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Abstract. In response to the evolving landscape of quantum comput-
ing and the heightened vulnerabilities in classical cryptographic systems,
our paper introduces a comprehensive cryptographic framework. Build-
ing upon the pioneering work of Kuang et al., we present a unification
of two innovative primitives: the Quantum Permutation Pad (QPP) for
symmetric key encryption and the Homomorphic Polynomial Public Key
(HPPK) for Key Encapsulation Mechanism (KEM) and Digital Signa-
tures (DS). By harnessing matrix representations of the Galois Permuta-
tion Group and inheriting its bijective and non-commutative properties,
QPP achieves quantum-secure symmetric key encryption, seamlessly ex-
tending Shannon’s perfect secrecy to both classical and quantum-native
systems. Simultaneously, HPPK, free of NP-hard problems, relies on the
security of symmetric encryption for the plain public key. This is ac-
complished by concealing the mathematical structure through arithmetic
representations or modular multiplicative operators (arithmetic QPP) of
the Galois Permutation Group over hidden rings, utilizing their partial
homomorphic properties. This ensures secure computation on encrypted
data during secret encapsulations, thereby enhancing the security of the
plain public key. The integration of KEM and DS within HPPK cryp-
tography results in compact key, cipher, and signature sizes, showcasing
exceptional performance. This paper organically unifies QPP and HPPK
under the Galois Permutation Group, marking a significant advance in
laying the groundwork for quantum-resistant cryptographic protocols.
Our contribution propels the development of secure communication sys-
tems in the era of quantum computing.

Keywords: Cryptography · Quantum Cryptography · Shannon Perfect
· Galois Permutation Group · QPP · HPPK · KEM · Digital Signature.

1 Introduction

Quantum Key Distribution (QKD) stands at the forefront of modern crypto-
graphic protocols, leveraging the foundational principles of quantum mechan-
ics to establish secure communication in the face of emerging quantum com-
puters [40]. Unlike classical methods relying on mathematical intricacies [36, 6,
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29], QKD exploits unique quantum properties, particularly in photons. At its
core, QKD relies on quantum superposition and entanglement, allowing crypto-
graphic key exchange while promptly detecting eavesdropping attempts. Security
is rooted in quantum indeterminacy, where measuring a quantum state disrupts
it, revealing eavesdropping attempts. In the era of quantum computing threats
to classical cryptography, QKD emerges as a promising secure communication
avenue. Kuang and Barbeau demonstrated QKD photonic implementations, in-
volving identity and XOR permutations within the Galois permutation group
over the finite field {0, 1} [14], framing QKD as a physical realization of Shan-
non’s OTP scheme [37]. The natural non-commutativity of the Galois permuta-
tion group favors digital QPP implementations over physical QKD with more
than one qubit [25]. Digital QKD becomes an economical, deployable, and scal-
able alternative for quantum-secure internet communication [32, 25, 26, 18, 15–
17]. Kuang and Perepechaenko also demonstrated their QPP implementations
in the native quantum computing system [19, 33, 34].

On the asymmetric cryptography front, Kuang in 2021 introduced Deter-
ministic Polynomial Public Key (DPPK) [11], later enhanced by Kuang and
Barbeau in 2021 as Multivariate Polynomial Public Key (MPPK) [13, 12]. To
bolster MPPK security, Kuang, Perepechaenko, and Barbeau in 2022 partially
encrypted MPPK public key over a hidden ring [22], using arithmetic permu-
tations for security. In 2023, Kuang and Perepechaenko proposed variants with
full encryption over two separate hidden rings [20] and a single hidden ring [10].
Concurrently, they introduced a digital signature, MPPK/DS, in 2022 [23], later
optimized in 2023 [21], though Guo reported a forged signature in early 2023 [9].
Unable to rectify the inherent linear relationship in MPPK/DS, they recently
extended the HPPK KEM scheme for digital signatures [24].

This paper unifies symmetric encryption with QPP and asymmetric HPPK
under the Galois permutation group’s umbrella. Leveraging non-commutativity
in matrix representation (QPP) and arithmetic permutations over hidden rings
(HPPK), we bridge both cryptographic realms. Related works will be discussed
in Section 2, followed by the Galois permutation group’s representation in Sec-
tion 3. Section 4 covers symmetric cryptography with QPP, Section 5 addresses
HPPK for asymmetric cryptography, and Section 6 provides a security brief. The
conclusion is drawn in the final section.

