
Constant-Size zk-SNARKs in ROM from
Falsifiable Assumptions

February 5, 2024

Helger Lipmaa1[0000−0001−8393−6821], Roberto Parisella2[0009−0007−2241−801X],
and Janno Siim2[0000−0001−5824−7215]

1 University of Tartu, Tartu, Estonia
2 Simula UiB, Bergen, Norway

Abstract. We prove that the seminal KZG polynomial commitment
scheme (PCS) is black-box extractable under a simple falsifiable assump-
tion ARSDH. To create an interactive argument, we construct a compiler
that combines a black-box extractable non-interactive PCS and a poly-
nomial IOP (PIOP). The compiler incurs a minor cost per every com-
mitted polynomial. Applying the Fiat-Shamir transformation, we obtain
slightly less efficient variants of well-known PIOP-based zk-SNARKs,
such as Plonk, that are knowledge-sound in the ROM under the ARSDH
assumption. Importantly, there is no need for idealized group models or
knowledge assumptions. This results in the first known zk-SNARKs in
the ROM from falsifiable assumptions with both an efficient prover and
constant-size argument.

Keywords: Black-box knowledge-soundness · polynomial commitment
scheme · polynomial IOP · witness-extended emulation · zk-SNARKs

1 Introduction

Zero-knowledge Succinct Arguments of Knowledge (zk-SNARKs) allow to give
a short proof of computational statements without leaking any information be-
sides the truth of the statements. Especially in the blockchain world, efficient
zk-SNARKs have found wide-scale use [BCG+14,KMS+16,Sta21] and thus are
of great practical importance. Many recent zk-SNARKs are based on a combina-
tion of a polynomial commitment scheme (PCS, [KZG10]) and an information-
theoretically secure non-succinct proof system like polynomial IOP [BFS20] (in-
teractive oracle proof).

A PCS allows the prover to make a short commitment to a polynomial and
later open it at a point chosen by the verifier. The very first PCS, KZG [KZG10],
uses one group element for commitment and opening and two pairing opera-
tions for verification. KZG is also additively homomorphic and efficiently batch-
able [KZG10,TAB+20,BDFG20], making it ideal for zk-SNARKs with multiple
PCS openings. On the negative side, it lacks a transparent setup, meaning that
the public key cannot be generated from a public source of randomness. However,

2 Helger Lipmaa, Roberto Parisella, and Janno Siim

the public key is updatable, making it possible to generate it in a distributed
way by different parties making sequential updates to the public key. The public
key is secure if at least one honest party contributes with an update. Thus, KZG
is preferred for communication and verifier -efficient updatable and universal
zk-SNARKs such as [GWC19,CHM+20,RZ21,CFF+21,LSZ22]. Universal means
that the public key of the zk-SNARK, also known as the structured reference
string (SRS), can be reused for many different relations that one wants to prove
(but up to some relation size bound).

As mentioned, many recent works in communication-efficient updatable and
universal zk-SNARKs start by constructing an information-theoretically secure
proof system in some idealized model. For example, DARK [BFS20] uses poly-
nomial IOP, Marlin [CHM+20] uses Algebraic Holographic Proof (AHP), Lu-
nar [CFF+21] and Basilisk [RZ21] use Polynomial Holographic IOP (PHP), and
Plonk [GWC19] uses idealized low-degree protocols. In all such information-
theoretic models is that the prover sends polynomial oracles to the verifier and
the verifier can make queries to the oracles. One can transform information-
theoretic proofs into succinct SNARKs using an extractable PCS. The prover
commits to each polynomial oracle and opens commitments at queries chosen
by the verifier. Vampire [LSZ22] is a recent exception to this paradigm, giving a
direct proof in AGM.

The knowledge-soundness of PCS-based zk-SNARKs relies on PCS’s ex-
tractability: given that the prover succeeds in convincing the verifier after sending
a polynomial commitment and an opening, there exists an extractor that can effi-
ciently extract a committed polynomial that is consistent with the commitment.
Unfortunately, it is only known [CHM+20] how to prove that KZG is extractable
under knowledge assumptions or in idealized models like the generic group model
(GGM) and the algebraic group model (AGM, [FKL18]). For brevity, we use the
acronym IGM (idealized group model) to denote any of the GGM, the AGM, or
just knowledge assumptions. Hence, the knowledge-soundness of known KZG-
based zk-SNARKs relies indirectly on the IGM.

On top of that, the same zk-SNARKs use the Fiat-Shamir transform, which
means that they additionally rely on another strong idealization, the random
oracle model (ROM). We end up in a highly undesirable situation, where ef-
ficient zk-SNARKs used in practice depend on two different idealized models.
Both models, the IGM and the ROM, are known to be uninstantiable, with
several papers attacking either separately. The AGM and GGM were inten-
sively cryptanalyzed in 2022 [Zha22,ZZK22]. Zhandry and Zhang [ZZ23] recently
showed that the ROM is strictly milder heuristic than Shoup’s formalization of
GGM [Sho97]. Knowledge assumptions, formalized as extractable one-way func-
tions, are known to be impossible for auxiliary input of unbounded polynomial
length if a particular class of indistinguishability obfuscators exist [BCPR14].

Efficient non-updatable and non-universal (not based on PCSs) zk-SNARKs
are known [GGPR13,PHGR13,Gro16] that use the IGM but not the ROM. The
most efficient known updatable and universal zk-SNARKs [GKM+18] that rely
on an IGM and do not use the ROM are too inefficient for practice.

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 3

While non-falsifiable assumptions are needed in the standard
model [GW11,CGKS23], one can obtain zk-SNARKs for NP in the ROM
from falsifiable assumptions. We know two types of verifier-efficient zk-SNARKs
in the ROM from falsifiable assumptions. First, the zk-SNARK of Lai and
Malavolta [LM19] that uses Probabilistically Checkable Proofs (PCPs). Un-
fortunately, PCPs are inefficient [BCGT13] (e.g., the PCP proof length is at
least Θ(N log3 N) with a large constant, where N is the witness size), and thus
this solution only has a theoretical value. In addition, PCP-based zk-SNARKs
are based on inefficient arithmetizations (mathematical representation of a
relation). Second, one can combine a verifier-efficient PCS in the ROM from
falsifiable assumptions with a polynomial IOP. Unfortunately, the known
PCSs do not result in constant-size zk-SNARKs. For example, Dory [Lee21]
and [BMM+21] have an efficient prover but log-length arguments.

It is unkown if zk-SNARKs with an efficient, say Oλ(N logN)3, prover and
Oλ(1) argument size are possible in the ROM under falsifiable assumption. Con-
structing one — especially with a small constant in both Oλ(·)-s — is an impor-
tant open problem: it allows one to base zk-SNARKs on more secure foundations
without sacrificing efficiency. Ideally, one would like to prove an already well-
established zk-SNARK (such as Plonk) to be secure under weaker assumptions
since an efficient arithmetization (say, R1CS or Plonk’s arithmetization) and
much infrastructure already accompanies it.

We propose the following two questions.

– Theoretical: Does a zk-SNARK with Oλ(1) proof size and an effi-
cient prover/verifier exist that is secure in the ROM under falsifiable
assumptions?

– Practical: Is the KZG-based Plonk secure in the ROM under falsi-
fiable assumptions?

We answer positively to the first question and achieve notable progress on
the second.

Our Contributions. In this work, we consider non-interactive (univariate)
PCSs over a field F where both the commitment and opening phases are non-
interactive (a single message). The KZG [KZG10] is a prime example. Assume
n is a degree bound on committed polynomials. Although the commitment and
opening phases are non-interactive, as a whole a non-interactive PCS can be
viewed as a three-round protocol:

1. the prover sends a commitment C to some polynomial f(X) ∈ F[X] of degree
at most n,

2. the verifier responds with an evaluation point α ∈ F, and
3. the prover sends η = f(α) and an opening proof π.

3 Here, Oλ(·) is the common “Big O” notation, but we ignore poly(λ) factors.

4 Helger Lipmaa, Roberto Parisella, and Janno Siim

Note that some other PCSs, such as the one in DARK [BFS20], have an inter-
active opening phase. In the following, unless specified otherwise, we mean a
non-interactive PCS when we write PCS.

We define computational k-special-soundness and black-box extractability
for PCS by following the definitions of k-special-soundness and black-box ex-
tractability for proof systems.

More precisely, a PCS satisfies computational (n + 1)-special-soundness if
there exists an efficient extractor, such that: if an efficient adversary produces
n + 1 accepting PCS transcripts (C,αj , ηj , πj) with the same commitment C
but distinct evaluation points αj , then the extractor extracts a polynomial f
of degree at most n, that is consistent with the commitment C and satisfies
f(αj) = ηj for all j = 1, . . . , n + 1. We prove that KZG is computationally
(n+ 1)-special-sound under a new but falsifiable and standard-looking assump-
tion ARSDH (Adaptive Rational Strong Diffie-Hellman). ARSDH is an adaptive
variant of the known assumption RSDH (Rational Strong Diffie-Hellman) of
González and Ráfols [GR19]. Interestingly, our special-soundness reduction uses
the techniques of [TAB+20] to combine n+1 openings to a single batch opening.

We prove that ARSDH is secure in the AGM with oblivious sampling (AG-
MOS) [LPS23]. AGMOS is a more realistic version of AGM that additionally
allows the adversary to sample group elements without knowing their discrete
logarithms. We emphasize that our special-soundness proof does not depend on
the AGMOS; we use the AGMOS only as a sanity check for the falsifiable ARSDH
assumption. We also prove that ARSDH implies the strong Diffie-Hellman as-
sumption and thus implies the evaluation binding of KZG (it is difficult to open
a polynomial commitment to two different values at the same evaluation point).

Next, we define black-box extractability for non-interactive PCS. A non-
interactive PCS is black-box extractable if there exists an expected probabilistic
polynomial time (PPT) black-box extractor Extbb, such that for each efficient
adversary (A,P∗), where A produces commitments and P∗ produces openings:
given a maliciously generated transcript tr0 = (C,α0, η0, π0), for randomly sam-
pled α0, and an oracle access to P∗, the extractor outputs a polynomial f , such
that if the PCS verifier accepts tr0 then f agrees with tr0 (C is a commitment
of f and f(α0) = η0). The evaluation point α0 is sampled uniformly and inde-
pendently from C from some super-polynomially large subset4 F of F.

We prove that every computationally (n + 1)-special-sound non-interactive
PCS is black-box extractable. Let ck be a commitment key. The black-box extrac-
tor ExtP

∗

bb (ck, tr0) rejects if the PCS verifier V rejects tr0. Otherwise, Extbb invokes
another extractor ExtP

∗

rw (ck, tr0) that outputs n transcripts tr = (tr1, . . . , trn).
Extbb rejects if V rejects trj for some j ≥ 1. Otherwise, Extbb uses the special-
soundness extractor (that exists since PCS is special sound) on input tr0∥tr to
extract f . One complication is that Extrw (described in the next paragraph) is
an expected PPT algorithm. To prove that Extbb works, we need to define a
special-soundness reduction Ass, which internally runs Extrw. However, special-

4 In zk-SNARKs in the literature, one can have say F = F, F = F∗, F = F \ H for a
multiplicative subgroup of H, etc.

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 5

soundness holds against strict PPT adversaries. To resolve this mismatch, we
prove a general result that if a falsifiable security game [Nao03,GW11] (one
where an efficient challenger interacts with an adversary) holds respect to any
strict PPT adversary, then it also holds against any expected PPT adversary.

The most challenging part of the reduction is the rewinding extractor Extrw.
Extrw has the following goal: given that the adversary can produce a single tran-
script tr0 = (C,α0, . . .), accepted by the PCS verifier, Extrw produces with an
overwhelming probability n more accepting transcripts that share the same com-
mitment but have pairwise distinct second elements αj . For a fixed commitment
C, Extrw runs P∗ with distinct random evaluation points α until it obtains n
accepting transcripts. The proof that Extrw produces a correct output with an
overwhelming probability in expected PPT is technical but similar to proofs of
other such extractors (especially [ACK21]).

Given the above, we can conclude that the KZG PCS is black-box extractable
under the ARSDH assumption.

Compiler. Following earlier works like [CHM+20,CFF+21,BFS20], we present
a general compiler, which combines a non-interactive PCS and a polynomial
IOP [BFS20] into an interactive argument.

Polynomial IOP [BFS20] is an idealized information-theoretic proof system,
where in each round of a protocol, the prover sends a polynomial oracle to the
verifier, and the verifier replies with a challenge. The verifier can also query the
oracles. Query points are revealed to the prover, who can use them to construct
polynomial oracles of the subsequent rounds. For example, in Plonk [GWC19],
several polynomials are opened at z←$F, and one polynomial is opened at ω · z,
where ω is a known value (a primitive root of unity). In Vampire [LSZ22], some
polynomials are opened at whole (known) subgroups. Finally, the verifier either
rejects or accepts the proof based on the responses from the oracles.

Bünz et al. (DARK, [BFS20]) prove that when combining a polynomial IOP
with a knowledge sound PCS (the prover knows the committed polynomial),
one obtains an interactive argument system for the same relation. In DARK, the
opening phase is an interactive argument for proving knowledge of the committed
polynomial. This is a crucial difference with our work, where commitment and
opening phases are non-interactive.

Our compiler follows the execution of the polynomial IOP protocol but with
the following differences. First, when the polynomial IOP prover sends a polyno-
mial oracle f , the argument’s prover sends a commitment of f , the argument’s
verifier responds with χ←$F (F is some superpolynomial size set), and the
prover opens the commitment at the point χ.5 Second, when the polynomial
IOP verifier wants to query one of its oracles g, it sends the query point α to
the prover, which then opens the commitment of g at point α.
5 Alternatively, one can define the following version of the KZG commitment secure

in the ROM. The commitment phase is (C, η, π), where χ = H(C), and H is a
random oracle. This guarantees extractability. Now, in the opening phase one can
use arbitrary evaluation points α′ that do not have to be uniformly random.

