [∆Mw]1 , [t]2), where s =
∑L

ℓ=1 sℓ = (s1, . . . , sn1), w =∑L
ℓ=1wℓ.

4. Finally, the modified ciphertext elements are:

[C1]1 = [∆Mα]1 , [C2]1 = [∆Mαw]1 , [C3,i]1 =

[(
d −c
−b a

)
·

(
x
(0)
i

αsi

)]
1

The rest of the experiment remains the same as H0. Note that a, b, c, d ← Zp were sampled
randomly. Thus, the above change amounts to a shift in H1’s output distribution only by
a statistical distance of at most 3

p (obtained from Pr[∆M = 0]), which is negligible. Hence,
H0 ≈s H1.

For ease of presentation, in Table 1 we show all unit and composite terms generated in the
scheme itself, and stored in the respective lists.

Hybrid H2: In this hybrid, the challenger moves partially to the SGM. Namely, the interaction
with A remains the same as in H1, except that now the challenger stores formal variables
instead of the actual elements in the respective lists Lt for all t ∈ {1, 2,T}. Thus, all the
handles that A receives refer to multivariate polynomials from the following ring:

ζ = Zp

[
{γℓ}ℓ∈[L], (t1, . . . , tn2), {(scℓ,1, . . . , scℓ,n1

)}ℓ∈H,c∈[Qk], {w
c
ℓ}ℓ∈H,c∈[Qk],α, a, b, c, d

]
.

Concretely, A gets handles to formal polynomials (from the scheme) from Lt for each t ∈
{1, 2}, where:

1. L1 = Lcrs1 ∪ L
key
1 ∪ Lct1 , where

(a) Lcrs1 = {(ad− bc)},
(b) Lkey1 =

{(
(ad− bc) scℓ,1, . . . , (ad− bc) scℓ,n1

)
, (ad− bc) wcℓ

}
c∈[Qk],ℓ∈H

, and

(c) Lct1 =

{
(ad− bc)α, (ad− bc) (αw1 + · · ·+ αwL),

{(
dx

(0)
i − cαsi

)
,
(
−bx(0)i + aαsi

)}
i∈[n1]

}
.

2. L2 = Lcrs2 ∪ L
key
2 ∪ Lct2 , where

(a) Lcrs2 =
{
1, {γℓ}ℓ∈[L] , (t1, . . . , tn2)

}
,

(b) Lkey2 =
{(

scℓ,1, . . . , s
c
ℓ,n1

)
Fk(t1, . . . , tn2)

T + γkw
c
ℓ = γkw

c
ℓ +

∑n1
i=1

∑n2
j=1 f

(k)
i,j s

c
ℓ,itj

}
c∈[Qk],ℓ∈H
k∈[L]\{ℓ}

.

(c) Lct2 =
{(

ay
(0)
j − bαtj

)
,
(
cy

(0)
j − dαtj

)}
j∈[n2]

.

18

L1 L2

crs ∆M = ad− bc
g2 ,

{
γ1 , . . . , γL

}
t =

(
t1 , . . . , tn2

)

{pkc}
c∈[Qk]

∆Mscℓ = (ad− bc)scℓ

∆Mw
c
ℓ = (ad− bc)wc

ℓ

ℓ∈H,c∈[Qk]

{
Fk(s

c
ℓ, t) + γkw

c
ℓ

}
ℓ∈H,k∈[L]\{ℓ},c∈[Qk](

for
{
dkcℓ,k

}
ℓ∈H,k∈[L]\{ℓ},c∈[Qk]

)

ct∗

(ad− bc)α (for C1) ,

(ad− bc)α(w1 + · · ·+ wL) (for C2) ,

dx

(0)
i − cαsi

−bx(0)i + aαsi

i∈[n1]

(for C3,i, i ∈ [n1])

ay

(0)
j − btj

cy
(0)
j − dtj

j∈[n2]

(for C4,j , j ∈ [n2])

Table 1: The above table shows all terms from the scheme for which handles are stored in the
respective lists L1 and L2. Assume A issues some arbitrary polynomial number, Qk, of key queries
in the pre-challenge query phase (some of which may be corrupted). The table lists all the terms
for each of these honestly sampled keys {pkc}c∈[Qk] received by A in the second row. Hence, these
terms are also indexed with superscripts for the key query count c ∈ [Qk] (along with the slot index,
say ℓ ∈ H, whose keys are honestly generated by the experiment). The terms corresponding to mpk
and hski are not shown, since their handles are publicly computable by A using the group oracles.
Note that such terms correspond to keys for all the registered L slots, all of which (except at least
one) may possibly be corrupted or maliciously generated. Hence, the individual variables in each
of those terms in mpk and hski are independent of the counter variable c ∈ [Qk] respectively. The
third row corresponds to the elements stored in the respective lists available from the challenge
ciphertext ct∗.

However, when A issues any zero-test query via ZtT oracle, the challenger replaces the formal
variables with their corresponding elements from Zp. In this case, if the variable is not
assigned a value in Zp, it samples the corresponding value from the same distribution as
it did in H1 (except the elements in the functions {Fk}k∈[L]\{ℓ} and the challenge message(
x(0),y(0)

)
which are either fixed coefficients or constants in these polynomials). However,

once a value is assigned to a variable, it is fixed throughout the rest of H2. We show in
Lemma 4.9 that H1 ≡ H2.

Given the tuple P = (L1,L2,LT), we define the closure C(LT) = LT ∪ {V1 · V2 | ∀V1 ∈
L1, V2 ∈ L2}. Basically, it is the set of (handles of) all multivariate polynomials from ζ

19

with variables representing elements in GT that A can compute querying Map on the handles
it received for elements in L1,L2. We estimate the size of C(LT). By definition, we have
|C(LT)| = |LT|+ |L1| · |L2| = |L1| · |L2| (as |LT| = 0 in our scheme).

|L1| = |Lcrs1 |+
∣∣∣Lkey1

∣∣∣+ ∣∣Lct1 ∣∣
≤ 1 + {(n1 + 1) ·Qk · |H|}+ (2n1 + 2) = (n1 + 1) ·Qk · |H|+ 2n1 + 3, and

|L2| = |Lcrs2 |+
∣∣∣Lkey2

∣∣∣+ ∣∣Lct2 ∣∣
≤ (1 + L+ n2) + {(L− 1) ·Qk · |H|}+ 2n2 = (L− 1) ·Qk · |H|+ L+ 3n2

For brevity, we do not state C(LT) explicitly with all possible cross combinations of the terms
from L1,L2. But by inspection, we can see that the maximal total degree of a term in C(LT)
is d = 6. In particular, these corresponding terms are as follows:

1.
[
(ad− bc)αw ·

(
γkw

c
ℓ +

∑n1
i=1

∑n2
j=1 f

(k)
i,j s

c
ℓ,itj

)]
T
for any ℓ ∈ H, k ∈ [L] \ {ℓ}, c ∈ [Qk],

2. [(ad− bc)αw · (−btj)]T and [(ad− bc)αw · (−dtj)]T for any j ∈ [n2],

where w =
∑

ℓ∈[L] wℓ corresponds to sum of the terms wℓ from the actual aggregated keys.
Further, any handle submitted by A to the ZtT oracle during its interaction refers to a
polynomial Φ ∈ ζ as

Φ
(
{γℓ}ℓ∈[L], (t1, . . . , tn2), {(scℓ,1, . . . , scℓ,n1

)}ℓ∈H,c∈[Qk], {w
c
ℓ}ℓ∈H,c∈[Qk],α, a, b, c, d

)
=

∑
θ∈C(LT)

ηΘΘ,

where the coefficients {ηΘ ∈ Zp}Θ∈C(LT) can be computed efficiently. Note that all the terms
in C(LT) are distinct, so the coefficients ηΘ are unique.

Hybrid H3: In this hybrid, all queries to ZtT oracle are answered using formal variables. Namely,
the challenger returns 1 for any ZtT query on a handle to some polynomial Φ ∈ ζ (with fixed
elements from {Fk}k∈[L]\{ℓ} or

(
x(0),y(0)

)
), if:

Φ
(
{γℓ}ℓ∈[L], (t1, . . . , tn2), {(scℓ,1, . . . , scℓ,n1

)}ℓ∈H,c∈[Qk], {w
c
ℓ}ℓ∈H,c∈[Qk],α, a, b, c, d

)
= 0

We show in Lemma 4.10 that H2 ≈s H3.

Hybrid H4: In this hybrid, we switch the encryption of (x(0),y(0)) to (x(1),y(1)). This is the game
corresponding to bit b = 1 in the SGM. We show in Lemma 4.11 that H3 ≈s H4.

Hybrid H5: In this hybrid, the challenger moves from the SGM to GGM. Hence, we haveH4 ≈s H5

with a proof similar to that of Lemmas 4.9 and 4.10, but in the reverse order.

Hybrid H6: Scale everything back by ∆−1
M like H0. This is the game corresponding to bit b = 1

in the GGM. Following a similar transition from H0 to H1, but in the reverse order, we have
H5 ≈s H6.

Lemma 4.9. H1 and H2 are perfectly indistinguishable.

20

Proof. Note that A sees the same handles in both H1 and H2. So it can notice a difference between
the hybrids only if some zero-test query via the ZtT oracle is answered differently. However, these
zero-test queries are answered using values sampled from the same distribution in both the hybrids.
Thus A’s view remains the same in both the hybrids.

Lemma 4.10. H2 and H3 are statistisally indistinguishable.

Proof. H2 and H3 differs only when A submits a handle for some Φ ∈ ζ satisfying

Φ
(
{γℓ}ℓ∈[L], (t1, . . . , tn2), {(scℓ,1, . . . , scℓ,n1

)}ℓ∈H,c∈[Qk], {w
c
ℓ}ℓ∈H,c∈[Qk], α, a, b, c, d

)
= 0, and

Φ
(
{γℓ}ℓ∈[L], (t1, . . . , tn2), {(scℓ,1, . . . , scℓ,n1

)}ℓ∈H,c∈[Qk], {w
c
ℓ}ℓ∈H,c∈[Qk],α, a, b, c, d

)
̸= 0

to the ZtT oracle. Denote this event as E2,3. It suffices to bound the probability of E2,3 occurring
in H2(λ). For this, recall the maximal total degree of any polynomial Φ ∈ ζ that could be formed
by linear combinations of the terms in C(LT) is d = 6 (see Items 1 and 2 on the preceding page).
Further, note that all the variables in all such polynomials are answered with independent and
uniformly random values from Zp in H2. Thus, by Schwartz-Zippel lemma, we have Pr[E2,3] ≤ 6

p .
As A issues Qzt(λ) many ZtT queries, a union bound implies that A can distinguish the two hybrids

with probability at most 6·Qzt(λ)
p . Thus, H2 ≈s H3.

Lemma 4.11. H3 and H4 are statistically indistinguishable, given (x(0))TFky
(0) = (x(1))TFky

(1)

for all k ∈ C ∪M .

Proof. In both hybrids H3 and H4, A interacts with C in the SGM. In particular, all elements
from G1,G2 and GT are treated symbolically and indexed by their discrete logarithms. The
only information that A can learn in the SGM is by querying the ZtT oracle. Note that the
only change from H3 to H4 is in the challenge ciphertext components. Hence, w.l.o.g., we fo-
cus mainly only on successful queries to the ZtT oracle related to the coefficients of the cipher-
text elements where the challenge message is embedded. Recall the challenge ciphertext ct∗ =(
[C1]1 , [C2]1 , {[C3,i]1}i∈[n1], {[C4,j]2}j∈[n2]

)
for the message (x(β),y(β)), β ∈ {0, 1}:

ct∗ =

[(ad− bc)α]1 , [(ad− bc)αw]1 ,

{[(
dx

(β)
i − cαsi

−bx(β)i + aαsi

)]
1

}
i∈[n1]

,

{[(
ay

(β)
j − btj

cy
(β)
j − dtj

)]
2

}
j∈[n2]

 ,

where M =

(
a b
c d

)
← GL2(Zp). The matrix M occurs only in the terms {[C4,j]2}j∈[n2] and M−1

only in the elements {[C3,i]1}i∈[n1] of ct
∗. We therefore first show that the only way to annihilate

terms related to a, b, c, d (i.e. the matrices M and M−1) is to pair the elements [C3,i]1 with [C4,j]2.
For this, let us define:

[C3,i]
T
1 =

([
dx

(β)
i − cαsi

]
1
,
[
−bx(β)i + aαsi

]
1

)
:=

([
c
(1)
3,i

]
1
,
[
c
(2)
3,i

]
1

)
and [C4,j]

T
2 =

([
ay

(β)
j − btj

]
2
,
[
cy

(β)
j − dtj

]
2

)
:=

([
c
(1)
4,j

]
2
,
[
c
(2)
4,j

]
2

)
.

Claim 4.12. For all i ∈ [n1], j ∈ [n2], z ∈ [2], the coefficients of the terms
[
c
(z)
4,j

]
2
that are not

paired with matching terms
[
c
(z)
3,i

]
1
must be equal to 0.

21

Proof. Recall the lists from Items 1 and 2 on page 18. The only symbolic terms that A can access
in L1, apart from the terms in [C3,i]1 are:

1. [ad− bc]1.

2.
([

(ad− bc)scℓ,1

]
1
, . . . ,

[
(ad− bc)scℓ,n1

]
1

)
and [(ad− bc)wcℓ]1 for all c ∈ [Qk] and ℓ ∈ H.

3. [(ad− bc)α]1.

4. [(ad− bc)αw]1.

5. Any arbitrary linear combination among the above items (and possibly with
[
c
(1)
3,i

]
1
or
[
c
(2)
3,i

]
1
).

Observe that Items 1 to 4 above all provide linearly independent terms symbolically. In particular,
they do not cancel out internally as well as with each other. We will now establish that they cannot
cancel even when A uses the Map oracle to form products with the terms in [C4,j]2 ∈ L2. Below we
inspect all possible pairings of the terms in [C4,j]2 and show that they have linearly independent
symbolic terms that cannot be cancelled out, so long as we forbid the correct terms [C3,i]1 ∈ L1 in

the pairing. In other words, we focus on the polynomial
[
(ad− bc) ·

(
x
(β)
i y

(β)
j − αsitj

)]
T
, which is

present only in the terms representing a correctly formed pairing
([
c
(1)
3,i

]
1

[
c
(1)
4,j

]
2
+
[
c
(2)
3,i

]
1

[
c
(1)
4,j

]
2

)
between [C3,i]1 and [C4,j]2. We divide the inspection in three cases.

Case 1 –
[
c
(1)
4,j

]
2
is paired with terms from Items 1 to 4: In this case, we pair

[
c
(1)
4,j

]
2
with

any term that is not in [C3,i]1.

1. [ad− bc]1

[
c
(1)
4,j

]
2
: Here we have unique terms a2d, −abc, −abdtj and b2ctj .

2.
[
(ad− bc)scℓ,i

]
1

[
c
(1)
4,j

]
2
: Here we have unique terms a2dscℓ,i, −abcscℓ,i, −abdscℓ,itj and

b2cscℓ,itj .

3. [(ad− bc)wcℓ]1

[
c
(1)
4,j

]
2
: Here we have unique terms a2dwcℓ, −abcwcℓ, −abdwcℓtj and b2cwcℓtj .

4. [(ad− bc)α]1

[
c
(1)
4,j

]
2
: Here we have unique terms a2dα, −abcα, −abdαtj and b2cαtj .

5. [(ad− bc)αw]1

[
c
(1)
4,j

]
2
: Here we have unique terms a2dαw, −abcαw, −abdαtjw and b2cαtjw.

6.
[
c
(1)
3,i

]
1

[
c
(1)
4,j

]
2
: Here we have unique terms ad, −bdtj , −acαsi and bcαsitj . Note that

this is the one that we exclude, but we must still need to make sure that it does not
cancel out with the other pairings from Items 1 to 5 above. Due to the absence of degree
2 “literals” (like a2 or b2) and the presence of unique combinations of α, si and tj, these
monomials cannot be cancelled by any of the terms generated above.

Case 2 –
[
c
(2)
4,j

]
2
is paired with terms from Items 1 to 4: In this case, we pair

[
c
(2)
4,j

]
2
with

any term that is not in [C3,i]1.

1. [ad− bc]1

[
c
(2)
4,j

]
2
: Here we have unique terms acd, −ad2tj , −bc2 and bcdtj .

22

2.
[
(ad− bc)scℓ,i

]
1

[
c
(2)
4,j

]
2
: Here we have unique terms acdscℓ,i, −ad2scℓ,itj , −bc2scℓ,i and

bcdscℓ,itj .