2 Related Works

The realm of Post-Quantum Cryptography (PQC) encompasses a diverse ar-
ray of standardized schemes outlined by the National Institute of Standards
and Technology (NIST). This overview succinctly encapsulates notable schemes,
categorized according to their cryptographic underpinnings.

For Key Encapsulation Mechanism (KEM), lattice-based contenders such as
Kyber [2], BIKE [30], HQC [4], and code-based McEliece [28] take the spotlight.
Additionally, in the domain of Digital Signatures (DS), lattice-based Falcon [35],
Dilithium [27], and hash-based SPHINCS+ [1] emerge as prominent choices.
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In a significant development in 2022, NIST announced standardized algo-
rithms [31], endorsing Kyber for KEM and propelling McEliece, BIKE, and HQC
into round 4. Simultaneously, NTRU [3] and Saber [5] were excluded from fur-
ther consideration, while novel submissions for generic digital signature schemes
were introduced [31].

Lattice-based algorithms, exemplified by Kyber, BIKE, HQC, and Falcon,
typically hinge on the Short-Vector Problem (SVP) as the linchpin of their se-
curity. Code-based algorithms, as showcased by McEliece, derive security from
the intricate decoding of random linear codes, providing robust post-quantum
security. Hash-based algorithms, as exemplified by SPHINCS+, are constructed
based on the security of one-way trapdoors in hash functions. These NP-hard
problems lay the groundwork for security against the looming threat of quantum
computing. In a departure from this trend, HPPK cryptography takes a distinc-
tive approach, relying on the security of symmetric encryption, offering a unique
and innovative trajectory in the landscape of post-quantum cryptographic solu-
tions.

3 Representations of Galois Permutation Group

The Galois Permutation Group over a finite field extension F2n with n bits plays
a crucial role in finite field theory, particularly in cryptography and algebraic
coding theory. This section explores various methods for representing elements
within this group and elucidates their significance. The primary focus is on two
representations of the Galois permutation group: matrix and arithmetic.

3.1 Matrix Representations

While our focus is on permutations over F2n , binary unitary matrices serve as
effective tools to represent the actions of Galois Group elements. These matrices
facilitate the rearrangement of integers within the finite field, showcasing the re-
versible nature of Galois Group transformations. Key properties of these matrix
representations include:

– Bijectiveness: Permutation representations highlight discrete actions on the
integer set, capturing fundamental rearrangements induced by Galois Group
elements. The bijective nature ensures a unique correspondence between the
initial and final integer arrangements.

– Composition of Permutations: Group operations involve the composition
of permutations, representing the sequential application of rearrangements.
The properties of composition unveil overall symmetries and transformations
within the Galois Permutation Group.

– Non-commutativity: Group operations or operators P̂i and P̂j generally meet

P̂iP̂j ̸= P̂jP̂i, adding a critical layer of security to cryptographic operations.
This property, especially significant in symmetric-key cryptography where
permutation operators are secret keys, implies that the order of permuta-
tion application matters, contributing complexity and enhancing security.
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In the quantum realm, the non-commutativity of the Galois Permutation
Group directly corresponds to the uncertainty principle in quantum mechan-
ics. Therefore, this property of the Galois permutation group plays a crucial
role in achieving perfect secrecy for both classical and quantum domains.

3.2 Arithmetic Representations

In the realm of finite fields, arithmetic permutations play a pivotal role in crypto-
graphic operations. These permutations, often expressed through modular arith-
metic, contribute to the non-commutative and intricate transformations inherent
in the Galois Permutation Group. This subsection delves into some critical arith-
metic permutations that form the foundation of cryptographic schemes.

XOR Operation In a binary finite field (GF (2n)), the XOR operation (bitwise
addition modulo 2) is a fundamental arithmetic operation. XORing two bits
results in a bit set if the two input bits are different and cleared if they are the
same. There are a total of 2n permutations over (GF (2n)) for XOR operations,
proven to be the Shannon perfect scheme if the random key is used only once,
leading to the concept of the One-Time-Pad (OTP).

Addition Operation Modular addition, expressed as (a+ b) mod 2n, is a fun-
damental arithmetic operation within finite fields. This operation involves adding
two integers, a and b, and then taking the remainder when divided by a modulus
2n. There are a total of 2n permutations over (GF (2n)) for this type of addition
operations.

Modular Multiplication In the realm of modular arithmetic, the operation of
modular multiplication, denoted as ((R · b) mod S), holds significant importance
when R and S form a coprime pair, with S being L-bits. This operation acts as
a fundamental arithmetic permutation, rearranging residues within the ring.