6 Helger Lipmaa, Roberto Parisella, and Janno Siim

Our compiler’s security relies on the knowledge soundness of the polyno-
mial IOP and on the PCS’s black-box extractability and evaluation binding.
We prove that the compiled argument satisfies witness-extended emulation
(WEE, [Lin01]). Intuitively, given an adversary that breaks witness-extended
emulation of the argument, we can construct an adversary that breaks the knowl-
edge soundness of the polynomial IOP. When the argument’s prover (potentially
malicious) outputs a commitment and successfully opens it at an extraction point
χ, the reduction extracts the polynomial f and sends it to the polynomial IOP
verifier. The evaluation binding property guarantees that the queries that the
polynomial IOP verifier makes to f are consistent with the evaluations that the
argument’s prover outputs. Otherwise, if f(α) ̸= η for some claimed evaluation η
outputted by the argument’s prover, we get a collision (contradicting evaluation
binding).

We can use the polynomial IOP of popular zk-SNARKs like [GWC19] and
Marlin [CHM+20] and apply our compiler with KZG. Our compiler adds only
a small overhead. First, our compiler is for polynomial IOP, so it works only
for polynomial IOP variants of such zk-SNARKs. Second, we must open each
committed polynomial at one more random point. This results in a public coin
argument, secure under the falsifiable ARSDH assumption, with Oλ(1) proof size,
Oλ(N logN) prover’s computation time, Oλ(|x|+ logN) verifier’s computation
time, and Oλ(N) length structured reference string (SRS). Here, N denotes
the circuit size representing the proven relation, and |x| is the statement size.
Importantly, the compiled variant will be universal and updatable. Some care
must be taken with zero-knowledge since we introduce additional queries to
the polynomial IOPs. However, this can be adjusted by introducing additional
randomness to the polynomials, which adds minor extra cost. We did not try to
find a generic approach as is seems to be better to be handled it in a case-by-case
basis.

To our knowledge, this is the first argument system with a constant proof size
and an efficient prover and verifier in the ROM under falsifiable assumptions.
After applying the Fiat-Shamir heuristic, we obtain a SNARK that is secure
in the ROM under the ARSDH assumption. This answers the first question we
proposed in the introduction.

As for the second question (is Plonk secure in the ROM under falsifiable as-
sumptions?), we obtain partial success. Our compiler outputs a version of Plonk,
which is less efficient by a small constant factor. For each polynomial commit-
ted by the prover, we will have an additional opening proof (1 group element)
and an evaluation of the polynomial (1 field element). Note that the evaluation
point χ does not add to the communication size since the prover and the verifier
compute χ locally using a hash function when applying the Fiat-Shamir heuris-
tic. Plonk’s (or Marlin’s) efficiency also relies on several small optimizations:
batching of commitment openings and the so-called Maller’s trick [GWC19]. We
leave it an open question if our notion of extractability is sufficient to prove the
security of such optimizations. We also leave it as an open question if it is pos-

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 7

sible to tightly reduce the soundness of our SNARK to the underlying ARSDH
assumption.

Extractability in AGM(OS). The extractability of the KZG PCS in the
AGM was proven in [CHM+20]. They also proposed a slightly less efficient ver-
sion of KZG, where a knowledge component accompanies each commitment. In
that case, extractability is possible under a knowledge assumption, but the com-
mitment length is two group elements instead of one (i.e., the extra cost is one
group element). When using our extraction technique, we get purely rewinding-
based extractability with the cost of one group element and one field element.

Lipmaa et al. [LPS23] recently proposed AGMOS (AGM with oblivious sam-
pling). AGMOS is a more realistic variant of the AGM [FKL18] that gives the
adversary additional power to obliviously sample group elements without know-
ing their discrete logarithms. Moreover, [LPS23] pointed out that researchers use
KZG extractability in two different senses. In many papers (e.g., [CHM+20]),
KZG extractability means extracting the polynomial after both the commit-
ment and opening phase. In other papers, it means the ability of polynomial
extraction after the commitment phase only. For example, Lunar [CFF+21] and
Plonk [GWC19] assume that one can extract the polynomial directly after the
commitment phase; however, this results [LPS23] in a spurious knowledge as-
sumption that is secure in the AGM but insecure in the standard model.

Lipmaa et al. [LPS23] analyzed KZG in AGMOS and provided an AGMOS
proof that f can be extracted from the KZG commitment C and an acceptable
opening (η, π) of the commitment at any evaluation point α. In particular, α
does not have to be sampled from a set of superpolynomial size (one can pick
α = 0, for example). We emphasize that AGMOS is an idealized group model.
We work without using any idealized group model, but we pay by having the
random evaluation requirement.

2 Preliminaries

Let λ denote the security parameter. PPT stands for probabilistic polynomial
time, and DPT for deterministic polynomial time. We say expected PPT when re-
ferring to probabilistic Turing machines whose expected running time is bounded
by a polynomial in the security parameter. All adversaries are implicitly assumed
to be non-uniform. Other algorithms are uniform. By F we denote a finite field
of prime order p; let F∗ := F \ {0}. We denote by F≤n[X] the ring of univariate
polynomials with variable X over F of degree ≤ n. When a is uniformly sampled
from a set A, we write a←$A. A negligible function δ is a function such that,
for every polynomial f , there exists an integer Nf such that, if λ > Nf , then
|δ(λ)| ≤ 1/f(λ). We write δ(λ) ≈λ 0, when δ(λ) is a negligible function. By
f(λ) ∈ poly(λ), we mean that the function f(λ) is asymptotically bounded by
some polynomial.

8 Helger Lipmaa, Roberto Parisella, and Janno Siim

Lagrange Interpolation. Assume n is a power of two. Let ω be the n-th
primitive root of unity modulo p and let H = ⟨ω⟩ be the multiplicative subgroup
of F generated by ω. (ω exists, given that n | (p− 1).)

For j ∈ [1, n], let ℓj(X) be the j-th Lagrange polynomial, that is, the unique
degree n − 1 polynomial, such that ℓj(ω

j−1) = 1 and ℓi(ω
j−1) = 0 for i ̸= j. It

is well known that ℓj(X) = (Xn−1)ωj−1

n(X−ωj−1) for X ̸= ωj−1 .

Bilinear Groups. A bilinear group generator Pgen(1λ) returns p = (p,G1,G2,
GT , ê, [1]1, [1]2), where G1, G2, and GT are additive cyclic (thus, abelian) groups
of prime order p, ê : G1 × G2 → GT is a non-degenerate efficiently computable
bilinear pairing, and [1]ι is a fixed generator of Gι. While [1]ι is a part of p, for the
sake of clarity, we often give it as an explicit input to different algorithms. The
bilinear pairing is of Type-3, that is, there is no efficient isomorphism between
G1 and G2. We use the standard bracket notation, that is, for ι ∈ {1, 2, T} and
x ∈ Zp, we write [x]ι to denote x[1]ι. We denote ê([x]1, [y]2) by [x]1 • [y]2 and
assume [1]T = [1]1 • [1]2. Thus, [x]1 • [y]2 = [xy]T for any x, y ∈ F.

Assumptions. Let d1(λ), d2(λ) ∈ poly(λ). Pgen is (d1, d2)-PDL (Power Dis-
crete Logarithm [Lip12]) secure if for any PPT A, Advpdld1,d2,Pgen,A(λ) :=

Pr
[
A(p, [(σi)d1

i=0]1, [(σ
i)d2

i=0]2) = σ p← Pgen(1λ);σ←$F∗
]
≈λ 0 .

Let d(λ) ∈ poly(λ). Pgen is d-SDH (Strong Diffie-Hellman, [BB08]) secure in
G1, if for any PPT A, AdvsdhPgen,1,d,A(λ) :=

Pr

[
σ + c ̸= 0∧

[φ]1 = 1
σ+c · [1]1

p← Pgen(1λ);σ←$Zp;
(c, [φ]1)← A(p, ([σi]1)

d
i=0, [1, σ]2)

]
≈λ 0 .

A security game is falsifiable if expressed as an interaction between an efficient
challenger and an adversary [Nao03,GW11]. In Appendix A, we show that if a
falsifiable game is secure respect to any strict PPT adversary, it is also secure
respect to any expected PPT adversary. We use that result in several of our
reductions.

2.1 Polynomial Commitment Schemes

In a non-interactive (univariate) polynomial commitment scheme
(PCS, [KZG10]), the prover commits to a polynomial f ∈ F≤n[X] and
later opens it to f(α) for α ∈ F chosen by the verifier. A (non-randomized) non-
interactive polynomial commitment scheme [KZG10] consists of the following
algorithms:

Setup Pgen(1λ) 7→ p: Given 1λ, return system parameters p.
Commitment key generation KGen(p, n) 7→ (ck, tk): Given a system param-

eter p and an upperbound n on the polynomial degree, return (ck, tk), where
ck is the commitment key and tk is the trapdoor. We assume ck implicitly
contains p. In the context of this paper, we do not use the trapdoor.

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 9

Commitment Com(ck, f) 7→ C: Given a commitment key ck and a polynomial
f ∈ F≤n[X], return a commitment C.

Opening Open(ck, C, α, f) 7→ (η, π): Given a commitment key ck, a commit-
ment C, an evaluation point α ∈ F, and a polynomial f ∈ F≤n[X], return
(η, π), where η ← f(α) and π is an evaluation proof.

Verification V(ck, C, α, η, π) 7→ {0, 1}: Given a commitment key ck, a commit-
ment C, an evaluation point α, a purported evaluation η =? f(α), and an
evaluation proof π, return 1 (accept) or 0 (reject).

Thus, in a non-interactive PCS, both the commitment and the opening are
non-interactive (it only consists of a single message that can be verified non-
interactively). In an interactive PCS, either opening or verification (or both) is
an interactive protocol. Most of the known PCSs, like FRI [BBHR18], Bullet-
proofs [BBB+18], and DARK [BFS20], are interactive. Univariate KZG [KZG10]
and multivariate PST [PST13] are two well-known non-interactive PCSs.

A non-interactive PCS PC is complete, if for any λ, p ← Pgen(1λ), n ∈
poly(λ), α ∈ F, and f ∈ F≤n[X],

Pr
[
V(ck, C, α, η, π) = 1 (ck, tk)← KGen(p, n); (η, π)← Open(ck, C, α, f)

]
= 1.

Definition 1. A non-interactive polynomial commitment scheme PC is (non-
black-box) extractable for Pgen, if for any n ∈ poly(λ), and PPT adversary A,
there exists a PPT extractor ExtA, such that AdvextPgen,PC,n,A,ExtA(λ) :=

Pr

 V(ck, C, α, η, π) = 1∧(
C ̸= Com(f(X))∨
deg f > n ∨ f(α) ̸= η

) p← Pgen(1λ); (ck, tk)← KGen(p, n);
r ← RNDλ(A); (C,α, η, π)← A(ck; r);
f(X)← ExtA(ck; r)

 ≈λ 0 ,

where r ← RNDλ(A) denotes sampling random coins for A.

Another common property for PCS is evaluation binding [KZG10], which
does not include extractability, but disallows opening the same evaluation point
to different evaluations.

Definition 2. A polynomial commitment scheme PC is evaluation binding for
Pgen, if for any n ∈ poly(λ), and PPT adversary A, AdvevbindPgen,PC,n,A(λ) :=

Pr

[
V(ck, C, α, η, π) = 1∧
V(ck, C, α, η′, π′) = 1 ∧ η ̸= η′

p← Pgen(1λ); (ck, tk)← KGen(p, n);
(C,α, η, π, η′, π′)← A(p, ck)

]
≈λ 0.

The seminal (non-randomized) KZG [KZG10] polynomial commitment
scheme is defined as follows:

KZG.Pgen(λ): return p← Pgen(1λ).
KZG.KGen(p, n): tk = σ←$Z∗p; ck← (p, [(σi)ni=0]1, [1, σ]2); return (ck, tk).
KZG.Com(ck, f): return C ← [f(σ)]1 =

∑n
j=0 fj [σ

j]1.
KZG.Open(ck, C, α, f): η ← f(α); φ(X) ← (f(X) − η)/(X − α); π ← [φ(σ)]1;

return (η, π).

10 Helger Lipmaa, Roberto Parisella, and Janno Siim

KZG.V(ck, C, α, η, π): Return 1 iff (C − η[1]1) • [1]2 = π • [σ − α]2.

KZG’s security is based on the fact that (X − α) | (f(X) − η) ⇔ f(α) = η. It
is evaluation binding under the n-SDH assumption [KZG10] and non-black-box
extractable in the AGM [CHM+20] under the PDL assumption and in AGMOS
under the PDL and TOFR (see Appendix C) assumptions.

2.2 Succinct Zero-Knowledge Arguments

Indexed Relation. We consider relations that depend on the pairing descrip-
tion p ← Pgen(1λ). An indexed relation Rp is a relation of triples (i,x,w),
where i is an index (e.g., an arithmetic circuit), x is a statement (e.g., a
public input to the circuit) and w is an NP-witness (e.g., a private input to
the circuit) for the language L(Rp) := {(i,x) : (i,x,w) ∈ Rp}. We denote
I(Rp) = {i : (i,x,w) ∈ Rp}. We also consider subrelations Rp,n ⊂ Rp, where
the size of index i is bounded by n.

