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Abstract

Over the past few decades, we have seen a proliferation of advanced cryptographic primi-
tives with lossy or homomorphic properties built from various assumptions such as Quadratic
Residuosity, Decisional Diffie-Hellman, and Learning with Errors. These primitives imply hard
problems in the complexity class SZK (statistical zero-knowledge); as a consequence, they can
only be based on assumptions that are broken in BPPSZK. This poses a barrier for build-
ing advanced primitives from code-based assumptions, as the only known such assumption is
Learning Parity with Noise (LPN) with an extremely low noise rate log2 n

n , which is broken in
quasi-polynomial time.

In this work, we propose a new code-based assumption: Dense-Sparse LPN, that falls in
the complexity class BPPSZK and is conjectured to be secure against subexponential time ad-
versaries. Our assumption is a variant of LPN that is inspired by McEliece’s cryptosystem and
random k-XOR in average-case complexity. Roughly, the assumption states that

(TM, sTM+ e) is indistinguishable from (TM,u),

for a random (dense) matrix T, random sparse matrix M, and sparse noise vector e drawn
from the Bernoulli distribution with inverse polynomial noise probability.

We leverage our assumption to build lossy trapdoor functions (Peikert-Waters STOC 08).
This gives the first post-quantum alternative to the lattice-based construction in the original
paper. Lossy trapdoor functions, being a fundamental cryptographic tool, are known to enable
a broad spectrum of both lossy and non-lossy cryptographic primitives; our construction thus
implies these primitives in a generic manner. In particular, we achieve collision-resistant hash
functions with plausible subexponential security, improving over a prior construction from
LPN with noise rate log2 n

n that is only quasi-polynomially secure.
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1 Introduction

Introduced in 2005, the Learning with Errors (LWE) assumption [Reg05] has emerged as a ba-
sis for designing post-quantum cryptography. LWE and its structured variants such as Ring-
LWE [LPR10] or NTRU [HPS98] are central to constructing a host of advanced cryptographic prim-
itives including fully homomorphic encryption for classical [Gen09, BV11, GSW13] and quantum
computations [Mah18a, Bra18], attribute-based and other advanced encryption schemes [GVW13,
GVW15], non-interactive zero-knowledge [PS19], succinct arguments [CJJ22], and many other
advances in classical [GKW17, WZ17, GKW18, LMW23] and quantum cryptography [BCM+18,
Mah18b].

While LWE has proven to be surprisingly expressive in giving rise to advanced primitives,
other post-quantum assumptions such as Learning Parity with Noise [BFKL94], Isogenies [Cou06,
RS06, CLM+18], and Multivariate Quadratics [Har82], currently stand nowhere close in imply-
ing such advanced primitives, making LWE the single point of failure for designing advanced
post-quantum cryptography. This state of affairs is highly unsatisfactory, since we would like to
have some diversity in the assumptions implying a given primitive to hedge against unexpected
cryptanalytic breakthroughs. Indeed, recent works [CD23a, MMP+23, Rob23] have rendered the
once-believed post-quantum assumption of SIDH classically broken in polynomial time.

This work aims to address a possible stagnation in terms of techniques and assumptions im-
plying advanced post-quantum cryptography. This lack of versatility in assumptions for the most
part can be attributed to the lack of techniques in utilizing other post-quantum assumptions. The
focus of this work lies in code-based cryptographic assumptions such as the Learning Parity with
Noise (LPN) assumption [BFKL94] and its variants.

Learning Parity with Noise posits that random linear equations (with a planted secret solution)
that is perturbed by sparse noise appears pseudorandom. Namely:

(A, s ·A+ e) ≈c (A,b),

where the coefficient matrix A is chosen at random from Fn×m
2 , the secret s ← F1×n

2 , b is chosen
to be random vector in F1×m

2 and the error vector e ∈ F1×m
2 is chosen so that each coordinate is

i.i.d. sampled from the Bernoulli distribution with probability ϵ. The problem is believed to be
subexponentially secure, meaning that subexponential exp(nO(1))-time adversaries have negligible
distinguishing advantage when ϵ = O

(
1
nδ

)
for any constant δ ∈ (0, 1).1

LPN is conceptually similar to LWE, in the sense that both posit pseudorandomness of planted
random linear equations perturbed with noise. However, while for LWE the noise has low mag-
nitude, for LPN it is sparse. One would expect that due to this similarity, LPN should imply a
comparable variety of advanced primitives—yet this could not be any further from reality. On
the one hand, recent works have leveraged the sparse noise structure to build specialized primi-
tives such as homomorphic secret sharing [DIJL23], or use LPN (over large fields) in combination
with Bilinear Maps [MVO91] and Goldreich’s PRG [Gol11] to build indistinguishability obfusca-
tion [JLS21, JLS22].

On the other hand, despite almost three decades of research and in drastic contrast to LWE, we
currently know only a handful of ways to leverage the LPN assumption. This is evident in the fact
that aside from CPA/CCA secure public-key encryption schemes [Ale03, DMN12, KMP14, YZ16]
and UC-secure two-round oblivious transfer [DGH+20], subexponentially secure variants of LPN
alone are currently not known to imply any other primitives in Cryptomania [Imp95]. Things

1A stronger version of subexponential security, which we do not consider in this work, also requires that the dis-
tinguishing advantage is an inverse subexponential exp(−nO(1)).
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seem to improve when one works with the quasi-polynomial time broken variant of the LPN
assumption with very small noise probability O( log

2 n
n ), but even assuming this variant, very few

primitives are known. These include collision-resistant and collapsing hash functions [BLVW19,
YZW+19, Zha22], identity-based encryption [BLSV18], and statistically-sender-private oblivious
transfer [BF22].

This brings us to our goal:

Goal. Devise new coding-theoretic techniques and assumptions for building advanced cryptography.

To facilitate progress on the main goal above, we focus more on identifying properties of the
assumption that could enable progress on the question, rather than focusing on specific primitives
themselves. What makes assumptions such as LWE, Diffie-Hellman, Bilinear Maps, or Quadratic
Reciprocity, special is that they can be used to design primitives with “lossy” or “homomorphic”
properties, such as lossy trapdoor functions [PW08] and linearly homomorphic encryption. Fur-
thermore, the homomorphic/lossy properties of the assumption make them easier to work with
to design other advanced Cryptomania primitives, such as attribute-based encryption or succinct
arguments.

A key property that captures such assumptions is that they can be broken using an SZK oracle,
where SZK is the complexity class of languages that have statistically-hiding zero-knowledge
proofs. This “SZK-broken” complexity class, known as BPPSZK, consists of languages that can
be decided efficiently using a statistical difference (SD) oracle [SV97]. The SD oracle takes as input
two polynomial sized distribution samplers (D0,D1) (represented as randomized circuits), with
the promise that either the statistical distance between the distributions is less than 1

3 or it is more
than 2

3 . The oracle then identifies which is the case.
This SZK regime indeed captures all of the assumptions mentioned above. For LPN, it is

known [BLVW19] that the quasi-polynomial time broken variant with noise probability O( log
2 n
n )

can be broken with an SZK oracle, whereas subexponential time secure variants with inverse
polynomial noise probability 1

nδ for δ ∈ (0, 1) are currently not known to be in SZK. This helps to
explain why so little is known from LPN with inverse polynomial noise rate.

Therefore, to make progress in code-based cryptography, the first step would be to answer the
following question:

Question. Is there a subexponentially-secure coding theoretic assumption with inverse polynomial noise
probability that is in SZK?

1.1 Our Results

We introduce a novel, well-motivated variant of LPN that we believe is secure against subexpo-
nential time algorithms. Unlike LPN where the matrix is chosen randomly, in our case it is a
structured matrix. We work with a sufficiently small but inverse polynomial probability 1

nδ for
a constant δ ∈ (0.5, 1), a regime for which our assumption can be conjectured to be hard against
subexponential exp(Õ(n1−δ))-time adversaries.2 Since our assumption implies primitives that can
be broken by BPPSZK,3 our assumption indeed lies in BPPSZK, making it the first plausible
subexponential-time secure coding-theoretic assumption known to be in BPPSZK.

2However, an adversary’s success probability in breaking our assumption is at least inverse quasi-polynomial;
see Section 2.3 for more discussion.

3It’s a folklore result that lossy trapdoor functions, which we construct, lie in BPPSZK; a formal proof can be found
in [FR23, Appendix B].
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New Assumption: Dense-Sparse LPN. Our assumption borrows structural properties of two
well-studied assumptions: the standard Learning Parity with Noise [BFKL94] and the sparse
Learning Parity with Noise problem [Ale03]. Introduced in 2003 by Alekhnovich, Sparse LPN
is exactly like standard LPN except that each column is chosen randomly among k-sparse vectors,
where k ≥ 3 is a constant. Sparse LPN is closely related to well-studied problems in the domain of
constraint satisfaction and local pseudorandom generators [Gol00, CM01, Fei02, MST03, FKO06,
CEMT09, BQ09, ABW10, ABR12, BQ12, App12, App13, OW14, AL16, KMOW17, CDM+18, AK19],
and when the number of samples satisfies m = n

k
2
(1−ρ) for any constant 0 < ρ < 1,4 it is believed to

be subexponentially secure (provided the noise probability is a large enough inverse polynomial).
Sparse LPN has also been shown to give rise to public-key encryption by Applebaum, Barak and
Wigderson [ABW10], but not more advanced Cryptomania primitives.

Our assumption combines features from both LPN and Sparse LPN, and posits that LPN holds
for the following Dense-Sparse matrix distribution. We first sample a k-sparse matrix M ∈ Fn×m

2

according to the distribution of coefficient matrix for the Sparse LPN assumption. We then sample
a random (dense) matrix T ← Fn′×n

2 , where n′ = αn for some constant α ∈ (0, 1) (for simplicity,
we set α = 1/2 in our paper). Finally, we give out A = T ·M ∈ Fn/2×m

2 , and assume that random
codewords of A, perturbed by a Bernoulli noise vector e of inverse-polynomial noise rate, look
pseudorandom. More formally, our assumption is stated as follows.

Assumption 1.1 (Dense-Sparse LPN, informal). Let k ≥ 3 be a constant, and consider parameters
n ∈ N, m = m(n) < nk/2, and ϵ = ϵ(n) < 1. LetMsp be an efficiently sampleable “good” distribution
over all k-sparse matrices in Fn×m

2 . We say that the (n,m, k,Msp, ϵ)-Dense-Sparse LPN assumption
holds if the following two distributions are computationally indistinguishable:

{(TM, sTM+ e)}n∈N ≈c {(TM,u)}n∈N,

where T← Fn/2×n
2 , M←Msp, s← F1×n/2

2 , e← Ber(ϵ)1×m, and u← Fm
2 .

Looking ahead, our constructions will require us to assume Dense-Sparse LPN for an inverse
polynomial noise rate ϵ = O(n−δ) for some constant δ close to 1, and the number of samples
m = Ω(n1+ρ(δ)) for a constant ρ that depends on δ. This parameter regime is plausibly secure
against subexponential-time adversaries (see Section 7 for details).

An important technical point in Assumption 1.1 is that of a “good” distribution of k-sparse
matrices. This is due to the following reason: for M ∈ Fn×m

2 chosen uniformly at random from
the set of all k-sparse matrices, there is an inverse polynomial probability of O(m2/nk) that M has
a vector x in its kernel of constant Hamming weight (so that Mx = 0). When this “bad” event
happens, one cannot hope for distinguishing security to hold. Thus, since we want our distin-
guishing advantage to be negligible, we must sample M from another “good” distribution where
this “bad” event happens with negligible probability; in particular, we will use the recent distri-
bution constructed by Applebaum and Kachlon [AK19]. We will expand on this in Section 2.3.