The security of this permutation, particularly when S is kept secret, relies on
the computational challenge posed by the brute-force search for the modulus S.
In scenarios where S is public, the number of potential coprime pairs (R,S) is
given by Euler’s totient function, denoted as φ(S). However, if S is confidential
and possesses a known bit length L, the total count of potential arithmetic
permutations becomes φ(2L)2L.

Modular Exponentiation The operation of modular exponentiation, expressed
as (ab mod N), entails the iterative application of modular multiplications and
stands as a potent arithmetic permutation. This permutation forms the basis of
cryptographic systems such as RSA and Diffie-Hellman.

In RSA, the public key is represented by b and N , where N is the product
of two large primes (N = pq). The security of RSA hinges on the computational
complexity of the prime factorization problem. On the other hand, in the case
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of Diffie-Hellman cryptography, the public key comprises a and N . Security is
grounded in the difficulty of the discrete logarithm problem, requiring the knowl-
edge of c = ab mod N and a to deduce b. Both the prime factorization problem
and the discrete logarithm problem present significant computational challenges
in classical computing. Shor’s algorithm has demonstrated that the advent of
quantum computing could render these cryptographic schemes vulnerable [39].

3.3 Classical Key Space to Quantum Key Space: Galois
Permutation Group over F2n

In the finite field, an n-bit key space refers to a finite field extension F2n with
possible 2n keys, each being an n-bit integer within [0, 2n). However, the Galois
permutation group has an order of 2n! permutation operators, operating on the
finite field set in quantum computing. This makes the Galois permutation group
the key space for quantum computing. The quantum key space holds an entropy
of e = log2(2

n!) ≈ (n−0.42)2n (for larger n), once retrieving those key operators
with an equally-likely distribution.

3.4 Relevance to QPP and HPPK

The concept of the Shannon perfect OTP seamlessly extends to QPP, where
each element is randomly selected from the Galois permutation group.

Additionally, the arithmetic permutation inherent in reversible modular mul-
tiplication presents the groundwork for another potential asymmetric crypto-
graphic scheme, especially when the modulus S remains a secret. This notion
forms the basis of HPPK, which will be explored in detail later.

By leveraging QPP and HPPK, we have the opportunity to unify symmet-
ric and asymmetric cryptography within a cohesive framework provided by the
Galois permutation group, with its matrix representation and arithmetic repre-
sentation for symmetric and asymmetric schemes respectively.

4 Symmetric Cryptography: QPP with Matrix
Permutations

The extensive work of Kuang and Barbeau in 2022 [14] on Quantum Permu-
tation Pad (QPP) cryptography is succinctly summarized in this section, with
a predominant focus on the matrix representation of the Galois permutation
group.

4.1 QPP Generation

In the context of an n-bit finite field extension F2n , the classical key is initially
generated as an n-bit binary string. However, in a quantum environment, this
classical key undergoes transformation into permutation gates for implementa-
tion in quantum-native systems [19, 33] or permutation matrices for classical
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implementations [14]. This transformation is facilitated by the Fisher and Yates
algorithm [8].

Using the shuffling algorithm, a single permutation matrix is randomly se-
lected with an input random key of size n2n bits. This algorithm leverages the
random key string to induce shuffling on the ordered set of integers from F2n .
After shuffling, the integer set exists in a disordered state, enabling the creation
of a binary mapping matrix derived from the classical key string.

The QPP generation process can be iterated to produce a set of permuta-
tion matrices, constituting the Quantum Permutation Pad (QPP) for symmet-
ric encryption. The total classical key length is M(n2n) bits for a pad with M
permutation matrices. The values of n and M are selected based on security
requirements. Quantropi has developed its digital Quantum Key Distribution
(QKD) platform with n = 8 and M = 64, delivering a total equivalent entropy
of over 100,000 bits [25]. For a typical quantum-safe scenario with more than
256 bits of entropy, opting for n = 4 and M = 8 results in a total of 360 bits of
entropy.

4.2 QPP Encryption

When employing QPP for encryption, information is represented in quantum
computing format using Dirac ket notation |i⟩ with i = 0, 1, . . . , 2n − 1 for
an n-bit information. For example, an 8-bit string ′′10001011′′ is expressed as
|139⟩. The complete set of F2n is denoted as {|0⟩, |1⟩, . . . , |2n − 1⟩}, referred to
as a computational basis in quantum computing. In the computational basis,
a state |i⟩ is a vector expressed in terms of the entire basis vectors. Classical
information is represented as a column vector with the row index corresponding
to the decimal value of its bit string set to 1, and all other elements of the
column vector set to zero. For instance, |139⟩ is the 139th basis vector in the
8-bit computational basis.