Argument System. Groth et al. [GKM+18] introduced the notion of (pre-
processing) zk-SNARKs with specializable universal structured reference string
(SRS). This notion formalizes the idea that the key generation for Rp,n can be
seen as the sequential combination of two steps. First, a probabilistic algorithm
KGen generates a SRS for Rp,n (e.g., for satisfiability of any circuit with ≤ n
gates) and second, a deterministic algorithm Derive specializes the universal SRS
into one for a specific i ∈ I(Rp,n) (e.g., for a fixed circuit with ≤ n gates).

Let (P,V) be a pair of interactive algorithms where V outputs the fi-
nal message (typically either 0 or 1, unless V is malicious). We denote by
tr ← ⟨P(x),V(y)⟩ the protocol transcript when P gets an input x and V gets
an input y. For simplicity we sometimes write ⟨P(x),V(y)⟩ = b when we com-
pare V’s last message to b.

A succinct zero-knowledge argument system Π = (Pgen,KGen,Derive,P,V)
with specializable universal SRS for a relation family (Pgen,
{Rp,n}p∈range(Pgen),n∈N) consists of the following algorithms.
Setup: Given 1λ, return system parameters p← Pgen(1λ).
Universal SRS Generation: a probabilistic algorithm KGen(p, n) →

(srs, tdsrs) that takes as input public parameters p and an upper bound n
on the index size, and outputs srs together with a trapdoor. We assume
that srs contains p.

SRS Specialization: a deterministic algorithm Derive(srs, i)→ (eki, vki) that
takes as input a universal SRS srs and an index i ∈ I(Rp,n), and outputs a
specialized SRS srsi := (eki, vki). Here eki is for the prover, and vki is for
the verifier. We assume that eki and vki contain p.

Prover/Verifier: a pair of interactive algorithms ⟨P(eki,x,w),V(vki,x)⟩ = b,
where P takes a proving key eki for an index i, a statement x, and a witness
w, s.t. (i,x,w) ∈ Rp,n, and V takes a verification key vki for an index i and
a statement x, and either accepts (b = 1) or rejects (b = 0) the argument.

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 11

Π must satisfy the following four requirements.
Completeness. For all p ∈ range(Pgen), n ∈ N, (i,x,w) ∈ Rp,n,

Pr

[
⟨P(eki,x,w),V(vki,x)⟩ = 1

(srs, tdsrs)← KGen(p, n);
(eki, vki)← Derive(srs, i)

]
= 1 .

Witness-Extended Emulation. Π satisfies witness-extended emulation if for ev-
ery DPT P∗ there exists an expected polynomial time emulator Emu, such
that for any λ, PPT adversary A, PPT distinguisher D, and n ∈ poly(λ),
Advwee

Pgen,Π,n,P∗,A,D(λ) := |ε0 − ε1| ≈λ 0, where

ε0 := Pr

 i ∈ I(Rp,n)∧
D(tr) = 1

p← Pgen(1λ); (srs, tdsrs)← KGen(p, n);
(i,x, st)← A(p, srs); (eki, vki)← Derive(srs, i);
tr← ⟨P∗(p, srs,x, st),V(vki,x)⟩

 ,

ε1 := Pr

i ∈ I(Rp,n)∧
D(tr) = 1∧(
Vcheck(srs, tr) = 1
⇒ (i,x,w) ∈ R

) p← Pgen(1λ); (srs, tdsrs)← KGen(p, n);
(i,x, st)← A(p, srs);
(eki, vki)← Derive(srs, i);

(tr,w)← Emu⟨P
∗(p,srs,x,st),V(vkR,x)⟩(p, srs,x)

 ,

where Emu has access to a transcript oracle that can be rewound to any round
and run again with fresh random coins of the verifier. Vcheck(srs, tr) outputs 1
if the transcript is accepted by the verifier and 0 otherwise.
Honest Verifier Zero-Knowledge. Π is ε-statistical honest verifier zero-knowledge
if there exists a PPT simulator Sim, s.t. for all unbounded algorithms D =
(D1,D2), all p ∈ range(Pgen), all n ∈ poly(λ), |ε0(λ)− ε1(λ)| ≤ ε(λ), where

ε0(λ) := Pr

D2(st, tr) = 1∧
Rp,n(i,x,w)

∣∣∣∣∣∣
(srs, tdsrs)← KGen(p, n); (i,x,w, st)← D1(srs);
(eki, vki)← Derive(srs, i);
tr← ⟨P (eki,x,w) ,V(vki,x)⟩

 ,

ε1(λ) := Pr

D2(st, tr) = 1∧
Rp,n(i,x,w)

∣∣∣∣∣∣
(srs, tdsrs)← KGen(p, n); (i,x,w, st)← D1(srs);
(eki, vki)← Derive(srs, i);
tr← ⟨Sim (srs, tdsrs, i,x) ,V(vki,x)⟩

 .

We say that Π has statistical honest verifier zero-knowledge when ε(λ) is negli-
gible and perfect zero-knowledge when ε(λ) = 0.
Succinctness. Π is succinct if the running time of V is poly(λ+ |x|+ log |w|)
and the communication size is poly(λ+ log |w|).

Π is updatable [GKM+18], if the SRS can be sequentially updated by many
updaters, such that knowledge-soundness holds if either the original SRS creator
or one of the updaters is honest.

When we have a public-coin protocol with a constant number of rounds, we
can apply the Fiat-Shamir heuristic [FS87] to obtain a zk-SNARK.

3 ARSDH: Underlying Security Assumption

For a set S, ZS(X) :=
∏

s∈S(X − s) is its vanishing polynomial. We need a
new assumption, ARSDH, that is an adaptive version of the following known
assumption.

12 Helger Lipmaa, Roberto Parisella, and Janno Siim

Definition 3 (RSDH [GR19]). Let n ∈ poly(λ) and Pgen be a bilinear-group
generator. Let S = {αj} ⊂ F be any set of size n + 1. Then, the S-RSDH
(Rational Strong Diffie-Hellman) assumption holds for Pgen in G1, if for any
PPT A, the following probability is negligible: AdvrsdhPgen,1,n,S,A(λ) :=

Pr

 [g]1 ̸= [0]1 ∧
[g]1 • [1]2 = [φ]1 • [ZS(σ)]2

p← Pgen(1λ);σ←$Zp;
ck← ([(σi)ni=0]1, [(σ

i)n+1
i=0]2);

[g, φ]1 ← A(ck,S)

 .

(The condition [g]1 • [1]2 = [φ]1 • [ZS(σ)]2 is equivalent to 1
ZS(σ) · [g]1 = [φ]1.)

Definition 4 (New Assumption ARSDH). We say the adaptive (n + 1)-
RSDH assumption holds for Pgen in G1 if S-RSDH holds (with slightly different
input to A) for Pgen in G1 even when the adversary can choose itself a set S
of size n + 1. That is, if for any PPT A, the following probability is negligible:
AdvarsdhPgen,1,n,A(λ) :=

Pr

 S ⊂ F ∧ |S| = n+ 1 ∧ [g]1 ̸= [0]1 ∧
[g]1 • [1]2 = [φ]1 • [ZS(σ)]2

p← Pgen(1λ);σ←$Zp;
ck← ([(σi)ni=0]1, [1, σ]2);
(S, [g, φ]1)← A(ck)

 .

The (S-)RSDH assumption from [GR19] is stronger than ARSDH in the sense
that it gives the adversary [(σi)ni=0]1, [(σ

i)n+1
i=0]2 as an input. The additional in-

put elements were needed for the assumption to be publicly verifiable, meaning
breaking the success of the adversary can be tested only by knowing ck (knowing
σ itself is unnecessary). In our application, public verification is not important.
On the other hand, [GR19] assumed S-RSDH (for a specific set S) while ARSDH
must be secure against an adverary that adaptively chooses S.

In our constructions, we need both the ARSDH and SDH assumptions. The
latter is needed for the evaluation binding of the KZG commitment. To simplify
the assumption zoo, we prove the following lemma. Note that the adaptive choice
of S in ARSDH is needed for the reduction to work (in addition to being needed
in Section 4.1).

Lemma 1. (n+ 1)-ARSDH implies (n+ 1)-SDH.

Proof. Let A be an (n+ 1)-SDH adversary. We construct the following (n+ 1)-
ARSDH adversary B(ck):

1. Obtain (c, [φ]1 = 1
σ+c [1]1)← A(ck).

2. Abort if A(ck) did not succeed, i.e, if [φ]1 • [σ + c]2 ̸= [1]T or σ + c = 0.
3. Choose any set S of size n+ 1 that contains −c, but not σ.
4. Set g(X)← ZS(X)/(X + c) ∈ F[X], with degree n.
5. Return (S, [g(σ), φ]1).

Clearly, B has broken RSDH since 1
ZS(σ) [g(σ)]1 = [φ]1 and g(σ) ̸= 0. ⊓⊔

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 13

In particular, this means that ARSDH implies that KZG is evaluation bind-
ing. In Appendix B, we prove the security of ARSDH in the algebraic group
model with oblivious sampling (AGMOS) [LPS23]. This is the recent variant of
AGM [FKL18], which additionally allows oblivious sampling of group elements.
It does not mean that the security of our protocols relies on AGM/AGMOS.
Instead, we use AGMOS only as an additional sanity check.

4 Special Soundness of KZG

In the following sections, we define two security notions for non-interactive poly-
nomial commitment schemes: special soundness and black-box extractability
(BBE). We prove that KZG satisfies both notions under ARSDH.

We model a non-interactive polynomial commitment scheme (e.g., KZG) as
a three-message protocol, where the first message is a commitment, the second is
the verifier’s query (evaluation point) α, and the third is an evaluation η together
with an evaluation proof π.

Notation. We call tr := (C,α, η, π) a transcript. For a fixed ck, tr is accepting if
V(ck, tr) = 1. Let n ≥ 1 be an integer. We say that an (n+ 1)-tuple tr = {trj =
(Cj , αj , ηj , πj) : j ∈ [0, n]} is admissible, if (1) Ci = Cj =: C for all i, j ∈ [0, n],
and (2) αi ̸= αj for i ̸= j. We say tr is accepting if each trj is accepting.

For a non-interactive PCS PC, λ ∈ N, n ∈ poly(λ), p ∈ Pgen(1λ), ck ∈
PC.KGen(p, n) (that encodes implicitly information about PC, λ, n, and p), and
an admissible (n+ 1)-tuple tr, we define the following two relations:

Rck := {(C, f) : C = PC.Com(ck, f) ∧ deg f ≤ n} ,

Rck,tr := {(C, f) : (C, f) ∈ Rck ∧ ∀j ∈ [0, n].f(αj) = ηj} .
(1)

That is, (C, f) belongs to Rck if f(X) is a valid opening of C. Moreover, (C, f)
belongs to Rck,tr if it belongs to Rck and in addition, f(αj) = ηj for all j ∈ [0, n].

4.1 Special Soundness

Next, we define a variant of the standard special soundness [CDS94] notion for
non-interactive polynomial commitment schemes.

Definition 5 (Special Soundness). Let n ∈ poly(λ) with n ≥ 1.
A non-interactive polynomial commitment scheme PC is computationally
(n+ 1)-special-sound for Pgen, if there exists a PPT extractor Extss, such that
for any PPT adversary Ass, AdvssPgen,PC,Extss,n+1,Ass

(λ) :=

Pr

tr = (trj)

n
j=0 ∧

∀j ∈ [0, n].

(
trj = (C,αj , ηj , πj)
∧V(ck, trj) = 1

)
∧ (∀i ̸= j.αi ̸= αj) ∧ (C, f) /∈ Rck,tr

p← Pgen(1λ);
(ck, tk)← KGen(p, n);
tr← Ass(ck);
f ← Extss(ck, tr)

 ≈λ 0 .

14 Helger Lipmaa, Roberto Parisella, and Janno Siim

Intuitively, this definition states that if Ass produces an accepting admissible
(n+1)-tuple tr, then one can extract a degree-≤ n polynomial f(X) that agrees
with all the transcripts (i.e., with all n+ 1 polynomial openings).

Theorem 1. If the (n + 1)-ARSDH assumption holds, then KZG for degree
≤ n polynomials is computationally (n + 1)-special-sound: There exists a DPT
extractor Extss, such that for any PPT Ass, there exists a PPT B, such that
AdvssPgen,PC,Extss,n+1,Ass

(λ) ≤ AdvarsdhPgen,1,n+1,B(λ) .

We fix some notation and state a technical lemma before proving Theorem 1.
Let I := [0, n] and fix any set S := {αj}j∈I with αi ̸= αj . As before, let
ZS(X) :=

∏
j∈I(X − αj) be the vanishing polynomial of S. For j ∈ I, let

ℓIj (X) :=
∏

i ̸=j∈I
X−αi

αj−αi

be the jth Lagrange polynomial of S over I. Let

dIj := 1
ZS\{αj}(αj)

= 1∏
i̸=j∈I(αj−αi)

.

Clearly,
ℓIj (X) =

ZS(X)dIj
X−αj

. (2)

In Lemma 2, we generalize a batching technique of Tomescu et al. [TAB+20]
from the case αj ∈ ⟨ω⟩ to any αj ∈ F.6

Lemma 2 (Batching lemma). Let S = {αj}j∈I with αi ̸= αj. Assume that
for all j ∈ I,

[c− ηj]1 • [1]2 = [φj]1 • [σ − αj]2 (3)

for some [c]1, [φj]1, and ηj. Then,

[c− L(σ)]1 • [1]2 = [φ]1 • [ZS(σ)]2 , (4)

where [φ]1 :=
∑

j∈I d
I
j [φj]1 and L(X) :=

∑
j∈I ηjℓ

I
j (X) is the low-degree exten-

sion of {ηj}.

Proof. Let us first handle the case σ = αj0 for some j0. In this case, Eq. (3) tells
us that c = ηj0 . Moreover, ℓIj (σ) = 0 for j ̸= j0 while

ℓIj0(X) = dIj0
∏

i ̸=j0
(X − αi) =

ZS\{σ}(X)

ZS\{σ}(σ)
.