Connections to McEliece. Our assumption can be viewed as applying the design principles of
the classic McEliece [McE78] and Niederreiter [Nie86] cryptosystems, which is to hide the sparse
matrix M whose exposure would lead to an efficient attack in our parameter regime. In this sense,
we follow a rich body of works on McEliece instantiated with different families of codes [Sid94,
LJ12, BL05, BLP10, BLP11, JM96, MTSB12, SK14, HSEA14]. Nevertheless, there are two important

4When m = Ω(nk/2), due to the birthday bound two equations will repeat with constant probability, implying a
trivial cheating strategy.
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distinctions between our assumption and prior McEliece variants. The first is that our variants are
not algebraically structured, unlike the original McEliece cryptosystem itself (which uses binary
Goppa codes), or many other algebraic variants [Sid94, JM96, BL05] or LDPC codes [BC07, BBC08]
that have subsequently been broken [SS92, BC07, MS07, OTD10, Wie10, LT13, COT14, BCD+16].5

Secondly, we diverge from McEliece by making the masking matrix T compressing of dimension
αn× n for any α < 1, which is necessary for ensuring security in our setting. We expand more on
this connection in Section 2.1.

Cryptographic Applications. We leverage Dense-Sparse LPN with inverse polynomial noise
rate to build the following two primitives: a collision-resistant hash function (in a simple and di-
rect manner), and a lossy trapdoor function.

Lossy Trapdoor Functions (LTDFs), introduced by Peikert and Waters in 2008 [PW08], is a
fundamental cryptographic tool that has found countless applications to building other crypto-
graphic applications. LTDFs consist of a function family Ffk(·) indexed by a public function key
fk, where the algorithm Gen that samples fk could sample keys in two modes. When the mode is
injective, then the function Ffk(·) is injective and can even be inverted uniquely using a trapdoor
td generated by Gen at the same time of sampling fk. In lossy mode, the range of the function
Ffk(·) is significantly smaller than the number of inputs. Equivalently, this also means that the
conditional entropy in x ∈ {0, 1}ℓ, given y = Ffk(x) for a random x is large. In our setting we
design such LTDFs for which the conditional entropy is at least Ω(ℓ) where ℓ is the bit length of
x. Finally, the two modes are required to be computationally indistinguishable, meaning that it is
computationally hard to distinguish a random lossy key from a random injective key.

Theorem 1.1 (informal). Assuming Dense-Sparse LPN with inverse polynomial noise probability, there
exists a construction of LTDF where the lossy mode loses any constant fraction Ω(ℓ) of the input length ℓ.

We give an example of how our parameters in Theorem 1.1 can be concretely instantiated. In
order for the lossy trapdoor function to lose (say) half of its entropy in lossy mode, we may set
the sparsity parameter k = 6, the number of samples m = n2, and the error probability to be
ϵ = O

(
n−10/11

)
. See Theorem 6.1 for the precise parameter regime required for LTDFs.

Lossy Trapdoor Functions are known from a number of quantum-broken assumptions such
as Decisional Diffie-Hellman, Bilinear Maps, Quadratic Residuosity, Phi-Hiding, and Decisional
Composite Residuosity (DCR). However, prior to our work, no post-quantum assumption barring
LWE was known to imply lossy trapdoor functions, including LPN with noise probability O( log

2 n
n )

that is broken in quasi-polynomial time.
Since Lossy Trapdoor Functions are known to imply a number of lossy primitives, as a re-

sult we can generically realize those primitives from Dense-Sparse LPN. This list of primitives
and applications include: collision-resistant hash functions and CCA secure encryption [PW08],
dual-mode commitments and statistically-sender-private oblivious transfer [HLOV11], determin-
istic encryption [BFO08], trapdoor functions with many hardcore bits, analyzing OAEP [KOS10],
hedged public-key encryption with bad randomness [BBN+09], selective opening security [BHY09],
pseudo-entropy functions [BHK11], point-function obfuscation [Zha16], computational extractors
[DVW20, GKK20], incompressible encodings [MW20], and many more.

5In this sense, our assumption is related to the more combinatorial McEliece variant with medium-density parity check
(MDPC) codes [MTSB12], which still remains secure to this day.
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1.2 Related Works

LPN Variants and their Applications. Recent works on pseudorandom correlation generators (PCGs)
[BCGI18, BCG+19, BCG+20b] and pseudorandom correlation functions (PCFs) [BCG+20a] have pro-
posed many novel variants of LPN with different matrix distributions [BCG+20a, CRR21, BCG+22,
CD23b, RRT23, BCCD23]. While these works are similar to ours in that they introduce new LPN
variants, we introduce our variant (Dense-Sparse LPN) for a different purpose: building more ad-
vanced lossy primitives in Cryptomania. In contrast, it is not known whether PCGs or PCFs imply
public-key encryption or other Cryptomania primitives.

Group Actions and SZK Primitives. Besides lattices, certain assumptions on (suitable) group
actions [BY91, Cou06] also imply primitives in SZK, and are plausibly post-quantum secure
against subexponential time adversaries. In more details, the authors of [ADMP20] showed that
group actions satisfying a weak pseudorandomness property, such as those based on isogenies like
CSIDH [CLM+18] or CSI-FiSh [BKV19], suffices for building a variety of SZK primitives such as
hash proof system [CS02], dual-mode PKE [PVW08], malicious SSP-OT [NP01, HK12], and more.
However, their techniques do not seem to extend to building lossy trapdoor functions.

Future Directions. A fascinating question left open in our work is whether we can construct
similar Cryptomania primitives, though not known to generically follow from lossy trapdoor
functions, from our Dense-Sparse LPN assumption. These primitives, which are known to be
achievable from LPN with quasi-polynomial security, include laconic oblivious transfer [CDG+17,
BLSV18], identity-based encryption [BLSV18], and (maliciously-secure) statistically-sender-private
oblivious transfer [BF22]. In Section 2.4, we sketch how our current assumption encounters road-
blocks toward building these primitives.

2 Overview of Techniques

We now discuss the intuition for how the structural properties of Dense-Sparse LPN puts it in
SZK and enables applications such as lossy trapdoor functions. We then discuss key points in the
cryptanalysis of our assumption and end with some open questions.

2.1 Collision-Resistant Hash Functions from Dense-Sparse LPN

Collision-Resistance from LPN. In a nutshell, our progress on building lossy trapdoor functions
from Dense-Sparse LPN is a result of achieving input compression under a larger, inverse polyno-
mial noise rate. In both lattice-based and code-based cryptography, we consider the following
hash function family:

hA(x) = A · x, indexed by A← Rn×m over some finite ringR,

and the input x comes from a “low-norm” distribution. In the case of LWE, we have A ← Zn×m
q

for some modulus q = q(n), and x ∈ {0, 1}m. A simple calculation then shows that the number
of inputs, which is |{0, 1}m| = 2m, is greater than the number of outputs, which is |Zn

q | = 2n log q,
when m > n log q. This is achievable even for exponential modulus q = 2O(n), for which we only
need to set m > O(n2) = poly(n).
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In contrast, in the case of LPN, we have A ← Fn×m
2 and x ← B(m, t), the Hamming ball of

weight t in Fm
2 . To achieve compression, we then need to ensure that

number of inputs for hA =

(
m

t

)
≫ 2n = number of outputs for hA. (1)

For m = poly(n), using the binomial approximations
(
m
t

)t ≤ (mt ) ≤ ( emt )t, this is only possible
when t = Ω(n/ log n). To see why this is problematic, we now sketch the proof (which can be
found in [BLVW19]) that hA is collision-resistant, by a reduction to LPN with error probability
ϵ = ϵ(n). A collision (x0,x1) for hA gives us A · (x0−x1) = 0, which implies that we have found a
vector x = x0 − x1 in the kernel of A that is at most 2t-sparse. Such a vector can be used to detect
bias in LPN samples (A,b = sA + e), since b · x = e · x is distributed according to the Bernoulli
distribution with error probability

ϵ′ ≤ 1− (1− ϵ)2t

2
, and thus with bias 1− 2ϵ′ = (1− ϵ)2t ≥ 2−Ω(ϵt),

by the Piling-Up Lemma. For this bias to be noticeable, compared to a uniform random bit b · x
when b ← Fm

2 is sampled randomly, we would need ϵ = O(log n/t) = O(log2 n/n). With this
error probability, LPN is broken in quasi-polynomial time O(nlogn). More importantly, we cannot
afford a lower error probability so that ϵt = O(1), as LPN is fully broken with ϵ = O(log n/n).6

Achieving Higher Noise Rate with Sparse LPN. Can we hope to achieve collision-resistance
with larger error probability? Our key idea is that by changing the distribution of the matrix A,
we are able to reduce the size of the output space, making compression possible at lower sparsity
t (and hence collision-resistance at higher noise rate ϵ). Indeed, if the matrix A is sparse with
each column having exactly k ones, where k is a constant or slightly super-constant, then the
output space only consists of vectors y = Ax ∈ Fn

2 that are at most kt-sparse. Thus, we achieve
compression when

number of inputs for hA =

(
m

t

)
≫

kt∑
s=0

(
n

s

)
= number of outputs for hA.

Using binomial approximations and some straightforward calculations, the above is satisfied
when (m

t

)t
≫ kt ·

(en
kt

)kt
=⇒ tk−1 ≫ Ω

(
nk

m

)
.

Thus, as soon as tk−1 ≫ nk

m , we will have y lose information on a random t-sparse x. Let us try to
understand how large t needs to be. In the most conservative regime when m = n1+ρ for a small
constant ρ > 0, tk−1 must be bigger than nk−1−ρ, implying t > n1− ρ

k−1 which approaches n as ρ

approaches 0. In the most aggressive setting when m is close to n
k
2 , tk−1 must be bigger than n

k
2 .

This yields t ≈
√
n if k is a large enough constant.

More generally, if we wish to achieve a compression factor D > 1, meaning that the output
length is a factor of D smaller than the input length, then we would need(m

t

)t
>

(
kt ·

(en
kt

)kt)D

=⇒ tD·k−1 = Ω

(
nD·k

m

)
. (2)

6For ϵ = O(logn/n), we can choose n random coordinates of b = sA + e, which is error-free with noticeable
probability, and then solve for s.
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|S| = L

≥ L+ 1

0

0

· · · · · ·

Figure 1: Attack against Sparse LPN with sparsity k, number of samples m = Ω(n · (n/t)k−1), and
noise rate ϵ = O(log n/t). We focus on a set of rows S of size L = O(t), and find all columns that
is non-zero only within rows contained in T . If we find at least L + 1 such columns, then we can
find a linear dependence between these columns and come up with a ≤ L-sparse vector x such
that Ax = 0, which can be used to detect noticeable bias in the Sparse LPN samples.

We will refer to Equation (2) as the compression equation. Similar to the above estimate, we can
have t = nδ be polynomially smaller than n for a polynomial number of samples m = n1+ρk,D(δ),
where ρk,D(δ) is a constant related to δ. This implies that collision-resistance can be achieved at an
inverse polynomial error probability ϵ = O(1/t) = O(1/nδ). We call this the compression regime of
Sparse LPN.