The encryption process follows the principles of quantum computing, as rep-
resented by the equation:

P̂i|m⟩ = |c⟩ (1)

In this context, m signifies an n-bit plaintext in decimal form, and c signifies an
n-bit ciphertext in decimal format. Upon transmission to a receiver, the decimal
value is converted into a binary string.

In classical systems utilizing permutation matrices for implementation, the
encryption process described in Eq. (1) designates the column index of the ele-
ment ′′1′′ at themth row in the permutation matrix P̂i as the resulting ciphertext
state |c⟩.

4.3 QPP Decryption

The decryption process is equally straightforward, employing the reverse permu-
tation operator P̂−1

i :

P̂−1
i |c⟩ = P̂−1

i P̂i|m⟩ = |m⟩ (2)
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This simplicity arises from the unitary and reversible properties inherent in per-
mutation operators. Additionally, given that all elements of permutation matri-
ces are either ′′0′′ or ′′1′′, the reverse permutation matrices are effectively their
transposes: P̂−1

i = P̂ †
i . This characteristic significantly streamlines the imple-

mentation process, eliminating the need for matrix reversal operations. Once
again, the decrypted decimal values are converted back to binary format to re-
construct the classical plaintext.

4.4 Confusion and Diffusion

Given the bijective mapping property of QPP, it possesses the capability to
transform hidden structures in plaintexts into ciphertexts. To address this po-
tential weakness, a common strategy involves pre-randomizing the plaintext to
enhance both confusion and diffusion capabilities [14].

The pre-randomization process employs XOR operations with an n-bit plain-
text and an n-bit sequence generated by a Pseudo-Random Number Generator
(PRNG) seeded with a shared classical key. The resulting n-bit value is then
dispatched to a selected permutation operator from the QPP pad based on an
index generated by the PRNG. This random dispatching significantly further
augments the diffusion capability, although a sequential dispatch, akin to AES
block cipher, is also a viable alternative. Following the dispatching step, Eq. (1)
comes into play for encryption.

On the decryption side, the dispatching step takes precedence to select the
correct permutation operator, followed by the decryption using QPP†. Sub-
sequently, the pre-randomizing step becomes a post-derandomizing operation
aimed at retrieving the original plaintext.

4.5 Arithmetic QPP

Quantum Permutation Pad (QPP) typically requires a runtime storage of M
permutation matrices or Mn2n bits for encryption and an equivalent storage for
decryption. In resource-constrained scenarios, QPP can be reformulated in terms
of arithmetic permutations, utilizing reversible modular multiplication denoted
by p̂i = Ri ·□ mod Si with □ representing the plaintext. The entropy of standard
QPP, where matrices are randomly chosen, differs from that of arithmetic QPP:
e = M log2(2

n!) −→ e = M log2(φ(2
n)2n). For example, in the case of n = 8,

each randomly chosen permutation matrix holds 1684 bits of entropy, requiring
2048 bits of storage, whereas the entropy of arithmetic permutation is less than
15 bits, requiring 16 bits of storage. Nevertheless, the entropy of arithmetic
QPP can be increased by enlarging the size of the QPP pad to meet our desired
security level. Leveraging the security of symmetric encryption, arithmetic QPP
proves more suitable for asymmetric cryptography, as exemplified in HPPK to
be discussed.
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4.6 Implementations of QPP into Quantum Computing Systems

Due to its simplicity, QPP cryptography lends itself to straightforward imple-
mentation in physical quantum computing systems, such as IBMQ. Demonstra-
tions of its viability have been conducted with toy examples utilizing 2- and
3-qubits [19, 34, 32]. Different quantum computing systems employ distinct de-
composition mechanisms to transform an n-bit gate into fewer qubit circuits,
typically consisting of 1- or 2-qubit gates.

In our toy examples on the IBMQ 5-qubit system, we generate a QPP pad,
utilizing its matrix forms as inputs in the source codes. The compilation of a
2-qubit permutation gate results in a quantum circuit with a gate depth of about
15 layers. Achieving a fidelity of 99%, we can confidently execute our encryption
and decryption processes.