3. [(ad− bc)wcℓ]1

[
c
(2)
4,j

]
2
: Here we have unique terms acdwcℓ, −ad2wcℓtj , −bc2wcℓ and bcdwcℓtj .

4. [(ad− bc)α]1

[
c
(2)
4,j

]
2
: Here we have unique terms acdα, −ad2αtj , −bc2α and bcdαtj .

5. [(ad− bc)αw]1

[
c
(2)
4,j

]
2
: Here we have unique terms acdαw, −ad2αtjw, −bc2αw and bcdαtjw.

6.
[
c
(2)
3,i

]
1

[
c
(2)
4,j

]
2
: Here we have unique terms acαsi, −adαsitj , −bc and bdtj . Similar to

case 1, though we exclude this, we must still need to make sure that it does not cancel
out with the other pairings from Items 1 to 5 on the previous page in case 1 and Items 1
to 5 on pages 22–23 in this case above. Due to the absence of degree 2 “literals” (like c2

or d2) and the presence of unique combinations of α, si and tj, these monomials cannot
be cancelled by any of the terms generated above.

Case 3 –
[
c
(1)
4,j

]
2
is paired with

[
c
(2)
3,i

]
1
or vice-versa: This is a simpler case, where we consider

pairing the terms in [C3,i]1 and [C4,j]2, but in the wrong order.

1.
[
c
(2)
3,i

]
1

[
c
(1)
4,j

]
2
: Here we have unique terms −ab, b2tj , a2αsi and −abαsitj .

2.
[
c
(1)
3,i

]
1

[
c
(2)
4,j

]
2
: Here we have unique terms cd, −d2tj , −c2αsi and cdαsitj .

These terms are again linearly independent symbolically from all the elements resulting from

pairing the terms different than
[
c
(1)
4,j

]
2
and

[
c
(2)
3,i

]
1
.

Because of symbolic linear independence, any arbitrary linear combination of the above terms
cannot cancel each other, unless all their coefficients are identically 0. This proves Claim 4.12.

We now note that upon pairing any arbitrarily scaled terms [ηjC4,j]2 with [ηiC3,i]1 for some
ηi, ηj ∈ Zp and further combining them linearly with more arbitrary scalars, say θi,j ∈ Zp, any
adversary can get access to the following polynomial in LT:∑

i∈[n1]
j∈[n2]

θi,j ·
([
ηic

(1)
3,i

]
1

[
ηjc

(1)
4,j

]
2
+
[
ηic

(2)
3,i

]
1

[
ηjc

(2)
4,j

]
2

)

=
∑
i∈[n1]
j∈[n2]

θi,jηiηj

([
ηic

(1)
3,i

]
1

[
ηjc

(1)
4,j

]
2
+
[
ηic

(2)
3,i

]
1

[
ηjc

(2)
4,j

]
2

)

=
∑
i∈[n1]
j∈[n2]

θi,jηiηj

{
(ad− bc)

(
x
(β)
i y

(β)
j − αsitj

)}

=
∑
i∈[n1]
j∈[n2]

{
x
(β)
i · ηi,j(ad− bc) · y(β)j − ηi,j · (ad− bc)αsitj

}
,

where ηi,j := θi,jηiηj

23

Recall si as the symbolic term for si =
∑

ℓ∈H sℓ,i where H is the set of honestly sampled keys
(all of which, except one, may be corrupt).8 As there exists one honest, registered party, we have

si ̸= 0, ∀i ∈ [n1]. For A to obtain information about x
(β)
i and y

(β)
j for any i, j, it must annihilate

the term involving (ad− bc)αsitj in the above expression. Hence, it is enough to consider ZtT
queries of the form

Ω +
∑

i∈[n1],j∈[n2]

{
−ηi,j · (ad− bc)αsitj

}
= 0, for some Ω ∈ ζ. (1)

We now show structural properties of Ω ∈ ζ required to make Eq. (1) a successful ZtT query.

Claim 4.13. For any k ∈ [L], ℓ ∈ H \ {k}, fix the polynomial Λℓ,k ∈ Lkey2 (from Item 2 on page 18)
such that

Λℓ,k := (sℓ,1, . . . , sℓ,n1)Fk(t1, . . . , tn2)
T + γkwℓ = γkwℓ +

∑
i∈[n1],j∈[n2]

f
(k)
i,j sℓ,itj .

Then the polynomial Ω in Eq. (1) is of the form
∑

k∈C∪M
ℓ∈H

ξk,ℓ · (ad− bc)α · (Λℓ,k − γkwℓ) for ξk,ℓ ∈ Zp.

Proof. We first note that the polynomial Ω ∈ ζ is of the form

Ω =
∑

k∈[L],ℓ∈H\{k}

ξk,ℓ · (ad− bc)α · Λℓ,k + ψk · (ad− bc)αw · γk (2)

for ψk ∈ Zp, where w =
∑

ℓ∈H wℓ. Eq. (2) follows from the observations below:

1. One way A can attempt to nullify information about the monomials ηi,j · (ad− bc)αsitj
in Eq. (1) is by querying the oracle Map on handles for (appropriately scaled) [tj]2 ∈ L2
(available from crs) along with the same for either

[
c
(1)
3,i

]
1
=
[(

dx
(β)
i − cαsi

)]
1
∈ L1 or[

c
(2)
3,i

]
1
=
[(
−bx(β)i + aαsi

)]
1
∈ L1 (available from ct∗). However, by inspection, we see that

these create new linearly independent monomials dtjx
(β)
i ∈ LT or −btjx(β)i ∈ LT that cannot

be cancelled with other terms.

2. The other (potentially more useful) way to annihilate ηi,j ·(ad− bc)αsitj in Eq. (1) is to query
the Map oracle on (appropriately scaled) handles for [(ad− bc)α]1 ∈ L1 and that of [Λℓ,k]2 ∈
L2. Invoking this pairing operation also leads to the extra monomials [(ad− bc)α · γkwℓ]T ∈
LT. By inspection, we see that these extra monomials can be cancelled out only by querying
the oracle Map again on the (appropriately scaled) handles for [γk]2 ∈ L2 (available from crs)
with that of [(ad− bc)αw]1 ∈ L1 (available from ct∗). This leads to Eq. (2) above with the
scaling factors ξk,ℓ, ψk ∈ Zp.

Below, we analyse further structural properties of the scalars ξk,ℓ and ψk in Eq. (2).

8W.l.o.g., the coordinates of only the honestly sampled vectors sℓ are considered, as A knows all other sℓ, for
ℓ ∈ MC.

24

1. ψk = −ξk,ℓ,∀k ∈ [L], ℓ ∈ H \ {k}: First observe that for any fixed k ∈ [L], we have

ψk · (ad− bc)αw · γk = (ad− bc)αγk · ψkw = (ad− bc)αγk ·
∑
ℓ∈H

ψkwℓ. (3)

Recall from the prior discussion that the sum of extra monomials
∑

k∈[L],ℓ∈H\{k} ξk,ℓ·(ad− bc)αγkwℓ
needs to be nullified by

∑
k∈[L] ψk · (ad− bc)αw · γk. This is mainly because the terms

(ad− bc)αγkwℓ do not appear anywhere else. Now note that for a fixed choice of k, ℓ, the
term (ad− bc)αγkwℓ defines linearly independent monomials. Therefore, from Eq. (3) it must
hold that

(ad− bc)αγk
∑
ℓ∈H

ψkwℓ = −
∑

ℓ∈H\{k}

ξk,ℓ(ad− bc)αγkwℓ = (ad− bc)αγk

∑
ℓ∈H\{k}

−ξk,ℓwℓ.

This implies that ψk = −ξk,ℓ,∀k ∈ [L], ℓ ∈ H \ {k}.

2. ψk = ξk,ℓ = 0,∀k ∈ H \ C: First note that for any k ∈ H \ C (i.e. an index k whose keys are

sampled honestly by the challenger and who is not corrupt by A), we have

ψk · (ad− bc)αγkw = ψk · (ad− bc)αγkwk + ψk · (ad− bc)αγkw̸=k, where w̸=k =
∑

ℓ∈H\{k}

wℓ.

By inspection, note that A cannot obtain the unique monomial (ad− bc)αγkwk from the
handles to its available elements for all k ∈ H\C. Particularly, it has access only to the handles
for elements [γk]2 ∈ L2, [(ad− bc)]1 , [(ad− bc)α]1 , [(ad− bc)αw]1 ∈ L1 and [(ad− bc)wk]1 ∈
L1, ∀k ∈ H \C. This implies that ψk = 0,∀k ∈ H \C. As a direct consequence, we also have
ξk,ℓ = 0,∀k ∈ H \ C.

The above analysis implies that the only non-zero coefficients ξk,ℓ in Eq. (2) are for the terms

(Λℓ,k − γkwℓ) =
∑

i∈[n1]
j∈[n2]

f
(k)
i,j sℓ,itj , where k ∈ C ∪M and ℓ ∈ H. This proves Claim 4.13.

Claim 4.13 establishes the structural form of Ω for Eq. (1) to be a successful ZtT query. Plugging
in the value of Λℓ,k in the expression for Ω in Claim 4.13, we get

Ω =
∑

k∈C∪M
ℓ∈H

ξk,ℓ · (ad− bc)α ·
∑
i∈[n1]
j∈[n2]

f
(k)
i,j sℓ,itj = (ad− bc)α

∑
i∈[n1]
j∈[n2]

∑
k∈C∪M
ℓ∈H

ξk,ℓf
(k)
i,j sℓ,itj (4)

Recall that the purpose of Ω in Eq. (1) was to cancel out the term involving (ad− bc)αsitj . In the
following and final claim, we establish the relation between coefficients ηi,j and ξk,ℓ from Eqs. (1)
and (2) respectively.

Claim 4.14. ηi,j =
∑

k∈C∪M
ξk,ℓf

(k)
i,j .

Proof. Plugging in Ω from Eq. (4) to Eq. (1), we have:

(ad− bc)α
∑
i∈[n1]
j∈[n2]

∑
k∈C∪M
ℓ∈H

ξk,ℓf
(k)
i,j sℓ,itj +

∑
i∈[n1]
j∈[n2]

{
−ηi,j · (ad− bc)αsitj

}
= 0

⇒
∑
i∈[n1]
j∈[n2]

ηi,j · sitj =
∑
i∈[n1]
j∈[n2]

∑
k∈C∪M
ℓ∈H

ξk,ℓf
(k)
i,j sℓ,itj [as (ad− bc)α is not identically 0]

25

Above, each monomial sitj are linearly independent. Thus, we have:

ηi,j · sitj =
∑

k∈C∪M
ℓ∈H

ξk,ℓf
(k)
i,j sℓ,itj =⇒ ηi,j · si =

∑
k∈C∪M
ℓ∈H

ξk,ℓf
(k)
i,j sℓ,i [as tj is not identically 0]

Plugging in si =
∑

ℓ∈H sℓ,i above, we further get:

∑
ℓ∈H

ηi,j · sℓ,i =
∑
ℓ∈H

(∑
k∈C∪M

ξk,ℓf
(k)
i,j

)
sℓ,i =⇒

∑
ℓ∈H

sℓ,i

(
ηi,j −

∑
k∈C∪M

ξk,ℓf
(k)
i,j

)
= 0

Again, since each sℓ,i is linearly independent and there exists at least one registered, uncorrupted

party, we have ηi,j =
∑

k∈C∪M ξk,ℓf
(k)
i,j as desired.

Claim 4.14 shows that any successful ZtT query in H3 will also be so in H4. Recall that for any
slot k ∈ C ∪M we have (x(0))TFky

(0) = (x(1))TFky
(1). This, along with Claim 4.14, implies the

following:

∑
i∈[n1],j∈[n2]

x
(0)
i · ηi,j(ad− bc) · y(0)j = (ad− bc)

∑
i∈[n1],j∈[n2]

x
(0)
i ·

(∑
k∈C∪M

ξk,ℓf
(k)
i,j

)
· y(0)j

= (ad− bc)
∑

k∈C∪M
ξk,ℓ

 ∑
i∈[n1],j∈[n2]

f
(k)
i,j x

(0)
i y

(0)
j

= (ad− bc)

∑
k∈C∪M

ξk,ℓ(x
(0))TFky

(0)

= (ad− bc)
∑

k∈C∪M
ξk,ℓ(x

(1))TFky
(1)

=
∑

i∈[n1],j∈[n2]

x
(1)
i · ηi,j(ad− bc) · y(1)j

Thus, switching β = 0 (in H3) to β = 1 (in H4) does not yield any distinguishing advantage for A.
Hence, H3 ≈s H4.

This ends the proof of Theorem 4.8.

4.3 RFE for Linear Functions

Let n,L ∈ poly(λ). For any (G1,G2,GT, p, [1]1 , [1]2 , ·) output by GGen(1λ), we construct in Fig. 4
an RFE for the message spaceM = Zn

p , the class of linear functions F being{(
f : Zn

p → [Zp]T , f(x) 7→
[
xTy mod p

]
T

)
: y ∈ Zn

p

}
,

and (an upper bound of) L number of users. Since any f ∈ F , f(x) 7→
[
xTy mod p

]
T

is fully
described by y,GT and p whereas GT, p are publicly fixed, we simply write y for such. We remark
that the scheme can be trivially extended to one support the function class mapping to xTy mod p,
i.e. in plain instead of as target group element, with appropriate bound B on the image space, by
letting the decryption algorithm solving for the discrete log solution.

26

Setup(1λ)

G := (G1,G2,GT, p, [1]1 , [1]2 , ·)← GGen(1λ)

for ℓ ∈ [L] : wℓ ←$ Zn
p ; rℓ ←$ Zp

return crs :=

(
G, ([wℓ]1)ℓ∈[L]

, ([rℓ]2)ℓ∈[L]

([rkwℓ]2)k,ℓ∈[L],k ̸=ℓ

)

Dec(skk, hskk, ct)

[d0]T := [c1]1 [h0]2 − [c0]1 [h1]2

[d1]T := [c0]1 [h0]2 v
T
kyk[

dT
2

]
T
:=
[
cT2
]
1
[h0]2 − [c0]1

[
hT
2

]
2

return
[
dT
2

]
T
· yk − ([d0]T − [d1]T)

KGen(crs, ℓ)

skℓ := vℓ ←$ Zn
p

pkℓ :=
(
[vℓ]1 , ([rkvℓ]2)k∈[L]\ℓ

)
return (pkℓ, skℓ)

Enc(mpk,x ∈ Zn
p)

s←$ Zp

[c0]1 := [s]1

[c1]1 :=
[
s
∑

ℓ∈[L](w
T
ℓ + vT

ℓ)yℓ

]
1[

cT2
]
1
:=
[
s
∑

ℓ∈[L] w
T
ℓ + xT

]
1

return ct :=
(
[c0]1 , [c1]1 ,

[
cT2
]
1

)

Aggr(crs, (pkℓ,yℓ)ℓ∈[L])

for k ∈ [L] :

[h0,k]2 := [rk]2

[h1,k]2 :=
[
rk
∑

ℓ∈[L]\{k}(w
T
ℓ + vT

ℓ)yℓ

]
2[

hT
2,k

]
2
:=
[
rk
∑

ℓ∈[L]\{k} w
T
ℓ

]
2

mpk :=
([∑

ℓ∈[L](w
T
ℓ + vT

ℓ)yℓ

]
1
,
[∑

ℓ∈[L] w
T
ℓ

]
1

)
hskk := ([h0,k]2 , [h1,k]2 ,

[
hT
2,k

]
2
)

return (mpk, (skk)k∈[L])

Figure 4: RLFE construction.

Theorem 4.15. RLFE (Fig. 4) is strongly compact (Definition 4.3).

Proof. Assuming that the groups description G and each element in Zp,G1,G2,GT are of description
size poly(λ), we count the size of mpk, hskℓ, and ct: |mpk|, |hskℓ|, |ct| = n · poly(λ). Notably, they
are of size independent of L.

Theorem 4.16. RLFE (Fig. 4) is correct (Definition 4.2).

Proof. Observe that for any decryptor k ∈ [L],

[d0]T =

s∑
ℓ∈[L]

(wT
ℓ + vT

ℓ)yℓ

1

[rk]2 − [s]1

rk ∑
ℓ∈[L]\{k}

(wT
ℓ + vT

ℓ)yℓ

2

=

srk ∑
ℓ∈[L]

(wT
ℓ + vT

ℓ)yℓ

T

−

srk ∑
ℓ∈[L]\{k}

(wT
ℓ + vT

ℓ)yℓ

T

=
[
srk(w

T
k + vT

k)yk

]
T
,

[d1]T = [s]1 [rk]2 v
T
kyk =

[
srkv

T
kyk

]
T
,

[
dT
2

]
T
=

s∑
ℓ∈[L]

wT
ℓ + xT

1

[rk]2 − [s]1

rk ∑
ℓ∈[L]\{k}

wT
ℓ

2

=

srk ∑
ℓ∈[L]

wT
ℓ + rkx

T

T

−

srk ∑
ℓ∈[L]\{k}

wT
ℓ

T

=
[
srkw

T
k + rkx

T
]
T
.