Sparse LPN in its Compression Regime is Broken. Unfortunately, while Sparse LPN in the
compression regime would imply collision-resistant hash functions, it is not secure. We give a
new but simple attack, that in the compression regime with any factor D > 1, one can easily find
O(t) sparse vectors v ∈ Fm

2 so that Av = 0. Thus, unlike (dense) LPN, Sparse LPN can be broken
in polynomial time even at sufficiently small but inverse-polynomial noise probability ϵ = O(n−δ),
and with (related) polynomial number of samples m = n1+ρk,D(δ).

The attack can be described as follows. For simplicity, assume that each column of A is ran-
domly and independently chosen from the set of all k-sparse columns. We want to find a set
S ⊂ [n] of size L so that there are L + 1 columns {a1, . . . ,aL+1} that are supported entirely in S.
Namely, these columns take the value 0 for indices in [n] \ S. Once we have found these columns,
we can easily find some non-zero combinations combining {a1, . . . ,aL+1} that sum to 0 since they
must be linearly dependent.

For what L can we expect this to happen? We compute the probability that for an arbitrary
set S of size L there exist L + 1 column vectors supported entirely in S. Since the probability
that a single vector is supported in S is

(
L
k

)
/
(
n
k

)
, the expected number of such equations becomes

roughly m ·
(
L
k

)
/
(
n
k

)
. Thus, for m samples, we need to set L so that

m ·
(
L
k

)(
n
k

) ≈ m ·
(
L

n

)k

≫ L, which is satisfied when Lk−1 ≈ nk

m
. (3)

Therefore, L is up to a constant multiple of t satisfying the compression equation tk−1 = Ω(n
k

m ).

McEliece-style Wrapper to the Rescue. Note that the above attack crucially relies on being able
to identify the support, or locality pattern, of the column vectors. Thus, if we can mask these
locality patterns, such as by applying a random linear transformation to the columns, then we can
prevent our attack.
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This idea of masking a matrix, whose exposure would lead to an efficient attack, goes back to
the McEliece cryptosystem [McE78], and is the motivation behind Dense-Sparse LPN. Recall that
in McEliece and its variants, the public key consists of a “randomized” code generating matrix
A = SGP, hiding a “nice” representation G ∈ Fn×m

2 (such as a binary Goppa code) that enables
efficient decoding. Here the masking matrices consist of a random square matrix S ∈ Fn×n

2 multi-
plied on the left and a permutation matrix P ∈ Fm×m

2 multiplied on the right. The ciphertexts are
then LPN samples with respect to this structured matrix.

Our Dense-Sparse LPN assumption makes several modifications to the McEliece template to
suit our specific needs. Instead of an algebraically structured matrix G, we work with k-sparse
matrices M which do not have any algebraic structure. We also omit the permutation matrix P
as the sparse matrix distribution can be made invariant under column permutations. Finally, we

multiply with a random compressing matrix T ∈ F
n
2
×n

2 to get A = TM. This change serves two
purposes: it ensures security, as a square matrix S ∈ Fn×n

2 does not adequately mask M (see
Section 7 for the attack), and it aligns with our goal of using M for its lossy properties rather than
for decoding.

We discuss further aspects of Dense-Sparse LPN in Section 2.3; for the moment, we shall go
back to constructing collision-resistant hashes from our assumption.

Back to Collision-Resistance. We now re-examine our hash function hA = Ax = TMx, which
takes t-sparse inputs x ∈ Fm

2 and maps them to F
n
2
2 . When n,m, t is chosen in the compression

regime to satisfy Equation (2) for any factor D > 1, the mapping hM sending x 7→ x′ = Mx admits
collisions. Since x′ ∈ Fn

2 is at most kt-sparse, which is lower than the threshold O(n/ log n) for T
to get collisions, it follows that, with overwhelming probability, all collisions of hA come from
collisions of hM.

Unfortunately, hA is no longer compressing. Since the output of hA is no longer sparse, we
can only bound the output size by its length n

2 , which is more than the input length of log2
(
m
t

)
=

O(t log n) as t is polynomially smaller than n. To get around this issue, we multiply the function

hA with another compressing matrix U ∈ Fℓ×n
2

2 for a suitable ℓ. Equivalently, we now consider
the hash family

hA′(x) = A′ · x ∈ Fℓ
2, where A′ = U ·A = (U ·T) ·M ∈ Fℓ×m

2 .

Note that V = U ·T ∈ Fℓ×n
2 is identically distributed to a random matrix of the same dimensions.

We will set ℓ so that two conditions are satisfied:

• To ensure hA′ is compressing, we need 2ℓ ≪
(
m
t

)
.

• To ensure hA′ is collision-resistant, we want the linear transformation y 7→ Vy to map dif-
ferent vectors y = Mx that are at most kt-sparse to different elements of Fℓ

2. This is satisfied
with overwhelming probability if 2ℓ ≫

(
n
kt

)2 ≈ |B≤(n, kt)|2 by a birthday bound, where
B≤(n, kt) denotes the Hamming ball of radius kt.

We can meet both conditions by setting the compression factor D > 2, so that
(
m
t

)
≫
(
n
k·t
)2. We

give a formal argument in Section 5, where collision-resistance can be reduced to Dense-Sparse
LPN with an inverse polynomial error probability ϵ = O(n−δ). Finally, we note that while our
later construction of lossy trapdoor functions generically implies collision-resistant hash func-
tions [PW08], the hash construction we just sketched is more direct and conceptually simpler.
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2.2 Lossy Trapdoor Functions

We now describe the main ideas behind our lossy trapdoor function construction, which on a
high level builds upon the lattice-based template of [PW08]. The core of our contribution lies in
identifying that, for the same compression regime of Dense-Sparse LPN as sketched above, we
can ensure both lossiness and invertibility depending on the mode being instantiated.

Our function key is of the following form. Given a matrix A = TM ∈ F
n
2
×m

2 drawn from the
Dense-Sparse LPN matrix distribution, we generate samples (bi = siA + ei)

ℓ
i=1 for a parameter

ℓ = ℓ(n) to be chosen later. Equivalently, we may concatenate these samples to get a matrix
B = SA + E ∈ Fℓ×m

2 . This matrix B will be given out as-is for the lossy mode, and for the
injective mode, will be used to hide a (robust) compressed sensing instance C ∈ Fℓ×m

2 which allows
for efficient inversion. To summarize, the function key is as follows:

fk =

{
(A,B = SA+E) if mode = loss,

(A,B = SA+E+C) if mode = inj, with td = S.

From the Dense-Sparse LPN assumption, it is clear that the two modes are computationally in-
distinguishable. Now, the input to the function will be t-sparse vectors x ∈ Fm

2 , and function
evaluation returns

y = (y1,y2), where y1 = Ax ∈ F
n
2
2 , and y2 = Bx ∈ Fℓ

2.

To invert in injective mode (with trapdoor S), we compute y′ = y2−Sy1 = Cx+Ex, then use the
decoding guarantee of the compressed sensing matrix C to recover x in the presence of noise Ex.

We now analyze the two modes to figure out the parameters that would ensure both lossiness
and efficient inversion holds with 1− negl(n) probability over the choice of the function key.

Lossy Mode. We want to choose parameters so that both y1 = Ax and y2 = (SA + E)x loses
information about x. We will reason separately about these two components as follows:

• Using the decomposition A = TM for a random (dense) T and sparse M, it suffices to have
x′ = Mx lose information about x. This is satisfied in the compression regime for Sparse
LPN where Equation (2) requires t = Ω

(
n · (n/m)

1
Dk−1

)
for a compression factor D > 1.

• For a fixed value y1, we can see that y2 = Sy1 +Ex lies in a Hamming ball of radius ∥Ex∥0
around Sy1. If we work with error probability ϵ, then E ← Ber(ϵ)ℓ×m and ∥x∥0 = t implies
that Ex ∼ Ber(ϵ′)ℓ, where ϵ′ = 1−(1−2ϵ)t

2 ≤ ϵt. We want the size of this ball, which is roughly(
ℓ
ϵtℓ

)
, to be at most a (D′)th-root of the number of inputs which is

(
m
t

)
.

Putting things together, we have that

|{(Ax,Bx) | ∥x∥0 = t}| <
(
m

t

)1/D

·
(
m

t

)1/D′

=

(
m

t

)1/D+1/D′

. (4)

Therefore, we can ensure that the output length is an arbitrarily small constant of the input length
by setting D,D′ to be large enough, with error probability ϵ = O(1/t) and ℓ = Θ(log

(
m
t

)
) =

Θ(t log n).
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Injective Mode. Do the parameters required for lossy mode also enable efficient inversion? To
answer this, we need to design a matrix C ∈ Fℓ×m

2 equipped with an efficient decoding algorithm
that can recover a t-sparse vector x from y′ = Cx + e ∈ Fℓ

2, where e = Ex is a noise term that is
constant-fraction sparse with overwhelming probability.

If our task were to recover a (dense) vector x, then we can simply pick C to be (the transpose
of) an error-correcting code. Then Cx is (the transpose of) a codeword, which is then perturbed
in a constant number of entries to form y′. Using an efficient decoding algorithm for C that can
correct a constant fraction of errors, we can recover x from y′.

However, in our case we have to recover a t-sparse vector x ∈ Fm
2 . Our idea is to restrict the

inversion process to only a special subset of such t-sparse vectors, namely the ones that arise as the

result of sparsifying dense vectors z ∈ Ft log(m
t
)

2 . The sparsification process is as follows:

z = [ z1︸︷︷︸
log(m

t
)

∥ . . . ∥ zt︸︷︷︸
log(m

t
)

] =⇒ spfy(z) = [(0, . . . , 1, . . . , 0)︸ ︷︷ ︸
z1-th position

∥ . . . ∥ (0, . . . , 1, . . . , 0)︸ ︷︷ ︸
zt-th position

] ∈ Fm
2 ,

where we interpret zi ∈ Flog(m
t
)

2 as a number in {0, . . . , mt − 1} for all i ∈ [t]. This gives a bijection
between binary vectors of length t log(mt ), with regular t-sparse vectors of length m. We may also

recover z from spfy(z) by multiplying with a gadget matrix G ∈ Ft log(m
t
)×m

2 (whose formula can be

found in Definition 3.2). In other words, we have G·spfy(z) = z for all z ∈ Ft log(m
t
)

2 . Note that these
procedures have appeared in prior works [BLVW19, YZW+19], and can be seen as a code-based
analogue of binary decomposition and the gadget matrix in lattice-based cryptography [MP12].

Given these tools, we can instantiate the injective mode as follows. We first slightly change
the input space of our function to be regular t-sparse vectors x ∈ Fm

2 , which are in bijection with

z = Gx ∈ Ft log(m
t
)

2 . We now set

C = C′ ·G,

where C′ ∈ Fℓ×t log(m
t
)

2 is the transpose of an error-correcting code with constant rate and dis-
tance [Jus72]. Therefore, using the decoding of C′ we may efficiently recover z, and hence x =
spfy(z), from y′ = Cx+ e = C′Gx+ e = C′z+ e.

All-but-one LTDFs. Our LTDF construction also generalize straightforwardly to realizing its
all-but-one (ABO) variant. In an ABO-LTDF, we have an exponential of branches B = FL

2 where
one distinguished branch b∗ is lossy, and all other branches are injective. Additionally, given the
function key fk it is difficult to find out which branch is distinguished. While there is a generic
transformation from LTDFs to its all-but-one version [PW08], it presents a tradeoff between the
number of branches supported and the degradation of the lossiness parameter.

We avoid this tradeoff by leveraging algebraic properties in our setting. In particular, we
achieve ABO-LTDFs with number of branches 2L, where L = t log(mt ), through a simple twist

on our construction above. At a high level, we associate the branches b ∈ Ft log(m
t
)

2 with a matrix
family Hb ∈ FL×L

2 such that Hb −Hb′ is invertible for all b ̸= b′. Such a full-rank difference (FRD)
family of matrices has appeared in prior works [ABB10, KMP14], and we refer to Section 6 for the
details of our ABO construction.

Why Low-Noise LPN does not Suffice. As a final remark, let us argue why LPN with noise
probability ϵ = O(log2 n/n) does not imply lossy trapdoor functions from our template above.
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The reason is that since ϵt = O(log n), the vector Ex, with E ← Ber(ϵ)ℓ×m and ∥x∥0 = t, is
Bernoulli distributed with error ϵ′ = 1

2 −
1

poly(n) . This requires setting ℓ = n1+Ω(1) for successful
inversion in injective mode.7 However, such a large ℓ prevents any hope of achieving lossiness, as
the Hamming ball around each y1 is simply too large:(

ℓ

ϵ′ℓ

)
= 2n

1+Ω(1) ≫ 2O(n) =

(
m

t

)
. (5)

2.3 Discussion on Our Assumption

We now discuss several aspects of our Dense-Sparse LPN assumption. Since our assumption com-
bines aspects of both standard LPN and Sparse LPN, it also inherits some subtle considerations
that arise in the context of choosing “good” matrices for Sparse LPN.

Sampling “Good” Matrices for Sparse LPN. In the Sparse LPN assumption, the matrix M is
chosen in Fn×m

2 , where m≪ n
k
2 , such that every column is k-sparse where k is some constant. For

this parameter setting, there is an inverse polynomial probability of M having a constant-sparse
vector x in its kernel, so that Mx = 0.8 When this “bad” event happens, an adversary can find x
in polynomial time and distinguish Sparse LPN samples from random.

However, this “bad” event is only over the choice of matrix M. Outside of this bad event, it
is known that if m = Õ(n1+( k

2
−1)(1−ρ)) for some ρ > 0, then with overwhelming probability, the

minimum Hamming weight for a vector x that satisfies Mx = 0 is at least O(nρ) (see Lemma 7.1
for details). Therefore, if we consider Sparse LPN with a large enough noise probability ϵ =
O(n−ρ), giving an adversary subexponential time do not seem to increase its advantage beyond
the probability of sampling a “bad” matrix.

We note that this issue is present in all prior cryptographic constructions relying on Sparse
LPN. Applebaum, Barak and Wigderson [ABW10] resolved this issue by weakening the indistin-
guishability advantage to be only o(1); this suffices for their application of building public-key
encryption, as they could rely on security amplification [HR05]. However, our goal is to build
lossy primitives, which do not amplify well [PRS12], so we must rely on a sampling M from a
distribution that avoids sampling a “bad” matrix with overwhelming probability. We will use the
following efficiently sampleable distribution from [AK19] which has this property.

Theorem 2.1 (informal). For every even k ≥ 6, every 1 < c < k/4, and every 0 < γ < k − 4c, there
exists an efficiently sampleable distribution of k-sparse matrices M ∈ Fn×nc

2 such that with overwhelming
probability, every nonzero vector x in the kernel of M has Hamming weight at least O(nδ), where δ =
k−4c−γ
k−γ−4 .

While this distribution does not sample matrix from all possible parameter regime of Sparse
LPN (for instance, we have m = nc < nk/4), it suffices to instantiate the compression regime in
Equation (2) with any compression factor D > 1, where the noise probability remains inverse
polynomial and we have plausible security against subexponential time attacks. Therefore, we
can use this distribution to instantiate the sparse matrix M in our Dense-Sparse LPN assumption.

7Error-correcting codes of relative distance 1
2
− 1

poly(n)
must have rate at most 1/ poly(n), so we have ℓ = n1+Ω(1).

8For instance, M has two identical columns with probability O(m
2

nk ).
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Almost-Subexponential Regime. Alternatively, we can work with a k that is mildly super-
constant, such as k = log logn. In this setting, m = nc can be an arbitrary polynomial in n, and
the “bad” matrix probability is now negligible, namely n−O(log logn). This allows us to sidestep the
need for special distributions, and just sample M uniformly at random from the set of k-sparse
matrices. Equation (2) now implies that we can achieve compression factor D > 1 when

t = O

((
nDk

m

) 1
Dk−1

)
= n

1−O
(

1
log logn

)
. (6)

Thus, in our construction of LTDFs, we can rely on Dense-Sparse LPN with error probability

ϵ = O(1/t) = n
−O

(
1

log logn

)
which is inverse almost-polynomial. Note that this noise probability

is still larger than the O( log
2 n
n ) noise rate of (standard) LPN. Therefore, our Dense-Sparse LPN

assumption with this error rate is plausibly secure against almost-subexponential 2n
O( 1

log logn)-time
attacks, unlike the quasi-polynomial security of (standard) LPN in its compression regime.

A Stronger Variant of Our Assumption. Finally, we can consider making a stronger assumption
that together with (standard) LPN implies Dense-Sparse LPN. In this variant, we now assume that
the matrix A = TM from the Dense-Sparse matrix distribution is actually pseudorandom.

Assumption 2.1 (Dense-Sparse Indistinguishability). For T ← F
n
2
×n

2 , M ← Fn×m
2 drawn from a

good distribution of k-sparse matrices, and U← F
n
2
×m

2 , we have TM ≈c U.

By a simple hybrid argument, Assumption 2.1 together with (standard) LPN indeed implies
Dense-Sparse LPN with noise rate as small as O( log

2 n
n ). We do not see any better attack against

this assumption than against Dense-Sparse LPN, and refer to Section 7 for initial cryptanalysis
regarding this assumption.

2.4 Open Questions

At a high level, our Dense-Sparse LPN assumption is designed specifically so that we can harness
the lossiness property of the k-sparse matrix M, and do so without losing security by applying
a random compressing matrix T before giving out A = TM. In our construction of collision-
resistant hash functions (CRHFs), we even managed to convert this lossiness into actual compres-
sion of the output. However, it seems difficult to achieve compression directly without giving up
on other properties of the assumption.

Let us explain this difficulty by attempting to construct a (single-server) private information
retrieval (PIR) scheme [CGKS95, KO97].9 In PIR, we have a server holding a database D ∈ Fn

2 , and
a client who wishes to learn the i-th entry Di of D without revealing the index i. A client will send
a query q to the server, who then responds with a response r. A non-trivial PIR scheme requires
compactness, namely that the response length is less than the database length.

We now consider the following candidate PIR scheme from Dense-Sparse LPN, which bor-
rows from our construction of LTDFs and the template in [KO97]. Assume for simplicity that the
database D ∈ Fm

2 is t-sparse (the general case can be reduced to this setting by sparsification). To

9It is not known whether lossy trapdoor functions imply PIR, nor is there a black-box separation between two
primitives.
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make a query on index i ∈ [m], the client will send an encryption

q = (A,b = sA+ e+ ui), where A = TM ∈ F
n
2
×m

2 and ui = (0, . . . , 1, . . . , 0)︸ ︷︷ ︸
i-th position

.

The server will respond with the ciphertext applied to D, i.e. with r = (r1, r2) = (AD,bD) ∈
F

n
2
+1

2 . The client then recovers Di = ⟨D,ui⟩ by computing r2 − sr1 = Dui + De. By sampling
e from a Bernoulli distribution of probability ϵ = O(1/t), we can guarantee that the scheme has
constant correctness, which can be amplified to negligible by ω(log n) repetitions of b. Client’s
query privacy also follows directly from Dense-Sparse LPN with noise rate ϵ.

The problem with the scheme above is that it is not compact. Indeed, the response is of length
n
2 + 1 which is greater than the database length log

(
m
t

)
≈ t log(m/t). Here, we are in a similar

situation to our CRHF construction, but we cannot use the same trick to achieve compactness
here. The reason is that, if we were to multiply r1 = AD by a further compressing matrix U ∈
Fℓ×n

2
2 , then the client would receive UAD. From there, the client must “decompress” AD from

U, but this appears computationally infeasible since U does not come with a trapdoor for efficient
inversion!

We note that the same difficulty above also prevents us from using Dense-Sparse LPN to build
laconic oblivious transfer and identity-based encryption [BLSV18]. Therefore, we leave as open
question the task of overcoming these limitations, either by finding a way to efficiently compress
and decompress Ax for a random t-sparse x, or by proposing a different LPN variant that avoids
this issue entirely.

3 Preliminaries

Notation. Let N = {1, 2, . . . } be the natural numbers, and define [a, b] := {a, a+ 1, . . . , b}, [n] :=
[1, n]. Our logarithms are in base 2. For a finite set S, we write x ← S to denote uniformly
sampling x from S. We denote the security parameter by λ; our parameters depend on λ, e.g.
n = n(λ), and we often drop the explicit dependence.

We abbreviate PPT for probabilistic polynomial-time. Our adversaries are non-uniform PPT,
or equivalently, polynomial-sized, ensembles A = {Aλ}λ∈N. We write negl(λ) to denote a negli-
gible function in λ. Two ensembles of distributions {Dλ}λ∈N and {D′

λ}λ∈N are computationally
indistinguishable if for any non-uniform PPT adversary A there exists a negligible function negl
such that A can distinguish between the two distributions with probability at most negl(λ).

For q ∈ N that is a prime power, we write Fq to denote the finite field with q elements, and
F×
q to denote its non-zero elements. We write vectors and matrices in boldcase, e.g. v ∈ Fm

q and
A ∈ Fn×m

q . Given v ∈ Fm
q , we define the Hamming weight wt(v), also denoted ∥v∥0, to be the

number of non-zero entries of v.

Bernoulli Distribution. We denote the Bernoulli distribution over a finite field Fq with noise
rate ϵ ∈ (0, 1) by Ber(Fq, ϵ); this distribution gives 0 with probability 1 − ϵ, and a random non-
zero element of Fq with probability ϵ. We write e ∼ Ber(Fq, ϵ) to denote that e comes from the
corresponding Bernoulli distribution. When q = 2, we omit Fq and simply write Ber(ϵ).
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Definition 3.1 (Bias). Let F be a finite field. Given a distribution D over Fm and a vector u ∈ Fm, we
define the bias of D with respect to u to be

biasu(D) :=
∣∣∣∣ E
x∼D

[⟨u,x⟩]− 1

|F|

∣∣∣∣ .
The bias of D is defined as bias(D) = maxu̸=0 biasu(D).

Lemma 3.1 (Bias of the Bernoulli distribution). For any finite field Fq, noise rate ϵ ∈ (0, 1), and d ∈ N,

consider the noise distribution Dm,n = (Ber(Fq, ϵ))
m. Then ϵd =

(
1− q

q−1ϵ
)d

.

As a special case when q = 2, we have the piling-up lemma.

Lemma 3.2 (Piling-Up Lemma). For any ϵ ∈ (0, 1), we have that

Pr

[
ℓ∑

i=1

ei = 1

∣∣∣∣∣ e1, . . . , eℓ ← Ber(ϵ)

]
=

1− (1− 2ϵ)ℓ

2
< min

(
ϵℓ,

1

2
− 2−4ϵℓ−1

)
.

Tail Bounds. We also state some standard tail bounds for binary variables.

Lemma 3.3 (Chernoff/Hoeffding bound). Let X1, . . . , Xn ∈ {0, 1} be i.i.d random variables with mean
at most ϵ. Then for every κ > 1,

Pr[X1 + · · ·+Xn > (1 + κ)ϵn] ≤ e−2κ2ϵn.

Binomial Approximation. We will use the following basic approximations of the binomial coef-
ficient, which can be found in e.g. [CLRS22]. Namely, for any 1 ≤ k ≤ n/2, we have(n

k

)k
≤
(
n

k

)
≤
(en
k

)k
. (7)

Hamming Balls. Given n,w ∈ N with w ≤ n, we define the following sets:

• B≤(n,w) = {x ∈ {0, 1}n | wt(x) ≤ w},

• B(n,w) = {x ∈ {0, 1}n | wt(x) = w},

• Breg(n,w) = {x = x1∥ . . . ∥xw ∈ {0, 1}n | xi ∈ {0, 1}n/w ∧ wt(xi) = 1 ∀ i ∈ [w]}, for any w
dividing n.

Their sizes are as follows.

Lemma 3.4. For any w < n/3, we have the following:

• |B≤(n,w)| =
∑w

t=0

(
n
t

)
∈
((

n
w

)
, 2
(
n
w

))
.

• |B(n,w)| =
(
n
w

)
∈
(
2w log(n/w), 2w log(en/w)

)
.

• |Breg(n,w)| =
(
n
w

)w
= 2w log(n/w).

Thus, we have that |Breg(n,w)| < |B(n,w)| < |B≤(n,w)| < 2w log e+1 · |Breg(n,w)|.

Proof. The only non-trivial claim is that
∑w

t=0

(
n
t

)
< 2

(
n
w

)
. This follows from the fact that

(
n

t−1

)
=

t
n−t+1

(
n
t

)
< 1

2

(
n
t

)
for all t < n/3, and hence

∑w
t=0

(
n
t

)
<
(
1 + 1

2 +
(
1
2

)2
+ . . .

) (
n
w

)
= 2
(
n
w

)
.
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Sparsification and the Gadget Matrix. We describe an LPN analogue to the LWE gadget ma-
trix [MP12], based on the idea of sparsification.

Given any s ∈ N, we denote by bins : [0, 2s − 1] → {0, 1}s the binary decomposition function,
and bin−1

s : {0, 1}s → [0, 2s− 1] its inverse. Given any v ∈ {0, 1}s, we define ind(v) to be the vector
of length 2s (indexed from 0) consisting of all zeros, except for the bin−1

s (v)-th entry being 1.

Definition 3.2. Let n,w ∈ N with w ≤ n, and define w̃ = w log(n/w). Given x ∈ {0, 1}w̃ divided into w
blocks of size s = log(n/w), so that x = x1∥ . . . ∥xw, we define its (n,w)-sparsification spfyn,w(x) to be

spfyn,w(x) := ind(x1)∥ . . . ∥ind(xw) ∈ {0, 1}n.

We also define the (n,w)-gadget matrix Gn,w to be

Gn,w := gs ⊗ Iw ∈ {0, 1}w×n, where gs := [bins(0)∥bins(1)∥ . . . ∥bins(2s − 1)] ,

and Iw is the identity matrix of dimension w. For convenience, we also refer to spfyn,w as G−1
n,w, and omit

the subscripts n,w when they are clear from context.

We can easily check that

Gn,w ·G−1
n,w(x) = Gn,w · spfyn,w(x) = x. (8)

Note that for the dimensions of Gn,w to satisfy n = poly(w), we need s ≤ c logw for some constant
c. We also get the following identity for any x,y ∈ {0, 1}w̃:

⟨x,y⟩ =
〈
x,Gn,w · spfyn,w(y)

〉
=
〈
GT

n,w · x, spfyn,w(y)
〉
. (9)

3.1 Coding Theory

Definition 3.3 (Dual Distance). Let Fq be a finite field and n < m ∈ N. The dual distance of a matrix
A ∈ Fn×m

q , denoted dd(A), is defined to be minimum sparsity of a vector x ∈ Fm
q in the kernel of A. In

other words, we define dd(A) = min{wt(x) | Ax = 0}.

Definition 3.4 (q-ary Entropy). For any x ∈ (0, 1), we define the q-ary entropy function to be Hq(x) =
x logq(q − 1)− x logq x− (1− x) logq(1− x). We denote binary entropy by H(x).

The following standard results can be found in coding theory textbooks, e.g. [GRS12].

Lemma 3.5 (Entropy Approximation). For any δ ∈ (0, 1), we have that δ log(1/δ) < H(δ) < δ log(4/δ).

Lemma 3.6 (Gilbert-Varshamov Bound). Let Fq be a finite field. For every δ ∈ (0, 1 − 1/q) and every
ϵ ∈ (0, 1−Hq(δ)), letting k = ⌊(1−Hq(δ)− ϵ) ·n⌋, a random matrix G← Fk×n

q generates a q-ary linear
code of distance at least δn with probability at least 1− q−ϵn.

Equivalently, for ℓ = ⌈(Hq(δ)+ϵ) ·n⌉, a random matrix H← Fℓ×n
q is a parity-check matrix for a q-ary

linear code of distance at least δn with probability at least 1− q−ϵn.

Lemma 3.7 (Asymptotically Good Codes). For some constants δ, ρ > 0, there exists an explicit con-
struction of a family of binary codes {Cn}n∈N with block length N(n) (bounded by some fixed polynomial
in n), rate ρ, and supporting efficient error correction for up to δn errors.
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4 Our Code-Based Assumption: Dense-Sparse LPN

In this section, we define our main assumption, Dense-Sparse LPN. To do so, we will first define
a general LPN assumption with an arbitrary distribution of coefficient matrix.

Definition 4.1 (Decisional (M, ϵ)-LPN). Let n ∈ N be the dimension, m = m(n) be the number of
samples, ϵ = ϵ(n) ∈ (0, 1) be the noise rate, and q = q(n) be a prime power. Given an efficiently sampleable
distribution M = M(n,m,Fq) over matrices in Fn×m

q , we say that the (M, ϵ)-LPN assumption is
(T (n), δ(n))-hard if for all adversary A running in time at most T , the following holds:

AdvLPN
n,m,q,M,ϵ(A) :=

∣∣∣∣∣ Pr
[
A(A, sA+ e) = 1

∣∣ A←M, s← F1×n
q , e← Ber(Fq, ϵ)

1×m
]

− Pr
[
A(A,u) = 1

∣∣ A←M,u← F1×m
q

] ∣∣∣∣∣ ≤ δ.

We say that (M, ϵ)-LPN is polynomially hard if for every polynomial p(n), there exists a negligible
function negl(n) such that it is (p(n), negl(n))-hard. Similarly, (M, ϵ)-LPN is subexponentially hard if
there exists a constant 0 < c < 1 and a negligible function negl(n) such that it is (2nc

, negl(n))-hard.

Definition 4.2 (Decisional (M, ϵ)-Dual LPN). Consider n,m, q,M, ϵ as in Definition 4.1. We say that
the (M, ϵ)-dual LPN assumption is (T (n), δ(n))-hard if for all adversary A running in time at most T ,
the following holds:

Advdual-LPN
n,m,q,M,ϵ(A) :=

∣∣∣∣∣ Pr
[
A(H,He) = 1

∣∣ H←M, e← Ber(Fq, ϵ)
1×m

]
− Pr

[
A(H,u) = 1

∣∣ H←M,u← F1×m
q

] ∣∣∣∣∣ ≤ δ.

We may define polynomial or subexponential hardness of (M, ϵ)-dual-LPN similar to Definition 4.1.

Remark 4.1. For the rest of the paper, we will work over the binary field (so that q = 2). We note
that our assumptions and constructions can be straightforwardly generalized to work with any
constant q = O(1).

When M is the uniform distribution over Fn×m
2 , we recover the (standard) LPN assump-

tion [BFKL94] (with Dual-LPN equivalent to LPN). We now define variants of LPN with different
matrix distributionsM.

Definition 4.3 (Sparse LPN). Let k ∈ N be a constant, and consider parameters n ∈ N, m = m(n) <
nk/2, and ϵ = ϵ(n) < 1. Denote by SpMat(n,m, k) the set of matrices A ∈ Fn×m

2 such that each column
of A has exactly k non-zero entries.

We define the (n,m, k, ϵ)-sparse LPN (sLPN) assumption to be the following: there exists an effi-
ciently sampleable distributionMsp over SpMat(n,m, k) such that the (Msp, ϵ)-LPN assumption holds.

Note that the above assumption does not specify the exact distributionMsp of sparse matrices.
This is because the “canonical” distribution Munif of sampling k-sparse columns independently
and uniformly at random do not suffice for the above assumption. The reason is that there is
a noticeable probability, of roughly O(m2/nk), for sampling a “bad” matrix A ← Munif with
small dual distance, which would break the assumption by giving the adversary a noticeable
distinguishing advantage.

Motivated by this discussion, we lay out a necessary criteria for the sparse matrix distribution
Msp to satisfy the Sparse LPN assumption.
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Definition 4.4 (Sparse matrices with ω(1)-dual distance). For every n ∈ N, k = k(n), m = m(n) <
nk/2 and d = ω(1), define SpMat(n,m, k, d) = {A ∈ SpMat(n,m, k) | dd(A) ≥ d} to be the subset of
SpMat(n,m, k) consisting of matrices with super-constant dual distance of at least d.

We say that an efficiently sampleable distributionMsp over SpMat(n,m, k) is (d, δ)-good if

Pr[A ̸∈ SpMat(n,m, k, d) | A←Msp] ≤ δ.

We say thatMsp is good if it is (d, δ)-good for some d = ω(1) and δ = negl(n).

We may make the conjecture that any such good distributionMsp would give rise to a secure
sLPN assumption. A more conservative assumption would be to assume sLPN assumption holds
for specific good distributions that have been constructed in the literature. In our work, we will
use the following distribution by Applebaum and Kachlon [AK19].

Theorem 4.1 (Theorem 7.18 [AK19], adapted). For every even k ≥ 6, every 1 < c < k/4 with

γ = k − 4c, there exists an efficiently computable,
(
O(nδ), n

−O
(

log log logn
log log log logn

))
-good distribution over

SpMat(n,m, k), where m = nc and δ = k−4c−γ
k−γ−4 . We call this the AK19 distribution.

Note that the AK19 distribution does not give us all possible parameter range for k-sparse
matrices. In particular, the number of samples m is limited to be at most nk/4. However, the
parameter regime that the AK19 distribution supports overlap with the compression regime of
Lemma 4.1 for any constant compression factor D > 1. Therefore, we can indeed use this distri-
bution to instantiate our schemes and assumptions.

Definition 4.5 (Dense-Sparse LPN). Let k ∈ N, α ∈ (0, 1) be constants, and consider parameters n ∈ N,
m = m(n) < nk/2, and ϵ = ϵ(n) < 1. LetMsp be a good distribution over SpMat(n,m, k). We define the
(n,m, k,Msp, ϵ)-Dense-Sparse LPN (DS-LPN) assumption to be the (M, ϵ)-LPN assumption, whereM
is the following distribution:

M = {T ·M | T← Fαn×n
2 ,M←Msp}.

In other words, we say that Dense-Sparse LPN is (T (n), δ(n))-hard if the following holds for every adver-
sary A running in time at most T :

AdvDS-LPN
n,m,k,Msp,ϵ(A) := |Pr [A(A, sA+ e) = 1]− Pr [A(A,u) = 1]| ≤ δ,

where T← Fαn×n
2 , M←Msp, A = T ·M, s← F1×αn

2 , e← Ber(ϵ)1×m, and u← Fm
2 .