However, as we escalate to 4-qubit permutation gates, the compilation yields
a circuit with a depth exceeding 100 layers. At this point, a 99% fidelity becomes
inadequate for meaningful results. Nevertheless, QPP remains relatively straight-
forward to implement in a quantum computing system with high fidelity or a
substantial number of logic qubits, allowing for direct processing of encryption
and decryption within the quantum computing system.

QPP facilitates encrypted communications across quantum-quantum, quantum-
classical, and classical-classical channels. Over quantum channels, encrypted
qubits can be directly decrypted by the receiving quantum system. Over classical
channels, cipher qubits must be measured, producing a ciphertext that is then
transmitted to the receiving side for decryption, either by a quantum system or
a classical system equipped with the same QPP† from the shared classical key.

5 Asymmetric Cryptography: HPPK with Arithmetic
QPP

Asymmetric cryptography relies on challenging computational problems, such
as the prime factorization problem in RSA, the discrete logarithm problem
in Diffie-Hellman, and various problems such as the SVP in schemes like Ky-
ber [2], Falcon [35], Dilithium [27], and the Multivariate Quadratic Problem
or MQ in Multivariate Public Key Cryptography (MPKC) [7]. The security of
these schemes hinges on the computational difficulty of these intricate problems.
However, emerging algorithms, including Shor’s algorithm [39], pose a threat by
potentially solving some problems efficiently in classical public key schemes.

Recently, Sharp et al. introduced a novel computing technology based on self-
organized gates [38], capable of breaking RSA classically using GPUs or silicon
implementations. This emphasizes the need to explore alternative approaches to
asymmetric cryptography.

Kuang and colleagues introduced a novel approach to asymmetric cryptogra-
phy, proposing schemes that leverage symmetric encryption techniques for both
Key Encapsulation (KEM)[20] and Digital Signature (DS)[24]. The symmetric
encryption employed in these schemes is a specialized form of arithmetic Quan-
tum Permutation Pad (QPP) featuring two permutation operators or modular
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multiplication over hidden rings. This introduces non-commutability through
arithmetic permutations. The subsequent sections of this paper delve into spe-
cific aspects, with Section 5.1 exploring homomorphic properties, Section 5.2
detailing Key Encapsulation, Section 5.3 focusing on Digital Signature, and Sec-
tion 5.4 elucidating the key triple combination of KEM and DS.

5.1 Homomorphic Properties of Arithmetic QPP

Arithmetic permutations or arithmetic QPP, derived from modular multiplica-
tion over hidden rings, play a pivotal role in constructing a new form of asym-
metric cryptography. Unlike pure symmetric encryption schemes where commu-
nication peers possess a shared secret key, asymmetric schemes aim to establish
the shared secret during the process. This usually involves a roundtrip of key
pair generation, public key encryption, and private key decryption.

An intriguing approach leverages self-shared symmetric keys between the key
pair generator and cipher decryptor. This key is used to encrypt the plain public
key into a cipher public key, subsequently decrypting the received cipher into
an interim cipher associated with the plain public key encryption. This unique
asymmetric scheme relies on the security of the self-shared symmetric encryp-
tion key or arithmetic QPP, necessitating symmetric encryption with certain
homomorphic properties.

The arithmetic permutation of modular multiplication over hidden rings ex-
hibits partial homomorphic properties for addition and scalar multiplication.
The permutation operator Ê(R,S) is defined as follows:

Ê(R,S) = R ◦□ mod S (3)

for a coprime pair of L-bit R and S, where □ represents an integer or a polyno-
mial function. Demonstrating its addition property, let’s choose two integers a
and b:

Ê(R,S)a = R ∗ a mod S = a′

Ê(R,S)b = R ∗ b mod S = b′

Ê(R,S)(a+ b) = R ∗ (a+ b) mod S = Ê(R,S)a+ Ê(R,S)b

(4)

and verify its scalar multiplication with a constant c:

Ê(R,S)ca = R ∗ ca mod S = ca′ mod S = cÊ(R,S)a (5)

Equations (4) and (5) clearly demonstrate the partial homomorphic properties
of the modular multiplication operator Ê(R,S). If S is a public ring, there
exist φ(S) permutation operators over the ring ZS . If S is a hidden ring with
a bit size L, there exist potential φ(S)2L arithmetical permutation operators,
corresponding to a key space of size φ(S)2L. In a symmetric encryption scheme,
the brute force search has a complexity of O(φ(S)2L).

The partial homomorphic properties of the modular multiplication operators
naturally favor any polynomial η(x, y1, . . . , ym) =

∑
ciηi(x, y1, . . . , ym) where ci
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are coefficients and ηi(x, y1, . . . , ym) are pure monomials over a prime field Fp.