Therefore decryption outputs[
dT
2

]
T
· yk − ([d0]T − [d1]T) =

[
srkw

T
k + rkx

T
]
T
· yk − (

[
srk(w

T
k + vT

k)yk

]
T
−
[
srkv

T
kyk

]
T
)

=
[
srkw

T
kyk + rkx

Tyk

]
T
−
[
srkw

T
kyk

]
T
=
[
rkx

Tyk

]
T
,

as desired.

Our security proof relies on the following assumption.

27

Assumption 4.17. Let (G1,G2,GT, p, [1]1 , [1]2)← GGen(1λ). It holds that for any PPT A∣∣∣∣∣∣∣
Pr
[
A
(
[s]1 , ([aℓ]1 , [rℓ]2)ℓ∈[L] , ([rkaℓ]2)k,ℓ∈[L],k ̸=ℓ ,

[
s
∑

ℓ∈[L] aℓ

]
1

)
= 1
]

− Pr
[
A
(
[s]1 , ([aℓ]1 , [rℓ]2)ℓ∈[L] , ([rkaℓ]2)k,ℓ∈[L],k ̸=ℓ , [u]1

)
= 1
]

∣∣∣∣∣∣∣ ≤ negl(λ),

where s, u, aℓ, rℓ ←$ Zp for all ℓ ∈ [L].

The above can be seen as a q-type variant (where q = L) of the DDH assumption generalised
into the bilinear group setting: Removing all elements in G2, the statement is implied by DDH
(over G1) which says that [s]1 [aℓ]1 ≈c $ for any ℓ ∈ [L].

Remark 4.18. In Assumption 4.17, it is important that
[
s
∑

ℓ∈[L] aℓ

]
1
sums over all ℓ ∈ [L] instead

of any subset S ⊂ [L]. Otherwise, picking any k /∈ S, one can distinguish
[
s
∑

ℓ∈S aℓ
]
1
from random

via the pairing equation
[
s
∑

ℓ∈S aℓ
]
1
[rk]2

?
=
∑

ℓ∈S [s]1 [rkaℓ]2. With
[
s
∑

ℓ∈[L] aℓ

]
1
instead, since

[rkak]2 for any k ∈ [L] is not given out, the same attack does not apply.

In Appendix B, we prove that Assumption 4.17 holds in the generic group model.

Theorem 4.19. RLFE (Fig. 4) is selectively secure with static corruption (Definition 4.4) under
Assumption 4.17.

Proof. We define the following hybrids:

• Hb,0: This is same as the selective-security experiment for b ∈ {0, 1}, i.e. the distribution as
in Fig. 4 encrypting xTb .

• Hb,1: Same asHb,1, except that we compute
[
cT2
]
1
as
[
txT1 + (1− t)xT0 + s

∑
ℓ∈[L] k

T
ℓZ
]
1
, where

(x0,x1) are the challenge messages from the adversary interacting with the experiment, t, s ∈
Zp and kℓ ∈ Zn−1

p are uniformly random, and Z ∈ Zn−1×n
p independent of b (defined below).

Notice that H0,1 ≡ H1,1, since the distribution of all terms in
[
cT2
]
1
, hence also

[
cT2
]
1
, are indepen-

dent of b. We show in the remaining that Hb,0 ≈c Hb,1 under Assumption 4.17, which completes
the proof.

Suppose there exists a PPT A that distinguishes Hb,0 and Hb,1 with non-negligible probability.
We construction a PPT B against Assumption 4.17.

On input a problem instance
(
[s]1 , ([aℓ]1 , [rℓ]2)ℓ∈[L] , ([rkaℓ]2)k,ℓ∈[L],k ̸=ℓ , [u]1

)
where [u]1 is either[

s
∑

ℓ∈[L] aℓ

]
1
or uniformly random, B proceeds as follows:

• Receive the pair of challenge messages (x0,x1) and the set of corrupt users C ⊆ [L] from A.

• Let x̂ := x1−x0, let B := (x̂ | Z) a basis of Zn
p , where Z is arbitrary basis of the kernel space

x̂⊥ of x̂.

• Sample random kℓ ← Zn−1
p for all ℓ ∈ [L].

• Pass crs to A which is simulated as follows:

28

– For each ℓ ∈ [L], fetch [aℓ]1 and ([rk]2)k∈[L]\{ℓ} from input and let

[wℓ]1 :=([aℓ]1 |
[
kTℓ
]
1
)B−1,

[
rkw

T
ℓ

]
2
:= ([rkaℓ]2 | [rk]2 k

T
ℓ)B

−1 for all k ∈ [L] \ {ℓ}.

– Let crs :=
(
G, {[wℓ]1}ℓ∈[L], {[rℓ]2}ℓ∈[L], {[rkwℓ]2}k,ℓ∈[L],k ̸=ℓ

)
.

• For key query on user ℓ ∈ [L], if K[ℓ] = ⊥, same keys as follows:

– If ℓ ∈ [L] \ C is not corrupt: Sample random dℓ ← Zn
p , fetch [aℓ]1 and ([rk]2)k∈[L]\{ℓ}

from input, and compute pkℓ :=
([
vT
ℓ

]
1
,
[
rkv

T
ℓ

]
2

)
as[

vT
ℓ

]
1
:=
[
dT
ℓ

]
1
−
[
(aℓ|kTℓ)

]
1
B−1,

[
rkv

T
ℓ

]
2
:= [rk]2 d

T
ℓ − ([rkaℓ]2 | [rk]2 k

T
ℓ)B

−1.

– If ℓ ∈ C is corrupt: Sample random vℓ ∈ Zn
p , fetch ([rk]2)k∈[L]\{ℓ} from input, let

pkℓ :=
([
vT
ℓ

]
1
,
[
rkv

T
ℓ

]
2

)
and skℓ := vℓ.

Write the above to K[ℓ] and answer accordingly.

• Receive the message (x0,x1), the registrations (pkℓ,yℓ)ℓ∈[L], and randomness (vℓ)ℓ∈M for
malicious parties from A. Verify that (1) [L] \M ⊆ K, (2) for each ℓ ∈ M it holds that
pkℓ =

([
vT
ℓ

]
1
,
[
rkv

T
ℓ

]
2

)
for vℓ provided by A, and (3) for all ℓ ∈ C∪M it holds that xT0y = xT1y.

If all checks pass, let skℓ = vℓ for the malicious ℓ ∈M , and simulate the challenge ciphertext
ct∗ as follows:

– For each ℓ ∈ C ∪ M , write yℓ =: B

(
0
ỹℓ

)
where ỹℓ ∈ Zn−1

p (which is possible since

xT0yℓ = xT1yℓ, equivalently yℓ ∈ x̂⊥).

– Fetch [s]1 and [u]1 from input, let ct∗ := ([c0]1 , [c1]1 , [c2]1) where [c0]1 := [s]1 and

[c1]1 := [s]1
∑

ℓ∈[L]\C∪M

dT
ℓyℓ + [s]1

∑
ℓ∈C∪M

(kTℓ ỹℓ + vT
ℓyℓ),

[
cT2
]
1
:=

[u]1

∣∣∣ [s]1 ∑
ℓ∈[L]

kTℓ

B−1 +
[
xTb
]
1
.

• Pass ct∗ to A and return whatever A returns.

We analyse the outputs of B. First, notice that the simulated outputs can be expressed as
setting

wT
ℓ = (aℓ | kTℓ)B−1 for all ℓ ∈ [L]

vT
ℓ = dT

ℓ − (aℓ | kTℓ)B−1 for all ℓ ∈ [L] \ (C ∪M),

then computing all components except [c2]1 in the same way as in the scheme. In more details,
using the above two equations, the outputs can be expressed as

crs :
[
rkw

T
ℓ

]
2
=
[
rk(aℓ | kTℓ)B−1

]
2
= ([rkaℓ]2 | [rk]2 k

T
ℓ)B

−1,

pkℓ, ℓ ∈ [L] \ (C ∪M) :
[
rkv

T
ℓ

]
2
=
[
rk(d

T
ℓ − (aℓ | kTℓ))B−1

]
2
= [rk]2 d

T
ℓ − ([rkaℓ]2 | [rk]2 k

T
ℓ)B

−1

29

and for the challenge ciphertext ct∗,

[c1]1 = [s]1
∑

ℓ∈[L]\(C∪M)

dT
ℓyℓ + [s]1

∑
ℓ∈(C∪M)

(kTℓ ỹℓ + vT
ℓyℓ)

= [s]1
∑

ℓ∈[L]\(C∪M)

(vT
ℓ + (aℓ | kTℓ)B−1)yℓ + [s]1

∑
ℓ∈(C∪M)

((aℓ|kTℓ)B−1yℓ + vT
ℓyℓ)

=

s∑
ℓ∈[L]

((aℓ|kTℓ)B−1 + vT
ℓ)yℓ

1

=

s∑
ℓ∈[L]

(wT
ℓ + vT

ℓ)yℓ

1

where the second term in the second equality is due to kTℓ ỹℓ = (aℓ|kTℓ)B−1B

(
0
ỹℓ

)
= (aℓ|kTℓ)B−1yℓ.

Since (aℓ)ℓ∈[L] , (kℓ)ℓ∈[L] and (dℓ)ℓ∈[L]\C are all uniformly random, so are (wℓ)ℓ∈[L] and (vℓ)ℓ∈[L]\C .
The keys (pkℓ, skℓ) for the corrupt users ℓ ∈ C are computed honestly. Therefore, all components
of the simulated crs, pkℓ, skℓ as well as [c0]1 , [c1]1 in ct∗ are distributed same as in the scheme.

Finally we inspect
[
cT2
]
1
. Suppose [u]1 =

[
s
∑

ℓ∈[L] aℓ

]
1
, then

[
cT2
]
1
=

s∑
ℓ∈[L]

aℓ

1

∣∣∣∣∣ [s]1 ∑
ℓ∈[L]

kTℓ

B−1 +
[
xTb
]
1
=

s∑
ℓ∈[L]

(aℓ|kTℓ)B−1 + xTb

1

=

s∑
ℓ∈[L]

wT
ℓ + xTb

1

which is exactly the ciphertext component encrypting xb as in the real scheme, or Hb,0. Else if [u]1

is uniform, then write B−1 =:

(
xT

Z

)
, and we have

[
cT2
]
1
=

[u]1

∣∣∣ [s]1 ∑
ℓ∈[L]

kTℓ

B−1 +
[
xTb
]
1
=

uxT + s
∑
ℓ∈[L]

kTℓZ+ xT0 + b(xT1 − xT0)

1

.

Now observe x̂T = x̂T(x̂ | Z)
(
xT

Z

)
= (∥x̂∥2 | x̂TZ)

(
xT

Z

)
= ∥x̂∥2xT + x̂TZZ︸ ︷︷ ︸

=0

, where ∥x̂∥ denotes the

L2-norm of x̂. Equivalently xT = cx̂T = c(xT1 − xT0) where c := ∥x̂∥
−2. Hence

[
cT2
]
1
=

uc(xT1 − xT0) + xT0 + b(xT1 − xT0) + s
∑
ℓ∈[L]

kTℓZ

1

=

txT1 + (1− t)xT0 + s
∑
ℓ∈[L]

kTℓZ

1

,

where t := uc+ b is uniform over Zp since u is uniform and c ̸= 0 (since w.l.o.g. x̂ ̸= 0). Therefore[
cT2
]
1
is distributed same as in Hb,1.

9

We conclude that B perfectly simulates Hb,0 if the input [u]1 =
[
s
∑

ℓ∈[L] aℓ

]
1
, and perfectly

simulates Hb,1 if [u]1 is uniformly random. The proof is completed.

9For any malicious user ℓ ∈ M , decrypting
[
cT2
]
1
in this case correctly yields xT

0yℓ = xT
1yℓ since (xT

1 − xT
0)yℓ =

Zyℓ = 0 and cT2yℓ =
(
xT
0 + t(xT

1 − xT
0) + s

∑
ℓ∈[L] k

T
ℓZ

)
yℓ = xT

0yℓ.

30

5 Registered Traitor-Tracing

Traitor-tracing [CFN94] is a cryptographic primitive that allows to identify users involved in illegal
distribution of content. Below, we define and construct a registered version of traitor-tracing.

Our scheme is obtained by adapting existing transformations from quadratic functional encryp-
tion to traitor-tracing to the registered setting. We first show that the RQFE scheme of Section 4.2
implies predicate encryption for comparison (PEC) following [Gay16]. The next step is just to
recast PEC as a private linear broadcast encryption, a primitive first introduced in [BSW06]. This
in turn yields registered traitor-tracing by adapting the transformation presented in [BSW06] to
the registered setting.

5.1 Registered Private Linear Broadcast Encryption

We define and build a registered version of private linear broadcast encryption (PLBE), a primitive
that was first defined in [BSW06].

Definition 5.1 (Registered Private Linear Broadcast Encryption). A registered private linear
broadcast encryption (RPLBE) scheme for message space M, ciphertext space C and number of
users L is a tuple of PPT algorithms (Setup,KGen,Aggr,Enc,TrEnc,Dec):

• Setup(1λ) inputs the security parameter. It outputs a crs.

• KGen(crs, ℓ) inputs the crs and an index ℓ ∈ [L]. It outputs a pair of public and secret keys
(pkℓ, skℓ) associated with the index ℓ.

• Aggr(crs, (pkℓ)ℓ∈[L]) inputs crs and public keys (pkℓ)ℓ∈[L]. It outputs a master public key mpk and
helper secret keys (hskℓ)ℓ∈[L].

• Enc(mpk,m) inputs mpk and a message m ∈M. It outputs a ciphertext ct ∈ C.

• TrEnc(mpk, i,m) inputs mpk an index i ∈ [L], and a message m ∈ M. It outputs a ciphertext
ct ∈ C.

• Dec(skℓ, hskℓ, ct) inputs a secret key skℓ, a helper secret key hskℓ and a ciphertext ct. It outputs
a message m′.

Definition 5.2 (Correctness). An RPLBE is said to be correct if for all λ ∈ N, L ∈ poly(λ),
m ∈ M, crs ∈ Setup(1λ), (pkℓ, skℓ) ∈ KGen(crs, ℓ) where ℓ ∈ [L], and all i, j ∈ [L] such that
i ≤ j ≤ L,

Pr

m = m′

∣∣∣∣∣∣∣
(mpk, (hskℓ)ℓ∈[L])← Aggr(crs, (pkℓ)ℓ∈[L])

ct← TrEnc(mpk, i,m)

m′ ← Dec(skj , hskj , ct)

 = 1.

Definition 5.3 (Indistinguishability, Message-Hiding, Index-Hiding [BSW06]). An RPLBE scheme
Π is said to be indistinguishable, message-hiding, and index-hiding respectively, if for all PPT A it
holds that ∣∣∣Pr[ExpRBLPEx,0Π,A(1

λ) = 1
]
− Pr

[
ExpRBLPEx,1Π,A(1

λ) = 1
]∣∣∣

is negligible in λ, for x ∈ {Ind, MsgHide, IndexHide} respectively, where Expx,bΠ,A is defined in Fig. 5.

31

ExpRPLBEx,bΠ,A(1
λ)

crs← Setup(1λ)

((pkℓ)ℓ∈[L] , (rℓ)ℓ∈M , i ∈ [L], (m0,m1))← AKGen(·),Corr(·)(crs)

assert [L] \M ⊆ K
assert pkℓ ∈ KGen(crs, ℓ; rℓ) ∀ℓ ∈M
(mpk, (hskℓ)ℓ∈[L])← Aggr(crs, (pkℓ)ℓ∈[L])

if x = Ind :

if b = 0 : ct∗ ← Enc(mpk,m0)

else : ct∗ ← TrEnc(mpk, 1,m0)

if x = MsgHide : ct∗ ← TrEnc(mpk, L+ 1,mb)

if x = IndexHide : ct∗ ← TrEnc(mpk, i+ b,m0)

b′ ← A(ct∗)
return b′

KGenO(ℓ)

if K[ℓ] = ⊥
(pkℓ, skℓ)← KGen(crs, ℓ)

K[ℓ] := (pkℓ, skℓ)

(pkℓ, skℓ)← K[ℓ]

return pkℓ

CorrO(ℓ)

C := C ∪ {ℓ}
(pkℓ, skℓ)← K[ℓ]

return skℓ

Figure 5: Security experiments for RPLBE.