Since dIj0 = 1/ZS\{σ}(σ), we get that L(σ) =
∑

j∈I ηjℓ
I
j (σ) = ηj0 = c and

Eq. (4) holds.
6 [TAB+20] used this technique of batching polynomial commitment openings to im-

prove on efficiency, while we use it for the security proof. Without using Lemma 2,
we have a somewhat uglier assumption, where Ass returns [φj]1 for every j ∈ I, and
n+ 1 equalities [g]1 • [1]2 = [φj]1 • [σ − αj]2 hold individually.

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 15

Extss(ck = ([(σi)ni=0]1, [1, σ]2), tr)

if ∃i ̸= j.αi = αj then return ⊥;
if ∃j ∈ I : V(ck, trj) = 0 then

return ⊥;
L(X)←

∑
j∈I ηjℓ

I
j (X) ∈ F≤n[X];

[g]1 ← [c− L(σ)]1;
if [g]1 = [0]1 then return L(X);
return ⊥;

B(ck = ([(σi)ni=0]1, [1, σ]2))

tr← Ass(ck); // trj = ([c]1, αj , ηj , [φj]1)

if ∃i ̸= j.αi = αj then return ⊥;
if ∃j ∈ I : V(ck, trj) = 0 then

return ⊥;
L(X)←

∑
j∈I ηjℓ

I
j (X) ∈ F≤n[X];

[g]1 ← [c− L(σ)]1;
if [g]1 = [0]1 then return ⊥;
[φ]1 ←

∑
j∈I dIj [φj]1;

return (S ← {αj}, [g, φ]1);

Fig. 1. The extractor Extss and the ARSDH reduction B in the proof of Theorem 1

From now on, assume σ /∈ S. Define implicitly φ := (c − L(σ))/ZS(σ) =
c/ZS(σ)− L(σ)/ZS(σ). From Eq. (2), we get

L(σ)

ZS(σ)
=

∑
j∈I ηjℓ

I
j (σ)

ZS(σ)
=

∑
j∈I ηjZS(σ)d

I
j /(σ − αj)

ZS(σ)
=

∑
j∈I

dIj ηj

σ − αj
.

We also get from Eq. (2) that 1
ZS(X) = 1

ZS(X)

∑
j∈I ℓ

I
j (X) =

∑
j∈I

dIj
X−αj

.

Thus, c/ZS(σ) =
∑

j∈I d
I
j c/(σ − αj). Hence,

φ =
∑

j∈I
dIj c

σ−αj
−
∑

j∈I
dIj ηj

σ−αj
=

∑
j∈I d

I
j

c−ηj

σ−αj
=

∑
j∈I d

I
j φj .

The last equality holds since φj = (c− ηj)/(σ−αj). This proves the lemma. ⊓⊔

Proof (Of Theorem 1). Let Ass be any PPT adversary in the computational
special soundness game. We construct the following extractor Extss. (See Fig. 1
for a formal description.)

Let n ∈ poly(λ), p ← Pgen(1λ), and (ck, tk) ← KGen(p, n). Extss obtains ck
and tr, where tr is an (n+1)-tuple of transcripts trj = ([c]1, αj , ηj , [φj]1). Define
S := {αj}j∈I .7 When Ass produces a successful attack, αj are pairwise different
(tr is admissible), and the KZG verifier accepts each transcript. That is, for all
j ∈ I, Eq. (3) holds.

Extss interpolates a polynomial L(X) of degree ≤ n such that L(αj) = ηj
for every j ∈ I. That is, L(X) =

∑
j∈I ηjℓ

I
j (X). If [c]1 = [L(σ)]1, Extss outputs

L(X). Observe that in this case, degL(X) ≤ n and L(αj) = ηj for all j ∈ I;
thus, (C,L) ∈ Rck,tr as required in Definition 5. Otherwise, Extss outputs ⊥.

Let bad be the event that c ̸= L(σ) but the verifier accepts all transcripts in
tr. In Fig. 1, we depict a reduction B that breaks ARSDH whenever bad happens.
7 Note that if S contains σ then Ass has broken the (n, 1)-PDL assumption, and thus

also the ARSDH assumption. However, the following proof also goes through when
S contains σ, and thus we do not have to consider the case σ ∈ S separately.

16 Helger Lipmaa, Roberto Parisella, and Janno Siim

B runs Ass to obtain transcripts and then computes L(X) just as the extractor.
If [c]1 = [L(σ)]1, B outputs ⊥ (in this case, the extractor succeeds). Otherwise,
B proceeds and computes [g]1 ← [c − L(σ)]1 and [φ]1 ←

∑
j∈I d

I
j [φj]1. Since

Eq. (3) holds for all j ∈ I, we get from Lemma 2 that Eq. (4) holds, that is,
[g]1 • [1]2 = [φ]1 • [ZS(σ)]2. When bad happens, [g]1 ̸= [0]1 and thus B breaks the
ARSDH assumption by returning [g, φ]1. Thus, Pr[B breaks ARSDH] = Pr[bad].
Summarizing, AdvssPgen,PC,Extss,n+1,Ass

(λ) ≤ AdvarsdhPgen,1,n+1,B(λ). ⊓⊔

5 Rewinding Lemma

Next, we prove a generic information-theoretically secure rewinding lemma. In-
tuitively, if the adversary can produce an accepting transcript for a random
challenge α0, then there exists an efficient extractor that can recover n more
accepting transcripts for n ∈ poly(λ). Note that εss is a function of p since |Fp|
is a function of p.

Theorem 2. Fix Fp as a function of p. For all DPT P∗ and n ∈ poly(λ),
there exists an expected PT extractor Extrw, such that for any unbounded A,
εss(p) > 1− n/|Fp|, where for every p ∈ Pgen(1λ), εss(p) :=

Pr

 V(ck, tr0) = 1⇒
∀j ∈ [1, n].V(ck, trj) = 1

(ck, tk)← KGen(p, n); (C, st)← A(ck);
α0←$Fp; (η0, π0)← P∗(st, α0);
tr0 ← (C,α0, η0, π0);

tr← ExtP
∗(st,·)

rw (ck, tr0)

 ,

and tr = (tr1, . . . , trn) consists of transcripts trj = (C,αj , ηj , πj) for j ∈ [1, n],
where C is the same as in tr0 and αj ∈ Fp are pairwise distinct. In particular,
Extrw makes an expected number of n queries to P∗.

Proof. Our proof strategy roughly follows [ACK21]. In Fig. 2, we depict the
extractor Extrw. Intuitively, Extrw runs P∗(st, ·) on distinct uniformly random
challenges α ∈ Fp until it either finds n additional accepting transcripts or the
whole challenge set Fp is exhausted.

Let rp, rck, and rA be the randomizers used in creating p ← Pgen(1λ; rp),
ck ← KGen(p, n; rck), and (C, st) ← A(ck; rA). Consider a Boolean matrix H
where the rows are indexed by the set

Rows := {r̄ = (rp, rck, rA) : rp, rck, rA ∈ {0, 1}poly(λ)}

and the columns are indexed by the verifier challenges from Fp. We implicitly set
Hr̄,α = 1 iff V(ck, C, α, η, π) = 1, where the parameters (p, ck, C, st) are created
using the coins r̄ and (η, π)← P∗(st, α).

Probability analysis. Consider the game described in the lemma’s statement.
W.r.t. this game, let A be the event that V(ck, tr0) = 1 and let B be the event
that ∀j ∈ [1, n], V(ck, trj) = 1. Then,

εss(p) =Pr[A⇒ B] = Pr[A ∧ (A⇒ B)] + Pr[¬A ∧ (A⇒ B)]

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 17

ExtP
∗(st,·)

rw (ck, tr0)

Parse tr0 = (C,α0, η0, π0);
if V(ck, C, α0, η0, π0) = 0 then return ⊥;fi
j ← 1; T ← Fp \ {α0};
while j ≤ n ∧ T ≠ ∅ do

α←$ T ; (η, π)← P∗(st, α);
if V(ck, C, α, η, π) = 1 then trj ← (C,α, η, π); j ← j + 1;fi
T ← T \ {α};

endwhile
if j < n then return ⊥;fi
return tr← (tr1, . . . , trn);

Fig. 2. Extractor Extrw from Theorem 2.

=Pr[A ∧ B] + Pr[¬A] .

Let R := |Rows|. For j ≤ |Fp|, let Rj be the number of rows in H with exactly
j ones. Thus, Pr[A] =

(∑|Fp|
j=1 jRj

)
/(R · |Fp|) is the fraction of ones in H. The

event A ∧ B happens iff tr0 is accepting and it comes from a row r̄ ∈ Rows with
at least n+ 1 ones. Thus,

Pr[A ∧ B] =
∑|Fp|

j=n+1 jRj

R·|Fp| =
∑|Fp|

j=1 jRj

R·|Fp| −
∑n

j=1 jRj

R·|Fp| = Pr[A]−
∑n

j=1 jRj

R·|Fp| .

Next,
∑n

j=1 jRj is largest when all R rows have exactly n ones, i.e., Rn = R

and Rj = 0 for j < n. Thus, (
∑n

j=1 jRj)/(R · |Fp|) ≤ nR/(R · |Fp|) = n/|Fp|.
Hence, Pr[A ∧ B] ≥ Pr[A]−n/|Fp|. Finally, εss(p) ≥ (Pr[A]−n/|Fp|)+Pr[¬A] =
1− n/|Fp|.

Expected number of queries. Let Q denote the number of queries Extrw makes
to P∗. Since the total running time of Extrw is poly(λ) ·Q, it is sufficient to only
analyze Q. Consider the case that Hr̄,α0

= 1 (therefore, A happened); then, the
extractor in Fig. 2 will not abort on the second step but enters the while loop.
The while loop in the extractor can be viewed as sampling without replacement
from a finite binary-classified population.

Recall that the negative hypergeometric distribution (NHG) is the distribu-
tion of X in the next game: given a bin with N balls of which K are marked, X is
the number of sampled balls from the bin (without replacements) until we get k ≤
K marked balls. The expected value of X is E[NHGN,K,k] = k(N + 1)/(K + 1).
The number of iterations of the while loop corresponds to an NHG random
variable with the following parameters, where δr̄ is the fraction of ones in Hr̄

(i.e., row r̄).

– N = |Fp| − 1 (the number of possible challenges except α0),
– K = δr̄|Fp| − 1 (the number of ones in Hr̄, except the entry Hr̄,α0),

18 Helger Lipmaa, Roberto Parisella, and Janno Siim

– k = n (the additional number of accepting transcripts Extrw needs to find).

If there are at least n + 1 entries in the row r̄, the expected number of
iterations in the while loop to get n ones is k(N+1)/(K+1) = n|Fp|/(δr̄|Fp|) =
n/δr̄. On the other hand, if there are less than n+1 ones in the row ϱ, then the
while loop checks all the |Fp|−1 entries in the row. In this case, K = δr̄|Fp|−1 ≤
n−1 and thus |Fp| ≤ n/δr̄. Thus, the expected number of iterations in the while
loop satisfies |Fp| − 1 < n/δr̄. Hence, E[Q | A ∧ r̄] ≤ n/δr̄.

The conditional probability, given the row r̄, that the extractor does not abort
before entering the while loop is δr̄ = Pr[A | r̄]. Thus, conditioned on the row r̄,
the expected number of calls that the extractor makes is E[Q | r̄] ≤ δr̄ ·n/δr̄ = n.
The expected number of calls of Extrw can be computed as the average expected
number of calls over the choice of r̄:

E[Q] =
∑

r̄∈Rows E[Q|r̄] Pr[r̄] ≤
∑|Rows|

ϱ=1
n

|Rows| = n .

The claim follows. ⊓⊔

6 Black-Box Extractability

Definition. For a single transcript tr, we write that (C, f) ∈ Rck,tr iff (C, f) ∈
Rck ∧ f(α) = η. (This is a particular case of Eq. (1) for n = 0.)

Definition 6 (Black-Box Extractability). A non-interactive polynomial
commitment scheme PC is black-box extractable (BBE) for Pgen, if there exists
an expected PPT black-box extractor Extbb, such that for all PPT A, DPT P∗,
n ∈ poly(λ), and Fp ⊆ F of size |Fp| = λω(1), AdvbbePgen,PC,Ext,n,A,P∗(λ) =

Pr

 V(ck, tr0) = 1∧
(C, f) /∈ Rck,tr0

p← Pgen(1λ); (ck, tk)← KGen(p, n); (C, st)← A(ck);
α0 ←$Fp; (η0, π0)← P∗(st, α0); tr0 ← (C,α0, η0, π0);

f ← Ext
P∗(st,·)
bb (ck, tr0);

 ≈λ 0 .

Extbb can invoke P∗(st, ·) with any challenge α̃ ∈ Fp to which P∗(st, α̃) returns
some tuple (η̃, π̃).

Note that st can contain information about ck and C. In Definition 6, P∗ being
deterministic means that we can rewind and restart P∗ many times on the same
state st, but different challenges.

We balanced Definition 6 so that it is weak enough for KZG to satisfy it and
strong enough so that the SNARK compiler in Section 7 can use it. A crucial
difference between Definition 1 and Definition 6 is that the evaluation point
is sampled randomly from a large set in the latter. We need this property to
prove Theorem 2. This difference with Definition 1 is why we must open each
polynomial at a random evaluation point in our compiler in Section 7.

In Appendix C, we show that if the PCS is binding and BBE, it also has
non-adaptive evaluation binding. This is a slightly weaker form of evaluation
binding than usual, where the game picks the evaluation point randomly.