The permutation operator Ê(R,S) maps all coefficients ci from Fp to ZS and
treats all monomials as scalars:

Ê(R,S)η(x, y1, . . . , ym) =
∑

(R ∗ ci mod S)[ηi(x, y1, . . . , ym) mod p]

−→ η′(x, y1, . . . , ym) =
∑

c′i[ηi(x, y1, . . . , ym) mod p]
(6)

where the computations of all monomials must be with mod p then directly
scalar multiplications with their cipher coefficients c′i ∈ ZS . To make the poly-
nomial value or ciphertext decryptable at the decryptor holding the symmet-
ric key Ê(R,S), the ring size L must hold p2 for each polynomial term of
η′(x, y1, . . . , ym), so L ≥ 2 log2 p + log2 T with T being the total polynomial
terms. Once these conditions are met, the permutation operator Ê(R,S) holds
the homomorphic property for polynomials.

5.2 HPPK KEM

Once the security is ensured through symmetric encryption using modular multi-
plicative permutations, designing the plain public key scheme becomes relatively
straightforward. This involves utilizing two simplified multivariate polynomials
over Fp:

p(x, u1, . . . , um) = B(x, u1, . . . , um)f(x) = x⃗T · p · u⃗
q(x, u1, . . . , um) = B(x, u1, . . . , um)h(x) = x⃗T · q · u⃗

(7)

Here, λ denotes the order of univariate polynomials f(x) and h(x), and n rep-
resents the order of the variable x in B(x, u1, . . . , um), with ui being linear
variables denoting monomials ηi(x, y1, . . . , ym) without variable x. The vector
x⃗T = (x0, x1, . . . , xλ) represents a vector in a polynomial vector space, and the
vector u⃗ = (u1, . . . , um) represents a vector in a multidimensional vector space.
Eliminating the common factor polynomial B(x, u1, . . . , um) is achieved by mod-
ular division:

p(x, u1, . . . , um)

q(x, u1, . . . , um)
=

f(x)

h(x)
mod p (8)

The matrices p and q in Eq. (7) are coefficient matrices of two multivariate
polynomials p(x, u1, . . . , um) and q(x, u1, . . . , um), respectively. They inherit the
mathematical structures of polynomial multiplications over a prime field, making
them challenging to secure based on computational difficulty. These are referred
to as plain public keys. To encrypt them, arithmetical modular multiplicative
permutation operators in Eq. (3) are applied. An arithmetic QPP or two coprime
pairs (R1, S1) for p(x, u1, . . . , um) and (R2, S2) for q(x, u1, . . . , um) are randomly
chosen from a equally-likely distribution, and the encryption is performed as
follows:

P (x, u1, . . . , um) = x⃗T · [Ê(R1, S1)p] · u⃗ = x⃗T ·P · u⃗
Q(x, u1, . . . , um) = x⃗T · [Ê(R2, S2)q] · u⃗ = x⃗T ·Q · u⃗

(9)
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with cipher public key matrices given by:

P = Ê(R1, S1)p = R1 ∗ p mod S1, Q = Ê(R2, S2)q = R2 ∗ q mod S2 (10)

Here, Ê(R1, S1) is applied to all matrix elements of p, and Ê(R2, S2) is applied
to all matrix elements of q. The key pair is obtained as follows:

– Public Key PKe: P[n+ λ+ 1][m] and Q[n+ λ+ 1][m].

– Private Key SK: f [λ+ 1], h[λ+ 1], R1, S1, and R2, S2.

where symbol PKe refers to the public key for encapsulation.

Encapsulation Then using the public key P and Q, an encryptor can generate
a ciphertext of a secret x randomly chosen from Fp. Here are steps:

– Encapsulation of x: choose random noise u1, . . . , um ∈ Fp then evaluate
xij = xiuj mod p for i = 0, 1, . . . , n+ λ, j = 1, 2, . . . ,m.

– Evaluations of polynomials: P =
∑n+λ

i=0

∑m
j=1 Pijxij ,Q =

∑n+λ
i=0

∑m
j=1 Qijxij

– Ciphertext: CT = {P ,Q}

Decapsulation With receiving ciphertext CT = {P ,Q}, the decrypter can
perform first symmetric decryption then the secret extraction as follows:

– Symmetric decryption: p̄ = ( P
R1

mod S1) mod p and q̄ = ( Q
R2

mod S2) mod p

– Noise elimination: k = p̄
q̄ mod p = f(x)

h(x) mod p

– Secret extraction: f(x) − kh(x) = 0. For linear univariate polynomial, x =
kh0−f0
f1−kh1

mod p.