To simplify notation, we will take α = 1/2 for all of our constructions, though the assumption
plausibly holds for any constant α ∈ (0, 1). We provide detailed cryptanalysis of Dense-Sparse
LPN in Section 7.

Remark 4.2 (Dense-Sparse Dual-LPN). It is plausible that the dual version of Dense-Sparse LPN
also holds, namely that

{(TM,TMe)} ≈c {(TM,u)} for T← Fαn×n
2 , M←Msp, e← Ber(ϵ)m×1, and u← Fαn×1

2 .

This is because Me is roughly O(kt)-sparse, so that plausibly (T,TMe) ≈c (T,u) by dual-LPN
for the random matrix T ∈ Fαn×n

2 .
Note that this is not yet a rigorous argument since the sparse vector Me is very far from being

Bernoulli distributed. Since we do not use Dense-Sparse dual-LPN in our constructions, we leave
a more rigorous cryptanalysis and further applications of this assumption to future work.
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Compression Regime. We give here the parameter regime that allows for the function

fM : Breg(m, t)→ B≤(n, kt) defined by fM(x) = M · x, for any M ∈ SpMat(n,m, k),

to be compressing (by some constant factor D in the exponent).

Lemma 4.1. Given constant k ∈ N, k ≥ 3 and compression factor D > 1, define δ(4.1)(k,D) := 1− k/2−1
Dk−1 .

For any δ ∈ (δ(4.1)(k,D), 1), any n ∈ N large enough, and any m < nk/2, letting t = nδ, we have the
following:

|Breg(m, t)| = 2t log(m/t) >
(
2kt log(en/kt)+1

)D
> |B≤(n, kt)|D (10)

whenever m > m(4.1)(n, k,D, δ) := n1+(Dk−1)(1−δ).

Proof. Note that the last inequality in Equation (10) follows from Lemma 3.4. Thus it suffices to
show the central inequality. Taking the logarithms of both sides, we need to show that

t(logm− log t) > D (kt log(en/kt) + 1) .

Dividing by t and isolating out log(m), we get

logm > D/t+ log(t) +Dk log(en/kt),

which is equivalent to

m > 2D/t · t ·
(en
kt

)Dk
= 2D/t ·

( e
k

)Dk
· nDk

tDk−1
.

Plugging in t = nδ gives us

m > 2D/nδ ·
( e
k

)Dk
· n1+(Dk−1)(1−δ).

Since limn→∞ 2D/nδ
= 1 and e/k ≤ e/3 < 1, for n large enough we have

2D/nδ ·
( e
k

)Dk
<
( e
k

)−Dk
·
( e
k

)Dk
= 1.

Therefore, Equation (10) is satisfied when m > n1+(Dk−1)(1−δ). Finally, since we need to impose
the condition that m < nk/2, it follows that δ is at most 1− k/2−1

Dk−1 = δ(4.1)(k,D).

5 Collision-Resistant Hash Functions

In this section, we give a simple construction of collision-resistant hash functions (CRHFs) from
our Dense-Sparse LPN assumption. While lossy trapdoor functions (LTDFs), which we construct
in Section 6, are known to imply CRHFs [PW08], the resulting construction is more complex
than the one presented here (and require a slightly smaller noise rate ϵ = O(1/nδ) instead of
ϵ = O(log n/nδ)).

Compared to prior LPN-based hashes [BLVW19, YZW+19], which rely on either inverse quasi-
polynomial noise rate ϵ = O(log2 n/n) or sub-exponential hardness, our construction only requires
polynomial hardness and sub-exponential noise rate ϵ = Õ(n−δ) for DS-LPN, where δ is a constant
that can be arbitrarily close to 3/4 (as k →∞).
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Collision-Resistant Hash Function from Dense-Sparse LPN

Parameters.

• Pick any constant k ∈ N, k ≥ 3, any constant D > 2, and any δ ∈ (δ(4.1)(k,D), 1). Let
ρ = 1/2− 1/D > 0.

• Let m > m(4.1)(n, k,D, δ), t = nδ, and ϵ = O(log n/t). Denote t̃ = t log(m/t). Choose
n = (2λ/ρ)1/δ so that ρt̃ > ρnδ > 2λ. LetMsp be a good distribution over SpMat(n,m, k).

Construction.

• Gen(1λ)→ k. Sample H← F(1−ρ)t̃×n
2 , and M←Msp. Return k = A′ = H ·M.

• Hash(k,x)→ h. On input x ∈ Ft̃
2, return h = A′ · spfym,t(x) ∈ F(1−ρ)t̃

2 .

Figure 2: CRHF construction

Definition 5.1. A collision-resistant hash function (CRHF) family, with input length m(λ) and output
length n(λ), is a tuple of PPT algorithmsH = (Gen,Hash) with the following properties:

• Syntax:

– Gen(1λ)→ k. On input the security parameter 1λ, output a hash key k.

– Hash(k,x). On input the hash key k and an input x ∈ {0, 1}m(λ), deterministically output
h ∈ {0, 1}n(λ).

• Compression: We have m(λ) > n(λ) + 2λ for all λ ∈ N.

• Collision-Resistance: For all polynomial-size adversary A, the following probability is negligible:

AdvCRHF(A) := Pr

[
x1 ̸= x2 ∧

Hash(k,x1) = Hash(k,x2)

∣∣∣∣∣ k← Gen(1λ)

(x1,x2)← A(k)

]
≤ negl(λ).

Theorem 5.1. Assuming the (n,m, k,Msp, ϵ)-DS-LPN assumption holds, where n,m, k,Msp, ϵ are de-
fined as in Figure 2. Then Figure 2 gives a construction of a CRHF family.

Proof. It is clear that we have compression, as the gap between input and output size is t̃−(1−ρ)t̃ =
ρt̃ > 2λ by our parameter choice. It remains to show collision-resistance, which we show by going
through the following hybrids.

• Hyb0: this is the CHRF game, where an adversary A receives A′ = H ·M and outputs
x1,x2 ∈ Ft log(m/t)

2 . A wins, or equivalently Hyb0 returns 1, if x1 ̸= x2 and A′ · spfym,t(x1) =
A′ · spfym,t(x2); equivalently, when A′ · x′ = 0 where x′ = spfym,t(x1)− spfym,t(x2).

• Hyb1: this is identical to Hyb0, except the adversary A only wins if M · x′ = 0 (and also
x1 ̸= x2). Thus, Hyb2 differs from Hyb1 only when M · x′ ̸= 0 but H · (M · x′) = 0. Since
y = M · x′ ∈ Fn

2 is at most 2kt-sparse, this amounts to bounding the probability that a

random parity-check matrix H ∈ F(1−ρ)t̃×n
2 has distance less than 2kt.
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We will show that this probability is negligible by examining our parameter choices. By
Lemma 3.5, we have that

H

(
2kt

n

)
· n < 2kt log

(
2n

kt

)
.

Since we choose t = nδ and m > m(4.1)(n, k,D, δ), we know from Lemma 4.1 that the fol-
lowing holds:

t̃ = t log
(m
t

)
> D

(
kt log

(en
kt

)
+ 1
)
> Dkt log

(
2n

kt

)
=⇒ 2

D
t̃ > 2kt log

(
2n

kt

)
> H

(
2kt

n

)
n

=⇒ (1− ρ)t̃ =

(
2

D
+ ρ

)
t̃ > H

(
2kt

n

)
n+ 2λ.

Therefore, by Gilbert-Varshamov (Lemma 3.6), H ∈ F(1−ρ)t̃×n
2 has distance less than 2kt with

probability at most 2−2λ = negl(λ).

• Hyb2: this is identical to Hyb1, but instead of sampling H ← F2t log(m/t)×n
2 , we sample H =

H′ · T where H′ ← F2t log(m/t)×n/2
2 and T ← Fn/2×n

2 . Since t̃ < n/2 < n, by basic linear
algebra, it follows that H is identically distributed as in Hyb1.

We now show that Pr[Hyb2 returns 1] ≤ negl(λ) assuming DS-LPN holds. We do this by
constructing an adversary B against DS-LPN from an adversary A against Hyb2. B receives
(A,b) where A = T ·M for T ← Fn/2×n

2 , M ← Msp, and b ∈ F1×m
2 is either uniformly

random or is equal to sA + e for a random s ← F1×n/2
2 and e ← Ber(ϵ)1×m. B now samples

H′ ← F(1−ρ)t̃×n/2
2 , computes A′ = H′ · A, then runs A on A′ to get (x1,x2) from A and

return ans := b · (spfym,t(x1) − spfym,t(x2)). Here ans = 1 indicates that B received random
b← F1×m

2 .

We will analyze B’s success probability. If b is uniformly random, then ans is also uniformly
random whenever Awins (so that x1 ̸= x2); thus, in this case we have

Pr[ans = 1 | b← Fm
2 ] =

1

2
· Pr[Hyb2 returns 1].

If b = sA+ e, then ans = (sA+ e) · x′ = e · x′ whenever A wins in Hyb2. Since x′ is at most
2t-sparse, by Lemma 3.2 we have

Pr[ans = 1 | b = sA+ e] ≤ Pr[e · x′ = 1] · Pr[Hyb2 returns 1]

≤
(
1− (1− 2ϵ)2t

2

)
· Pr[Hyb2 returns 1]

≤
(
1

2
− 2−8ϵt−1

)
· Pr[Hyb2 returns 1]

=

(
1

2
− 1

poly(λ)

)
· Pr[Hyb2 returns 1].
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The last inequality is due to our choice of parameter ϵ = O(log n/t), which implies 2−8ϵt−1 =
1/ poly(n) = 1/ poly(λ). Putting everything together, we have

AdvDS-LPN(B) = |Pr[ans = 1 | b = sA+ e]− Pr[ans = 1 | b← Fm
2 ]|

≥ 1

poly(λ)
· Pr[Hyb2 returns 1].

Therefore, if DS-LPN holds (for our parameters), then

Pr[Hyb2 returns 1] ≤ poly(λ) ·AdvDS-LPN(B) ≤ negl(λ).

6 Lossy Trapdoor Functions

6.1 Definition

We define all-injective-but-one lossy trapdoor functions, which include lossy trapdoor functions
as a special case of having two branches.

Definition 6.1. An all-(injective)-but-one lossy trapdoor function ABO-LTDF with input size n =
n(λ), output size m = m(λ), residual leakage r = r(λ), and number of branches B(λ), consists of a PPT
algorithm Gen and a tuple of deterministic functions (F, F−1) with the following syntax:

• Gen(1λ, b∗) → (fk, td). Given the security parameter 1λ and a distinguished lossy branch b∗ ∈
[B(λ)], return a function key fk and a trapdoor td.

• F (fk, b, x)→ y. Given the function key fk, a branch b ∈ [B], and an input x ∈ Fn
2 , return an output

y ∈ Fm
2 .

• F−1(td, b, y) → x. Given the trapdoor td, a branch b ∈ [B], and an output y ∈ Fm
2 , return a

preimage x ∈ Fn
2 .

and the following requirements:

• Branch Indistinguishability. For any two different branches b∗0 ̸= b∗1 ∈ [B], the following two
distributions are indistinguishable{

fk
∣∣∣ (fk, td)← Gen(1λ, b∗0)

}
λ∈N
≈c

{
fk
∣∣∣ (fk, td)← Gen(1λ, b∗1)

}
λ∈N

.

• Correct Inversion for Injective Branch. For any λ ∈ N and b ̸= b∗ ∈ [B], we have

Pr
[
F−1(td, b, F (fk, b, x)) = x ∀x ∈ Fn

2

∣∣∣ (fk, td)← Gen(1λ, b∗)
]
≥ 1− negl(λ).

• Lossyness for Lossy Branch. For any λ ∈ N, we have

Pr
[
|{F (fk, b∗, x) | x ∈ Fn

2}| ≤ 2r
∣∣∣ (fk, td)← Gen(1λ, b∗)

]
≥ 1− negl(λ).

We define the lossiness factor to be Γ = n/r, meaning that in lossy mode, the output size is reduced
by a factor of Γ compared to the input size.

A lossy trapdoor function LTDF is an ABO-LTDF with only two branches, i.e. B(λ) = 2 for all λ ∈ N.
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Other extension of LTDFs. Over the years, several variants of LTDFs have been proposed with
a goal toward increased functionality and more diverse applications. These include all-but-N
LTDFs [HLOV11] (which can be built in a black-box way from LTDFs), all-but-many [Hof12],
and cumulative-all-lossy-but-one [CPW20] lossy trapdoor functions. However, post-quantum
constructions of the latter two variants [BL17, LSSS17, LNP22] rely on lattice techniques such as
preimage sampling [GPV08, MP12] and GSW-style homomorphic evaluation [GSW13]. Since we
do not know analogues of these techniques for code-based cryptography, we leave as future work
the task of constructing these more advanced variants of LTDFs from code-based assumptions.

6.2 Construction

We give our construction of ABO-LTDF in Figure 3. In the construction, we use the follow-
ing family of matrices {Hτ}τ∈F2n

for any n ∈ N, where Hτ ∈ Fn×n
2 is the matrix corresponding

to multiplication by τ in the field F2n (which is isomorphic as vector spaces to Fn
2 ). It follows

that Hτ − Hτ ′ = Hτ−τ ′ is invertible for all τ ̸= τ ′. Such a family has been used in previous
works [ABB10, KMP14].

To analyze the security of our construction, we begin with the following result which bounds
the noise growth.

Lemma 6.1. Consider the parameters n,m, t, B, ϵ, ℓ as in Figure 3. Let E← Ber(F2, ϵ)
ℓ×m. Then except

with negl(λ) probability over the choice of E, the vector E · spfym,t(x) ∈ Fℓ
2 is at most γℓ-sparse for all

x ∈ Ft log(m/t)
2 .

Proof. By union bound, it suffices to show that for any fixed x ∈ Ft log(m/t)
2 , letting x̃ = spfym,t(x),

we have:
Pr
[
wt(E · x̃) > γℓ

∣∣∣ E← Ber(F2, ϵ)
ℓ×m

]
≤ 2−t log(m/t) · negl(λ).

Let e = E · x̃. We can see that for each j ∈ [ℓ], the entry (E · x̃)j = ⟨Ej , x̃⟩, where Ej is the jth row
of E, is drawn from the Bernoulli distribution with noise

ϵ′ =
1− (1− 2ϵ)t

2
< ϵt =

γ

α+ 1
, by Lemma 3.1 and the choice of ϵ.

We now apply Chernoff bound (Lemma 3.3) to get

Pr
[
wt(E · x̃) > γℓ

∣∣∣ E← Ber(F2, ϵ)
ℓ×m

]
≤ e−2α2 γ

α+1
ℓ = e

−2 α2

α+1
γ
ρC

t log(m/t)
< 2−2t log(m/t).

In the above, the last inequality follows from our choice of α. Therefore, E·x̃ has Hamming weight
at most γℓ for all x ∈ Ft log(m/t)

2 with probability at least

1− 2t log(m/t) · 2−2t log(m/t) = 1− 2−t log(m/t) = 1− negl(λ).

Theorem 6.1. Assuming the (n,m, k,Msp, ϵ)-Dense-Sparse LPN assumption, where n,m, k,Msp, ϵ are
chosen as in Figure 3, the construction in Figure 3 is an ABO-LTDF with input length t log(m/t), branches
indexed by Ft log(m/t)

2 , and lossiness factor Γ > 1.
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ABO-LTDFs from Dense-Sparse LPN

Parameters. Let k ∈ N, k ≥ 3 be a constant, Γ > 1 be any desired lossiness factor.

• Let D > Γ be the compression factor, and consider any δ ∈ (δ(4.1)(k,D), 1).

• Let n = poly(λ), m = m(4.1)(n, k,D, δ), t = nδ, and consider a good distribution Msp

over SpMat(n,m, k).

• Let C = {Cκ}κ∈N be an explicit family of asymptotically-good linear codes, where each
Cκ has block length L(κ), constant rate ρC , and admits an efficient algorithm Decode that
can correct up to δCL errors (which exists by Lemma 3.7).

• Let D′ = ΓD
Γ−D so that 1

D + 1
D′ =

1
Γ , and γ = min

(
δC , H

−1
( ρ
D′

))
. Let α > 0 be a constant

such that α2

α+1 > ρC
γ .

• Let ℓ = 1
ρC
· t log(mt ) be the block length,a and ϵ = γ

(α+1)t be the noise rate. We will

abbreviate C = Cℓ ∈ Ft log(m/t)×ℓ
2 .

Construction.

• Gen(1λ, τ∗) → (fk, td). Given lossy branch τ∗ ∈ F2t log(m/t) , sample M ← Msp, T ←
Fn/2×n
2 , S← Fℓ×n/2

2 , and E← Ber(F2, ϵ)
ℓ×m.

Let A = T ·M ∈ Fn/2×m
2 , and B = S ·A+E+CT ·Hτ∗ ·GT

m,t ∈ Fℓ×m
2 .

Return fk = (A,B) and td = (S, τ∗).

• F (fk, τ,x) → y. Given τ ∈ F2t log(m/t) and x ∈ Ft log(m/t)
2 , compute x̃ = spfym,t(x) and

Bτ = B−CT ·Hτ ·GT
m,t.

Return y = (A · x̃,Bτ · x̃) ∈ Fn/2+ℓ
2 .

• F−1(td, τ,y)→ x. Parse y = (y1 ∈ Fn/2
2 ,y2 ∈ Fℓ

2) and compute y′ = y2 − S · y1.

Return x← (Hτ∗−τ )
−1 · Decode(y′).

aWithout loss of generality, we may assume ℓ = L(κ) for some κ ∈ N. Otherwise, letting L(κ) be the nearest
block size larger than ℓ, we may scale n (and thus ℓ) by an appropriate polynomial amount so that ℓ = L(κ).

Figure 3: ABO-LTDF construction

Proof. We argue each property separately as follows.

Mode indistinguishability. This is clear from the Dense-Sparse LPN assumption, since in both
cases, fk = (A,B) is indistinguishable from (A,U) for a random U← Fℓ×m

2 .

Trapdoor inversion. If Gen(1λ, inj) → (fk = (A,B), td = (S, τ∗)) and F (fk, τ,x) = (y1,y2) for
some x ∈ Ft log(m/t)

2 , letting x̃ = spfym,t(x), we have that

y1 = A · x̃, y2 = (B−CT ·HT
τ ·GT

m,t) · x̃
= S · y1 +E · x̃+CT ·Hτ∗−τ · x.
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The last equality follows from Equation (8), namely that GT
m,t ·spfym,t(x) = x. Hence for all τ ̸= τ∗,

with all but negl(λ) probability, we have:

F−1(td, (y1,y2)) = (Hτ∗−τ )
−1 · Decode (y2 − S · y1)

= (Hτ∗−τ )
−1 · Decode

(
CT ·Hτ∗−τ · x+E · spfym,t(x)

)
= (Hτ∗−τ )

−1 · (Hτ∗−τ · x) (holds with 1− negl(λ) probability)
= x.

Indeed, the third equality holds with probability 1 − negl(λ) because of the following. First, the
fact that Decode can efficiently decode from any γℓ errors, i.e. Decode(CT · x+ e) = x for any e ∈
B≤(ℓ, γℓ). Second, from Lemma 6.1 and the choice of γ, we know that wt(E · spfym,t(x)) ≤ γℓ ≤ δCℓ

for any x ∈ Ft log(m/t)
2 , which holds with all but negl(λ) probability.

Lossyness. For the lossy branch τ = τ∗, we will count the number of attainable values y =

(y1,y2) ∈ Fn/2+ℓ
2 in the range of F . Denote X = Ft log(m/t)

2 to be the domain, and Y = {(y1,y2)} ⊂
Fn/2+ℓ
2 to be the range.

The first part y1 := A · x̃ = T · (M · x̃), is determined by the value M · x̃ ∈ B(n,≤ kt), hence
has cardinality at most |B≤(n, kt)|. By our choice of parameters for n,m, t so that Lemma 4.1 is
satisfied with compression factor D, it follows that the set Y1 of possible values of y1 satisfies
|Y1| < |X |1/D = 2t log(m/t)/D.

Next, for a fixed y1, using Lemma 6.1, we have that

y2 = Bτ · x̃ = S · y1 +E · x̃

is in a Hamming ball of radius γℓ around y1 except with negl(λ) probability. Thus we have that

|Y| ≤ |Y1| · |B≤(ℓ, γℓ)|
≤ 2t log(m/t)/D · 2H(γ)ℓ

≤
(
2t log(m/t)

)1/D+1/D′

= |X |1/Γ,

and thus the lossiness parameter is at least Γ. Here the second inequality is due to upper bounds
on |Y1| and |B≤(ℓ, γℓ)|, the third inequality is due to our choice of γ ≤ H−1(ρ/D′), which implies
that H(γ)ℓ = H(γ)

ρ · t log(m/t) ≤ 1
D′ · t log(m/t), and the final equality is because 1

D + 1
D′ =

1
Γ .

7 Cryptanalysis on Dense-Sparse LPN

Recent works, in the context of generating correlated pseudorandomness for MPC applications
[BCGI18, BCG+19, BCG+20a], have proposed various novel variants of LPN with different ma-
trix distributions [BCG+20a, CRR21, BCG+22, CD23b, RRT23, BCCD23]. These recent progress
also came with a systematization of known attacks on LPN-style assumption. Namely, prior works
observed that most attacks (Information-Set Decoding [Pra62], BKW [BKW00], Gaussian Elim-
ination [EKM17], Statistical Decoding [Jab01], etc.) on LPN-style assumptions can be captured
by a unified framework for the security of LPN variants, namely the linear test framework, which
we will also use to analyze the security of our assumption. The linear test framework has also
been used to extensively cryptanalyze Goldreich’s PRGs [Gol00, CM01, MST03, CEMT09, BQ09,
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ABW10, ABR12, BQ12, App12, App13, OW14, AL16, KMOW17, CDM+18, AK19], which is a re-
lated assumption to Sparse LPN.

In a linear test, an adversary takes as input a matrix A ∈ Zn×m
2 and outputs a vector v ∈ Zm×1

2

such that (sA + e)v is a biased random variable with an inverse polynomial bias towards 0.
Assuming e is chosen from Bernoulli distribution with probability ϵ, a successful attacker must
output v with hamming weight O( lognϵ ), or else the bias is negligible.

Definition 7.1 (Security against Linear Test, adapted from [CRR21]). Let n ∈ N be the dimension,
m = m(n) be the number of samples, and q = q(n) be a prime power. Given an efficiently sampleable
distribution M = M(n,m,Fq) over matrices in Fn×m

q and noise probability ϵ = ϵ(n) ∈ (0, 1), we say
that the (M, ϵ)-LPN assumption is (T (n), β(n), δ(n))-computationally secure against linear tests if
for any adversary A running in time at most T (n), it holds that

Pr

[
biasv(DA) ≥ β

∣∣∣∣∣ A←M
v← A(A)

]
≤ δ,

where DA =
{
sA+ e | s← F1×n

q , e← Ber(Fq, ϵ)
1×m

}
. (Recall that bias is defined in Definition 3.1.)

In other words, the Linear Test Hypothesis for the (M, ϵ)-LPN assumption states that (M, ϵ)-
LPN is secure if it is computationally difficult to find O( lognϵ )-sparse vectors in the kernel of
A ←M. All known counter-examples to this hypothesis are for distributionsM of algebraically
structured matrices (see [BCG+20b] for a detailed discussion). In contrast, our Dense-Sparse ma-
trix distribution A = TM has no apparent algebraic structure, and thus it is reasonable to con-
jecture that Dense-Sparse LPN is secure assuming it is secure against linear tests. Furthermore, if
finding O( lognϵ )-sparse vectors in the kernel is difficult for subexponential time adversaries, then
the corresponding LPN assumption is also subexponentially secure.

Assuming the Linear Test Hypothesis, we now examine the hardness of finding sparse vectors
in the kernel of A = TM. Such vectors of sparsity nδ for any δ ∈ (0, 1) actually come from the
kernel of M, with all but negligible probability. This is because T is a random binary matrix of
dimension n

2 ×n, and so typically only has vectors in the kernel that are at least Ω(n/ log n)-sparse
(see [CRR21] for a detailed calculation). Therefore, we will focus our attention on the size of short
vectors in the kernel of the k-sparse matrix M, and also on the overall security of Sparse LPN.

7.1 Security of Sparse LPN

Sparse LPN is a relatively well-understood assumption in the domain of refutations for random
constraint satisfaction. When one samples a random matrix for the sparse LPN assumption M

with sparsity parameter k, dimension n and sample complexity n1+( k
2
−1)(1−δ), it can be proven

that the dual distance of M, chosen randomly from SpMat(n,m, k,F) (the set of k-sparse matrices
in Fn×m), is t = Θ(nδ) with all but inverse polynomial probability.

Lemma 7.1 (Folklore, see [DIJL23]). For any finite field F, given any k = k(n) ≥ 3, any 0 < δ < 1, and
m = O

(
n1+( k

2
−1)(1−δ)

)
, there exists a constant c > 0 such that the following holds for large enough n:

Pr
[
dd(M) ≤ c · nδ

∣∣∣M← SpMat(n,m, k,F)
]
= Θ

((
k

nδ

)k−2
)
.

Note that the dual distance of t = O(nδ) is also known in the stronger case of worst-case k-
sparse M, whenever m = Õ

(
n1+( k

2
−1)(1−δ)

)
[GKM22, HKM23].
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One could then consider Sparse LPN in two regimes. In the first regime, the error probability
is ϵ = ω( lognt ). In this regime, conditioned on the event that there simply does not exist vectors
of sparsity O( lognϵ ) in the kernel of M, security against linear tests holds. Sparse LPN with this
regime of error (even constant error probability) has found prior applications [IKOS08, ADI+17,
AK23, BCG+23, DIJL23].

Nevertheless, there are also applications of Sparse LPN where sparse vectors (in the kernel
of M) do exist, but seem computationally hard to find. One such example is the public-key en-
cryption scheme of Applebaum, Barak and Wigderson [ABW10] uses an inverse polynomial error
probability ϵ = O( lognt ). In this case, certainly there exist lots of t-sparse vectors in the kernel of
M. To this date, we do not know any procedure that can efficiently find (even in subexponential
time 2t

ρ
for any 0 < ρ < 1) such t-sparse vectors in the kernel of M. Therefore, the linear test

framework correctly predicts the (subexponential) security of this assumption.
Our applications could have been based on Sparse LPN in its compression regime. This holds

at a significantly lower error probability ϵcps = o( 1
tcps

) where tcps ∼
(
nk

m

) 1
k−1 , which is polynomially

larger than the dual distance t ∼
(
nk/2

m

) 1
k/2−1 . We in fact show that it is easy to find tcps-sparse

solutions to Mx for randomly chosen M.

Sparse LPN is Broken in its Compression Regime. Following our exposition in Section 2, we
give a simple attack on Sparse LPN in the parameter regime needed for achieving compression
(and hence lossy trapdoor functions).

Theorem 7.1. Consider Sparse LPN with sparsity k, dimension n and sample complexity m in the regime
in Lemma 4.1, with error rate ϵ = O(1/t). Assuming the matrix is chosen by sampling distinct k-sparse
random columns, this variant of Sparse LPN can be broken in polynomial time.

The attack, given samples (M,b) with b either from the Sparse LPN distribution, or the ran-
dom distribution:

1. Pick a random subset S ⊂ [n] of size t. Initialize T = ∅.

2. For each column j ∈ [m] of M, if all k of the non-zero entries lie inside S, add j to T .

3. If |T | > t, find a linear dependency (expressed as a vector x) between the columns in T .

4. Compute d = ⟨b,x⟩. If d = 0, return “Sparse LPN”, else return “random”.

Lemma 7.2. This attack succeeds with high probability 1 − o(1) whenever m > c · m(4.1)(k,D) for a
sufficiently large constant c and any compression factor D > 1.

Proof. For any fixed choice of S ⊂ [n], we can compute the expectation of the number of columns
found in step 2 as follows.

E[|T |] = m · Pr[Supp(a) ⊂ S | a← SpMat(n, 1, k)] = m ·
(
t
k

)(
n
k

) ≈ m ·
(
t

n

)k

> t.

The last inequality is due to the choice m > m(4.1)(k, 1).

26



7.2 Dual-Distance of Dense-Sparse LPN

We now examine the dual-distance of the matrices arising in our Dense-Sparse LPN assumption,
and the computational hardness of finding sparse vectors x that are in the kernel of those matrices.
Since our matrices are of the form TM where T ∈ Zn×m

2 is randomly chosen matrix with high
probability the dual distance is around t = O(nδ) where m = n1+( k

2
−1)(1−δ) where as the error

probability ϵ < 1
tcps

, where tcps ∼
(
nk

m

) 1
k−1 is the threshold for compression.

Sparse Vector in the Kernel of TM. As described above, if we can efficiently find t = O(nδ)
sparse vectors x ∈ Zm×1

2 in the kernel of TM, that is enough to break our assumption with any
error probability O( lognt ). In our specific setting, we work with an error probability of about 1

tcps

where tcps ∼
(
nk

m

) 1
k−1 ≈ n

m1/k (for large enough constant k). Setting m = n1+(k/2−1)(1−δ), this turns

out to be roughly tcps ≈ n
1
2
+δ− 1

k . On the other hand, much sparser vectors (t = O(nδ) sparse) in
the kernel exist. Thus, if one can find kernel vectors of this sparsity, it could break our assumption.
However, for arbitrary dense matrices we don’t know a better way to find such nδ-sparse vectors
than naive search, which is known to be subexponentially hard even given M in the clear (this
very assumption was made by [ABW10]).

It is also true that one could also break our assumption by finding vectors in the kernel with
much higher sparsity tcps ≈ n

1
2
+δ− 1

k . In fact, we showed how to do find such vectors in Theo-
rem 7.1, but our attack crucially relies on seeing the sparsity pattern of the matrix M. This pattern
is no longer apparent when we only give out A = TM with T being a random (dense) matrix, so
the attack in Theorem 7.1 no longer applies.

Pseudorandomness of TM. We in fact postulate that the matrices TM are computationally hard
to distinguish from random matrices (which have dual distance of O( n

logn) with overwhelming
probability). A first observation is that since any O(t) columns of M are linearly independent
(as its dual distance is Ω(t)) with overwhelming probability (assuming M is chosen from a good
distribution), any O(t) columns of TM are distributed according to a random distribution over

Z
n
2
×1

2 . This ensures that matrix is from a O(t)-wise independent distribution.

7.2.1 Searching for T

Next, we examine the possibility of learning T from the matrix TM and then finding tcps sparse
vectors in the kernel of M. We provide an attack that works with T is an invertible matrix in Zn×n

2 .
This attack does not apply when the matrix lives inside Zβn×n

2 for any constant β ∈ (0, 1), which
justifies our choice of parameters for Dense-Sparse LPN.

When T ← Fn×n
2 is a square matrix. We can generalize our previous attack to rule out the

case where T is a random square matrix (and not just the identity). The idea is that this T may
be “unmasked” by searching for its inverse Z. In other words, given the Dense-Sparse matrix
A = T ·M, we want to find Z ∈ Fn×n

2 such that Z ·A = M is a sparse matrix. Let a candidate row
for Z be z. Observe that zA must be a sparse vector that corresponds to the row of M. Since each
column of M has some constant number k of elements, with high probability (roughly 1 − O( kn))
each coordinate of zA must be 0. Then, we can essentially apply the same attack that breaks LPN
assumption with error probability O( 1n) to learn z.
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The attack is as follows. Let the columns of A be a1, . . . ,am. We randomly sample n equations
at random, say denoted by I ,{ai}i∈I . There is probability (1 − k

n)
n = Ω(1) chance that there exist

z that satisfy ⟨z,ai⟩ = 0. We can then find all such vectors z that will form the rows of Z. This
can be used derive M up to a permutation of rows, which is sufficient for carrying out the attack
on Sparse LPN.

When T← Fβn×n
2 is a compressing matrix for β < 1. A natural way to extend the above attack

would be to find an inverse Z for a square sub-matrix of T. For example, we can hope to find
Z ∈ Zβn×βn

2 that is the inverse of the submatrix formed by the first β · n sub-columns of T, so that
ZTM = [Iβn∥T′] ·M. Note that T′ ∈ Fβn×(1−β)n

2 is randomly distributed.
Now, if one examines [Iβn∥T′] ·M the following holds. For any i-th column mi of M, if mi

is supported over the first β · n variables, then the same i-th column in [Iβn∥T′] ·M is precisely
mi, and hence remains k-sparse. Otherwise, if mi has a non-zero entry in the rest of the positions,
then the randomness of T′ would make the resulting column in ZTM random as well.

Let’s calculate when the first event happens, so that we have hope of unmasking a column of
M. Since there is a constant chance that when choosing a column of M, that column is supported
inside the first β ·n set of variables, the product [Iβn∥T′] ·M will be so that each row has a constant
fraction of non-zero element. As a consequence, to solve for Z we might have to rely on an LPN
solver that works with constant probability noise which might be hard to do. In general, this attack
should take (near-)exponential time as long T is randomly chosen from Zβn×n

2 for any β > 0.

7.2.2 On Subexponential Time Attacks

We have discussed two main attacks for finding sparse vectors in the kernel of the Dense-Sparse
matrix TM, which by the linear test framework (Definition 7.1) is the best attack against Dense-
Sparse LPN. In the fist attack, we attempt to directly find O(nδ) sparse vectors in the kernel of
TM, treating it as an arbitrary dense matrix. In the second attack, we attempt to peel off T, and
then use our attack in Theorem 7.1 to find sparse vectors in the kernel of M. As argued above,
the best known algorithms for the first takes 2Õ(nδ) time and the second to the best of our current
knowledge should take almost exponential time assuming β is some constant. Therefore, we may
justify our conjecture that Dense-Sparse LPN is hard against subexponential time adversaries.
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