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 19

Ext
P∗(st,·)
bb (ck, tr0)

1 : if V(ck, tr0) = 0
then return ⊥;fi

2 : tr← ExtP
∗(st,·)

rw (ck, tr0);
3 : if ∃j ∈ [1, n].V(ck, trj) = 0

then return ⊥;fi
f ← Extss(ck, tr0||tr);

4 : return f ;

Ass(ck)

(C, st)← A(ck);α0 ←$Fp;
(η0, π0)← P∗(st, α0);
tr0 ← (C,α0, η0, π0);
if V(ck, tr0) = 0
then return ⊥;fi
tr← ExtP

∗(st,·)
rw (ck, tr0);

if ∃j ∈ [1, n].V(ck, trj) = 0
then return ⊥;fi

return (tr0∥tr);

Fig. 3. The black-box extractor Extbb and the special-soundness adversary AP∗(st,·)
ss

from Theorem 3.

Security Reduction. We prove that if a non-interactive polynomial commit-
ment scheme is computationally special-sound, it is also black-box extractable,
as in Definition 6. The proof of Theorem 3 per se is not complicated if one
assumes the results of Sections 4 and 5.

Theorem 3. If a non-interactive PCS PC is computational (n + 1)-special-
sound, it is black-box extractable.

Proof. Assume PC is special-sound (see Definition 5) and let Extss be the guaran-
teed PPT special soundness extractor. Let Extrw be the rewinding extractor from
Fig. 2. Let A and P∗ be the adversaries in the definition of black-box extraction.

We depict the new black-box extractor Extbb in Fig. 3. If the verifier does not
accept tr0, there is no need to extract, and Extbb outputs ⊥. Otherwise, Extbb
calls Extrw to obtain n more accepting transcripts tr, resulting in an (n + 1)-
tuple tr0∥tr of admissible transcripts. Then, Extbb runs Extss on tr0∥tr, obtaining
a polynomial f . If both Extrw and Extss succeed, then Extbb outputs f . Since
Extrw runs in the expected PPT and Extss in strict PPT, Extbb runs in expected
PPT.

We next bound the probability that when running Extbb, V(ck, tr0) = 1 but
(C, f) /∈ Rck,tr0 . Looking at Fig. 3, we can see that there are two different ways
for this to happen.

(i) Extbb returns ⊥ in step 3. This corresponds to the event Frw (“failure in
rewinding”) that V(ck, tr0) = 1 but V(ck, trj) = 0 for some j ∈ [1, n].

(ii) Extbb reaches step 4 and returns f , such that (C, f) /∈ Rck,tr0 . This
corresponds to the event Fss (“failure in special soundness”) that ∀j ∈
[0, n].V(ck, trj) = 1 but (C, f) /∈ Rck,tr0 .

We next bound the probabilities that Frw or Fss happen.

Event Frw. By Theorem 2, Frw happens with probability at most n/|Fp|.

20 Helger Lipmaa, Roberto Parisella, and Janno Siim

Event Fss. We bound the probability that Fss happens by relying on special
soundness (Definition 5). In Fig. 3, we depict a special soundness adversary
Ass that runs A and P∗ internally. Ass first runs A and P∗ to create tr0 as in
Definition 6. Crucially, Ass creates tr0 from the correct distribution for Extbb.
Then, Ass executes Extbb up to step 3 Finally, Ass outputs tr0 together with n
transcripts computed by Extrw. (However, it does not run Extss.)

According to the special soundness definition, the event that the extrac-
tor outputs f(X) such that (C, f) /∈ Rck,tr0 , but ∀j ∈ [0, n].V(ck, trj) = 1 is
bounded AdvssPgen,PC,Extss,n+1,Ass

(λ). This corresponds precisely to the event Fss.
Thus, Pr[Fss] ≤ AdvssPgen,PC,Extss,n+1,Ass

(λ). However, Ass is an expected PPT
adversary, but special soundness is defined only for strict PPT adversary. We
observe that special soundness is a falsifiable assumption (it can be written as
an interaction between a PPT challenger and an adversary, Appendix A). Ac-
cording to Lemma 6, since AdvssPgen,PC,Extss,n+1,A′(λ) is negligible for any PPT A′,
then also AdvssPgen,PC,Extss,n+1,Ass

(λ) is a negligible function.
Summing up the above results, we get the claim of the theorem. ⊓⊔

Corollary 1. If (n+1)-ARSDH holds, then KZG for degree ≤ n polynomials is
black-box extractable.

Proof. Follows directly from Theorems 1 and 3. ⊓⊔

7 Application to SNARKs

7.1 Polynomial IOP

The following definition of polynomial IOP (PIOP) roughly follows [SZ20].

Definition 7 (Polynomial IOP with Preprocessing). Let R be an indexed
relation, F some finite field, and d ∈ N a degree bound. A polynomial IOP for R
with degree bound d is a tuple of PPT algorithms ΠIOP = (IOP.I, IOP.P, IOP.V),
satisfying the following description.

– IOP.I takes i for input and outputs a list of polynomials of degree at most d.
– IOP.V gets oracle access to these polynomials.
– (IOP.P, IOP.V) run a Rnds-round interactive protocol.
– In each round, IOP.P sends polynomials fi(X) ∈ F[X] of degree at most d to

IOP.V.
– IOP.V is an oracle machine with access to a list of oracles, containing one

oracle for each polynomial it has received from the prover (and indexer).
– At the end of each round, IOP.V can query oracles associated with a polyno-

mial fi(X) on a point αj ∈ F, the oracle responds with the value fi(αj).
– In the subsequent round, IOP.V sends oracle queries and challenges zk ∈ F

to IOP.P.
– IOP.V is public coin.

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 21

On common input x and prover’s witness w, the protocol transcript is de-
noted by the random variable ⟨IOP.P(x,w), IOP.V(x)⟩ = tr. When the verifier
accepts the transcript, we conveniently write tr = 1. IOP.VI(i) denotes that the
verifier has oracle access to the polynomials outputted by the indexer.

A polynomial IOP must satisfy the following properties.
Perfect Completeness: for all (i,x,w) ∈ R,

Pr
[〈

IOP.P(x,w), IOP.VI(i)(x)
〉
= 1

]
= 1 .

Knowledge Soundness: There exists a PPT algorithm Ext 8, such that for any
interactive algorithm A, i ∈ I(R), and input x ∈ {0, 1}poly(λ) (not necessarily in
the language), the following holds: AdvksΠ,Ext,A(λ) :=

Pr
[
tr = 1 ∧ (i,x,w) ̸∈ R | tr←

〈
A(i,x), IOP.VI(i)(x)

〉
;w← Ext(i,x, tr)

]
≈λ 0 .

7.2 Compiling Polynomial IOPs Into Arguments

We present a compiler that compiles a PIOP and a non-interactive polynomial
commitment scheme (as defined in Section 2.1) into an interactive argument.

The SRS is the public key of the commitment scheme, and in the preprocess-
ing phase, the commitments of the indexer’s polynomials are published. The in-
teractive part of the argument runs PIOP, except with the following two changes:
– If the PIOP prover sends some polynomial f to the PIOP verifier, then P

and V execute the following three-message subprotocol: the prover sends a
commitment of f to the verifier, the verifier samples a new extraction point9
χ←$F (here |F| = λω(1)), and the prover opens the commitment of f at
this point. The verifier checks that the opening proof verifies. We can think
of this protocol as an interactive commitment phase of a new polynomial
commitment scheme KZG+.

– If the PIOP verifier queries a previously sent polynomial f at some point α,
the verifier sends α to the prover and the prover opens the commitment to f
at the evaluation point α. The verifier checks that the opening proof verifies.

The rest of the PIOP is executed truthfully. In particular, the verifier checks
that the PIOP verifier accepts the corresponding PIOP transcript that can be
easily compiled from the verifier’s responses and evaluations sent by the prover.

It is important to observe that even if the original PIOP has zero knowledge,
the compiled argument might not have. We make new queries (with extraction
points) to the polynomials, which leak additional information. However, in effi-
cient zk-SNARKs like Plonk, this can be tackled by adding extra randomness to
polynomials to account for one more opening point.

8 Note that [BFS20] allowed the extractor to rewind. We are unaware of any concrete
polynomial IOP, which would need that. Thus, for the sake of simplicity we use a
straight-line extractor.

9 In practice, F = F. After using Fiat-Shamir, the extraction point is a hash.

22 Helger Lipmaa, Roberto Parisella, and Janno Siim

For simplicity, we assume that the PIOP prover sends a single polynomial in
each round. This assumption is without loss of generality: We can always write
an equivalent PIOP, where instead of sending many polynomials per round, the
prover sends each in a separate round, and the verifier’s intermediate responses
are random challenges never used by the prover. In the compiled argument, these
challenges can be removed, meaning there is no increase in the number of rounds.

Compiler Description. We introduce more notation to make it easier to ex-
plain rewinding later on. Let (IOP.I, IOP.P, IOP.V) be a polynomial IOP. We
denote by stVr−1 the verifier’s state at the beginning of round r. The verifier’s
initial state is stV0 = x. On input (stVr−1, coinsr), V outputs query points αr, other
challenge values zr, and labels10 gr for the oracles that need to be evaluated.
More precisely, gr is a vector of length ℓr = |gr| = |αr| containing labels for
V’s oracles that need to be queried. An oracle can be from the prover or from
the indexer (the same oracle may appear even multiple times in gr). The verifier
queries ηr,i ← gr,i(αr,i) for all i ∈ [1, ℓr], where gr,i is a label for one of V’s
oracles.

We depict the compiler, with full details, in Fig. 4. Here, ΠIOP =
(IOP.I, IOP.P, IOP.V) is a Rnds-round PIOP for Rp,n and PC is a non-interactive
polynomial commitment scheme.

Security. We prove that if the PIOP is knowledge sound, the commitment
scheme is evaluation binding and black-box extractable, then the compiled (in-
teractive) argument system has witness-extended emulation.

Theorem 4. If the non-interactive polynomial commitment scheme PC is black-
box extractable and evaluation-binding, and if the Rnds-round PIOP ΠIOP for R
is knowledge-sound, then the argument Π described in Fig. 4 is a public-coin
interactive argument system for R that has witness-extended emulation.

Proof. Let P∗, A, D denote the adversaries from the WEE definition (Sec-
tion 2.2). We construct a WEE emulator Π.Emu for the argument system Π.
Π.Emu is defined in Fig. 5, having black-box rewindable access to P∗.

We denote the state of the prover P∗ (containing the state st from A, P∗’s
internal configuration, and messages from V) at the beginning of the round r

subprotocol by st
(1)
r−1 and after receiving the challenge χr ←$F by st

(2)
r−1. Note

that Π.Emu has only an oracle access to P∗ and does not see P∗’s state. We use
the state notation only for showing that Π.Emu rewinds the deterministic P∗ to
a particular state.

We give an overview of Π.Emu depicted in Fig. 5. Π.Emu black-box executes
the prover’s first round P∗(st

(1)
0) and gets a commitment C1 to an unknown poly-

nomial. The initial state is st
(1)
0 = (p, ck,x, st), where st is the state information

sent from A. Then, Π.Emu plays the argument’s verifier, sampling χ1←$F and
10 They have to be labels, not polynomials, since technically V does not know the

polynomials themselves. For simplicity, we will ignore this difference in the notation.

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 23

Pgen(1λ): run p← PC.Pgen(1λ) of the PCS.

KGen(p, n): run (ck, tk)← PC.KGen(p, n).

Derive(ck, i ∈ I(Rp,n)): run (ι1(X), . . . , ιℓ(X)) ← IOP.I(i) and compute
cj ← PC.Com(ck, ιj(X)) for j = 1, . . . , ℓ. Return eki ← ck and
vki ← (c1, . . . , cℓ).

⟨P(eki,x,w),V(vki,x)⟩:
– For each r ∈ [1,Rnds], P and V run the following subprotocol:

1. P sends Cr ← PC.Com(ck, fr).
// where fr ∈ F≤n[X] is sent by IOP.P in the r-th PIOP round

2. V sends χr ←$F .
3. P sends (ηχr

, πχr
)← PC.Open(ck, Cr, χr, fr).

4. V sends random coins coinsr of IOP.V.
5. P computes (zr,αr, gr) ← IOP.V(stVr−1, coinsr) and

sends a vector of openings (ηr,πr), where (ηr,i, πr,i) ←
PC.Open(ck, Cr, αr,i, gr,i) for each i ∈ [1, ℓr]. // ℓr = |gr| = |αr|.

6. P and V update their states.
– V uses PC.V to check that all the openings are valid and IOP.V to

check that the opened PIOP transcript is valid.

Fig. 4. Public-coin interactive argument system Π = (Pgen,KGen,Derive,P,V, Sim)
for the relation Rp,n.

running P∗(st
(1)
0 , χ1) to obtain an opening (ηχ1 , πχ1). If Π.Emu received a valid

opening for χ, it runs the black-box extractor PC.Extbb of PC to obtain a poly-
nomial f1, such that (C1, f1) ∈ Rck. We show later that Ext extracts a valid
polynomial with overwhelming probability. This follows from the definition of
black-box extractability (Definition 6), which can be invoked because χ1 is an
extraction point sampled from a superpolynomial size set. Then, Π.Emu samples
coins1 for IOP.V and uses them to compute evaluation points α1, challenges z1,
and oracle labels g1 that have to be evaluated on α1. It runs P∗ on coins1 to get
openings (η1,π1).