5.3 HPPK DS

In a digital signature scheme within the context of HPPK, the process begins
with the signer generating the hash code x← HASH(M) using a chosen cryp-
tographic hash function for the signing message M . Subsequently, the signer
employs the private key to sign x. Here, we first introduce the signature and
then formulates the verification equation. The signature is defined as follows:

F = R−1
2 ∗ [αf(x) mod p] mod S2

H = R−1
1 ∗ [αh(x) mod p] mod S1

(11)

where α is a randomly chosen integer from Fp. The subsequent step involves
developing the HPPK verification equation using cross-multiplication of Eq. (7)
and Eq. (8):

x⃗T · (f̄q) · u⃗ = x⃗T · (h̄p) · u⃗ mod p (12)
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Here, f̄ = αf(x) mod p and h̄ = αh(x) mod p. Utilizing the unitary and re-
versible encryption operators from Eq. (3), Eq. (12) is transformed into:

{x⃗T · (FQ mod S2) · u⃗} mod p = {x⃗T · (HP mod S1) · u⃗} mod p

−→ {x⃗T · V · u⃗} mod p = {x⃗T · U · u⃗} mod p

−→ V (x, u1, . . . , um) mod p = U(x, u1, . . . , um) mod p

(13)

where matrices V = FQ mod S2 mod p and U = HP mod S1 mod p. Since
the unknowns S1 and S2 cannot be determined, a verifier cannot perform the
verification based on Eq. (13). These variables must be eliminated from all
coefficients Vij = (FQij mod S2) mod p in polynomial V (x, u1, . . . , um) and
Uij = (HPij mod S1) mod p in polynomial U(x, u1, . . . , um).

To achieve this, the Barrett reduction algorithm is employed for modular
multiplication, shifting (mod S1) and (mod S2) into division with the Barrett
parameter R = 2K :

a ∗ b mod S = a ∗ b− S⌊
a⌊Rb

S ⌋
R
⌋ = a ∗ b− S⌊aµ

R
⌋ (14)

where µ = ⌊Rb
S ⌋ and the result from the Barrett algorithm is within [0, 2S) not

[0, S). Kuang et al [24] demonstrated that by significantly increasing K beyond
the bit length L = |S|2 of S, or K ≥ L + 32, the result from the Barrett
algorithm (14) could be compressed within [0, S).

Leveraging the Barrett algorithm (14), Uij and Vij are redefined as follows:

Vij = β(FQij mod S2) mod p = Fq′ij − s2⌊
Fνij
R
⌋ mod p

Uij = β(HPij mod S1) mod p = Hp′ij − s1⌊
Hµij

R
⌋ mod p

(15)

with randomly chosen β ∈ Fp and

q′ij = βQij mod p, p′ij = βPij mod p

νij = ⌊
RQij

S2
⌋, µij = ⌊

RPij

S1
⌋

s1 = βS1 mod p, s2 = βS2 mod p

(16)

Eq. (16) represents the public key for signature verification or PKv, and the
verification equation is Eq. (13) with coefficients defined in Eq. (15) but without
the symmetric keys S1 and S2.

Both polynomials U(x, u1, . . . , um) and V (x, u1, . . . , um) have coefficients de-
termined by the received signature Sig = {F,H}, significantly restricting the
possibility of forging a signature.

5.4 HPPK Key Triple

Combining the key pairs for Key Encapsulation Mechanism (KEM) (SK and
PKe) and Digital Signatures (DS) (SK and PKv) into a key triple SK, PKe,
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and PKv enables the same SK to be utilized for both decapsulation of cipher-
text and the creation of a signature for a message. This versatility opens the
door to various applications, including but not limited to blockchains and Zero-
Knowledge Protocols.

6 Security Brief

Kuang and Barbeau conducted an in-depth security analysis of QPP in [14],
while Kuang et al. provided security analyses for HPPK KEM in [20] and HPPK
DS in [24]. Here, we provide concise summaries.

6.1 QPP

QPP extends Shannon’s perfect OTP, employing n-bit permutation matrices
chosen from the quantum key space or permutation group, with a random clas-
sical key bit string of n2n bits. For a pad of M permutation matrices, the
total classical key string is Mn2n bits long, providing entropy equivalent to
e = M log2(2

n!). This yields a best brute search complexity of O((2n!)M ). The
exponential complexity allows for relatively small values of n (e.g., n = 4, 8 bits).