To construct RPLBE, we first recall a lemma from [Gay16] expressing the comparison predicate
as a quadratic function.

Lemma 5.4 ([Gay16]). Let L ∈ poly(λ), ℓ ∈ [L]. Define the predicate Fℓ : [L+1]×{1, 2} → {0, 1, 2},

Fℓ(i,m) =

{
m, if i ≤ ℓ
0, else

.

Then Fℓ(i,m) = xTi,mMℓyi,m for some Mℓ ∈ {0, 1}2
√
L×(

√
L+1) and

xi,m ∈ {0, 1, 2}2
√
L and yi,m ∈ {0, 1, 2}

√
L+1.

Moreover, Mℓ is efficiently computable given ℓ, and xi,m,yi,m are efficiently computable given
(i,m). The latter is denoted by (xi,m,yi,m)← Z(i,m).

We sketch the proof and refer to [Gay16] for a detailed analysis.

Proof Sketch. Let us assume that L ∈ N is a perfect square for convenience and let Z output

(02
√
L, 0

√
L+1) if the input is (L+ 1,m) for any m. Clearly this yields Fℓ(L+ 1,m) = 0 as wanted.

In the rest we consider i ∈ [L].
Fix any i ∈ [L]. Let (i1, i2) ∈ [

√
L]× [

√
L] be such that i = (i1 − 1)

√
L+ i2 and define (ℓ1, ℓ2)

analogously for ℓ. Let

ṽ = (0i1 ,1
√
L−i1) ∈ {0, 1}

√
L and v̂ = ei1 ∈ {0, 1}

√
L

where ei1 is the i1-th unit vector. Furthermore, let

v = (0i2−1,1
√
L−i2+1) ∈ {0, 1}

√
L.

32

Setup(1λ)

crs← RQFE.Setup(1λ, (Mℓ)ℓ∈[L])

return crs

Enc(mpk,m ∈ {1, 2})
(x1,m,y1,m)← Z(1,m)

ct← RQFE.Enc(mpk, (x1,m,y1,m))

return ct

KGen(crs, ℓ)

(pkℓ, skℓ)← RQFE.KGen(crs, ℓ)

return (pkℓ, skℓ)

TrEnc(mpk, i,m ∈ {1, 2})
(xi,m,yi,m)← Z(i,m)

ct← RQFE.Enc(mpk, (xi,m,yi,m))

return ct

Aggr(crs, (pkℓ)ℓ∈[L])

(mpk, {hskℓ}ℓ∈L)← RQFE.Aggr(crs, (pkℓ)ℓ∈[L])

return (mpk, {hskℓ}ℓ∈L)

Dec(skℓ, hskℓ, ct)

[m]T ← RQFE.Dec(skℓ, hskℓ, ct)

if [1]T = [m]T : return 1

else : return 2

Figure 6: RPLBE construction.

For any j ∈ [
√
L], denote ṽj the j-th entry of ṽ and analogously for v̂j , vj . Now Fℓ(i,m) = m if

and only if i ≤ ℓ, which implies either (1) i1 < ℓ1, equivalently ṽℓ1 = 1, or (2) i1 = ℓ1 and i2 ≤ ℓ2,
equivalently v̂ℓ1 · vℓ2 = 1. That is, ṽℓ1 + v̂ℓ1vℓ2 = 1. Thus, for any m ∈ {1, 2} and (ℓ1, ℓ2), we can

express m as m = m(ṽℓ1 + v̂ℓ1vℓ2) = xTi,mMℓyi,m, for xTi,m := (mṽT,mv̂T) ∈ {0, 1, 2}2
√
L,yT

i,m :=

(1,vT) ∈ {0, 1, 2}
√
L+1 and Mℓ ∈ {0, 1}2

√
L×(

√
L+1) is as follows:

Mℓ(r, c) =

{
1, if (r, c) = (ℓ1, 1) or (r, c) = (ℓ1 +

√
L, ℓ2 + 1)

0, else
.

We show that an RPLBE can be constructed using our weak RQFE in Fig. 2. Let L ∈ poly(λ)
andM = {1, 2}. For each ℓ ∈ [L], let function Fℓ and its corresponding matrix Mℓ be as defined
in Lemma 5.4. Also let Z be as defined in Lemma 5.4. Let RQFE be the weak RQFE constructed
in Fig. 2, with parameters n1 = 2

√
L, n2 =

√
L + 1, p > 2, and number of users L. In Fig. 6 we

describe an RPLBE for the message spaceM and L users.
Correctness of our construction follows directly from Lemma 5.4 and the correctness of RQFE.

The next theorem states its security.

Theorem 5.5 (Security). RPLBE (Fig. 6) is indistinguishable, message-hiding and index-hiding
(Definition 5.3) if RQFE is secure.

Proof. Indistinguishability follows trivially since both algorithms TrEnc(mpk, 1,m) and Enc(mpk,m)
are exactly the same.

Message-hiding follows from the security of RQFE: By definition of FL+1 from Lemma 5.4, for
any messages m0,m1 ∈ M and ℓ ∈ [L] we have Fℓ(L + 1,m0) = Fℓ(L + 1,m1) = 0, hence by
security of RQFE, the adversary learns nothing more than 0 in either experiment.

Index-hiding also follows from the security of RQFE: The index i or i + 1 is encoded only
in the RQFE message as (xi,m,yi,m) or (xi+1,m,yi+1,m). For any index ℓ ∈ C ∪ M of which
the adversary has the secret key, it holds that i ̸= ℓ, therefore either i < i + 1 ≤ ℓ so that
Fℓ(i,m) = Fℓ(i+1,m) = m, or i+1 > i > ℓ so that Fℓ(i) = Fℓ(i+1) = 0. Thus by security of RQFE,
a ciphertext encrypting (xi,m,yi,m) is indistinguishable from one encrypting (xi+1,m,yi+1,m).

Optimizations. In practice, a short, random seed ∈ {0, 1}λ can be used as the crs along with a
pseudorandom generator with a sufficient stretch, which gives a transparent setup for the RQFE.

Further, our RPLBE requires RQFE to compute quadratic functions associated to highly sparse,
binary matrices. Lemma 5.4 explicitly characterises this: ∀k ∈ [L], Mk contains exactly two 1s at

33

positions (k1, 1) and (k1 +
√
L, k2 + 1) for the natural map k 7→ (k1, k2) as specified above. We

show how this significantly reduces the number of operations in the KGen and Dec algorithms:
The KGen algorithm (Fig. 2) for each user ℓ ∈ [L] can compute the terms

[dkℓ,k]2 = sℓ,k1 [t1]2 + sℓ,k1+
√
L [tk2+1]2 + wℓ [γk]2

for matrix Mk with randomness

(sℓ, wℓ) ∈ Z2
√
L+1

p ,

where sℓ,i, [tj]2 denote the i-th and j-th elements in sℓ and [t]2 respectively. This reduces computing
each cross-term to only a constant number of operations (precisely, 3 exponentiations and 2 group
operations in G2). Similarly, the slot k decryptor (Fig. 2) can avoid computing the full pairing-
product in the term [D2]T. Instead, it can simply compute it as([

CT
3,k1

]
1
[C4,1]2

)
+
([

CT
3,k1+

√
L

]
1
[C4,k2+1]2

)
.

So the decryptor also need not parse the full ciphertext (that grows with
√
L). Rather, it needs to

parse only 10 group elements, namely:

[C1]1 , [C2]1 ,
(
[C3,k1]1 ,

[
C3,k1+

√
L

]
1

)
,
(
[C4,1]2 , [C4,k2+1]2

)
Computing [D2]T requires just 4 pairings reducing its total count to only 6 during decryption
(along with 5 group operations in GT and 1 in G2). Crucially, the total number of operations is
independent of all

√
L factors and is a constant.

Further, note that an index i ∈ [L] is encoded during encryption using binary vectors (xi,m,yi,m)
(where xi,m is also scaled with the messagem ∈ {1, 2}). Hence, one can further optimise the number
of operations in the Enc,TrEnc algorithms based on i and its equivalently encoded vectors ṽ, v̂ and
v as shown in Lemma 5.4.

5.2 Registered Traitor-Tracing

We are now ready to define and build registered traitor-tracing. The definitions and construction
from RPLBE largely follow the one from [BSW06], except that we now work in the registered
setting. We provide the definitions, construction and proofs below.

Definition 5.6 (Registered Traitor-Tracing). A registered traitor-tracing (RTT) scheme for a
message spaceM, ciphertext space C and number of users L consists of the following tuple of PPT
algorithms (Setup,KGen,Aggr,Enc,TraceD,Dec):

• Setup(1λ) inputs the security parameter. It outputs a crs.

• KGen(crs, ℓ) inputs the crs and an index ℓ ∈ [L]. It outputs a pair of public and secret keys
(pkℓ, skℓ) associated with the index ℓ.

• Aggr(crs, (pkℓ)ℓ∈[L]) inputs the crs and public keys (pkℓ)ℓ∈[L]. It outputs a master public key mpk
and helper secret keys (hskℓ)ℓ∈[L].

• Enc(mpk,m) inputs mpk and a message m ∈M. It outputs a ciphertext ct ∈ C.

34

• TraceD(mpk, ϵ) inputs mpk and a parameter ϵ. It has oracle access to a decoder D. It outputs an
identity i ∈ [L].

• Dec(skℓ, hskℓ, ct) inputs a secret key skℓ, a helper secret key hskℓ and a ciphertext ct. It outputs
a message m′.

Definition 5.7 (Correctness). An RTT is said to be correct if for all λ ∈ N, L ∈ poly(λ), m ∈M,
k ∈ [L], crs ∈ Setup(1λ), (pkℓ, skℓ) ∈ KGen(crs, ℓ) where ℓ ∈ [L], it holds that

Pr

m = m′

∣∣∣∣∣∣∣
(mpk, (hskℓ)ℓ∈[L])← Aggr(crs, (pkℓ)ℓ∈[L])

ct← Enc(mpk,m)

m′ ← Dec(skk, hskk, ct)

 = 1.

Definition 5.8 (Semantic Security and Traceability). An RTT is said to be semantically secure,
if for any PPT A it holds that∣∣∣Pr[ExpRTT-Security0Π,A(1

λ) = 1
]
− Pr

[
ExpRTT-Security1Π,A(1

λ) = 1
]∣∣∣ ≤ negl(λ),

and traceable against arbitrary collusion, if for any PPT A

Pr
[
ExpRTT-TraceabilityΠ,A(1

λ) = 1
]
≤ negl(λ),

where ExpRTT-SecuritybΠ,A and ExpRTT-TraceabilityΠ,A are defined in Fig. 7.

We also consider a selective security with static corruption version of the ExpRTT-SecuritybΠ,A(1
λ)

where the adversary A announces the messages (m0,m1) and the corruption set at the beginning
of the experiment, i.e. before seeing crs. Similarly, a scheme is said to be traceable with static cor-
ruption if the adversary in ExpRTT-TraceabilityΠ,A announces the corruption set at the beginning
of the experiment.

In Fig. 8 we present an RTT scheme based on an RPLBE scheme RPLBE, which is similar to
that in [BSW06] but recast in the registered setting. Its correctness follows directly from that of
RPLBE.

Theorem 5.9 (Semantic security). RTT (Fig. 8) is semantically secure (Definition 5.8) if RPLBE
is indistinguishable, message-hiding and index-hiding.

Proof. The proof follows the same reasoning as the one from [BSW06].

Hybrid H0. In this hybrid, the challenger sets b = 0.

Hybrid H1. This hybrid is identical to the previous one except that we set ct← RPLBE.TrEnc(mpk, 1,m0).
Indistinguishability of hybrids follow from the indistinguishability of RPLBE.

Hybrid H2. This hybrid is identical to the previous one except that we set ct← RPLBE.TrEnc(mpk, L+
1,m0). This is done via a sequence of sub-hybrids, where we replace ct← RPLBE.TrEnc(mpk, i,m0)
by ct ← RPLBE.TrEnc(mpk, i + 1,m0), for all i ∈ [L]. Indistinguishability of hybrids follow from
the index-hiding of RPLBE.

35

ExpRTT-SecuritybΠ,A(1
λ)

crs← Setup(1λ)

(m0,m1)← A(crs)
(pkℓ, skℓ)← KGen(crs, ℓ) ∀ℓ ∈ [L]

(mpk, (hsk)ℓ∈[L])← Aggr(crs, (pkℓ)ℓ∈[L])

ct∗ ← Enc(mpk,mb)

return A(ct∗)

KGenO(ℓ)

if K[ℓ] = ⊥
(pkℓ, skℓ)← KGen(crs, ℓ)

K[ℓ] := (pkℓ, skℓ)

(pkℓ, skℓ)← K[ℓ]

return pkℓ

ExpRTT-TraceabilityΠ,A(1
λ)

crs← Setup(1λ)

((pkℓ)ℓ∈[L] , (rℓ)ℓ∈M ,D)← AKGen(·),Corr(·)(crs)

assert [L] \M ⊆ K
assert pkℓ ∈ KGen(crs, ℓ; rℓ) ∀ℓ ∈M
(mpk, (hskℓ)ℓ∈[L])← Aggr(crs, (pkℓ)ℓ∈[L])

S∗ ← TraceD(mpk, ϵ)

b1 := (Pr [m← D(Enc(mpk,m)) | m←$M] > ϵ)

b2 := (S∗ = ∅ ∨ S∗ ⊈ S)

return (b1 ∧ b2)

CorrO(ℓ)

C := C ∪ {ℓ}; (pkℓ, skℓ)← K[ℓ]

return skℓ

Figure 7: Security experiments for RTT.

TraceD(mpk, ϵ)

W := 8λ(L/ϵ)2

for i ∈ [L+ 1] :

count := 0

for w ∈ [W] :

m←$ {0, 1}
ct← RPLBE.TrEnc(mpk, i,m)

if D(ct) = m : count := count+ 1

p̂i := count/W

S := {i ∈ [L] : p̂i − p̂i+1 ≥ ϵ/(4L)}
return i←$ S

Figure 8: TraceD algorithm of the RTT construction from RPLBE. Other algorithms
(Setup,KGen,Enc,Dec,Aggr) of the RTT are identical to those of RPLBE.

Hybrid H3. This hybrid is identical to the previous one except that we set ct← RPLBE.TrEnc(mpk, L+
1,m1). Indistinguishability of hybrids follow from the message-hiding of RPLBE.

Hybrid H4. This hybrid is identical to the previous one except that we set ct← RPLBE.TrEnc(mpk, 1,m1).
Indistinguishability of hybrids follow from the index-hiding of RPLBE.

Hybrid H5. This hybrid is identical to the previous one except that we set ct← RPLBE.Enc(mpk,m1).
Indistinguishability of hybrids follow from the indistinguishability of RPLBE.

36

Theorem 5.10 (Traceability). RTT (Fig. 8) is traceable against arbitrary collusion (Definition 5.8)
if RPLBE is indistinguishable, message-hiding and index-hiding.

Proof. The proof follows the same reasoning as the one from [BSW06]. We sketch the main ideas
here and refer to [BSW06] for a more detailed analysis (it is straightforward to adapt their proof
to the registered setting).

Let pi = Pr [D(RPLBE.TrEnc(mpk, i,m)) = m] and p = Pr [D(RPLBE.Enc(mpk,m)) = m]. Let
ϵ > 0 be a constant. The proof is divided into 3 different types of adversaries.

• Type 1: D is a ϵ-useful decoder for which |p− p1| > 1/P (λ) for some polynomial P .

• Type 2: D is a ϵ-useful decoder for which |p− p1| ≤ negl(λ) but Trace outputs an empty set.

• Type 3: D is a ϵ-useful decoder for which |p− p1| ≤ negl(λ) but Trace outputs a set which is
not contained in the set of colluders.

An adversary of type 1 can be used to break indistinguishability of the underlying RPLBE. An
adversary of type 2 can be used to break message-hiding of the underlying RPLBE. Finally, an
adversary of type 3 can be used to break the index-hiding of the underlying RPLBE.

Efficiency. Instantiating Fig. 8 with the RPLBE in Fig. 6 via our weak RQFE (Fig. 2), we obtain
a concretely efficient RTT scheme. The concrete costs are presented in Table 2. Recall that the
functions Fℓ used for RTT can be succinctly described from Lemma 5.4. Moreover, the crs consists
of random elements which can be succinctly described by a short seed to be expanded using a
random oracle.