If f1 was correctly extracted, Π.Emu computes η1,i ← g1,i(α1,i), evaluating
all the polynomials that the verifier indicated (g1 may include a label for f1
or indexer’s polynomials) at the respective evaluation points. Π.Emu checks if
the openings returned by P∗ are compatible with the one it can compute itself
using f1. If so, then Π.Emu has successfully simulated the first round of the
PIOP, (f1,α1, z1, g1). Otherwise, if one of the openings is incompatible, we get
a contradiction with the evaluation binding property of PC, as we prove later.
After updating the state of IOP.V, Π.Emu proceeds to simulate the subsequent
rounds similarly. Finally, the emulator runs the PIOP extractor on the PIOP
transcript to recover the witness w. Π.Emu outputs the argument’s transcript
and w.

24 Helger Lipmaa, Roberto Parisella, and Janno Siim

Π.Emu⟨P
∗(p,ck,x,st),V(vki,x)⟩(p, ck,x)

1 : colsn← false;
2 : for r = 1 to Rnds do // P∗’s initial state is st

(1)
0 = (p, ck,x, st)

3 : Run P∗(st
(1)
r−1) and receive Cr;

4 : Sample extraction point χr ←$F ;
5 : (ηχr , πχr)← P∗(st

(1)
r−1, χr); // P

∗’s new state is denoted st
(2)
r−1

6 : trPC ← (Cr, χr, ηχr , πχr);
7 : if PC.V(ck, trPC) = 1 then

8 : fr(X)← PC.Ext
P∗(st(1)r−1,·)
bb (ck, trPC);

9 : if (Cr, fr) ∈ Rck then
10 : ext-failr ← false;
11 : else ext-failr ← true;fi
12 : fi
13 : Sample coinsr for IOP.V; (αr,zr, gr)← IOP.V(stVr−1, coinsr);
14 : (ηr,πr)← P∗(st

(2)
r−1, coinsr); // P

∗’s new state is denoted st(1)r

15 : stVr ← (stVr−1, coinsr,ηr,πr);
16 : if (PC.V(ck, trPC) = 1) ∧ ¬ (ext-failr) then
17 : Compute η̃r ← (gr,1(αr,1), . . . , gr,ℓr (αr,ℓr));
18 : if ηr ̸= η̃r then colsn← true;fi
19 : fi
20 : endfor
21 : tr← (tr1, . . . , trRnds), where tri = (Ci, χi, ηχi , πχi , coinsi,ηi,πi);
22 : trIOP ← (f1,α1,z1, g1, . . . , fRnds,αRnds,zRnds, gRnds);

23 : if ∨Rnds
i=1 ext-faili then return (tr,⊥);fi

24 : if colsn then return (tr,⊥);fi
25 : w← Ext(x, trIOP), where Ext is the PIOP knowledge extractor.
26 : if (i,x,w) ̸∈ R then return (tr,⊥);fi
27 : return (tr,w);

Fig. 5. Emulator Π.Emu for the compiled argument Π.

Note that the transcript that Π.Emu outputs is distributed as the one re-
sulted from an honest protocol execution between P∗ and V. Therefore, real
and emulated transcripts are perfectly indistinguishable. Let D0 be the event
“i ∈ I(Rp,n) ∧ D(tr) = 1” with the real transcript tr and D1 the same event
when tr is emulated. Additionally, let V be the event that “Vcheck(ck, tr) = 1”
and W the event (i,x,w) ∈ R when the emulator outputs tr and w. Then,

Advwee
Pgen,Π,n,P∗,A,D(λ) = Pr[D0]− Pr[D1 ∧ (V⇒W)]

= Pr[D1]− Pr[D1 ∧ (¬V ∨W)]

= Pr[D1 ∧V ∧ ¬W] ≤ Pr[V ∧ ¬W] .

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 25

Thus, to conclude the proof, we need to bound the probability that Π.Emu
computes a valid transcript but fails to extract a witness. This can be divided
into the following disjoint events.
1. Π.Emu computes a valid transcript, but on the line 23 in Fig. 5 it returns

(tr,⊥). Namely, there exists r, for which PC.Extbb failed to extract a poly-
nomial fr such that (Cr, fr) ∈ Rck, and consequently the corresponding
variable ext-failr is set to true. We denote this event F

(r)
bbe (failure in the

black box extraction). Let Fbbe = F
(1)
bbe ∨ . . . ∨ F

(Rnds)
bbe be the event that

extraction fails in any of the rounds.
2. Π.Emu computes a valid transcript, but on the line 24 in Fig. 5 it returns

(tr,⊥). We denote the event by Feb (failure in evaluation binding). In that
case ext-failr = false for all r, but colsn = true. The variable colsn is set to
true if some evaluation ηr,α sent by P∗ is different from η̃r,α = gr,i(αr,i),
where gr,i(X) is either a publicly-known indexer polynomial or one of the
extracted polynomials and αr,i ∈ αr is one of the query points.

3. Π.Emu computes a valid transcript, but on the line 26 in Fig. 5 it returns
(tr,⊥). We denote this event by Fiop (failure in the PIOP extraction). In
that case, trIOP compiled by the emulator is a valid PIOP transcript because
polynomials have been successfully extracted, and there are no collisions,
but the PIOP extractor still failed to extract the witness.
We prove that each of the three events happens with a negligible probability.

We bound the first event by the probability of breaking black-box extractability.
We show this first for a fixed round r.

Lemma 3. There exists a expected PPT Ar such that Pr
[
F

(r)
bbe

]
≤

AdvbbePgen,PC,Ext,n,Ar,P∗(λ).

Proof. We construct a reduction to the black-box extractability property of PC.
Let A, P∗ be the adversaries in the WEE definition as above.

To construct a reduction, we need to construct a black-box extractability
adversaryAr (we use P∗ as the deterministic black-box extractability adversary).
The adversary Ar runs Π.Emu until the line 2 in r-th execution of for loop. That
is, until the emulator gets Cr. At that point, Ar outputs (Cr, st

(1)
r−1).

We now plug Ar and P∗ into the black-box extractability game. Let us recall
the game. The adversary Ar(ck) outputs (Cr, st

(1)
r−1) on a correctly sampled ck.

Then the game picks χ←$Fp, sets (ηr,χ, πr,χ)← P∗(st
(1)
r−1, χ) and defines trPC ←

(Cr, χ, ηr,χ, πr,χ). Finally, PC.Ext
P∗(st

(1)
r−1,·)

bb (ck, trPC) outputs a polynomial fr(X).
According to the definition, probability that PC.V(ck, trPC) = 1 and (Cr, fr) ̸∈
Rck,tr is bounded by AdvbbePgen,PC,Ext,n,Ar,P∗(λ).

By construction of Ar and P∗ the latter event is implied by the event Fbbe.
Therefore, Pr[Fbbe] ≤ AdvbbePgen,PC,Ext,n,Ar,P∗(λ). ⊓⊔

From the above it follows that Pr[Fbbe] ≤
∑Rnds

r=1 AdvbbePgen,PC,Ext,n,Ar,P∗(λ) ≤
Rnds · AdvbbePgen,PC,Ext,n,Ā,P∗(λ) for some Ā ∈ {A1, . . . ,ARnds}.

26 Helger Lipmaa, Roberto Parisella, and Janno Siim

The second type of abortion can only happen with negligible probability due
to the evaluation binding property (Section 2.1) of PC, which requires that it is
computationally hard to open a commitment for two different evaluations at the
same point. We prove it in the following lemma.

Lemma 4. There exists a expected PPT B such that Pr [Feb] ≤
AdvevbindPgen,PC,n,B(λ).

Proof. Recall that if Π.Emu aborts on the line 24, then colsn = true, but
ext-failr = false for all r ∈ [1,Rnds]. It means that in each subprotocol the
extraction of the polynomial was successful (for all r, (Cr, fr) ∈ Rck), but for
some rth subprotocol ηr,α ̸= η̃r,α = gr,i(αr,i) for some i ∈ [1, ℓr] and a polyno-
mial gr,i, which is either one of the extracted polynomials or a publicly known
indexer polynomial.

Given Π.Emu as defined in Fig. 5, we construct an adversary B that breaks
evaluation binding whenever the event Feb happens. B gets (p, ck) as input and
starts by internally running the WEE adversary A(p, ck) to obtain (x, st). After
this B runs Π.Emu until at some round r, P∗ outputs (πr,ηr) such that ηr ̸= η̃r.
In this case, there exists αr,i ∈ αr such that ηr,i ̸= η̃r,i = gr,i(αr,i) for some
(C, gr,i) ∈ Rck. Here, C could be a commitment produced by an indexer (in that
case gr,i(X) is publicly known) or one of the commitments sent by the prover (in
that case (C, gr,i) ∈ Rck since the extraction succeeded). B computes an opening
proof π̃r,i using PC.Open(ck, C, αr,i, gr,i) and outputs (C,αr,i, ηr,i, πr,i, η̃r,i, π̃r,i).

The event Feb implies the following:

– The argument’s verifier V accepts, thus PC.V(ck, C, αr,i, ηr,i, πr,i) = 1.
– The extraction of polynomials was successful and thus (C, gr,i) ∈
Rck. By the completeness property of the commitment scheme,
PC.V(ck, C, αr,i, η̃r,i, π̃r,i) = 1.

– Since colsn = true, ηr,i ̸= η̃r,i.

It follows that B breaks evaluation binding when the event Feb happens. We get
Pr [Feb] ≤ AdvevbindPgen,PC,n,B(λ). ⊓⊔

Recall, Fiop is the event that trIOP is accepting, but the PIOP extractor in
Step 25 returns w such that (i,x,w) ̸∈ R. We bound the probability of this
event in the following lemma.

Lemma 5. There exists an interactive algorithm C (potentially unbounded) such
that Pr[Fiop] ≤ AdvksΠIOP,Ext,C(λ).

Proof. The knowledge soundness of PIOP holds for any fixed i ∈ I(R) and
x ∈ {0, 1}poly(λ). If it holds for any fixed input, then it will also hold when
x and i are sampled. We sample p ← Pgen(1λ), (ck, tk) ← KGen(p, n), and
(i,x, st)← A1(ck).

We will construct an adversary C against the knowledge soundness of PIOP
that takes (i,x) as an input. The adversary C runs identically to the for loop
in Π.Emu except for two notable difference. First, instead of sampling coinsr by

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 27

〈
C(i,x),VI(i)(x)

〉
// p← Pgen(1λ); (ck, tk)← KGen(p, n); (i,x, st)← A1(ck)

1 : for r = 1 to Rnds do // P∗’s initial state is st
(1)
0 = (p, ck,x, st)

2 : Run P∗(st
(1)
r−1) and receive Cr;

3 : Sample extraction point χr ←$F ;
4 : (ηχr , πχr)← P∗(st

(1)
r−1, χr); // P

∗’s new state is denoted st
(2)
r−1

5 : trPC ← (Cr, χr, ηχr , πχr);
6 : if PC.V(ck, trPC) = 1 then

7 : fr(X)← PC.Ext
P∗(st(1)r−1,·)
bb (ck, trPC);

8 : if (Cr, fr) ∈ Rck then

9 : Send fr(X) to IOP.V; Receive (αr,zr, gr) from IOP.V;

10 : Compute coinsr such that (αr,zr, gr) = IOP.V(stVr−1, coinsr);

11 : (ηr,πr)← P∗(st
(2)
r−1, coinsr); // P

∗’s new state is denoted st(1)r

12 : Compute η̃r ← (gr,1(αr,1), . . . , gr,ℓr (αr,ℓr));
13 : if ηr ̸= η̃r then abort; fi
14 : else abort; fi
15 : else abort; fi
16 : stVr ← (stVr−1, coinsr,ηr,πr);
17 : endfor

Fig. 6. The adversary C against knowledge soundness of PIOP. We have highlighted
the main differences compared to Π.Emu.

itself, it sends fr to IOP.V and receives back (αr, zr, gr). It then computes coinsr
corresponding to (αr, zr, gr). We assume that this is efficient since we deal with
public coin protocols. Second, it aborts the protocol if either the verification of
the commitment opening fails, extraction of a polynomial fails (ext-failr = true),
or there is a collision (colsn = true). Complete details of C can be found in Fig. 6.

In case the extraction of fr is successful in each round and there are no
collisions, the resulting PIOP transcript trIOP is accepting. The probability of
the PIOP extractor failing in this case corresponds precisely to the event Fiop.
Thus, Pr[Fiop] ≤ AdvksΠIOP,Ext,C(λ). ⊓⊔

By combining the results of all the lemmas above, we get that Pr[V∧¬W] ≤
Rnds · AdvbbePgen,PC,Ext,n,Ā,P∗(λ) + AdvevbindPgen,PC,n,B(λ) + AdvksΠIOP,Ext,C(λ). Finally, we
must consider that Ā and B are expected PPT algorithms, but BBE and evalu-
ation binding holds against strict PPT adversaries.

Both BBE and evaluation binding can be viewed as falsifiable assumptions.
They can be written as an interaction between an efficient challenger and an
adversary (see Appendix A for a formal definition). According to assumptions
of our theorem, for any (strict) PPT A′ and B′, AdvbbePgen,PC,Ext,n,A′,P∗(λ) and
AdvevbindPgen,PC,n,B′(λ) are negligible functions in λ. Therefore, by applying Lemma 6,
AdvbbePgen,PC,Ext,n,Ā,P∗(λ) and AdvevbindPgen,PC,n,B(λ) are also negligible. The claim of the

28 Helger Lipmaa, Roberto Parisella, and Janno Siim

theorem follows since AdvksΠIOP,Ext,C(λ) is negligible according to the knowledge
soundness of PIOP. ⊓⊔

As previously argued, KZG PCS has black-box extractability and evaluation
binding under the ARSDH assumption. Thus, we get the following result.

Corollary 2. If the ARSDH assumption holds and if a Rnds-round Polynomial
IOP for R has negligible knowledge error, then the argument Π described in
Fig. 4, instantiated with KZG PCS, is a public-coin interactive argument for R
that has witness-extended emulation.