Linear and differential cryptanalysis, effective against block ciphers like AES,
are less potent against QPP due to its matrix representations. QPP eliminates
certain arithmetic permutations present in AES, making attacks more challeng-
ing. Pre-randomizing and random dispatching further thwart potential crypt-
analysis. Attackers are best served by attempting to obtain the initial shared
classical random key material.

6.2 HPPK

In contrast to QPP’s matrix form, HPPK employs a special arithmetic QPP, or
modular multiplicative permutations over hidden rings, for symmetric encryp-
tion of plain public polynomials. While the symmetric encryption key must be
pre-shared, the roundtrip public key scheme enables a self-shared symmetric key
for both encryption and decryption. Attackers must obtain the symmetric en-
cryption key or the parameters R1, S1, and R2, S2. Once acquired, attackers can
compromise the entire HPPK for KEM and DS.

For HPPK KEM, the complexity of key recovery attack was estimated in [20]
as O(η2L) with η < 1. We re-evaluate its complexity here. The total possible
coprime pairs of R1, S1 and R2, S2 are:

O

2

2L∑
t=2L−1

φ(t)

 ≈ O(
3

π2
[22L − 22(L−1)]

)

≈ O
(

9

2π2
22L

) (17)
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Equation (17) aligns with the estimate in [20]. Due to its random encapsulation,
HPPK KEM holds the indistinguishable chosen plaintext attack or IND-CPA
property.

In the case of HPP DS, the attacker doesn’t need to find R1 and R2 since
the signature F and H have their inverses. The attacker only needs to obtain
S1 and S2; with intercepted true signatures, they can break the HPPK scheme.
The overall complexity is thus O(2L).

Table 1 illustrates all key sizes, cipher sizes, and signature sizes of HPPK
KEM and DS based on their security complexities. Different configurations ex-
ist for a required security level, and the table shows typical configurations. In
general, HPPK offers very compact sizes.

Table 1. This table compares public key, private key, and ciphertext sizes for
HPPK KEM and DS across different security levels. Configurations are denoted as
(|p|2, n, λ,m) with L = |2|p|2 + 8 and K = L+ 32.

Size (Bytes)
PKe/PKv SK Ciphertext/Signature Secret/Hash

Security Level I
KEM-(32,1,1,2) 108 52 224 32
KEM-(32,1,1,3) 162 52 224 32
DS-(64,1,1,1) 220 104 144 32

Security Level III
KEM-(48,1,1,2) 156 76 240 32
KEM-(48,1,1,3) 234 76 240 32
DS-(96,1,1,1) 300 152 208 48

Security Level V
KEM-(64,1,1,2) 204 100 208 32
KEM-(64,1,1,3) 306 100 208 32
DS-(128,1,1,1) 356 216 272 64

7 Conclusion

In summary, our research marks a substantial advancement in the pursuit of
quantum-resistant cryptographic protocols. Through the introduction and con-
vergence of two innovative primitives, the Quantum Permutation Pad (QPP)
and the Homomorphic Polynomial Public Key (HPPK), both rooted in the ro-
bust Galois Permutation Group, we have established a cornerstone for secure
communication systems in the era of quantum computing.

QPP’s groundbreaking approach extends Shannon’s perfect secrecy into the
quantum realm, presenting a reusable and adaptable solution for symmetric key
encryption. By harnessing the bijective and non-commutative properties of the
Galois Permutation Group, QPP ensures quantum security in both classical and
quantum-native systems.
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In tandem with QPP, HPPK introduces a novel Homomorphic Polynomial
Public Key designed for Key Encapsulation Mechanism (KEM) and Digital Sig-
natures (DS). Exploiting the inherent partial homomorphic properties of modu-
lar multiplicative permutations, HPPK provides a robust symmetric encryption
mechanism for asymmetric cryptography, independent of NP-hard problems. The
seamless integration of KEM and DS within HPPK yields compact key sizes,
cipher sizes, and signature sizes, showcasing exceptional performance across var-
ious cryptographic operations.

Our paper delves not only into the design and implementation of QPP and
HPPK but also unifies these cryptographic primitives under the single umbrella
of the Galois Permutation Group. This organic integration represents a signifi-
cant stride in the ongoing endeavor to establish quantum-resistant cryptographic
protocols. As quantum computing continues to progress, our work contributes
significantly to the development of secure communication systems, addressing
the vulnerabilities posed by quantum technologies.
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