5.3 RTT with Bounded Collusion

We also present an RTT based on an RLFE. Instantiating with our RLFE in Section 4.3, we obtain
an RTT with security in the standard model, at the cost of supporting only bounded number of
collusions and a ciphertext size that grows with the collusion-bound.

A t-bounded-collusion RTT has the same syntax as in Definition 5.6 except that t is fixed before
Setup and Trace additionally inputs a set S of at most t suspect identities. Its semantic security
and traceability are defined alike Definition 5.8, except that in the traceability experiment the
adversary can corrupt at most t users.

Let L, t ∈ poly(λ) with t < L. Let RLFE be the RLFE in Fig. 4 with parameter n = t+ 1, any
prime p, and L number of users. We construct a t-collusion-bounded RTT for the message space
M = {0, 1} and L users. Let x1, . . . ,xL,y ∈ Zt+1

p be arbitrary fixed vectors such that 1) xTℓy = 1
for all ℓ ∈ [L], and 2) any t choices of the xℓ’s are linearly independent, which are hardwired in all
algorithms below. Our construction is given in Fig. 9.

Both the scheme and its security proofs are conceptually similar to that of [ABP+17], but ours
in the registered setting. Correctness is easy to see: For any ℓ ∈ [L] we have xℓym = m by design
of xℓ,y. Semantic security follows from the security of RLFE.

Theorem 5.11 (Semantic security). Fig. 9 is a selective semantically secure with static corruption
RTT if RLFE is selective secure with static corruption.

Theorem 5.12 (Traceability against bounded collusion). Fig. 9 is traceable against a t collusion
and static corruption if RLFE is secure with static corruption.

37

Aggr(crs, (pkℓ)ℓ∈[L])

return (mpk, (hskℓ)ℓ∈L)← RLFE.Aggr(crs, (pkℓ,xℓ)ℓ∈[L])

Enc(mpk,m)

ct← RLFE.Enc(mpk,ym)

return ct

Dec(skℓ, hskℓ, ct)

[m]T ← RLFE.Dec(skℓ, hskℓ, ct)

if [m]T = [0]T : return 0

else : return 1

TraceD(mpk, ϵ, S)

W := 8λ(L/ϵ)2; parse S = {id1, ..., idt}
for i ∈ [0, t] :

count := 0; Si := {idi+1, . . . , idt}
for w ∈ [W] :

m←$ {0, 1}
v←$ Zt+1

p : xT
ℓv = 0 ∀ℓ ∈ Si ∧ xT

ℓv = 1−m ∀ℓ ∈ S \ Si

ct← RLFE.Enc(mpk,v)

if D(ct) = m : count := count+ 1

p̂i := count/W

for i ∈ [t] : if p̂i − p̂i+1 ≥ ϵ/(4L) then return idi

Figure 9: Bounded-collusion RTT from RLFE. The algorithms (Setup,KGen) are identical to those
of RLFE.

The proof follows the same rationale as that of [ABP+17], we sketch its main ideas for com-
pleteness. Assume that the adversary A is able to produce a decoder box for which Trace outputs
a identity not contained in the set of corrupted parties. The reduction R (against the selective
security of the underlying RLFE) starts by querying secret keys and forwarding them to A. Upon
receiving a decoder box D from A, R does the following: It behaves similarly as the Trace algo-
rithm by finding two messages m,m′ that decode successfully and finding an index i ∈ S such that
|pi − pi−1|. The reduction prepares two messages y0 = vi−1 and y1 = vi, where vj such that i)
xℓvj = m for ℓ ∈ Sj and ii) xℓvj = m′ for ℓ /∈ Sj . Note that the Trace should not have any infor-
mation about the secret key skxidi

, so from the perspective of the adversary and the reduction, they
should not be able to distinguish encryptions of these two messages. Upon receiving an encryption
ct from the challenger, the reduction runs ct on D and outputs whatever it outputs. For a detailed
proof, we refer to [ABP+17].

Efficiency. Instantiating Fig. 9 with the RLFE from Fig. 4, we obtain a t bounded-collusion RTT
scheme with the the concrete parameters presented in Table 2.

5.4 On Revocation Mechanisms

Traitor tracing enables tracking misbehaving users. However, once such users are caught, we may
require to revoke those users’ keys from the system. One simple solution for this is to re-initialize
the whole system once a traitor is caught. Here, we discuss some alternative approaches to add

38

crs pkℓ skℓ mpk hskℓ ct

RTT
(Section 5.2)

λ (†) (2
√
L+ 1)G1

(L− 1)G2
(1)G2

(2
√
L+ 1)G1

(
√
L+ 1)G2

(2)G2
(4
√
L+ 2)G1

(2
√
L+ 2)G2

t-RTT
(Section 5.3)

(L(t+ 1))G1

(L2(t+ 1))G2

(t+ 1)G1

((L− 1)(t+ 1))G2
(t+ 1)Zp (t+ 2)G1 (t+ 3)G2 (t+ 3)G1

Table 2: Comparing parameter sizes of our RTT schemes. The notation (d)Gb denotes d elements
of group Gb.

(†)Recall that a λ bit seed as the CRS can be expanded to (L+
√
L+1)G2 using, e.g.

a PRG or a hash.

revocation in the registered setting (possibly with mild modifications to the syntax) that are more
efficient that bootstrapping the system from scratch.

Generic Solution. Recall that in both (weak) RQFE (Fig. 2) and RLFE (Fig. 4), the master
public key mpk and each helper secret key hsk is computed as a product of source group ele-
ments contributed through the public keys of different users. Hence, revoking any subset of users
amounts to removing their contributions from the respective components in the (deterministically)
aggregated (mpk, {hski}i). Thus, given mpk and R at encryption, one can do the following: First,
compute a fresh mpk′ by removing the net contribution of the users’ public keys based on R (e.g.
by adding

[
−
∑

i∈R si
]
1
and

[
−
∑

i∈Rwi

]
1
to [s]1 and [w]1 respectively in the mpk of our RQFE

(Fig. 2)). Next, encrypt the message with mpk′ as some ct′ and publish ct = (ct′,R) as the final
ciphertext. Assuming the decryptor (for any slot i) has access to crs, it uses R in ct to recompute
the correct hsk′i similarly and use it to execute decryption. This is a generic solution and works
for both our RTT schemes in the unbounded and bounded collusion settings (based on RQFE and
RLFE respectively).

Bounded Collusion. Our generic approach requires R to contain respective public keys for
revoked users and the decryptor to access crs. There is another efficient way to revoke any set of
users (of bounded size) in our bounded-collusion RTT (Section 5.3). This solution follows from
[ABP+17] which also works in our registered setting with an additional hash function modeled as
a random oracle. Thus, we only sketch it here and refer to [ABP+17] for more details. Recall
that [ABP+17] ties each user i ∈ [L] with a random vector xi ∈ Zℓ

p, where ℓ = t + r + 1, t and
r are upper bounds on the number of traitors and revoked users. To revoke a set of users R, an
encryptor requires knowing the set {xi}i∈R. With this, it deterministically computes a vector vR
s.t. for all i ∈ R, ⟨xi,vR⟩ = 0 and encrypts a message m encoded as a vector m · vR using an
underlying linear FE scheme. Observe that a valid decryptor can still decrypt successfully, whereas
a revoked user cannot decrypt and learn m anymore. The underlying linear FE scheme must be
secure only against bounded collusion. To keep the scheme compact, we can sample the vectors
{xi} as xi ← H(i), where H is a hash function modeled as a random oracle, which allows us to
recompute {xi} on-the-fly.

6 More Applications

We describe more applications of our RFE schemes for inner products.

39

6.1 Single-Key Registered FE for Circuits

In the following we show that a registered FE for inner products can be generically transformed
into a registered FE for any polynomial-sized circuit although with security only against an attacker
that corrupts a single key. Thus, we obtain the same result as [SS10], except in the more desirable
registered settings.10 Our transformation is inspired by [ALS16], except that we manage to use
any RFE for inner products over Zp. I.e., we can use any of the schemes introduced in this work
to instantiate our transformation, whereas the transformation [ALS16] require inner products over
Z2. In fact, our main technical innovation will consist in emulating inner products of Z2 with a
scheme supporting inner products over Zp. Our transformation will consist of two main steps:

• In the first step, we leverage the well-known fact that any circuit C and input x admits a
randomized encoding [AIK06] C̃(x;R) for the computation of C(x), that can be computed
as a constant-degree polynomial (where all computations are done over Z2) as a function
of the input x and the randomness R. Linearizing, this function can be computed by an
inner-product for vectors of polynomial dimension. Since this is a standard transformation,
we omit further details here and we refer the reader to [ALS16] for a more precise treatment.

• We show how to use any RFE for inner products over Zp (for a prime p) to build an RFE
for inner products over Z2. One caveat of this transformation is that the resulting scheme is
secure against an adversary that corrupts a single key, even if the starting scheme is collusion-
resistant.

Putting together these two observations, we obtain our result. The remainder of this section is
devoted to the second transformation. First, note that trivial solutions (i.e. just performing the
computation over Zp) do not work, since they leak information about the inputs. To see this, note
that

0 = 0 + 0 (mod 2) = 1 + 1 (mod 2) but 0 + 0 (mod p) ̸= 1 + 1 (mod p)

which means that these two cases can be easily distinguished. To solve this issue we will use a
gaussian rounding in the exponent trick by [BBDP22], which allows us to emulate a Z2 subgroup
inside a Zp group in a private manner. We first recall the definition of gaussian rounding.

Definition 6.1 ([Pei10]). Let σ > 0. For any x ∈ R, the gaussian rounding ⌈x⌋σ is a random
variable supported on Z defined by ⌈x⌋σ = x+DZ−x,σ.

In other words, ⌈x⌋σ is a discrete gaussian centered on x ∈ R but supported on Z. We will use
the following convolution lemma which provides a simulation property for gaussian rounding.

Lemma 6.2 ([BBDP22]). Let ϵ > 0 be bounded by a sufficiently small constant and let σ1, σ2 ≥
ηϵ(Z). Then it holds for all x, y ∈ R that

⌈x⌋σ1
+ ⌈y⌋σ2

≈s ⌈x+ y⌋√
σ2
1+σ2

2
.

We bootstrap an RLFE over Zp into a single-key RLFE over Z2. Let RLFE = (Setup,KGen,Aggr,Enc,Dec)
be a single-key RLFE scheme over Zp (as the one from Section 4.3). We will show how to modify
it into a scheme RLFE2 = (Setup,KGen,Aggr,Enc,Dec) that supports computations over Z2. The
new scheme is identical to RLFE except for the algorithm Enc which works as follows:

10Unlike traditional bounded-collusion FE which deals with notions of simulation-based security, we focus only on
the indistiguishability based security here. Studying simulation security for RFE is out of scope and focus for this
paper.

40

RLFE2.Enc(mpk,x ∈ {0, 1}n) :
1. Parse x = (x1, . . . , xn). Set x̂ = (⌈x1 · p/2⌋σ , . . . , ⌈xn · p/2⌋σ) where σ = poly(λ).

2. Output RLFE.Enc(mpk, x̂).

Theorem 6.3 (Correctness). If RLFE is correct, then RLFE2 is correct.

Proof. Decryption works similarly as before: the decryptor uses RLFE.Dec(sky, ct) and obtains
[x̂ · yT]T. Let B = poly(λ). If there is a i ∈]−B,B[such that [i]T = [x̂ · yT]T, then output 0. Else
if [⌈p/2⌉+ i]T = [x̂ · yT]T, output 1. Else, output ⊥. Correctness holds as long as σ is chosen such
that a sample ⌈0⌋√nσ has norm lower than B except with negligible probability.

Theorem 6.4 (Security). Assuming that there is a secure single-key RLFE scheme over Zp, there
is a secure single-key RLFE over Z2.

Proof. The proof follows the sequence of hybrids:

Hybrid H0. This is the game where b = 0 and ct← RLFE.Enc(mpk,x0).

Hybrid H1. Let y ∈ {0, 1} be the vector such that sky is held by the adversary. Let wt(y) = t be
the Hamming weight of the vector and let yi ̸= 0 be a coordinate which is different than 0. We set
x̃0 = (0, . . . ,

⌈
x0 · yT

⌋
√
tσ2 , . . . , 0) which is 0 everywhere except in the i-th position, and compute

ct← RLFE.Enc(mpk, x̃0). We have that∑
yi · ⌈x0,i · p/2⌋σ ≈s

⌈
x0 · yT

⌋
√
tσ2

by Lemma 6.2. We can additionally invoke the security of the RLFE to establish indistinguishability
of hybrids.

Hybrid H2. This hybrid is identical to the previous one except that ct ← RLFE.Enc(mpk, x̃1)
where x̃1 is defined similarly as before. Indistinguishability of hybrids follow from the security of
the RLFE.

Hybrid H3. In this hybrid we replace ct ← RLFE.Enc(mpk,x1). Indistinguishability from H2

follows from Lemma 6.2 and the security of RLFE, in a similar way as before.

6.2 Registered Threshold Encryption

Definition 6.5 (Registered Threshold Encryption). A registered threshold encryption (RTE)
scheme for for a message space M, ciphertext space C, number of users L and threshold t ≤ L
consists of the tuple of PPT algorithms (Setup,KGen,Aggr,Enc,PartDec,Dec):

• Setup(1λ) inputs the security parameter. It outputs a crs.

• KGen(crs, ℓ) inputs a crs and an index ℓ ∈ [L]. It outputs a pair of public and secret keys (pkℓ, skℓ)
associated with the index ℓ.

• Aggr(crs, (pkℓ)ℓ∈[L]) inputs a crs and public keys (pkℓ)ℓ∈[L]. It outputs a master public key mpk
and helper decryption keys (hskℓ)ℓ∈[L].

41

• Enc(mpk,m) inputs mpk and a message m ∈M. It outputs a ciphertext ct ∈ C.

• PartDec(skℓ, hskℓ, ct) inputs a secret key skℓ, a helper decryption key hskℓ and a ciphertext ct. It
outputs a share shareℓ.

• Dec((shareℓ)ℓ∈T) inputs a set of shares (shareℓ)ℓ∈T . It outputs a message m′.

Definition 6.6 (Correctness). An RTE is said to be correct if for all λ ∈ N, L ∈ poly(λ), m ∈M,
t, k ∈ [L], crs ∈ Setup(1λ), (pkℓ, skℓ) ∈ KGen(crs, ℓ) where ℓ ∈ [L], and T ⊆ [L] with |T | ≥ t, it holds
that

Pr

m = m′

∣∣∣∣∣∣∣∣∣∣
(mpk, (hskℓ)ℓ∈[L])← Aggr(crs, (pkℓ)ℓ∈[L])

ct← Enc(mpk,m)

shareℓ ← PartDec(skℓ, hskℓ, ct) ∀ℓ ∈ T
m′ ← Dec((shareℓ)i∈T)

 = 1.

We define both semantic and simulation security of an RTE. The latter is defined in a similar
fashion as in [BGG+18] which, informally, states that partial decryptions by honest users leak
nothing about secret keys of honest users. This is captured by the existence of a simulator that
can simulate partial decryptions without using honest parties secret keys.

Definition 6.7 (Semantic and Simulation Security). An RTE scheme Π is said to be semantically
secure, if for all PPT A it holds that∣∣∣Pr[ExpRTE0

Π,A(1
λ) = 1

]
− Pr

[
ExpRTE1

Π,A(1
λ) = 1

]∣∣∣ ≤ negl(λ),

and it is said to be simulation-secure, if there exists a PPT, stateless PartDecSim such that for all
PPT A and k ∈ poly(λ) it holds that∣∣∣Pr[ExpRTE-Sim0

Π,A(1
λ) = 1

]
− Pr

[
ExpRTE-Sim1

Π,A(1
λ) = 1

]∣∣∣
is at most negl(λ), where ExpRTEb

Π,A and ExpRTE-Simb
Π,A are defined in Fig. 10.

Our RTE construction makes use of Shamir’s secret-sharing, which we recall: to “t-out-of-L”
share a secret m, sample t − 1 random field elements, i.e. some random p ∈ Zt−1

p for some prime
p. Let each part ℓ ∈ [L] be assigned a label ℓ, the share for party ℓ is shareℓ := (m,pT)yℓ where
yT
ℓ = (1, ℓ, . . . , ℓt−1). To reconstruct the secret m given any set T of shares where |T | = t, say from

users ℓ1, . . . , ℓt, compute

g
(
(shareℓ)ℓ∈T

)
= (shareℓ1 , . . . , shareℓt)

(
yℓ1 . . .yℓt

)−1
(1, 0, . . . , 0)T (5)

which yields (m,pT)(1, 0, . . . , 0)T = m. Security of secret-sharing says that m is information-
theoretically hidden given any set of less than t shares.

Equipped with this, we construct below an RTE scheme for the message space Zp, for L ∈
poly(λ) number of users and a threshold t ≤ L. Fix yℓ = (1, ℓ, . . . , ℓt−1) for all ℓ ∈ [L]. Let
function g be as defined in Eq. (5). Let RLFE be a linear RFE for the function class F containing
fℓ : Zt

p×Zt
p → Zp : fℓ(x) = xTyℓ mod p (or else outputting some representation of xTyℓ mod p, e.g.

as a group element) for all x ∈ Zt
p and ℓ ∈ [L]. For example, both Fig. 4 and Fig. 2 can be used to

instantiate our construction, and with the latter giving a transparent setup.

42

ExpRTEb
Π,A(1

λ)

crs← Setup(1λ)

((pkℓ)ℓ∈[L] , (rℓ)ℓ∈M , (m0,m1))← AKGen(·),Corr(·)(crs)

assert [L] \M ⊆ K
assert pkℓ ∈ KGen(crs, ℓ; rℓ) ∀ℓ ∈M
assert |C ∪M | < t

(mpk, (hskℓ)ℓ∈[L])← Aggr(crs, (pkℓ)ℓ∈[L])

ct∗ ← Enc(mpk,mb)

return A(ct∗)

ExpRTE-Simb
Π,A(1

λ)

crs← Setup(1λ)

((pkℓ)ℓ∈[L] , (rℓ)ℓ∈M , (mi)i∈[k])← A
KGen(·),Corr(·)(crs)

assert [L] \M ⊆ K
assert pkℓ ∈ KGen(crs, ℓ; rℓ) ∀ℓ ∈M
(mpk, (hskℓ)ℓ∈[L])← Aggr(crs, (pkℓ)ℓ∈[L])

ct∗i ← Enc(mpk,mi) ∀i ∈ [k]

D[i] := (mi, ct
∗
i) ∀i ∈ [k]

if b = 0 : b′ ← APartDec((rℓ)ℓ∈M ,·,·)((ct∗i)i∈[k])

if b = 1 : b′ ← APartDecSim((pkℓ)ℓ∈[L],(skℓ)ℓ∈C ,(rℓ)ℓ∈M ,D,·,·)((ct∗i)i∈[k])

return b′

KGenO(ℓ)

if K[ℓ] = ⊥
(pkℓ, skℓ)← KGen(crs, ℓ)

K[ℓ] := (pkℓ, skℓ)

(pkℓ, skℓ)← K[ℓ]

return pkℓ

CorrO(ℓ)

C := C ∪ {ℓ}
(pkℓ, skℓ)← K[ℓ]

return skℓ

PartDecO((rℓ)ℓ∈M , ℓ, ct)

if ct /∈ D : return ⊥
if ℓ ∈M :

(pkℓ, skℓ)← KGen(crs, ℓ; rℓ)

else : (pkℓ, skℓ)← K[ℓ]

shareℓ ← PartDec(skℓ, ct)

return shareℓ

Figure 10: Security experiment for RTE.

Setup(1λ)

crs← RLFE.Setup(1λ)

return crs

KGen(crs, ℓ)

(pkℓ, skℓ)← RLFE.KGen(crs, ℓ)

return (pkℓ, skℓ)

Aggr(crs, (pkℓ)ℓ∈[L])

(mpk, (hskℓ)ℓ∈L)← RLFE.Aggr(crs, (pkℓ,yℓ)ℓ∈[L])

return (mpk, (hskℓ)ℓ∈L)

PartDec(skℓ, hskℓ, ct)

return shareℓ ← RLFE.Dec(skℓ, hskℓ, ct)

Enc(mpk,m)

p←$ Zt−1
p

ct← RLFE.Enc(mpk, (m,pT))

return ct

Dec((shareℓ)ℓ∈T)

return g
(
(shareℓ)ℓ∈T

)
Figure 11: RTE construction.

Remark 6.8. In case RLFE is weak, we modify the construction such that (yℓ)ℓ∈[L]) is input to
RLFE.Setup instead of to RLFE.Aggr.

Remark 6.9. In the group setting where RLFE may output some group elements, e.g. in the target
group for both of our RFE constructions, the Dec algorithm is modified to evaluate the function g in
the corresponding group as well. For example, given

[
(shareℓ)ℓ∈T

]
T
, it outputs

[
g
(
(shareℓ)ℓ∈T

)]
T
=

43

[m]T.

Theorem 6.10 (Correctness). Fig. 11 is correct if RLFE is correct.

Proof. By correctness of RLFE we have shareℓ = (m,pT)·yℓ. The rest follows from linear algebra.

Theorem 6.11 (Semantic security). Fig. 11 is semantically secure if RLFE is secure.

Proof. The proof follows from the following hybrids.

Hybrid Hb,0. This is the real security game.

Hybrid Hb,1. In this hybrid, we change how ct is generated: first, for each ℓ ∈ C ∪M , sample a
simulated ℓ-th share sℓ ←$ Zp. Then, sample p←$ Zt−1

p subject to the constraint (m0,p
T
0) ·yℓ = sℓ.

Finally, compute ct← RLFE.Enc(mpk, (mb,p)).
Since |C ∪M | < t, the distributions Hb,0 and Hb,1 are identical (from the security of Shamir’s

secret-sharing). Then, the indistinguishability of H0,1 and H1,1 follows from the security of RLFE.

Theorem 6.12 (Simulation security). Fig. 11 is simulation secure.

Proof. Let L be a list which is initially empty. Consider the following simulator:

PartDecSim((rℓ)ℓ∈M , ℓ, ct):

• If ct /∈ D then abort. Else look up (mi, ct
∗
i) = D[i] such that ct = ct∗i .

• If L[i] = ⊥:

– If ℓ ∈M , use provided randomness to generate keys, i.e. run (pkℓ, skℓ)← KGen(crs, ℓ; rℓ).
If ℓ ∈ C \M , look up (pkℓ, skℓ)← K[ℓ].

– For all ℓ ∈ C ∪M , compute sharei,ℓ ← PartDec(skℓ, ct).

– Sample random pi ∈ Zt−1
p subject to (mi,p

T
i) ·yℓ = sharei,ℓ for all ℓ ∈ C ∪M . Note that

if |C ∪M | ≥ t then pi is uniquely determined.

– Write L[i] := (mi,p
T
i).

• Output (mi,p
T
i) · yℓ.

Clearly the above simulator does not require skℓ for users ℓ ∈ K \ C who are honest. By the
correctness of RLFE, for all ℓ ∈ K and sharei,ℓ ← PartDec(skℓ, ctj), it holds that sharei,ℓ = (mi,p

T
i)

for some random pi subject to the above evaluation constraint. Hence the output of PartDecSim
constructed above has the same distribution as PartDecO.

Efficiency. Instantiating Fig. 11 with our weak RQFE (Fig. 2) (serving as an RLFE), we obtain
an RTE scheme with the following efficiency:

|crs| , |pkℓ| = L · poly(λ), |mpk| , |skℓ| , |hskℓ| |shareℓ| = poly(λ), |ct| = t · poly(λ).

Remark 6.13. The scheme presented above can be upgraded to allow for an adaptive (or dynamic)
choice of the threshold at encryption time (instead of restricting it at the setup), as long as the
chosen threshold T < t. This can be done by choosing a random p̃ ∈ ZT−1

p and letting the trailing
be zeros, i.e. use pT = (p̃T,0T) ∈ Zt−1

p during encryption. We formalise this below.

44

6.2.1 Choosing Threshold Dynamically at Encryption

In Fig. 11, the threshold t is fixed as a parameter of the scheme, and Remark 6.13 suggests a way
for adaptive threshold choice at encryption time as long as the chosen threshold is T ≤ t. A trivial
way to extend this to allow for arbitrary threshold T ≤ L would be to instantiate Fig. 11 with
t = L, which would however blow up the ciphertext size to O(L), resulting in a trivial efficiency.
Below, we sketch an alternative solution for an adaptive choice of threshold during encryption for
arbitrary T ≤ L which still achieves short ciphertext, i.e. |ct| = T · poly(λ).

Let RTEt be an RTE with fixed threshold t ∈ [L]. For simplicity, we assume that L = 2k for
some k ∈ N (the most general case follows by assuming k = ⌈logL⌉). At a high level, parties run
k independent executions of the protocol setting t = 2i for each i ∈ [k]. Each of the components
grow only by a factor of k = O(logL). If an encryptor wants to encrypt a message with respect
to a threshold T , it encrypts the message with respect to the instance i such that 2i−1 < T ≤ 2i.
Note that the ciphertext only grows by a factor of at most 2 comparing to Fig. 11. In more detail,
the scheme works as follows:

• The new crs = {crsi}i∈[k] where crsi ← RTE2i .Setup(1
λ).

• Each party computes pkℓ = {pk
(i)
ℓ }i∈[k] and skℓ = {sk

(i)
ℓ }i∈[k] where (pk

(i)
ℓ , sk

(i)
ℓ)← RTE2i .KGen(crsi, ℓ).

• The new master public key is mpk = {mpki}i∈[k] and the helper secret keys hskℓ = {hsk
(i)
ℓ }i∈[k]

where (mpki, hsk
(i)
1 , . . . , hsk

(i)
L)← RTE2i .Aggr(crsi, pk

(i)
1 , . . . , pk

(i)
L).

• Let T ∈ [L] be the threshold chosen at encryption time. Let i be such that 2i−1 < T ≤ 2i.
Compute ct← RTE2i .Enc(mpki,m).

• Each party ℓ can compute partial decryptions using their own secret key sk
(i)
ℓ .

It is easy to see that the sizes of crs, mpk, pkℓ and skℓ are a factor of O(logL) larger than in
the original scheme. The ciphertext has size 2i · poly(λ) where 2i ≤ 2T since T > 2i−1.

6.2.2 Outlook: Broadcast-Efficient Secret Sharing

Other than being a distributed threshold encryption, Fig. 11 additionally provides a mechanism to
broadcast secret shares efficiently. We envision the following scenario:

• A dealer wants to share a secret message m to L parties using a t-out-of-L secret sharing
scheme.

• The dealer is connected to the parties via a broadcast channel (e.g. a WiFi network) and
knows the public key of each party.

• The dealer wants to send each share to the respective party, while minimising the overall
communication complexity.

A trivial solution to this setting is to encrypt each share individually, which incurs a total commu-
nication cost of O(L). A more economical solution is to use our RTE Fig. 11 with threshold t and
broadcast the ciphertext ct ← RTE.Enc(mpk,m), so that each party recovers its secret share of m
by running partial decryption. The communication complexity of this approach is O(t).

45

6.3 Distributed Broadcast with Transparent Setup

We now outline how a registered threshold encryption generically implies a distributed broadcast
encryption [FWW23, KMW23]. In particular, instantiating Fig. 11 with our weak RQFE (Fig. 2),
we obtain a pairing-based distributed broadcast encryption scheme with a transparent setup. At
first glance, this may appear to be a trivial implication, by simply setting t = 1. However there is a
slight syntax mismatch: distributed broadcast encryption allows one to encrypt with respect to any
subset of users, whereas registered threshold encryption only allows one to encrypt with respect to
the full set of users (though any t-sized subset can jointly decrypt). Fortunately, our scheme allows
one to aggregate a subset of keys, without affecting the correctness of the construction. Concretely,
let RTE be an RTE with t = 1.

Setup(1λ) : The setup algorithm simply runs crs← RTE.Setup(1λ).

KGen(crs, ℓ) : The key generation runs (pkℓ, skℓ)← RTE.KGen(crs, ℓ).

Enc((pks)s∈S , S,m) : On input a set of public keys (pks)s∈S for S ⊆ [L] and a message m, the
encryption algorithm proceeds as follows.

• Compute (mpk, hsk1, . . . , hskL)← RTE.Aggr(crs, (pks)s∈S).

• Return ct← RTE.Enc(mpk,m).

Dec(skk, S, ct) : On input a secret key for user k, the set S and a ciphertext ct with k ∈ S, the
decryption algorithm of the k user returns RTE.PartDec(skℓ, hskℓ, ct).

Correctness and security follow by a straightforward reduction to the underlying RTE which we omit
here. We remark that, although the functionality of RTE does not generically support aggregation
of subsets of keys (as opposed to the full set pk1, . . . , pkL), our RTE Fig. 11, when instantiated
with either of our RFE schemes, allows this. Therefore, one can improve the concrete efficiency of
the scheme by leveraging this additional property to avoid sampling “dummy” public keys in the
encryption/decryption algorithms.

7 Benchmarks

We implemented a prototype11 of our RPLBE scheme (Section 5.1) in python. As explained in
Section 5, RPLBE immediately implies a register traitor-tracing, without any modification to the
algorithms. For the implementation we set L to be a perfect square, and we ran our benchmarks
with different values of L ∈ {16, 64, 256, 1024}. We calculated the time it took to run the Setup
and Aggr for each L. For the KGen and Enc and Dec we calculated the average times for each slot,
over 100 repetitions of the experiment. The benchmarks were conducted on a personal computer
with a AMD Ryzen 5 5600X 3.7GHz CPU and 32GB of RAM running Arch Linux with kernel
6.7.1-arch1-1. In Table 3 we report the measurements for our benchmarks plotted in Fig. 12.

Storage. The storage requirement of our RPLBE is quite modest: In the RPLBE scheme with
L = 1024, we calculated the sizes of the expanded crs, mpk, and the ciphertext, and they were
135KB, 6.6KB and 6.7KB respectively. Furthermore, the sizes of a user’s public key, secret key,
and helper secret key are 102.5KB, 97B, and 194B, respectively.

11https://anonymous.4open.science/r/RPLBE-2F21/

46

https://anonymous.4open.science/r/RPLBE-2F21/

Group Operations. For the choice of pairings, we used the BLS12-381 elliptic curve via the
petrelic [LG22] Python wrapper around RELIC [AGM+20]: each element in G1,G2,GT is repre-
sented with 49, 97, and 384 bytes, respectively. On our machine, exponentiation in G1 and G2

takes an average of 6.6 and 5.8 microseconds, respectively, and each pairing evaluation takes 0.64
milliseconds.

Time (ms)

L Setup KGen Aggr Enc Dec

16 3.86 9.04 1.06 7.26 4.04
64 13.31 35.14 14.56 13.53 4.04
256 48.94 138.17 226.93 26.11 4.04
1024 189.57 553.87 3576.37 51.2428 4.04

Table 3: Runtimes of our RPLBE algorithms for different L.

Figure 12: Runtime plots of RPLBE algorithms with a growing number of users, interpolated from
the measurements taken from L = {16, 64, 256, 1024}. Both axes are in log-scale.

8 Conclusions

In this work we introduced the concept of registered traitor-tracing, a new model for traitor-
tracing without a trusted authority, where each user samples their own key locally. We proposed
two schemes based on bilinear maps in the bounded and unbounded collusion settings. Our bench-
marks suggest that our schemes can be used in real-world applications, without adding exorbitant
computational costs. An important future direction is to explore constructions of registered traitor-
tracing that are post-quantum secure. Another potential direction is to study registered trace and
revoke systems more formally and build schemes from different assumptions.

Acknowledgments

Pedro Branco is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) – Project number 537717419 and partially funded by the German Federal Ministry of
Education and Research (BMBF) in the course of the 6GEM research hub under grant number

47

16KISK038. M.M. is supported by the European Union (ERC AdG REWORC - 101054911).
G.M. is supported by the European Research Council through an ERC Starting Grant (Grant
agreement No. 101077455, ObfusQation). G.M. wishes to thank Hoeteck Wee for many discussions
on traitor tracing and functional encryption and for pointing to [Gay16].

References

[ABDP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple func-
tional encryption schemes for inner products. In Jonathan Katz, editor, PKC 2015:
18th International Conference on Theory and Practice of Public Key Cryptography,
volume 9020 of Lecture Notes in Computer Science, pages 733–751, Gaithersburg,
MD, USA, March 30 – April 1, 2015. Springer, Heidelberg, Germany. 5, 9, 10

[ABP+17] Shweta Agrawal, Sanjay Bhattacherjee, Duong Hieu Phan, Damien Stehlé, and Shota
Yamada. Efficient public trace and revoke from standard assumptions: Extended
abstract. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, ACM CCS 2017: 24th Conference on Computer and Communications
Security, pages 2277–2293, Dallas, TX, USA, October 31 – November 2, 2017. ACM
Press. 7, 37, 38, 39

[AGM+20] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. RELIC is
an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic,
2020. 47

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. Comput. Complex., 15(2):115–162, 2006.
40

[AKYY23] Shweta Agrawal, Simran Kumari, Anshu Yadav, and Shota Yamada. Broadcast, trace
and revoke with optimal parameters from polynomial hardness. In Carmit Hazay and
Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, pages 605–636,
Cham, 2023. Springer Nature Switzerland. 2, 4

[ALS16] Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption
for inner products, from standard assumptions. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology – CRYPTO 2016, Part III, volume 9816 of
Lecture Notes in Computer Science, pages 333–362, Santa Barbara, CA, USA, Au-
gust 14–18, 2016. Springer, Heidelberg, Germany. 40

[BBDP22] Zvika Brakerski, Pedro Branco, Nico Döttling, and Sihang Pu. Batch-OT with optimal
rate. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology –
EUROCRYPT 2022, pages 157–186, Cham, 2022. Springer International Publishing.
40

[BCFG17] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay.
Practical functional encryption for quadratic functions with applications to predicate
encryption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
– CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages

48

https://github.com/relic-toolkit/relic

67–98, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.
9, 14, 15

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R.
Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold fully homo-
morphic encryption. In Hovav Shacham and Alexandra Boldyreva, editors, Advances
in Cryptology – CRYPTO 2018, pages 565–596, Cham, 2018. Springer International
Publishing. 42

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kil-
ian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes
in Computer Science, pages 1–18, Santa Barbara, CA, USA, August 19–23, 2001.
Springer, Heidelberg, Germany. 4

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing
with short ciphertexts and private keys. In Serge Vaudenay, editor, Advances in
Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science,
pages 573–592, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg,
Germany. 2, 4, 6, 31, 34, 35, 37

[BW06] Dan Boneh and Brent Waters. A fully collusion resistant broadcast, trace, and revoke
system. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, edi-
tors, ACM CCS 2006: 13th Conference on Computer and Communications Security,
pages 211–220, Alexandria, Virginia, USA, October 30 – November 3, 2006. ACM
Press. 2, 4

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture
Notes in Computer Science, pages 480–499, Santa Barbara, CA, USA, August 17–21,
2014. Springer, Heidelberg, Germany. 2, 4

[CES21] Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. Optimizing registration based
encryption. In Maura B. Paterson, editor, Cryptography and Coding, pages 129–157,
Cham, 2021. Springer International Publishing. 4

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo Desmedt, editor,
Advances in Cryptology – CRYPTO’94, volume 839 of Lecture Notes in Computer
Science, pages 257–270, Santa Barbara, CA, USA, August 21–25, 1994. Springer,
Heidelberg, Germany. 1, 4, 31

[DF03] Yevgeniy Dodis and Nelly Fazio. Public key trace and revoke scheme secure against
adaptive chosen ciphertext attack. In Yvo Desmedt, editor, PKC 2003: 6th Interna-
tional Workshop on Theory and Practice in Public Key Cryptography, volume 2567 of
Lecture Notes in Computer Science, pages 100–115, Miami, FL, USA, January 6–8,
2003. Springer, Heidelberg, Germany. 4

49

[DKL+23] Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta,
and Ahmadreza Rahimi. Efficient laconic cryptography from learning with errors. In
Carmit Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT
2023, pages 417–446, Cham, 2023. Springer Nature Switzerland. 2, 4

[DP23] Pratish Datta and Tapas Pal. Registration-based functional encryption. IACR Cryp-
tol. ePrint Arch., page 457, 2023. 2, 3, 4, 7

[DPY23] Pratish Datta, Tapas Pal, and Shota Yamada. Registered fe beyond predicates:
(attribute-based) linear functions and more. Cryptology ePrint Archive, Paper
2023/457, 2023. https://eprint.iacr.org/2023/457. 5

[FFM+23] Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza
Rahimi, and Daniele Venturi. Registered (inner-product) functional encryption. In
Advances in Cryptology - ASIACRYPT 2023 - 29th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China, De-
cember 4-8, 2023, Proceedings, Lecture Notes in Computer Science. Springer, 2023.
2, 3, 4, 5, 6, 7, 12

[FKdP23] Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo commitments:
Registration-based encryption and key-value map commitments for large spaces. In
Advances in Cryptology - ASIACRYPT 2023 - 29th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China, De-
cember 4-8, 2023, Proceedings, Lecture Notes in Computer Science. Springer, 2023.
2, 4

[FWW23] Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption:
Registered abe, flexible broadcast, and more. In Helena Handschuh and Anna Lysyan-
skaya, editors, Advances in Cryptology – CRYPTO 2023, pages 498–531, Cham, 2023.
Springer Nature Switzerland. 2, 4, 46

[Gay16] Romain Gay. Functional encryption for quadratic functions, and applications to
predicate encryption. Cryptology ePrint Archive, Report 2016/1106, 2016. http:

//eprint.iacr.org/2016/1106. 7, 31, 32, 48

[GHM+19] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi,
and Sruthi Sekar. Registration-based encryption from standard assumptions. In
Dongdai Lin and Kazue Sako, editors, PKC 2019: 22nd International Conference on
Theory and Practice of Public Key Cryptography, Part II, volume 11443 of Lecture
Notes in Computer Science, pages 63–93, Beijing, China, April 14–17, 2019. Springer,
Heidelberg, Germany. 2, 4, 6

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza
Rahimi. Registration-based encryption: Removing private-key generator from IBE.
In Amos Beimel and Stefan Dziembowski, editors, TCC 2018: 16th Theory of Cryp-
tography Conference, Part I, volume 11239 of Lecture Notes in Computer Science,
pages 689–718, Panaji, India, November 11–14, 2018. Springer, Heidelberg, Germany.
2, 4, 6, 7

50

https://eprint.iacr.org/2023/457
http://eprint.iacr.org/2016/1106
http://eprint.iacr.org/2016/1106

[GKMR22] Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Ef-
ficient registration-based encryption. Cryptology ePrint Archive, Paper 2022/1505,
2022. https://eprint.iacr.org/2022/1505. 2, 4, 6

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor tracing
from learning with errors. In Ilias Diakonikolas, David Kempe, and Monika Henzinger,
editors, 50th Annual ACM Symposium on Theory of Computing, pages 660–670, Los
Angeles, CA, USA, June 25–29, 2018. ACM Press. 2, 4

[GKW19] Rishab Goyal, Venkata Koppula, and Brent Waters. New approaches to traitor tracing
with embedded identities. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019:
17th Theory of Cryptography Conference, Part II, volume 11892 of Lecture Notes
in Computer Science, pages 149–179, Nuremberg, Germany, December 1–5, 2019.
Springer, Heidelberg, Germany. 2, 4

[GLW23] Junqing Gong, Ji Luo, and Hoeteck Wee. Traitor tracing with N1/3-size ciphertexts
and O(1)-size keys from k-Lin. In Carmit Hazay and Martijn Stam, editors, Advances
in Cryptology – EUROCRYPT 2023, pages 637–668, Cham, 2023. Springer Nature
Switzerland. 2, 4

[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryp-
tion. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
– CRYPTO 2020, Part I, Lecture Notes in Computer Science, pages 621–651, Santa
Barbara, CA, USA, August 16–20, 2020. Springer, Heidelberg, Germany. 4

[HLWW23] Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered attribute-
based encryption. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology
– EUROCRYPT 2023, pages 511–542, Cham, 2023. Springer Nature Switzerland. 2,
4, 6, 9

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 60–73, 2021. 4

[KHL03] Chong Hee Kim, Yong Ho Hwang, and Pil Joong Lee. An efficient public key trace and
revoke scheme secure against adaptive chosen ciphertext attack. In Chi-Sung Laih,
editor, Advances in Cryptology – ASIACRYPT 2003, volume 2894 of Lecture Notes in
Computer Science, pages 359–373, Taipei, Taiwan, November 30 – December 4, 2003.
Springer, Heidelberg, Germany. 4

[KMW23] Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed broadcast en-
cryption from bilinear groups. Cryptology ePrint Archive, Paper 2023/874, 2023.
https://eprint.iacr.org/2023/874. 2, 4, 6, 46

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Nigel P. Smart, edi-
tor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes
in Computer Science, pages 146–162, Istanbul, Turkey, April 13–17, 2008. Springer,
Heidelberg, Germany. 5

51

https://eprint.iacr.org/2022/1505
https://eprint.iacr.org/2023/874

[KW20] Sam Kim and David J. Wu. Collusion resistant trace-and-revoke for arbitrary iden-
tities from standard assumptions. In Advances in Cryptology – ASIACRYPT 2020,
Part II, Lecture Notes in Computer Science, pages 66–97. Springer, Heidelberg, Ger-
many, December 2020. 2, 4

[LG22] Wouter Lueks Laurent Girod. petrelic is a python wrapper around relic. https:

//github.com/spring-epfl/petrelic, 2022. 47

[Luo22] Ji Luo. Ad hoc (decentralized) broadcast, trace, and revoke. Cryptology ePrint
Archive, Paper 2022/925, 2022. https://eprint.iacr.org/2022/925. 4

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for
stateless receivers. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 41–62, Santa Barbara, CA,
USA, August 19–23, 2001. Springer, Heidelberg, Germany. 4

[NP01] Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In Yair Frankel,
editor, FC 2000: 4th International Conference on Financial Cryptography, volume
1962 of Lecture Notes in Computer Science, pages 1–20, Anguilla, British West Indies,
February 20–24, 2001. Springer, Heidelberg, Germany. 4

[NWZ16] Ryo Nishimaki, Daniel Wichs, and Mark Zhandry. Anonymous traitor tracing: How
to embed arbitrary information in a key. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lec-
ture Notes in Computer Science, pages 388–419, Vienna, Austria, May 8–12, 2016.
Springer, Heidelberg, Germany. 2, 4

[Pei10] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In Tal Ra-
bin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes
in Computer Science, pages 80–97, Santa Barbara, CA, USA, August 15–19, 2010.
Springer, Heidelberg, Germany. 40

[Rog15] Phillip Rogaway. The moral character of cryptographic work. Cryptology ePrint
Archive, Report 2015/1162, 2015. http://eprint.iacr.org/2015/1162. 2

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors,
ACM CCS 2010: 17th Conference on Computer and Communications Security, pages
463–472, Chicago, Illinois, USA, October 4–8, 2010. ACM Press. 40

[Wee20] Hoeteck Wee. Functional encryption for quadratic functions from k-lin, revisited.
In TCC 2020: 18th Theory of Cryptography Conference, Part I, Lecture Notes in
Computer Science, pages 210–228. Springer, Heidelberg, Germany, March 2020. 9

[WQZDF10] Qianhong Wu, Bo Qin, Lei Zhang, and Josep Domingo-Ferrer. Ad hoc broadcast
encryption. In Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, CCS ’10, page 741–743, New York, NY, USA, 2010. Association
for Computing Machinery. 2, 4

52

https://github.com/spring-epfl/petrelic
https://github.com/spring-epfl/petrelic
https://eprint.iacr.org/2022/925
http://eprint.iacr.org/2015/1162

[Zha20] Mark Zhandry. New techniques for traitor tracing: Size N1/3 and more from pair-
ings. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
– CRYPTO 2020, Part I, Lecture Notes in Computer Science, pages 652–682, Santa
Barbara, CA, USA, August 16–20, 2020. Springer, Heidelberg, Germany. 2, 4

[ZZGQ23] Ziqi Zhu, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered abe via predi-
cate encodings. In Advances in Cryptology - ASIACRYPT 2023 - 29th International
Conference on the Theory and Application of Cryptology and Information Security,
Beijing, China, December 4-8, 2023, Proceedings, Lecture Notes in Computer Science.
Springer, 2023. 2, 4, 9

A On Handling Malicious Public Keys

We continue our discussion in Remark 4.5 on tackling malicious public keys in our RFE schemes
from Sections 4.2 and 4.3. Our schemes from Sections 4.2 and 4.3 are proven secure in a setting
that requires the adversary to declare to the security experiment its randomness for maliciously
chosen keys. We provide three different solutions to overcome this. The first one is generic and
uses NIZKs that works for any RFE with honestly formed keys. The remaining two solutions are
specific to our weak RQFE scheme from Section 4.2.

For this, we introduce the additional algorithm to the syntax of an RFE:

• b← IsValid(crs, ℓ, pkℓ): On input crs, a public key pkℓ and a user index ℓ ∈ [L], the determin-
istic verification algorithm outputs a bit b ∈ {0, 1}.

First we recall that, in the malicious key setting, the additional IsValid algorithm acts as an
argument system to verify the validity of public keys, for which it should satisfy the completeness
property defined as follows.

Definition A.1 (Completeness). An RFE scheme is said to be complete, if for all λ,∈ N, ℓ ∈ [L],

Pr
[
IsValid(crs) = 1

∣∣∣ crs← Setup(1λ); (pkℓ, skℓ)← KGen(crs, ℓ)
]
= 1.

Completeness for a weak RFE is defined analogously.

It is direct that all strategies that we discuss in the following satisfy completeness.

Definition A.2 (Security against Malicious-Key Generation). This is same as Definition 4.4, ex-
cept that A does not output the randomness (rℓ)ℓ∈M to the experiment, conditioned on 1 ←
IsValid(crs, ℓ, pkℓ).

A.1 Generic Solution using NIZKs

The first generic approach is to have KGen output a public key pkℓ which has a NIZK proof attached,
proving that pkℓ is indeed generated honestly, and the IsValid algorithm checks that validity of the
NIZK proof. Here, we need the NIZK to be straight-line simulation extractable. To argue that the
basic security (as per Definition 4.4) implies security against malicious key generation, the reduction
does the following: for any malicious user ℓ ∈M , upon receiving a key-proof pair (pkℓ, π) for which
the malicious-key-generating adversary A asks to register pkℓ, the reduction extracts randomness

53

rℓ, and passes (pkℓ, rℓ) to the basic security adversary B; for any user ℓ /∈M , upon receiving a key
pkℓ from B, it simulates a proof π and passes (pkℓ, π) to A as the public key. The straight-line
property ensures the reduction runs in polynomial time.

A.2 Handling Malicious Keys in ROM

We briefly explain how to use a random oracle (RO) to extend our weak RFE scheme for quadratic
functions (Fig. 2) to allow for maliciously generated public keys.

Intuitively, Fig. 2 fails to handle malicious key generation because of the ability to adaptively
construct keys depending on the honestly generated keys. In more detail, it can set [si]1 =[∑

ℓ∈H sℓ + s′
]
1
for some slot index i ∈ [L], where H is the set of honestly formed keys. The

security proof fails in this case as we cannot treat
∑

ℓ∈[L] sℓ ∈ Zn1
p as a variable unknown to the

adversary.
In a nutshell, this can be prevented by computing the master public key as a random linear

combination (output by an RO) of the users’ public keys (instead of simply summing it).

Construction 1 (Weak RQFE with Malicious Keys in ROM). Let H : {0, 1}∗ → ZL
p be a random

oracle. The scheme is identical to Fig. 2 except with a slightly modified aggregation algorithm:

IsValid(crs, ℓ, pkℓ) :

1. Parse crs =
(
G, (Fℓ)ℓ∈[L] , ([γℓ]2)ℓ∈[L] , [t]2

)
and pkℓ =

(
[sℓ]1 , [wℓ]1 ,

(
[dkℓ,k]2

)
k∈[L]\{ℓ}

)
.

2. Output 1 if [1]1 [dkℓ,k]2 =
[
sTℓ
]
1
Fk [t]2 + [wℓ]1 [γk]2 for all k ∈ [L] \ {ℓ}. Else output 0.

Aggr(crs, (pkℓ)ℓ∈[L]) :

1. Parse crs = (G, (Fℓ)ℓ∈[L] , {[γℓ]2}ℓ∈[L], [t]2), and pkℓ =
(
[sℓ]1 , [wℓ]1 , {[dkℓ,k]2}k∈[L]\{ℓ}

)
for each

ℓ ∈ [L].

2. Compute (α1, . . . , αL)← H(pk1, . . . , pkL).

3. Output mpk := (G, [s]1 , [w]1 , [t]2) and hskk :=
(
[h1,k]2 , [h2,k]2 ,Fk

)
for all k ∈ [L], where

[s]1 :=

∑
ℓ∈[L]

αℓsℓ

1

, [w]1 :=

∑
ℓ∈[L]

αℓwℓ

1

, [h1,k]2 :=

 ∑
ℓ∈[L]\{k}

αkdkℓ,k

2

, [h2,k]2 := [γk]2 .

Note that the above solution makes the validity of (maliciously) sampled keys vacously true
as every key is valid as a group element. So there is no specific validity test required in this
case and the security experiment does not need to check for well-formedness of keys explicitly.
Therefore, completeness and correctness hold trivially as per Definitions 4.2 and A.1. We now
sketch the security proof.12 Informally, we need to show that [s]1 and [w]1 can be treated as

12A careful reader may have already noticed that we want to prove our scheme secure in the GGM in addition
to a hash function H that is modelled as a random oracle during the proof. To tackle this practically unexciting
yet technical issue, one may define a hybrid model GGROM (or SGROM), between GGM (or equivalently SGM) and
ROM as follows. An adversary A in the GGROM gets the same interface as GGM with an additional access to a
random oracle in the generic (or symbolic) bilinear group GGRO (or SGRO), which has the following syntax: on input
handles to finite sequences of G1,G2, and GT elements, and a finite bit string, the GGRO fetches the group elements
defined by these handles from the generic group oracles, and query the RO on the corresponding sequence of group
elements and the bit string. The GGRO returns whatever the RO outputs. In particular, A can only indirectly access
H through GGRO, which relays queries (and their answers) to/from H.

54

symbolic variables, and not constants, in the view of an adversary A, so that we can then reuse
the proof ideas of Theorem 4.8.

The proof proceeds similar to that of Theorem 4.8 by first lifting the game from GGM to SGM.
We then show that A has a negligible probability of succeeding in certains forms of ZtT queries.
One such ZtT query, for instance, looks like ηw + c = 0, where η, c are coefficients chosen by A.
Note that

w =
∑
i∈[L]

αiwi

=
∑
i∈H

αiwi +
∑
k∈C

αkwk +
∑
j∈M

αj

∑
i∈H

ψj,iwi + cj

since malicious keys can depend on honestly generated keys. Since c is a constant chosen by the
adversary, it is different from all wi for i ∈ H. Thus, for the zero-test to succeed, it must hold that
for all i ∈ H,αi = αj

∑
j∈M ψj,i. In more detail, for all i ∈ H the coefficients of wi needs to be

annihilated. This happens with probability at most 1/pL = 1/2λL. If the adversary performs Qzt

queries to the random oracle, by a union bound, we can upper bound the probability of success by
Qzt/2

λL, which is negligible in λ.
A similar argument can be shown for another ZtT query of the form ηisi + ci = 0 (where si

symbolically represents the i-th coordinate of
∑

j∈[L] αjsj) for some adversarially chosen coefficients
ηi, ci, so that A again has a negligible probability of succeeding. Rest of the proof remains same as
before.

A.3 Handling Malicious Keys without ROM

We now show our third and final, albeit tailor-made, solution to provide security against maliciously
computed keys for our weak RFE for quadratic functions. In particular, this ad hoc solution lifts
Fig. 2 at the cost of losing transparent setup, but relies neither on NIZK nor ROM. The new scheme
has modified Setup,KGen and IsValid algorithms, while the other procedures, i.e. Aggr,Enc,Dec,
remain the same as in Fig. 2 (except some syntactic changes) and are left out.

Construction 2 (Weak RQFE with Malicious Keys).

Setup(1λ, 1L, (Fℓ)ℓ∈[L]) :

1. Sample G := (G1,G2,GT, p, [1]1 , [1]2 , ·)← GGen(1λ).

2. Sample ρℓ, γℓ ←$ Zp for all ℓ ∈ [L], and t←$ Zn2
p , δ ← Zp.

3. Output crs :=
(
G, (Fℓ)ℓ∈[L] , ([ρℓ]1 , [ρℓt]2)ℓ∈[L] , ([ρℓγk]2)ℓ,k∈[L] , [δ]2 , ([γℓ]2)ℓ∈[L] , [t]2

)
.

KGen(crs, ℓ) :

1. Parse crs =
(
G, (Fℓ)ℓ∈[L] , ([ρℓ]1 , [ρℓt]2)ℓ∈[L] , ([ρℓγk]2)ℓ,k∈[L] , [δ]2 , ([γℓ]2)ℓ∈[L] , [t]2

)
.

2. Sample sℓ ←$ Zn1
p and wℓ ←$ Zp.

3. For all k ∈ [L], let [dkℓ,k]2 :=
[
ρℓs

T
ℓFkt+ ρℓγkwℓ

]
2
.

4. Output pkℓ :=
(
[ρℓsℓ]1 , [ρℓwℓ]1 ,

(
[dkℓ,k]2

)
k∈[L]\{ℓ} , [δsℓ]2 , [δwℓ]2

)
and skℓ := [dkℓ,ℓ]2.

55

IsValid(crs, ℓ, pkℓ) :

1. Parse crs =
(
G, (Fℓ)ℓ∈[L] , ([ρℓ]1 , [ρℓt]2)ℓ∈[L] , ([ρℓγk]2)ℓ,k∈[L] , [δ]2 , ([γℓ]2)ℓ∈[L] , [t]2

)
.

2. Parse pkℓ =
(
[ρℓsℓ]1 , [ρℓwℓ]1 ,

(
[dkℓ,k]2

)
k∈[L]\{ℓ} , [δsℓ]2 , [δwℓ]2

)
.

3. Output 1, if

(a) [1]1 [dkℓ,k]2 =
[
ρℓs

T
ℓ

]
1
Fk [t]2 + [ρℓwℓ]1 [γk]2 ,∀k ∈ [L] \ {ℓ},

(b) [ρℓsℓ]1 [δ]2 = [ρℓ]1 [δsℓ]2 and [ρℓwℓ]1 [δ]2 = [ρℓ]1 [δwℓ]2.

Compared to Fig. 2, Construction 2 introduces {ρℓ}ℓ∈[L], δ ∈ Zp into the crs, where ρℓ is mul-
tiplied to other terms in crs, pkℓ and skℓ. Additionally pkℓ includes new elements [δsℓ]2 , [δwℓ]2.
Completeness and correctness (Definitions 4.2 and A.1) are easy to see and follows immediately
with mild syntactic changes.

We now sketch the security proof for the scheme presented above. As explained before in
Appendix A.2, Fig. 2 falls prey to an adaptive attack, where an adversary can control the (discrete
logarithm of the) master public key if it chooses keys after seeing the honestly generated ones. To
prevent this, Construction 2 ensures in an ad hoc way above that if such malicious keys pass the
IsValid test, the adversary cannot know the discrete logarithm of the master public key. We can
then reuse the proof ideas from that of Fig. 2.

The proof proceeds similar to that of Theorem 4.8 by first lifting the game from GGM to SGM.
Next, we show that [s]1 and [w]1 are not constants in the view of an adversary A. Recall M is the
set of slot indices for maliciously chosen public keys. For any j ∈M , let

pkj :=

([
s∗j
]
1
,
[
w∗
j

]
1
,
{[

dk∗j,k
]
2

}
k∈[L]\{ℓ}

, [ŝj]2 , [ŵj]2

)
Given 1← IsValid(crs, j, pkj), using the crs and

[
s∗j

]
1
,
[
w∗
j

]
1
, it is easy to verify that:

(i)
[
dk∗j,k

]
2
=
[
ρjs

T
j Fkt+ ρjγkwj

]
2

, (ii) [ρj ŝj]2 =
[
δs∗j
]
2

, (iii) [ρjŵj]2 =
[
δw∗

j

]
2

In the SGM, note that the validity test implies for all j ∈M , ρj ŝj,i = δs∗j,i, ∀i ∈ [n1] and ρj ŵj = δw∗j .
Since ρ and δ are symbolically linearly independent, this implies s∗j,i = ρsj,i, ∀i ∈ [n1] and w∗j = ρwj .

We then show that A has a negligible probability of succeeding in certains forms of ZtT queries.
One such ZtT query, for instance, looks like: ηw−c = 0 is negligible, where w symbolically represents
w =

∑
ℓ∈[L]wℓ and η, c are constants chosen by A. We skectch our arguments as follows. Note that

we can express w as w =
∑

i∈H ρiwi +
∑

i∈M ρiwi. Since the symbolic variables ρℓ are all pairwise
linearly independent, A has a negligible probability in succeeding in a ZtT query of the above form.
Similarly, we can show that A cannot succeed in a ZtT query of the form ηisi − ci = 0, where si
is the i-th symbolic coordinate representing the vector s =

∑
ℓ∈[L] sℓ from the master public key

and ηi, ci are constants chosen by A. This establishes that A cannot maliciously fix the master
public key. From here on, we adopt similar proof ideas from Theorem 4.8. In particular, the ring
of multivariate polynomials, as the source of all ZtT queries, now becomes

ζ = Zp

[
{γℓ, ρℓ}ℓ∈[L], δ, (t1, . . . , tn2), {(scℓ,1, . . . , scℓ,n1

)}ℓ∈H,c∈[Qk], {w
c
ℓ}ℓ∈H,c∈[Qk],α, a, b, c, d

]
,

where the maximal total degree of a term in any polynomial Φ ∈ C(LT) ⊂ ζ is d = 8 due to
introducing (ρℓ)ℓ∈[L] into si =

∑
ℓ∈[L] ρℓsℓ,i and w =

∑
ℓ∈[L] ρℓwℓ. By inspection and observing

56

symbolic linear independence between various terms, we can reason out that it is enough to consider
ZtT queries of the form

Ω +
∑

i∈[n1],j∈[n2]

{
−ηi,j · (ad− bc)αsitj

}
= 0, for some Ω ∈ ζ.

Further reasoning on the structural properties of the coefficients of Ω with some inspection similar
to Claim 4.13 leads us to a point where we have

Ω = (ad− bc)α
∑
i∈[n1]
j∈[n2]

∑
k∈C∪M
ℓ∈H

ξk,ℓf
(k)
i,j (ρℓsℓ,i) tj

From here on, the proof follows exactly as that of Theorem 4.8.

B Analysis of Assumption 4.17

Theorem B.1. If 1/p = negl(λ), then Assumption 4.17 holds in the generic bilinear group model
(GGM).

Proof. We prove the claim in the symbolic group model (SGM) recalled in the proof of Theorem 4.8,
which implies a proof in the GGM. For b ∈ {0, 1}, consider an SGM adversary A which inputs (the
handles of) (

[s]1 , {[aℓ]1 , [rℓ]2}ℓ∈[L], {[rkaℓ]2}k,ℓ∈[L],k ̸=ℓ, [ub]1

)
where u0 = s

∑
ℓ∈[L] aℓ while u1 = u is an independent variable. We argue that the probabilities of

A returning 1 in both the cases b ∈ {0, 1} are negligibly close. Recall from Theorem 4.8 where we
defined the closure C(LT) = LT∪{V1 ·V2 | ∀V1 ∈ L1, V2 ∈ L2}. Note that all the handles A receives
in this case belongs to the following ring: ζ = Zp

[
s, {aℓ}ℓ∈[L], {rk}k∈[L]

]
. Hence, C(LT) provides

the list of (handles of) polynomials from ζ representing elements from GT that A received during
its execution.

In the case b = 1, observe that (the handles for) all polynomials Φ ∈ C(LT) are linear combina-
tions of the following (possibly repeating) monomials denoted by m with subscripts:

m0 = 1, m1 = s, {m2,ℓ = aℓ}ℓ∈[L], m3 = u,

{m4,k = rk}k∈[L], {m5,k = srk}k∈[L], {m6,k,ℓ = rkaℓ}k,ℓ∈[L], {m7,k = urk}k∈[L],{ m8,k,ℓ

= rkaℓ

}
k,ℓ∈[L]
:k ̸=ℓ

,
{ m9,k,ℓ

= srkaℓ

}
k,ℓ∈[L]
:k ̸=ℓ

,

{
m10,k,ℓ,ℓ′

= rkaℓaℓ′

}
k,ℓ,ℓ′∈[L]

:k ̸=ℓ

,
{ m11,k,ℓ

= urkaℓ

}
k,ℓ∈[L]
:k ̸=ℓ

Note that, except for the monomials m6,k,ℓ and m8,k,ℓ, all other monomials are linearly independent
of each other. In particular, if ci,index denotes the coefficient of mi,index in any zero polynomial
Φ ≡ 0, it holds that c6,k,ℓ = −c8,k,ℓ ∈ Zp for all k, ℓ ∈ [L] with k ̸= ℓ, and all other coefficients are
zero.

57

In the case b = 0, observe that all polynomials Φ ∈ C(LT) are linear combinations of the
following (possibly repeating) monomials denoted by m with subscripts:

m0 = 1, m1 = s, {m2,ℓ = aℓ}ℓ∈[L], m3 = s
∑

j∈[L] aj ,

{m4,k = rk}k∈[L], {m5,k = srk}k∈[L], {m6,k,ℓ = rkaℓ}k,ℓ∈[L],
{
m7,k = srk

∑
j∈[L] aj

}
k∈[L]

,{ m8,k,ℓ

= rkaℓ

}
k,ℓ∈[L]
:k ̸=ℓ

,
{ m9,k,ℓ

= srkaℓ

}
k,ℓ∈[L]
:k ̸=ℓ

,

{
m10,k,ℓ,ℓ′

= rkaℓaℓ′

}
k,ℓ,ℓ′∈[L]

:k ̸=ℓ

,

{ m11,k,ℓ

= srkaℓ
∑

j∈[L] aj

}
k,ℓ∈[L]
:k ̸=ℓ

Note that, except for the monomials m6,k,ℓ, m7,k, m8,k,ℓ, and m9,k,ℓ, all other monomials are
linearly independent of each other. Furthermore, among these exceptions, clearly (the subspace
generated by) {m6,k,ℓ}k,ℓ∈[L] ∪ {m8,k,ℓ}k,ℓ∈[L]:k ̸=ℓ is linearly independent of (the subspace generated

by) {m7,k}k∈[L] ∪ {m9,k,ℓ}k,ℓ∈[L]:k ̸=ℓ.

Below, we argue that the set of monomials {m7,k}k∈[L] ∪ {m9,k,ℓ}k,ℓ∈[L]:k ̸=ℓ is actually linearly
independent. Indeed, suppose

0 =
∑
k∈[L]

c7,km7,k +
∑

k,ℓ∈[L]:k ̸=ℓ

c9,k,ℓm9,k,ℓ

=
∑

k,ℓ∈[L]

c7,ksrkaℓ +
∑

k,ℓ∈[L]:k ̸=ℓ

c9,k,ℓsrkaℓ

=
∑

k,ℓ∈[L]:k ̸=ℓ

(c7,k + c9,k,ℓ)srkaℓ +
∑
k∈[L]

c7,ksrkak.

The second term forces c7,k = 0 for all k ∈ [L], and the first term forces c9,k,ℓ = −c7,k = 0 for all
k, ℓ ∈ [L] with k ̸= ℓ.

To summarise, if ci,index denotes the coefficient of mi,index in any zero polynomial Φ ≡ 0, it
holds that c6,k,ℓ = −c8,k,ℓ ∈ Zp for all k, ℓ ∈ [L] with k ̸= ℓ, and all other coefficients are zero, i.e.
identical to the case b = 1.

It remains to analyse the behaviour of the ZtT oracle on input a polynomial Φ ∈ ζ in the
cases b ∈ {0, 1}. From the above, Φ is a zero polynomial in the case b = 0 iff it is also a zero
polynomial in the case b = 1. Therefore, for Φ ≡ 0, the ZtT oracle behaves identically in the cases
b ∈ {0, 1}. Next, suppose Φ ̸≡ 0 is a non-zero polynomial. If b = 0, the above analysis shows that
Φ is of degree d0 = 4. By the Schwartz-Zippel lemma, the probability that the zero-test oracle
returns 1 is at most 4/p. Similarly, if b = 1, Φ is of degree d1 = 3, and thus the probability
that the zero-test oracle returns 1 is at most 3/p. Assuming that A queries the zero-test oracle
Qzt(λ) = poly(λ) times, the difference in the probabilities of A returning 1 in the cases b ∈ {0, 1}
is at most 4Qzt(λ)/p+ 3Qzt(λ)/p = negl(λ).

58

	Introduction
	Our Contributions
	Related Work
	Discussion

	Technical Highlights
	Registered Traitor-Tracing
	RQFE in the GGM
	RLFE in the Standard Model
	Registered Threshold Encryption

	Preliminaries
	Registered Functional Encryption
	Definitions
	Weak RFE for Quadratic Functions
	RFE for Linear Functions

	Registered Traitor-Tracing
	Registered Private Linear Broadcast Encryption
	Registered Traitor-Tracing
	RTT with Bounded Collusion
	On Revocation Mechanisms

	More Applications
	Single-Key Registered FE for Circuits
	Registered Threshold Encryption
	Distributed Broadcast with Transparent Setup

	Benchmarks
	Conclusions
	On Handling Malicious Public Keys
	Generic Solution using NIZKs
	Handling Malicious Keys in ROM
	Handling Malicious Keys without ROM

	Analysis of Assumption 4.17