Finally, if we use, for example, Plonk’s PIOP, then we obtain a public coin
interactive argument with a constant proof size under a falsifiable assumption.
The resulting argument retains Plonk’s original asymptotic efficiency features.
Below, Oλ(·) is the common “Big-O” notation, but we ignore poly(λ) factors.

Corollary 3. Let N be the number of gates in an arithmetic circuit that de-
scribes a relation R, and let |x| denote the statement size. If the ARSDH as-
sumption holds, then there exists a public coin argument system for R with Oλ(1)
proof size, Oλ(N) SRS size, Oλ(|x|+logN) verifier’s running time, Oλ(N logN)
prover’s running time, and a universal and updatable SRS.

By applying the Fiat-Shamir transform, one can obtain a constant size
SNARK, which is secure in the random oracle model assuming ARSDH. We
recall the good, and often necessary practice, to instantiate the so-called
strong Fiat-Shamir transform: hashing the common input with the current
portion of the transcript to obtain the following challenge. As noted in
[BPW12,HLPT20,DMWG23] the usage of weak Fiat-Shamir transform, where
only the transcript is hashed, can be exploited to break adaptive soundness of
the resulting SNARK.

References

ACK21. Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed Σ-
protocol theory for lattices. In Tal Malkin and Chris Peikert, ed-
itors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 549–
579, Virtual Event, August 2021. Springer, Heidelberg. doi:10.1007/
978-3-030-84245-1_19.

BB08. Dan Boneh and Xavier Boyen. Short signatures without random ora-
cles and the SDH assumption in bilinear groups. Journal of Cryptology,
21(2):149–177, April 2008. doi:10.1007/s00145-007-9005-7.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Pri-
vacy, pages 315–334. IEEE Computer Society Press, May 2018. doi:
10.1109/SP.2018.00020.

BBHR18. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast
reed-solomon interactive oracle proofs of proximity. In Ioannis Chatzigian-
nakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,

https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 29

ICALP 2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl,
July 2018. doi:10.4230/LIPIcs.ICALP.2018.14.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE Symposium on Security
and Privacy, pages 459–474. IEEE Computer Society Press, May 2014.
doi:10.1109/SP.2014.36.

BCGT13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On
the concrete efficiency of probabilistically-checkable proofs. In Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum, editors, STOC 2013, pages 585–
594, Palo Alto, CA, USA, June 1–4, 2013. ACM Press. doi:10.1145/
2488608.2488681.

BCPR14. Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the
existence of extractable one-way functions. In David B. Shmoys, edi-
tor, 46th ACM STOC, pages 505–514. ACM Press, May / June 2014.
doi:10.1145/2591796.2591859.

BDFG20. Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Efficient polyno-
mial commitment schemes for multiple points and polynomials. Cryptology
ePrint Archive, Report 2020/081, 2020. https://eprint.iacr.org/2020/
081.

BFS20. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs
from DARK compilers. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706. Springer,
Heidelberg, May 2020. doi:10.1007/978-3-030-45721-1_24.

BMM+21. Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi
Vesely. Proofs for inner pairing products and applications. In Mehdi Ti-
bouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, vol-
ume 13092 of LNCS, pages 65–97. Springer, Heidelberg, December 2021.
doi:10.1007/978-3-030-92078-4_3.

BPW12. David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove
yourself: Pitfalls of the Fiat-Shamir heuristic and applications to Helios.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume
7658 of LNCS, pages 626–643. Springer, Heidelberg, December 2012. doi:
10.1007/978-3-642-34961-4_38.

CDS94. Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding protocols. In
Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 174–187.
Springer, Heidelberg, August 1994. doi:10.1007/3-540-48658-5_19.

CFF+21. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs Querol, and
Hadrián Rodríguez. Lunar: A toolbox for more efficient universal and
updatable zkSNARKs and commit-and-prove extensions. In Mehdi Ti-
bouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, vol-
ume 13092 of LNCS, pages 3–33. Springer, Heidelberg, December 2021.
doi:10.1007/978-3-030-92078-4_1.

CGKS23. Matteo Campanelli, Chaya Ganesh, Hamidreza Khoshakhlagh, and Janno
Siim. Impossibilities in succinct arguments: Black-box extraction and
more. In Nadia El Mrabet, Luca De Feo, and Sylvain Duquesne, editors,
AFRICACRYPT 23, volume 14064 of LNCS, pages 465–489. Springer Na-
ture, July 2023. doi:10.1007/978-3-031-37679-5_20.

https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1145/2488608.2488681
https://doi.org/10.1145/2488608.2488681
https://doi.org/10.1145/2591796.2591859
https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2020/081
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-92078-4_3
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-031-37679-5_20

30 Helger Lipmaa, Roberto Parisella, and Janno Siim

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi
Vesely, and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with
universal and updatable SRS. In Anne Canteaut and Yuval Ishai, edi-
tors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768.
Springer, Heidelberg, May 2020. doi:10.1007/978-3-030-45721-1_26.

DMWG23. Quang Dao, Jim Miller, Opal Wright, and Paul Grubbs. Weak fiat-shamir
attacks on modern proof systems. In 44th IEEE Symposium on Security
and Privacy, SP 2023, San Francisco, CA, USA, May 21-25, 2023, pages
199–216. IEEE, 2023. doi:10.1109/SP46215.2023.10179408.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96881-0_2.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987. doi:10.1007/3-540-47721-7_12.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. doi:
10.1007/978-3-642-38348-9_37.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applications
to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96878-0_24.

GR19. Alonso González and Carla Ràfols. Shorter pairing-based arguments un-
der standard assumptions. In Steven D. Galbraith and Shiho Moriai, edi-
tors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 728–757.
Springer, Heidelberg, December 2019. doi:10.1007/978-3-030-34618-8_
25.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May
2016. doi:10.1007/978-3-662-49896-5_11.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.
doi:10.1145/1993636.1993651.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over lagrange-bases for oecumenical noninteractive argu-
ments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.
https://eprint.iacr.org/2019/953.

HLPT20. Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague.
How not to prove your election outcome. In 2020 IEEE Symposium on
Security and Privacy, pages 644–660. IEEE Computer Society Press, May
2020. doi:10.1109/SP40000.2020.00048.

JT20. Joseph Jaeger and Stefano Tessaro. Expected-time cryptography: Generic
techniques and applications to concrete soundness. In Rafael Pass and

https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1109/SP46215.2023.10179408
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-030-34618-8_25
https://doi.org/10.1007/978-3-030-34618-8_25
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1145/1993636.1993651
https://eprint.iacr.org/2019/953
https://doi.org/10.1109/SP40000.2020.00048

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 31

Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS,
pages 414–443. Springer, Heidelberg, November 2020. doi:10.1007/
978-3-030-64381-2_15.

KMS+16. Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In 2016 IEEE Symposium on Security and
Privacy, pages 839–858. IEEE Computer Society Press, May 2016. doi:
10.1109/SP.2016.55.

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer,
Heidelberg, December 2010. doi:10.1007/978-3-642-17373-8_11.

Lee21. Jonathan Lee. Dory: Efficient, transparent arguments for generalised in-
ner products and polynomial commitments. In Kobbi Nissim and Brent
Waters, editors, TCC 2021, Part II, volume 13043 of LNCS, pages 1–34.
Springer, Heidelberg, November 2021. doi:10.1007/978-3-030-90453-1_
1.

Lin01. Yehuda Lindell. Parallel coin-tossing and constant-round secure two-
party computation. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of
LNCS, pages 171–189. Springer, Heidelberg, August 2001. doi:10.1007/
3-540-44647-8_10.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg,
March 2012. doi:10.1007/978-3-642-28914-9_10.

LM19. Russell W. F. Lai and Giulio Malavolta. Subvector commitments
with application to succinct arguments. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of
LNCS, pages 530–560. Springer, Heidelberg, August 2019. doi:10.1007/
978-3-030-26948-7_19.

LPS23. Helger Lipmaa, Roberto Parisella, and Janno Siim. Algebraic Group Model
with Oblivious Sampling. In Guy Rothblum and Hoeteck Wee, editors,
TCC 2023 (4), volume 14372 of LNCS, pages 363–392, Taipei, Taiwan, Nov
29–Dec 2 2023. Springer, Cham. doi:10.1007/978-3-031-48624-1_14.

LSZ22. Helger Lipmaa, Janno Siim, and Michal Zajac. Counting vampires:
From univariate sumcheck to updatable ZK-SNARK. In Shweta Agrawal
and Dongdai Lin, editors, ASIACRYPT 2022, Part II, volume 13792
of LNCS, pages 249–278. Springer, Heidelberg, December 2022. doi:
10.1007/978-3-031-22966-4_9.

Nao03. Moni Naor. On cryptographic assumptions and challenges (invited talk). In
Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 96–109.
Springer, Heidelberg, August 2003. doi:10.1007/978-3-540-45146-4_6.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Se-
curity and Privacy, pages 238–252. IEEE Computer Society Press, May
2013. doi:10.1109/SP.2013.47.

PST13. Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures
of correct computation. In Amit Sahai, editor, TCC 2013, volume 7785 of
LNCS, pages 222–242. Springer, Heidelberg, March 2013. doi:10.1007/
978-3-642-36594-2_13.

https://doi.org/10.1007/978-3-030-64381-2_15
https://doi.org/10.1007/978-3-030-64381-2_15
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/3-540-44647-8_10
https://doi.org/10.1007/3-540-44647-8_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-031-48624-1_14
https://doi.org/10.1007/978-3-031-22966-4_9
https://doi.org/10.1007/978-3-031-22966-4_9
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-642-36594-2_13

32 Helger Lipmaa, Roberto Parisella, and Janno Siim

RZ21. Carla Ràfols and Arantxa Zapico. An algebraic framework for uni-
versal and updatable SNARKs. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 774–
804, Virtual Event, August 2021. Springer, Heidelberg. doi:10.1007/
978-3-030-84242-0_27.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997. doi:10.1007/3-540-69053-0_
18.

Sta21. StarkWare. ethSTARK documentation. Cryptology ePrint Archive, Report
2021/582, 2021. https://eprint.iacr.org/2021/582.

SZ20. Alan Szepieniec and Yuncong Zhang. Polynomial IOPs for Linear Algebra
Relations. Technical Report 2020/1022, IACR, August 24, 2020. Last
checked modification from June 9, 2021. URL: https://ia.cr/2020/1022.

TAB+20. Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad
Feist, and Dmitry Khovratovich. Aggregatable subvector commitments for
stateless cryptocurrencies. In Clemente Galdi and Vladimir Kolesnikov, ed-
itors, SCN 20, volume 12238 of LNCS, pages 45–64. Springer, Heidelberg,
September 2020. doi:10.1007/978-3-030-57990-6_3.

Zha22. Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume
13509 of LNCS, pages 66–96. Springer, Heidelberg, August 2022. doi:
10.1007/978-3-031-15982-4_3.

ZZ23. Cong Zhang and Mark Zhandry. The Relationship Between Idealized Mod-
els Under Computationally Bounded Adversaries Abstract. In Jian Guo
and Ron Steinfeld, editors, ASIACRYPT 2023 (6), volume 14443 of LNCS,
pages 390–419, Guangzhou, China, December 4–8, 2023. Springer, Cham.
doi:10.1007/978-981-99-8736-8_13.

ZZK22. Cong Zhang, Hong-Sheng Zhou, and Jonathan Katz. An analysis of the
algebraic group model. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, Part IV, volume 13794 of LNCS, pages 310–322. Springer,
Heidelberg, December 2022. doi:10.1007/978-3-031-22972-5_11.

A Expected versus Strict PPT Adversaries

In this section, we prove that if a falsifiable assumption is secure for strict PPT
adversaries, it is also secure for expected PPT adversaries. Recall the definition
of a falsifiable cryptographic assumption [GW11].

Definition 8. A falsifiable cryptographic assumption consists of a PPT inter-
active challenger C and a constant ϵ ∈ [0, 1). On a security parameter λ, C(1λ)
interacts with an adversary A(1λ) and C outputs either 0 or 1. We say that A
wins if the output is 1.

The assumption related to (C, ϵ) states that for any efficient (either PPT or
expected PPT) A, we have Pr

[
A(1λ) wins C(1λ)

]
−ϵ ≈λ 0, where the probability

is over random coins of A and C.

For example, in decisional assumptions ϵ = 1/2 and in search assumptions ϵ = 0.

https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
https://eprint.iacr.org/2021/582
https://ia.cr/2020/1022
https://doi.org/10.1007/978-3-030-57990-6_3
https://doi.org/10.1007/978-3-031-15982-4_3
https://doi.org/10.1007/978-3-031-15982-4_3
https://doi.org/10.1007/978-981-99-8736-8_13
https://doi.org/10.1007/978-3-031-22972-5_11

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 33

Lemma 6. Let (C, ϵ) be a falsifiable assumption. If for all PPT A,
Pr

[
A(1λ) wins C(1λ)

]
− ϵ ≈λ 0, then for any expected PPT A′,

Pr
[
A′(1λ) wins C(1λ)

]
− ϵ ≈λ 0.

Proof. Let ε(λ) be a negligible function, such that Pr
[
A(1λ) wins C(1λ)

]
≤

ϵ+ε(λ) for each PPT A. Let T be the running time of A′. Let A′ be an expected
PPT adversary and let T denote its running time. Suppose the expected running
time E[T] is asymptotically bounded by TE(λ) for some polynomial TE(X).

By the Markov inequality, for each polynomial g, Pr[T ≥ TE(λ)g(λ)] ≤
E[T]/(TE(λ) · g(λ)) ≤ 1/g(λ). Let BA′,g be a (strict) PPT adversary that runs
precisely asA, except it halts and outputs⊥ ifA has not terminated in TE(λ)g(λ)
steps. Conditioned on the event T < TE(λ)g(λ), the output of A′ and BA′,g are
equally distributed. We have

Pr
[
A′(1λ) wins C(1λ)

]
≤Pr

[
BA′,g(1

λ) wins C(1λ)
]
+ Pr [T ≥ TE(λ)g(λ)]

≤ϵ+ ε(λ) + 1/g(λ) .

Since the previous holds for any polynomial g, then Pr
[
A′(1λ) wins C(1λ)

]
−ϵ−

ε′(λ) is negligible. Moreover, since ε′(λ) is negligible, and a sum of two negligible
functions is negligible, then Pr

[
A′(1λ) wins C(1λ)

]
− ϵ ≈λ 0. ⊓⊔

The previous lemma does not establish any tight relationship between the
advantage of (strict) PPT adversaries and the advantage of expected PPT ones,
besides the fact that if one of them is negligible, so is the other. The latter is not
ideal since we reduce the advantage of (strict) PPT adversaries to concrete com-
putational assumptions. To state concrete security parameters of our SNARK
in Section 7, we want to reduce the advantage of expected PPT adversaries to
the ARSDH assumption (that holds against strict PPT adversaries). We leave
this as an important open question. We hope the techniques from [JT20] can be
generalized to answer the previous question.

B AGMOS proof of ARSDH

While S-RSDH is a known, falsifiable, standard-looking assumption, adaptive
ARSDH is possibly stronger. Morover, [GR19] only gave an informal GGM
(without oblivious sampling) argument why S-RSDH is secure. To gain fur-
ther confidence, we prove that ARSDH holds in the AGMOS [LPS23] under the
PDL [Lip12] and Tensor Oracle FindRep (TOFR) [LPS23] assumptions. From
this, it follows that ARSDH holds in the AGM under the PDL assumption. We
emphasize that the security of our constructions (the KZG commitment and the
resulting SNARKs) depend only on falsifiable ARSDH and not on the AGM(OS).
We use AGMOS only as a sanity check.

Lipmaa et al. [LPS23] recently defined AGMOS (AGM with oblivious sam-
pling). AGMOS is more realistic than AGM since AGMOS adversaries are given
an additional power of sampling group elements without knowing their discrete
logarithms. As shown in [LPS23], certain uses of KZG are secure in AGM but

34 Helger Lipmaa, Roberto Parisella, and Janno Siim

Oι(E,D)

if E /∈ EFp,ι ∨ D /∈ DFp then return ⊥;fi
s←$D; [q]ι ← E(s); return ([q]ι, s);

Fig. 7. The description of the oblivious sampling oracle Oι, where ι ∈ {1, 2}.

not in AGMOS. Since AGMOS is a new model, we will give a longer descrip-
tion of AGMOS and TOFR (an underlying security assumption); our description
follows closely [LPS23].

Fix a pairing description p← Pgen(1λ). Let EFp,ι be a set of (polynomially
many) functions F → Gι. Let DFp be a family of distributions over F. We
introduce two oracles O1 and O2, one for each group G1 and G2. Let O =
(O1,O2). The ith query (E,D) to Oι consists of a function E ∈ EFp,ι and a
distribution D ∈ DFp. The oracle samples a random field element si←$D and
returns [qιi]ι ← E(si) and si.

We will denote the adversary’s initial input (e.g., input from the challenger)
in Gι by [xι]ι. We assume [xι]ι always includes [1]ι. Let x = ([x1]1, [x2]2). The
adversary’s view consists of all group elements that the adversary has seen up
to the given moment. This includes the adversary’s initial input, elements sent
by other parties during the interaction, and oracle answers.

Let O be as above. We require that for any PPT oracle adversary AO, there
exists a (non-uniform) PPT extractor ExtOA, such that: if AO(x) outputs a vector
of group elements [y]ι, on input x = ([x1]1, [x2]2), then with an overwhelming
probability, ExtOA outputs field-element matrices γ, δ, and [qι]ι (Oι’s answer
vector), such that

y = γ⊺xι + δ⊺qι . (5)

Definition 9 (AGMOS). Let EF = {EFp,ι} be a collection of functions. Let
DF = {DFp} be a family of distributions. A PPT algorithm A is an (EF ,DF)-
AGMOS adversary for Pgen if there exists a PPT extractor ExtA, such that for
any x = (x1,x2), Adv

agmos
Pgen,EF,DF,A,ExtA

(λ) :=

Pr

 y1 ̸= γ⊺
1x1 + δ⊺1q1 ∨

y2 ̸= γ⊺
2x2 + δ⊺2q2

p← Pgen(1λ); r ← RNDλ(A);
([y1]1, [y2]2)←$AO(p,x; r);
(γι, δι, [qι]ι)

2
ι=1 ← ExtOA(p,x; r) :

 ≈λ 0 .

O is the non-programmable oracle depicted in Fig. 7. Here, [qι]ι is required to
be the tuple of elements output by Oι. We denote by ilι the number of Oι calls.

Many AGMOS proofs rely on the following assumption.

Definition 10 (TOFR, [LPS23]). Let EF be some family of function and DF
a family of distributions. We say that Pgen is (EF ,DF)-TOFR (Tensor Oracle
FindRep) secure if for any PPT A, AdvtofrPgen,A(λ) :=

Pr

[
v ̸= 0 ∧ v⊺ ·

(
1
q1
q2

q1⊗q2

)
= 0 p← Pgen(1λ);v ← AO(p)

]
≈λ 0 .

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 35

Here, O, q1, and q2 are as in Definition 9.

Theorem 5. Let n ∈ poly(λ) and Pgen be a bilinear-group generator. If (n, 2)-
PDL and (EF ,DF)-TOFR hold, (n+1)-ARSDH holds in the (EF ,DF)-AGMOS.

Proof (Sketch). Let A be an ARSDH adversary that with some non-negligible
probability outputs (S = {αi}n+1

i=1 , [g, φ]1) such that |S| = n + 1, g ̸= 0, and
[g]1 • [1]2 = [φ]1 • [ZS(σ)]2. By using the algebraic representation provided
the algebraic adversary, we obtain polynomials g(X,Q) and φ(X,Q), such that
[g]1 = [g(σ,q)]1 and [φ]1 = [φ(σ,q)]1. Moreover, g(X,Q) = g1(X) + g⊺

2Q and
φ(X,Q) = φ1(X) + φ⊺

2Q for some known coefficients. Define the verification
polynomial

V (X,Q) := g(X,Q)−φ(X,Q)ZS(X) = g1(X)+g⊺
2Q−(φ1(X)+φ⊺

2Q)ZS(X) .

Clearly, V (X,Q) = V h(X) + V t(X,Q) for V h(X) = g1(X)− φ1(X)ZS(X) and
V t(X,Q) = g⊺

2Q−φ
⊺
2QZS(X). Here, V h does not depend on Q while each term

of V t depends on some Qk.
Importantly, we know all the coefficients of V (X,Q). Since the verifier ac-

cepts, V (σ,q) = 0. Following [LPS23], we next consider separately four cases.
The probability that A succeeds is bound by the sum of the probabilities it
succeeds in all four cases.
Case A (V (X,Q) = 0 as a polynomial). Then, g2kQk = φ2kQkZS(X) for each
k. Since each Qk is an independent variable, we get that g2k = φ2k = 0. Thus,
g(X,Q) = g1(X) and φ(X,Q) = φ1(X). Then, ZS(X) | g1(X) and thus each αi

is a root of g1(X). By assumption, αi ̸= αj . Hence, g1(X) has at least n+1 roots.
Since deg g1 ≤ n, g1(X) is a zero polynomial. Contradiction with g1(σ) = g ̸= 0.
Case X.1 (V (X,Q) ̸= 0 but V t(X,Q) = 0). Then, V h(X) is a non-zero polyno-
mial with a known root σ. In this case, we construct a PDL adversary B that
on input ck = ([(σi)ni=0]1, [1, σ]2) does the following. It sends ck to A and then
obtains (S, [g, φ]1). It uses the AGM extractor to obtain all coefficients of g(X)
and φ(X). It factors V h(X), finding its at most 2n + 1 roots xi. It then tests
by brute force for each i whether [σ]1 = [xi]1, and returns the value σ ← xj

for which [σ]1 = [xj]1 holds. Clearly, B succeeds in computing σ with the same
probability as A succeeds in breaking the ARSDH.
Case X.2 (V t(X,Q) ̸= 0 but V t(σ,Q) = 0). Recall

V t(X,Q) =
∑

(g2k − φ2kZS(X))Qk =
∑

βk(X)Qk ,

where βk(X) := g2k − φ2kZS(X). In Case X.2, we have that βk(X) ̸= 0
but βk(σ) = 0 for some k. Hence, σ is the root of the non-zero polynomial
φ2kZS(X)−g2k. One can construct a different PDL adversary that computes σ.
Case Q (V t(σ,Q) ̸= 0 but V t(σ,q) ̸= 0). We can construct a TOFR adversary
that samples σ, constructs ck, and after interacting with A, returns

v =

(
V h(σ)
β(σ)
0

)
.

36 Helger Lipmaa, Roberto Parisella, and Janno Siim

Since v is a non-zero vector and

v⊺ ·
(

1
q1
q2

q1⊗q2

)
= 0 ,

B breaks the TOFR assumption.
Summarizing, if TOFR and PDL hold, ARSDH is secure in the AGMOS. ⊓⊔

C The Relation of BBE and Evaluation Binding

It is always important to understand how novel security notions related to each
other and already known security notions. We prove that if black-box extractabil-
ity holds, then (a variant of) evaluation binding follows from (and, thus, is equiv-
alent to) binding. We only obtain a variant (see Definition 11) due to the same
issue as with the definition of black-box extractability itself: namely, α has to
be chosen randomly and not by the adversary.

Definition 11. A polynomial commitment scheme PC is non-adaptively
evaluation-binding for Pgen, if for any λ, n ∈ poly(λ), and PPT adversary
A, DPT P∗, and Fp ⊆ F of size λω(1), AdvnaebPgen,PC,n,A,P∗(λ) :=

Pr

 V(ck, C, α, η, π) = 1∧
V(ck, C, α, η′, π′) = 1∧
η ̸= η′

p← Pgen(1λ); (ck, tk)← KGen(p, n);
(C, st)← A(p, ck);α←$Fp;
(η, π, η′, π′)← P∗(st, α)

 ≈λ 0 .

We also recall the standard binding definition for (non-hiding) polynomial
commitment schemes.

Definition 12. A polynomial commitment scheme PC is binding for Pgen, if
for any λ, n ∈ poly(λ) and PPT adversary A, AdvbindPgen,PC,n,A(λ) :=

Pr

[
C = Com(f1) = Com(f2)∧
f1 ̸= f2

p← Pgen(1λ); (ck, tk)← KGen(p, n);
(C, f1, f2)← A(p, ck)

]
≈λ 0 .

Theorem 6. If a non-interactive PCS PC is black-box extractable and binding,
it is non-adaptively evaluation-binding.

Proof. Let (Aeb,P
∗
eb) be some arbitrary adversaries against non-adaptive

evaluation-binding. We construct a binding adversary Abind and black-box ex-
tractability adversaries (Bi,P∗i), i ∈ {1, 2}, used by Abind. Since PC is black-box
extractable, there exists an expected PPT extractor Extbb that works for (Bi,P∗i),
i ∈ {1, 2}.

We first describe (Bi,P∗i), i ∈ {1, 2}, that are given (C,α) as an input. First,
Bi(p, ck) is just the same as Aeb, and returns (C, st). Second, P∗i (st, α) runs
P∗eb(st, α), obtaining either (η1 ̸= η2, π1, π2) or ⊥. If P∗eb succeeds in producing a
collision, P∗i returns tri ← (C,α, ηi, πi). Otherwise, P∗i returns ⊥.

Since PC is black-box extractable, ExtP
∗
i (st,·)

bb (ck, tri) outputs a polynomial fi,
such that if V accepts tri then, with an overwhelming probability, C = Com(fi)
and fi(α) = ηi.

Finally, Abind(ck) does the following:

Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions 37

1. Invoke Aeb(ck) = B1(p, ck) = B2(p, ck), obtaining (C, st).
2. Sample α←$F.
3. For i ∈ {1, 2}, run Bi(ck, C, α) and fi ← Ext

P∗
i (st,·)

bb (ck, tri) with P∗i .
Return ⊥ if f1 = ⊥, f2 = ⊥, or f1 = f2.

4. Return (C, f1, f2).

Abind fails to break binding when,

– Extraction of either of the polynomials fi fails, or
– Aeb fails to break evaluation binding.

Therefore,

1− AdvbindPgen,PC,n,Abind
(λ) ≤AdvbbePgen,PC,Ext,n,B1,P∗

1
(λ) + AdvbbePgen,PC,Ext,n,B2,P∗

2
(λ)+

(1− AdvnaebPgen,PC,n,A,P∗(λ)) .

Consequently,

AdvbindPgen,PC,n,Abind
(λ) + AdvbbePgen,PC,Ext,n,B1,P∗

1
(λ) + AdvbbePgen,PC,Ext,n,B2,P∗

2
(λ)

> AdvnaebPgen,PC,n,A,P∗(λ) .

However, note that Abind is an expected PPT adversary, not a strict PPT ad-
versary, as the binding definition requires. Here, we can apply Lemma 6. Since
binging holds against all PPT adversaries, it also holds against all expected PPT
adversaries.

Therefore, AdvbindPgen,PC,n,Abind
(λ) is negligible and so are AdvbbePgen,PC,Ext,n,Bi,P∗

i
(λ)

for i ∈ {1, 2} because BBE holds. It follows that AdvnaebPgen,PC,n,A,P∗(λ) is negligible.
⊓⊔

	Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions

