
Approximate Methods for the Computation of1

Step Functions in Homomorphic Encryption2

Tairong Huang1, Shihe Ma2, Anyu Wang1,3,4(B), and Xiaoyun Wang1,3,4,5,63

1 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China,4

htr19@mails.tsinghua.edu.cn,anyuwang,xiaoyunwang@tsinghua.edu.cn5

2 Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing,6

China, msh21@mails.tsinghua.edu.cn7

3 Zhongguancun Laboratory, Beijing, China8

4 National Financial Cryptography Research Center, Beijing, China9

5 Shandong Institute of Blockchain, Jinan, China10

6 Key Laboratory of Cryptologic Technology and Information Security (Ministry of11

Education), School of Cyber Science and Technology, Shandong University, China12

Abstract. The computation of step functions over encrypted data is an13

essential issue in homomorphic encryption due to its fundamental ap-14

plication in privacy-preserving computing. However, an effective method15

for homomorphically computing general step functions remains elusive in16

cryptography. This paper proposes two polynomial approximation meth-17

ods for general step functions to tackle this problem. The first method18

leverages the fact that any step function can be expressed as a linear19

combination of shifted sign functions. This connection enables the ho-20

momorphic evaluation of any step function using known polynomial ap-21

proximations of the sign function. The second method boosts compu-22

tational efficiency by employing a composite polynomial approximation23

strategy. We present a systematic approach to construct a composite24

polynomial fk ◦ fk−1 ◦ · · · ◦ f1 that increasingly approximates the step25

function as k increases. This method utilizes an adaptive linear pro-26

gramming approach that we developed to optimize the approximation27

effect of fi while maintaining the degree and coefficients bounded. We28

demonstrate the effectiveness of these two methods by applying them29

to typical step functions such as the round function and encrypted data30

bucketing, implemented in the HEAAN homomorphic encryption library.31

Experimental results validate that our methods can effectively address32

the homomorphic computation of step functions.33

Keywords: Step function · Homomorphic encryption · CKKS · Polyno-34

mial approximation · Round function · Encrypted data bucketing35

1 Introduction36

Fully homomorphic encryption (FHE) is a powerful cryptographic primitive37

which enables performing any computation on encrypted data without having38

access to the secret key. Since Gentry developed the first FHE scheme [19],39

various FHE schemes have been proposed following Gentry’s blueprint [35,20].40

According to the type of computations to which they are suitable, these FHEs41

can be divided into three categories. The first category contains GSW [21] and its42

improvements FHEW/TFHE [15,13], which are ideal for evaluating Boolean cir-43

cuits since they bit-wisely encrypt the input data. The second category contains44

BGV/FV [6,7,18], which pack their input data into finite fields or finite rings45

and are frequently used to evaluate integer arithmetic with a fixed modulus. The46

CKKS scheme [10,9,8], which forms the third category, can process fixed-point47

input numbers and supports approximate computations over complex and real48

numbers. In BGV/FV and CKKS, the input data is word-wisely encrypted. The49

operations on these numbers can be performed in a Single Instruction Multiple50

Data (SIMD) fashion [34], i.e, encrypted numbers are packed in slots such that51

the operations performed on a single ciphertext are automatically performed on52

each slot in parallel. Due to the SIMD property, these word-wise FHEs are very53

efficient in homomorphic addition, multiplication, and, more generally, polyno-54

mial evaluation. However, the effective evaluation of non-polynomial functions55

in word-wise FHEs presents a challenge and has recently garnered significant56

attention.57

For CKKS, a natural way to tackle this issue involves approximating non-58

polynomial functions with polynomials. This approach has been successfully ap-59

plied to evaluate a range of non-polynomial functions, such as logistic regression60

[22,24], inverse [12], square root [12,30], etc [26,27,23]. Nevertheless, the homo-61

morphic evaluation of discontinuous functions, such as the sign function and the62

step function, presents a significantly greater challenge. These functions have63

attracted considerable attention due to their importance in various practical ap-64

plications, including privacy-preserving machine learning [1,29,5]. Several meth-65

ods have been proposed for the homomorphic computation of the sign function.66

For instance, polynomial iteration algorithms were introduced in [12], offering67

an approximation with an exponentially small error rate. In [11], Cheon et al.68

re-investigated the polynomial approximation of the sign function and proposed69

a composite polynomial approach to address this issue, which was proven to be70

asymptotically optimal. Subsequently, Lee et al. [25] explored the composition71

of minimax approximate polynomials of the sign function and proposed a prac-72

tically optimal sign function approximation. Despite these advancements, these73

methods are not directly applicable to general step functions, and an effective74

method for homomorphically computing step functions remains to be devised.75

1.1 Our Results76

This paper delves into the polynomial approximation problem for general step77

functions. Let κ(x) be a step function on the interval [a, b] such that78

κ(x) = yi for x ∈ (ai−1, ai), 1 ≤ i ≤ n,

where a = a0 < a1 < · · · < an = b. The main contribution of this paper is79

two systematical methods for solving the polynomial approximation problem of80

κ(x).81

2

Method I (SgnToStep). This method utilizes the fact that a step function κ(x)82

can be expressed as a linear combination of shifted sign functions, i.e.,83

κ(x) = c1sgn(x− a1) + · · ·+ cn−1sgn(x− an−1) + cn,

where ci’s are real constants defined in Lemma 1, and sgn is the sign function de-84

fined in Section 2. Based on the polynomial approximations of sgn(x) as provided85

in [11,12,25], we show that this connection can be used to generate polynomial86

approximations for any step function κ(x). We present a comprehensive analysis87

of the evaluation complexity and the required homomorphic multiplicative depth88

of this method. Moreover, we demonstrate that this method can be generalized89

to address the polynomial approximation problem for any piece-wise polynomial.90

Method II (AdaptiveLP). This method reduces the number of multiplications91

by employing the composite polynomial strategy. Specifically, we construct a92

composite polynomial g ◦ fk ◦ · · · ◦ f1 approximating κ(x) in two steps.93

The first step aims to construct polynomials f1, f2, · · · , fk which progres-94

sively map the intervals (ai−1, ai) to smaller intervals around their midpoint95

1
2 (ai + ai−1) for 1 ≤ i ≤ n. We demonstrate that the task of determining fj is96

equivalent to solving the weighted minimax polynomial approximation problem97

as defined in Problem 1. An additional desirable property of fj ’s is that their98

coefficients can be bounded, thereby allowing for high precision homomorphic99

evaluation [23]. We introduce an adaptive linear programming algorithm (see100

Algorithm 2), which gives the optimal weighted minimax polynomial approxi-101

mation for step functions while keeping the coefficients bounded.102

The second step involves constructing a polynomial g(x) that maps the mid-103

points to yi, 1 ≤ i ≤ n. We demonstrate that the optimal g(x), which has104

bounded coefficients and minimizes the approximation error, can be derived us-105

ing the adaptive linear programming algorithm again.106

Applications to Concrete Step Functions. We demonstrate the two meth-107

ods by presenting polynomial approximations for the round function and the108

bucketing function. Specifically, we give concrete polynomial approximations for109

the 7-step function 1
3⌊3x⌉ and a 5-step function obtained from a bucketing ex-110

ample, and provide explicit error rates and running time for these approxima-111

tions by evaluating them with the HEAAN library. According to experiments,112

it appears that SgnToStep has an advantage in terms of bit consumption, while113

AdaptiveLP demonstrates more desirable performance in terms of running time.114

The source code is available at https://anonymous.4open.science/r/code_115

upload-131E/.116

1.2 Related Works117

Numerical Analysis on Piece-wise Functions The problem of polynomial118

approximation for piece-wise functions has been studied for decades in numer-119

ical analysis. Some of these works focus on the polynomial approximations of120

3

https://anonymous.4open.science/r/code_upload-131E/
https://anonymous.4open.science/r/code_upload-131E/
https://anonymous.4open.science/r/code_upload-131E/

piece-wise smooth functions [33,4,32,31]. Because step functions have disconti-121

nuities and piece-wise smooth functions are continuous, these results are not122

applicable to step functions. Another portion of works focus on functions with a123

single discontinuity, such as the sign function [16,32,17]. However, as observed in124

[11], when the approximation error needs to be exponentially small, the degree125

of the approximation polynomial becomes quite large, resulting in exponential126

homomorphic evaluation complexity.127

Composite Polynomial Approximation of Sign Function To improve128

the homomorphic computational complexity for the sign function, Cheon et al.129

proposed composite polynomial method that achieves asymptotic computational130

optimality [12,11]. Later, Lee et al. proposed a minimax composite polynomial131

method that achieves practical computational optimality [25,26]. However, these132

methods cannot be extended to handle polynomial approximations for general133

step functions because the intervals and values of a step function can be intricacy.134

1.3 Organization135

Section 2 introduces some notations. Section 3 and Section 4 propose SgnToStep136

and AdaptiveLP respectively. To demonstrate our method, we apply SgnToStep137

and AdaptiveLP to the round function and bucketing function in Section 5, and138

present experimental results of evaluating these step functions in HEAAN library139

in Section 6.140

2 Preliminary141

– We denote Z,R and C to be the ring of integers, the field of real numbers142

and the field of complex numbers, respectively.143

– The Chebyshev polynomials Tn(x) on the interval [−1, 1] are defined by144

cosnθ = Tn(cos θ), which satisfy the following recursion: T0(x) = 1, T1(x) =145

x, Ti(x) = 2xTi−1(x)− Ti−2(x) for i ≥ 2.146

– For a real function f defined over R, let f (d) := f ◦ f ◦ · · · ◦ f denote the147

d-time composition of f . We use the infinite norm to measure the accuracy148

of polynomial approximations as suggested in [11,12]. For a function f and149

a a compact set I ⊂ R, the infinite norm is defined by150

∥f∥I := supx∈I |f(x)|.

Besides, let Cmax(f) denote the maximum absolute value of f ’s coefficients151

(in terms of a polynomial basis, such as the power basis or the Chebyshev152

basis, depending on the context).153

– Let log(·) denote the logarithm of base 2. For x ∈ R, let ⌊x⌉ = ⌊x + 1/2⌋154

denote the integer closest to x, and let sgn(x) denote the sign function155

sgn(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

. (1)

4

2.1 Step Function156

The step functions considered in this paper are piece-wise constant real functions157

with finitely many pieces, which can be formally defined as follows.158

Definition 1 (Step Function). A real function κ(x) defined on the interval159

[a, b] is a step function if there exists a finite partition a = a0 < a1 < · · · < an = b160

such that κ(x) is a constant function on each interval (ai−1, ai), i.e., there exist161

yi ∈ R such that162

κ(x) = yi for x ∈ (ai−1, ai), 1 ≤ i ≤ n.

We call (ai−1, ai), 1 ≤ i ≤ n, the intervals of κ(x), and call yi, 1 ≤ i ≤ n, the163

values of κ(x). For convenience we always assume κ(a0) = y1 and κ(an) = yn.164

The value of κ(ai), 1 ≤ i ≤ n − 1, is not specified in the definition. From the165

perspective of polynomial approximation, we do not mind the specific value of166

κ(ai) for 1 ≤ i ≤ n−1. Besides, we always assume that ai is a jump discontinuity,167

i.e., yi ̸= yi+1 for 1 ≤ i ≤ n− 1.168

Since κ(x) can not be approximated by polynomials near the discontinuities169

ai’s, 1 ≤ i ≤ n− 1, we follow the approach adopted in [11,12,25] and define the170

following measurement of approximation error.171

Definition 2. For small real numbers 2−α, ϵ > 0, we say a polynomial f(x) is172

(α, ϵ)-close to a step function κ(x) with partition a = a0 < a1 < · · · < an = b if173

∥f(x)− κ(x)∥I ≤ 2−α,

where I = [a, b]−
⋃

1≤i<n(ai − ϵ, ai + ϵ).174

Definition 3. For a step function κ(x) with partition a = a0 < a1 < · · · < an =175

b and constant values y1, . . . , yn. We say κ(x) is normalized if y1 = a, yn = b176

and yi =
1
2 (ai−1 + ai) for 1 < i < n. We say κ̃(x) is the normalization of κ(x)177

if κ̃(x) is normalized and κ̃(x) has the same partition as κ(x).178

2.2 Homomorphic Encryption Scheme179

In this paper we focus on word-wise FHEs, which can be specified by the following180

algorithms.181

– KeyGen(L, λ). KeyGen takes a level parameter L and a security parameter λ182

as input, and outputs a public key pk, a secret key sk, and an evaluation183

key evk.184

– Enc(pk,m). Enc takes a public key pk and a message m as input, and outputs185

the ciphertext ct.186

– Dec(sk, ct). Dec takes a secret key sk and a ciphertext ct as input, and187

outputs the plaintext m.188

– Add(evk, ct1, ct2). Add takes as input an evaluation key evk and the cipher-189

texts ct1 and ct2 of two messages m1 and m2, and outputs the ciphertext190

ctadd of the message m1 +m2.191

5

– Mult(evk, ct1, ct2). Mult takes as input an evaluation key evk and the ci-192

phertexts ct1 and ct2 of two messages m1 and m2, and outputs the cipher-193

text ctmult of the message m1 ·m2.194

For approximate FHE (i.e., CKKS), Dec outputs an approximate value of195

the message m instead of the exact value. Because Mult is significantly more196

expensive than Add, we mainly consider the number and depth consumption of197

non-scalar multiplications in this paper.198

3 SgnToStep: Step Function Approximation by Using the199

Connection with sgn200

In this section, we provide a linear relation between the step function and the201

sign function. Based on this connection, any step function κ(x) can be homo-202

morphically evaluated by using the approximations of sgn(x) as presented in203

[11,12,25,28].204

3.1 A Connection between Step Function and Sign Function205

It is obvious that a step function κ(x) with n intervals can be expressed as206

a linear combination of at most n indicator functions of intervals. In fact, the207

following lemma states that κ(x) can also be written as a linear combination of208

n− 1 shifted sign functions.209

Lemma 1. A step function κ(x) with partition a0 < a1 < · · · < an and values210

y1, · · · , yn can be expressed by a linear combination of n−1 shifted sign functions,211

i.e.,212

κ(x) =

n−1∑
i=1

cisgn(x− ai) + cn, (2)

where ci =
1
2 (yi+1 − yi) for 1 ≤ i ≤ n− 1 and cn = 1

2 (y1 + yn).213

Proof. It suffices to check equation (2) for the intervals (ai−1, ai), 1 ≤ i ≤ n.214

Suppose x ∈ (ai−1, ai), then the left hand side of (2) is κ(x) = yi. Note that215

sgn(x− a1) = · · · = sgn(x− ai−1) = 1 and sgn(x− ai) = · · · = sgn(x− an−1) =216

−1 for x ∈ (ai−1, ai), then the right hand side of (2) is217

i−1∑
j=1

cj −
n−1∑
j=i

cj + cn =
1

2
(yi − y1)−

1

2
(yn − yi) +

1

2
(y1 + yn) = yi.

Thus equation (2) holds. ⊓⊔

Because a linear combination of k shifted sign functions has at most k dis-218

continuities, n − 1 is the smallest number of shifted sign functions required to219

represent κ(x) linearly.220

6

3.2 Step Function Approximation Based on the Linear Combination221

We demonstrate how to use Lemma 1 and a polynomial approximation of sgn(x)222

to obtain a polynomial approximation of a step function κ(x). Suppose g(x) is a223

(composite) polynomial approximation of sgn(x) as constructed in [12,25], such224

that g(x) is (α, ϵ)-close to sgn(x) on [−1, 1], i.e.225

∥g(x)− sgn(x)∥[−1,−ϵ]∪[ϵ,1] ≤ 2−α. (3)

Then an approximation of κ(x) can be constructed as follows.226

Theorem 1. Let κ(x) be a step function with partition −1 = a0 < a1 < · · · <227

an = 1 and values y1, · · · , yn. Suppose g(x) is (α, ϵ)-close to sgn(x) on [−1, 1].228

Then the function229

f(x) =

n−1∑
i=1

1

2
(yi+1 − yi) · g(

x− ai
1 + |ai|

) +
1

2
(y1 + yn)

is (α′, ϵ′)-close to κ(x) on [−1, 1], where α′ = α − log(
∑n−1

i=1
1
2 |yi+1 − yi|) and230

ϵ′ = (1 +max{|a1|, |an−1|})ϵ.231

Proof. We first show that g(x−ai

1+|ai|) is an approximation of sgn(x − ai) on I :=232

[−1, 1] −
⋃

1≤i<n(ai − ϵ′, ai + ϵ′). Denote y = x−ai

1+|ai| , then for x ∈ I it has233

|y| ≤ |x|+|ai|
1+|ai| ≤ 1 and |y| = |x−ai|

1+|ai| ≥
ϵ′

1+|ai| ≥ ϵ, i.e., y ∈ [−1,−ϵ] ∪ [ϵ, 1]. Thus234 ∥∥∥g(x−ai

1+|ai|)− sgn(x− ai)
∥∥∥
I
≤ ∥g(y) − sgn((1 + |ai|)y)∥[−1,−ϵ]∪[ϵ,1] = ∥g(y) −235

sgn(y)∥[−1,−ϵ]∪[ϵ,1] ≤ 2−α. Therefore, by Lemma 1 it has236

∥f(x)− κ(x)∥I =

∥∥∥∥∥
n−1∑
i=1

1

2
(yi+1 − yi) · (g(

x− ai
1 + |ai|

)− sgn(x− ai))

∥∥∥∥∥
I

≤
n−1∑
i=1

1

2
|yi+1 − yi| · 2−α = 2−α′

,

which completes the proof. ⊓⊔

Remark 1. Different approximations for sgn(x − ai) can be chosen to balance237

the overall error rate. Specifically, suppose gi(x) is (αi, ϵi)-close to sgn(x) on238

[−1, 1] for 1 ≤ i < n. Then it can be similarly proved that the function f(x) =239 ∑n−1
i=1

1
2 (yi+1−yi) · gi(x−ai

1+|ai|)+
1
2 (y1+yn) is (α

′, ϵ′)-close to κ(x) on [a, b], where240

α′ = log(
∑n−1

i=1
1
2 |yi+1 − yi| · 2−αi) and ϵ′ = max1≤i<n{(1 + |ai|)ϵi}.241

Computation Complexity. The polynomial approximation for sgn(x) is usu-242

ally given in a composite polynomial form to reduce the number of homomorphic243

multiplications, i.e., g = hk ◦ hk−1 ◦ · · · ◦ h1. Then the g(x−ai

1+|ai|) in Theorem 1244

7

Algorithm 1: Compute step function by using Theorem 1.

Input: A real number x0 ∈ [−1, 1]
Input: A step function κ(x) with partition a0 < · · · < an and values y1, · · · , yn
Input: A sub-algorithm ComputeG that computes g(x), where g(x) is a composite

polynomial approximation of sgn(x)
Output: Approximate value of κ(x0)
1: for i from 1 to n− 1 do
2: zi = ComputeG(x0−ai

1+|ai|
)

3: end for
4: z =

∑n−1
i=1

1
2
(yi+1 − yi) · zi + 1

2
(y1 + yn)

5: return z

should be evaluated individually before performing the linear combination (Al-245

gorithm 1).246

The required multiplicative depth for Algorithm 1 is roughly the same as247

that for ComputeG (or g(x)), and the number of multiplications is n − 1 times248

as that of ComputeG (or g(x)). The total running time can be reduced if each249

g(x−ai

1+|ai|) can be computed in parallel.250

3.3 Extension to Piece-wise Polynomials251

Suppose ρ(x) is a piece-wise polynomial defined on [a, b] such that252

ρ(x) = pi(x) for x ∈ (ai−1, ai), 1 ≤ i ≤ n, (4)

where a = a0 < a1 < · · · < an = b, and pi(x)’s are polynomials defined on [a, b].253

Similar to Lemma 1, the following lemma can be proved.254

Lemma 2. ρ(x) can be expressed as255

ρ(x) =

n−1∑
i=1

1

2
(pi+1(x)− pi(x)) · sgn(x− ai) +

1

2
(p1(x) + pn(x)) (5)

for x ∈ [a, b] other than the singularity points.256

Then a polynomial approximation of ρ(x) can be constructed based on the poly-257

nomial approximation of sgn(x) as follows.258

Theorem 2. Suppose ρ(x) is a piece-wise polynomial on [−1, 1] and g(x) is259

(α, ϵ)-close to sgn(x) on [−1, 1]. Then the function260

f(x) =

n−1∑
i=1

1

2
(pi+1(x)− pi(x)) · g(

x− ai
1 + |ai|

) +
1

2
(p1(x) + pn(x))

is (α′, ϵ′)-close to ρ(x) on [−1, 1], i.e, ∥ρ(x)−f(x)∥I ≤ 2−α′
, where I = [−1, 1]−261 ⋃

1≤i<n(ai − ϵ′, ai + ϵ′) and α′ = α − log(
∑n−1

i=1
1
2∥pi+1(x) − pi(x)∥I , ϵ′ = (1 +262

max{|a1|, |an−1|})ϵ.263

8

Proof. It can be proved as in Theorem 1 that ∥g(x−ai

1+|ai|)− sgn(x− ai)∥I ≤ 2−α.264

Then by Lemma 2 it has265

∥f(x)− ρ(x)∥I =

∥∥∥∥∥
n−1∑
i=1

1

2
(pi+1(x)− pi(x)) · (g(

x− ai
1 + |ai|

)− sgn(x− ai))

∥∥∥∥∥
I

≤
n−1∑
i=1

1

2
∥pi+1(x)− pi(x)∥I · 2−α = 2−α′

,

which completes the proof. ⊓⊔

4 AdaptiveLP: Step Function Approximation by266

Polynomial Composition267

In this section, we consider the composite polynomial strategy to approximate268

step functions. For any step function κ(x), we aim to construct a composite269

polynomial g◦fk◦· · ·◦f1 that approximates κ(x). The construction can be divided270

into two steps, which are specified in Section 4.1 and Section 4.2 respectively.271

Step 1. Construct a composite polynomial f = fk ◦ · · · ◦ f1 approximating272

κ̃(x), where κ̃(x) is the normalization of κ(x).273

Step 2. Construct a polynomial g(x) such that g(κ̃(x)) ≈ κ(x).274

4.1 Construction of the Composite polynomial f275

Suppose κ̃(x) = zi for x ∈ (ai−1, ai), where z1 = a, zn = b and zi =
1
2 (ai−1 +276

ai), 1 < i < n. Our goal is to construct polynomials f1, · · · , fk such that they277

gradually map the intervals to small intervals. For a small positive real number278

ϵ, denote I10 = [a0, a1 − ϵ], In0 = [an−1 + ϵ, an] and Ii0 = [ai−1 + ϵ, ai − ϵ] for279

1 < i < n. Then the polynomials f1, · · · , fk should satisfy280

Ii0
f1−→ [zi − ti1, zi + ti1]

f2−→ · · · fk−→ [zi − tik, zi + tik] (6)

for 1 ≤ i ≤ n, where ti1 > · · · tik > 0. Denote Iij = [zi − tij , zi + tij] for281

1 ≤ i ≤ n and 1 ≤ j ≤ k, and let t10 = a1 − a0 − ϵ, tn0 = an − an−1 − ϵ, and282

ti0 := 1
2 (ai − ai−1)− ϵ for 1 < i < n. Then the optimal polynomial fj+1 should283

minimize the ratio284

max
1≤i≤n

ti,j+1

tij
= max

1≤i≤n

1

tij
· ∥fj+1(x)− zi∥Iij = max

1≤i≤n

1

tij
· ∥fj+1(x)− κ̃(x)∥Iij .

(7)

On the other hand, we want the coefficients of fj to be bounded by a real constant285

number Bj to ensure evaluation precision. In other words, for 0 ≤ j ≤ k− 1, the286

polynomial fj+1 is a solution to the following optimization problem.287

9

Problem 1 (Weighted Minimax Polynomial Approximation) For input288

step function κ̃(x), constant numbers tij > 0, intervals Iij for 1 ≤ i ≤ n, find289

a polynomial fj+1(x) with degree no more than dj+1 and coefficients bounded by290

Cmax(fj+1) ≤ Bj+1 that minimizes291

max
1≤i≤n

1

tij
· ∥fj+1(x)− κ̃(x)∥Iij . (8)

Solving Problem 1 via Adaptive Linear Programming. Suppose copt292

is the minimum value of (8). The adaptive linear programming algorithm itera-293

tively computes a polynomial f̂j+1 such that the value max1≤i≤n{ 1
tij
·∥f̂j+1(x)−294

κ̃(x)∥Iij} approaches copt.295

To begin with, we choose a set of reference points X ⊂ ∪1≤i≤nIij , and con-296

sider the conditions297 {
1
tij
· |fj+1(xl)− κ̃(xl)| ≤ c,∀1 ≤ i ≤ n, for xl ∈ X ;

Cmax(fj+1) ≤ Bj+1,
(9)

where c is the objective to be minimized. Then (9) provides linear constrains298

on the coefficients of fj+1 and c. As a result, we can obtain a polynomial f̂j+1299

and a real number cl > 0 by using linear programming to minimize c. Clearly300

cl is a lower bound of copt since the solution f
(opt)
j+1 to Problem 1 must satisfy301

1
tij
· |f (opt)

j+1 (xl)− κ̃(xl)| ≤ copt,∀xl ∈ X .302

On the other hand, for the polynomial f̂j+1(x) obtained by solving (9), let303

cu := max
1≤i≤n

1

tij
· ∥f̂j+1(x)− κ̃(x)∥Iij .

Clearly cu is an upper bound of copt. In order to decrease cu, we collect all the304

extreme and boundary points x′ ∈ ∪1≤i≤nIij of the polynomial f̂j+1(x) such305

that 1
tij
· |f̂j+1(x

′) − κ̃(x′)| > cl, add all these points to the set X , and repeat306

the linear programming process. Algorithm 2 summarizes the above procedure.307

For the choice of polynomial basis, it was observed that the Chebyshev basis308

is suitable for minimax polynomial approximation [8,26]. Besides, an efficient309

homomorphic computation method for the Chebyshev basis has been proposed310

[27]. Thus we also adopt the Chebyshev basis for polynomial approximation in311

this paper.312

Termination and Runtime of the Algorithm. When performing Algo-313

rithm 2, it is clear that the cl gradually increases because more linear con-314

strains are added to (9). Moreover, through experiments, we find that the cu315

quickly approaches cl and thus approaches copt. Fig. 1 depicts the first two316

iterations of Algorithm 2 for solving the weighted minimax problem that cor-317

responds to construct f1 for κ̃(x) = [x], x ∈ [−1, 1], and ϵ = 2−16. From the318

10

-1-0.575

-1+0.575

-1.0 -0.8 -0.6 -0.4 -0.2

-1.5

-1.0

-0.5

0.5

(a) f̂j+1 after the first iteration.

-1.0 -0.8 -0.6 -0.4 -0.2

-1.5

-1.0

-0.5

0.5

(b) f̂j+1 after the second iteration.

Fig. 1: Illustration of the first two iterations of adaptive linear programming
algorithm. The graph of fj+1 is symmetric with respect to the origin.

figure, we can see that the gap between cu and cl is narrowed after the second319

iteration. In fact, Algorithm 2 outputs the fj+1(x) in a few iterations accord-320

ing to our experiments. For example, Table 1 lists the number of iterations re-321

quired for constructing composite polynomial approximation of the step function322

1
3⌊3x⌉, x ∈ [−1, 1], ϵ = 2−16, γ = 2−30.323

Algorithm 2: Adaptive linear programming

Input: A step function κ̃(x) and an approximation factor γ ∈ R+

Input: Real numbers tij > 0 and intervals Iij for 1 ≤ i ≤ n
Input: Polynomial degree dj+1 ∈ Z+ and coefficient bound Bj+1 > 0
Input: A polynomial basis {pl(x)}1≤l≤dj+1

Output: Approximate polynomial fj+1(x) that minimize (8)
1: Choose a set of reference points X ⊂ ∪1≤i≤nIij
2: Solve the following linear programming problem and obtain f̂j+1 and cl

Minimize c
Subject to Cmax(fj+1) ≤ Bj+1 and |fj+1(xl)− κ̃(xl)| ≤ ctij , ∀xl ∈ X

3: Collect the extreme and boundary points x′ ∈ ∪1≤i≤nIij such that
|f̂j+1(x

′)− κ̃(x′)| > cltij , and add them to X
4: Compute cu = max1≤i≤n{ 1

tij
· ∥f̂j+1(x)− κ̃(x)∥Iij}.

5: if cu < (1 + γ)cl then
6: return f̂j+1

7: else
8: Go to line 2
9: end if

In each iteration of Algorithm 2, a linear programming algorithm is em-324

ployed to solve cl. It is shown in [14] that solving such linear programming takes325

O∗(|X |c log(|X |/δ)) time, where 2 < c < 3 is a constant determined by the ma-326

trix multiplication algorithm, and δ is the relative accuracy. According to our327

experiment, for a step function with n intervals, and a polynomial degree d, a328

11

coefficient bound B, setting |X | = O(nd) and δ = O(ϵ/(dB)) suffices for the329

computation.330

Determine the Composite Polynomial. The polynomials fj+1 can be con-331

structed using Algorithm 2 iteratively for 0 ≤ j ≤ k − 1. Here the ti,j+1’s are332

determined by ti,j+1 = ∥fj+1(x) − κ̃(x)∥Iij after fj has been determined. Due333

to our choice of κ̃(x) and Iij , it has334

max
1≤i≤n

1

tij
· ∥fj+1(x)− κ̃(x)∥Iij < (1 + γ) max

1≤i≤n

1

tij
· ∥f (opt)

j+1 − κ̃(x)∥Iij

≤ (1 + γ) max
1≤i≤n

1

tij
· ∥x− κ̃(x)∥Iij = (1 + γ),

i.e. ti,j+1 < (1+γ)ti,j . In our experiment, it holds ti,j+1 < ti,j for an appropriate335

choice of the factor γ, thus the mapping of intervals in (6) can be guaranteed.336

Nevertheless, in the encrypted state, fj+1 will be homomorphically evaluated,337

and fj+1(Iij) may not fall into Ii,j+1 due to the homomorphic computation338

errors. This can cause an evaluation failure of the composite polynomial f =339

fk ◦ · · · ◦ f1. To solve this problem, we introduce a parameter ηj+1 which is an340

upper bound of the homomorphic evaluation error, i.e.,341

|Eval(fj)(x)− fj(x)| ≤ ηj+1 ≪ 1,

for 0 ≤ j ≤ k − 1. Besides, we set η0 to be the encryption error. Then we use342

the intervals I ′ij := [zi − tij − ηj , zi + tij + ηj] as input to solve fj+1 (instead of343

Iij), which ensures the mapping of intervals in (6) for the encrypted state. The344

above process is summarized in Algorithm 3.345

4.2 Construction of the polynomial g(x)346

Using Algorithm 3 we obtain a composite polynomial f = fk ◦ · · · ◦ f1 such that347

|f(x)− zi| ≤ tik, x ∈ Ii0 for all 1 ≤ i ≤ n. Then as discussed in Section 1.1, the348

polynomial g(x) is determined by minimizing349

max
1≤i≤n

∥g(z)− yi∥[zi−tik,zi+tik]

for a given degree deg(g) ≤ d and coefficient bound Cmax(g) ≤ B. Particularly,350

the following lemma holds.351

Table 1: The number of iterations of Algorithm 2 for approximating the step
function 1

3⌊3x⌉ on [−1, 1], where {zi}i = {0,± 1
3 ,±

2
3 ,±1} and {tij}i are roughly

equal for the same j. The degrees of fj are set to be 31.

fj+1 f1 f2 f3 f4 f5 f6 f7 f8

tij ≈ 1/6− 2−16 1/6− 2−13.5 1/6− 2−11.0 1/6− 2−8.6 1/6− 2−6.2 1/6− 24.0 1/6− 2−2.8 1/6− 2−2.6

#Iterations 5 4 4 4 4 3 3 1

12

Algorithm 3: Construct the composite polynomial

Input: A step function κ̃(x) and an approximation factor γ ∈ R+

Input: ti0 ∈ R+ and intervals I ′i0 for 1 ≤ i ≤ n
Input: Polynomial degree dj+1 ∈ Z+, coefficient bound Bj+1 ∈ Z+ and

error bound ηj ∈ R+ for 0 ≤ j ≤ k − 1
Input: A polynomial basis {pl(x)}l
Output: Composite polynomial f = fk ◦ · · · ◦ f1 approximating κ̃(x)
1: for j from 0 to k − 1 do
2: Compute a polynomial fj+1 by using κ̃(x), γ, tij , I

′
ij , dj+1, Bj+1

and {pl(x)}l as the inputs of Algorithm 2
3: Compute ti,j+1 = ∥fj+1(x)− κ̃(x)∥I′ij
4: I ′i,j+1 := [zi − ti,j+1 − ηj+1, zi + ti,j+1 + ηj+1] for 1 ≤ i ≤ n
5: end for
6: return fk ◦ · · · ◦ f1

Lemma 3. Suppose |g(z) − yi| ≤ 2−α for z ∈ [zi − tik, zi + tik], 1 ≤ i ≤ n.352

Then the composite polynomial g ◦ f is an approximation of κ(x) such that353

∥g ◦ f − κ∥I ≤ 2−α, where I = ∪ni=1Ii0.354

Proof. For any x ∈ Ii0, it has z := f(x) ∈ [zi− tik, zi+ tik]. Thus |g(f(x))−yi| =
|g(z)− yi| ≤ 2−α. ⊓⊔

Using Algorithm 2, the problem of minimizing ∥g ◦ f − κ∥I ≤ 2−α can be355

solved. Taking into account the homomorphic computation errors, g(x) should356

be computed in a similar way as fj+1. Specifically, let ηk+1 and ηg be the upper357

bounds of the homomorphic evaluation error of fk and g, respectively. Then our358

goal is to find g(x) that minimizes max1≤i≤n ∥g(z)− yi∥[zi−tik−ηk+1,zi+tik+ηk+1].359

Moreover, due to the error introduced by homomorphically evaluating g(x), the360

composite polynomial g ◦ f is an approximation of κ(x) such that ∥g ◦ f −361

κ∥I ≤ 2−α + ηg in the encrypted state. We specify the computation of g(x) in362

Algorithm 4.363

Remark 2. To use Algorithms 2, 3, 4 for computing concrete step functions, we364

need to choose the parameters polynomial degree d, coefficient bound B and365

error bound η in advance. In our experiments, we set d ∈ {15, 31} and adjust η366

according to the homomorphic errors, and select B to minimize the number of367

composite polynomials.368

5 Application to Concrete Step Functions369

In this section, we apply the two methods SgnToStep and AdaptiveLP to the370

round function Roundm(x) and an example of bucketing function in the plain-371

text state (η = 0 in Algorithm 2). Suppose a step function κ(x) is approximated372

by a polynomial f(x). Then any step function obtained by applying stretch-373

ing, shifting and reflecting transformations to κ(x) will be approximated by the374

13

Algorithm 4: Compute the polynomial g(x).

Input: A step function κ(x) and an approximation factor γ ∈ R+

Input: zi ∈ R and tik ∈ R+ for 1 ≤ i ≤ n
Input: Polynomial degree d ∈ Z+, coefficient bound B ∈ Z+, error bound

ηk+1, ηg ∈ R+

Input: A polynomial basis {pl(x)}1≤l≤d

Output: Polynomial g(x) approximating κ(x), and an error rate 2−α

1: I ′i = [zi − tik − ηk+1, zi + tik + ηk+1] for 1 ≤ i ≤ n
2: Compute a polynomial g(x) by using κ(x), γ, I ′i, d, B and {pl(x)}1≤l≤d as the

inputs of Algorithm 2
3: Compute t = max1≤i≤n ∥g(x)− yi∥I′i
4: Compute α = − log(t+ ηg)
5: return g(x) and 2−α

polynomial obtained by applying the same transformations to f(x). The approx-375

imation error rate will change but can be easily predicted. As a result, in this376

section, we assume all step functions are defined over [−1, 1], and their values377

also fall in [−1, 1].378

5.1 Application to the Round Function379

The round function in this section is a step function with 2m+1 intervals defined380

over [−1, 1], i.e.,381

Roundm(x) =
1

m
⌊mx⌉ =


−1, x ∈ (−1,−1 + 1

2m)
i
m , x ∈ (i

m −
1

2m , i
m + 1

2m) for −m < i < m

1, x ∈ (1− 1
2m , 1)

where m is a positive integer.382

Apply SgnToStep to Roundm(x). The following corollary directly results from383

Theorem 1.384

Corollary 1. Suppose g(x) is a polynomial that is (α′, ϵ′)-close to sgn(x) on385

[−1, 1], then the polynomial386

f(x) =
1

2m

m−1∑
i=0

(
g(

mx+ i+ 1
2

m+ i+ 1
2

) + g(
mx− i− 1

2

m+ i+ 1
2

)

)
(10)

is (α, ϵ)-close to Roundm(x) on [−1, 1], where α = α′ and ϵ = (2− 1
2m)ϵ′.387

In the following, we focus on m = 3 and give concrete polynomial approxi-388

mations of Round3(x) based on the constructions in [11,25]. According to Corol-389

lary 1, to obtain a polynomial f(x) that is (α, ϵ)-close to Round3(x) on [−1, 1],390

it suffices to construct a polynomial g(x) that is (α, ϵ/(2− 1
2m))-close to sgn(x).391

Such g(x) is chosen as follows.392

14

– Using the construction in Section 3.1 of [11], g(x) can be defined to be the393

composite polynomial h
(k)
r where hr(x) =

∑r
i=0

1
4i

(
2i
i

)
x(1−x2)i. It is pointed394

out in [11] that r = 4 is asymptotically optimal concerning the number of395

multiplications. In our example, using h
(k)
r with r = 4 for ϵ ≤ 2−12 results396

in a large k, which requires very large multiplicative depth, thus very large397

HEAAN parameters. Therefore we set r = 4 for ϵ = 2−8 and r = 7 for398

ϵ = 2−12, 2−16, 2−20. Besides, we set k to be the minimum integer such that399

h
(k)
r is (α, ϵ/(2− 1

2m))-close to sgn(x).400

– Using the construction in [25], g(x) is defined to be the composite polynomial401

gk◦· · ·◦g1, where gi is constructed by solving the minimax problem to sgn(x).402

For simplicity, we assume that gi’s have the same degree d ∈ {15, 31}, and k403

is set to be the minimum integer such that gk ◦· · ·◦g1 is (α, ϵ/(2− 1
2m))-close404

to sgn(x).405

Based on these g(x)’s, we estimate the multiplicative depth and number of406

multiplications for evaluating Round3(x) for different (α, ϵ), which are listed in407

Table 2.408

Apply AdaptiveLP to Roundm(x). Again we focus on m = 3 and give concrete409

polynomial approximations of Round3(x) via Section 4, i.e., constructing com-410

posite polynomial fk ◦ · · · ◦ f1 that is (α, ϵ)-close to Round3(x). In this example,411

the degree of fi is set as d = 31 for 1 ≤ i ≤ k, ϵ ∈ {2−8, 2−12, 2−16, 2−20}, and k412

is set to be the minimum integer such that the approximation error rate 2−α < ϵ.413

We note that choosing smaller d, e.g., d = 15, in this example will slow down the414

convergence thus greatly increase the required multiplicative depth (> 100). As415

a result, we do not take smaller d into consideration in our implementation. For416

different ϵ, Table 2 lists the multiplicative depth and number of multiplications417

required for evaluating Round3(x).418

5.2 Application to the Bucketing Function419

In machine learning, bucketing is usually used to map continuous data into dis-420

crete categorical values using thresholds, which can be directly viewed as a step421

function. For example, when training XGBoost, a gradient tree boosting model,422

the continuous input features can be categorized into buckets (e.g., according to423

percentiles) to simplify the subtree splitting operation in subsequent training.424

When a user’s data is used by multiple models for training but the models have425

different granularity for bucketing(i.e. different shape of step function), a user426

can simply encrypt his data and let the models decide how to perform bucketing.427

We consider a bucketing example that maps a latitude data x ∈ (−90, 90)428

to discrete data {0, 1, 2} for x ∈ (−30, 30) (low latitude), x ∈ (−60,−30) ∪429

(30, 60) (middle latitude), x ∈ (−90,−60)∪ (60, 90) (high latitude) respectively.430

15

Table 2: The multiplicative depth and number of multiplications for the evalu-
ation of Round3(x) and κ(x) using SgnToStep and AdaptiveLP. The number of
iterations k is minimized such that α satisfies 2−α < ϵ.

Evaluation of Round3(x) Evaluation of κ(x)

ϵ = 2−8 ϵ = 2−12 ϵ = 2−16 ϵ = 2−20 ϵ = 2−8 ϵ = 2−12 ϵ = 2−16 ϵ = 2−20

SgnToStep

using [11]

k 8 9 12 14 8 9 12 14

depth 24 36 48 56 24 36 48 56

#Mults. 240 432 576 672 160 288 384 448

SgnToStep

using [25]

(deg = 15)

k 4 5 6 7 3 5 6 7

depth 16 20 24 28 12 20 24 28

#Mults. 192 240 288 336 96 160 192 224

SgnToStep

using [25]

(deg = 31)

k 3 4 5 6 3 4 5 6

depth 15 20 25 30 15 20 25 30

#Mults. 216 288 360 432 144 192 240 288

AdaptiveLP

(deg = 31)

k 4 6 8 9 3 5 6 8

depth 20 30 40 45 15 25 30 40

#Mults. 48 72 96 108 36 60 72 96

By rescaling the data, the corresponding step function can be written as431

κ(x) =


0, x ∈ (− 1

3 ,
1
3)

1
2 , x ∈ (− 2

3 ,−
1
3) ∪ (13 ,

2
3)

1, x ∈ (−1,− 2
3) ∪ (23 , 1)

. (11)

In the following, we use SgnToStep and AdaptiveLP to construct polynomial432

approximations of κ(x).433

Apply SgnToStep to κ(x). Suppose g(x) is a polynomial that is (α′, ϵ′)-close434

to sgn(x) on [−1, 1], then by Theorem 1 the polynomial435

f(x) =
1

4

(
g(

3

5
x− 2

5
)− g(

3

5
x+

2

5
) + g(

3

4
x− 1

4
)− g(

3

4
x+

1

4
)

)
+ 1 (12)

is (α, ϵ)-close to κ(x) on [−1, 1], where α = α′ and ϵ = 5
3ϵ

′.436

Based on the g(x)’s constructed in [11,25] (as chosen in Section 5.1), we437

estimate the multiplicative depth and number of multiplications for evaluating438

κ(x) for different ϵ, which are listed in Table 2.439

Apply AdaptiveLP to κ(x). According the Section 4, κ(x) is approximated440

by first constructing composite polynomial f = fk ◦ · · · ◦ f1 that approximates441

16

Table 3: The multiplicative depth and number of multiplications for the evalua-
tion of Round3(x) and κ(x) using SgnToStep and AdaptiveLP, where SgnToStep
is based on the approximation of sgn in [25] with the optimal number of multi-
plications.

ϵ = 2−8 ϵ = 2−12 ϵ = 2−16 ϵ = 2−20

Approximate
Round3(x)

SgnToStep using [25]
with optimal #Mults.

k 5 8 10 11

depth 16 23 30 34

#Mults. 102 132 180 210

AdaptiveLP

with degree 31

k 4 6 8 9

depth 20 30 40 45

#Mults. 48 72 96 108

Approximate
κ(x) in (11)

SgnToStep using [25]
with optimal #Mults.

k 5 8 10 11

depth 16 23 30 34

#Mults. 68 92 120 140

AdaptiveLP

with degree 31

k 3 5 6 8

depth 15 25 30 40

#Mults. 36 60 72 96

the normalization of κ(x), i.e.,442

κ̃(x) =



−1 x ∈ (−1,−2/3)
−1/2 x ∈ (−2/3,−1/3)
0 x ∈ (−1/3, 1/3)
1/2 x ∈ (1/3, 2/3)

1 x ∈ (2/3, 1)

,

then constructing g(x) such that g ◦ f approximates κ(x). Similarly, we as-443

sume that fi’s have the same degree d = 31, g has degree dg = 31, ϵ ∈444

{2−8, 2−12, 2−16, 2−20}, and k is the minimum integer such that the approxi-445

mation error rate 2−α < ϵ. Table 2 lists the multiplicative depth and number of446

multiplications required for evaluating κ(x) for different ϵ.447

We note that the optimal number of multiplications for approximating sgn448

obtained by the dynamic programming approach is given in [25]. We also give a449

comparison of SgnToStep based on these approximations and AdaptiveLP with450

degree = 31 in Table 3.451

6 Experimental Results452

This section presents some experimental results of homomorphically evaluating453

the step functions in Section 5. The computation in this section is performed454

using the HEAAN library on a Linux PC with an Intel Core i9 CPU at 3.00GHz.455

17

6.1 CKKS FHE Scheme456

CKKS scheme is introduced by Cheon et al. in [10], which enables approximate457

homomorphic arithmetic computation over real/complex numbers. We denote458

λ as the security parameter of CKKS, which is usually set to 128. Let L ∈ Z+
459

denote the bit-length of the initial ciphertext modulus, and define ql := 2l for 1 ≤460

l ≤ L. We denote χs, χe, χr as the distribution of secret, error, and encryption461

respectively. Let N ∈ Z be a power of 2. Denote R = Z[X]/(XN + 1) be the462

2N -th cyclotomic ring, and Rq := R/qR for an integer q > 1. The isomorphism463

τ : R[X]/(XN +1)→ CN
2 is used for encoding and decoding of plaintexts. Let ∆464

denote the scaling factor. The CKKS scheme contains the following algorithms.465

– KeyGen(1λ) :466

Sample s← χs, a← U(RqL), e← χe, e
′ ← χe and a′ ← U(Rq2L

);467

Output sk = (1, s), pk = (−as + e, a) ∈ R2
qL and evk = (−a′ · s + e′ +468

qL · s2, a′) ∈ R2
q2L
.469

– Encpk(m;∆) :470

For a plaintext m ∈ CN
2 , compute m = ⌊∆ · τ−1(m)⌉, sample v ← χr471

and e0, e1 ← χe;472

Output v · pk+ (m+ e0, e1) mod qL.473

– Decsk(ct;∆) :474

For a ciphertext ct = (c0, c1) ∈ R2
ql
, compute m′ = c0 + c1 · s mod ql;475

Output m′ = 1
∆ · τ(m

′).476

– Add(ct1, ct2) :477

For ct1, ct2 ∈ R2
ql
, output ctadd = ct1 + ct2 mod ql.478

– Multevk(ct1, ct2) :479

For ct1 = (b1, a1), ct2 = (b2, a2) ∈ R2
ql
, let (d0, d1, d2) = (b1b2, a1b2 +480

a2b1, a1a2), compute ct
′

mult ←481

(d0, d1) + ⌊q−1
L · d2 · evk⌉ mod ql;482

Output ctmult = ⌊∆−1 · ct′

mult⌉ mod (ql/∆).483

Note that we can deal with N
2 encrypted data in a SIMD manner, so the484

amortized running time is 2
N times the total time.485

6.2 Parameters Setting486

In our experiment, we set N = 217, and the highest level modulus qL upto487

21700 to achieve 128-bit security estimated by Albrecht’s LWE estimator [3,2].488

The scaling factor is set to ∆ = 240. Besides, we expect the final modulus after489

evaluation to be log∆ + 10 bits long. Then the initial modulus qL is given as490

follows.491

– For SgnToStep, suppose g is the approximate polynomial of sgn used in our492

construction, then493

log qL = log∆ · (dep(g)) + log∆+ 10.

18

Table 4: Running time and depth consumption of Round3(x) and κ(x) in
HEAAN.

Evaluation of Round3(x) Evaluation of κ(x)

ϵ = 2−8 ϵ = 2−12 ϵ = 2−16 ϵ = 2−20 ϵ = 2−8 ϵ = 2−12 ϵ = 2−16 ϵ = 2−20

SgnToStep

using [11]

k 8 9 12 14 8 9 12 14

running time 4.63 ms 7.83 ms 13.24 ms 16.32 ms 3.08 ms 4.73 ms 9.38 ms 10.93 ms

bit consumption 1360 1520 2000∗ 2320∗ 1360 1520 2000∗ 2320∗

SgnToStep

using [25]

(deg = 15)

k 4 5 6 8 3 5 6 7

running time 2.56 ms 3.39 ms 4.17 ms 5.75 ms 1.20 ms 2.26 ms 2.68 ms 3.21 ms

bit consumption 716 875 1034 1352 557 875 1034 1193

SgnToStep

using [25]

(deg = 31)

k 3 4 5 6 3 4 5 6

running time 3.01 ms 4.36 ms 6.18 ms 8.09 ms 2.21 ms 3.41 ms 4.11 ms 5.32 ms

bit consumption 688 891 1094 1297 688 891 1094 1297

AdaptiveLP

(deg = 31)

k 4 6 8 10 4 6 8 10

running time 0.74 ms 1.36 ms 1.98 ms 2.81 ms 0.78 ms 1.24 ms 2.15 ms 2.95 ms

bit consumption 808 1212 1616 2020∗ 808 1212 1616 2020∗

∗ an asterisk (∗) means the parameter set does not achieve 128−bit security for large log qL ≥ 1700

in HEAAN.

– For AdaptiveLP, suppose g ◦ fk ◦ · · · ◦ f1 is the composite polynomial in our494

construction, then495

log qL = log∆ · (dep(f1) + · · ·+ dep(fk) + dep(g)) + log∆+ 10.

Here dep(·) denotes the depth consumption for evaluating a polynomial, which496

is usually set to be ⌈log(d+ 1)⌉ for a polynomial of degree d.497

6.3 Evaluating Round3(x)498

We evaluate the step function Round3(x) based on the polynomial approxima-499

tions constructed in Section 5. To handle the homomorphic evaluation error, we500

construct composite polynomials by introducing the error bound η as in Algo-501

rithm 2, where η is dynamically determined by the coefficient bound in our im-502

plementation. The polynomials are evaluated by the BSGS method as in [27], and503

the amortized running time and bit consumption log(qLql) for different approxima-504

tion error rates are listed in Table 4. In the table, we set ϵ = 2−8, 2−12, 2−16, 2−20
505

and let the number of iterations k to be minimum such that 2−α < ϵ.506

Through the table we can see that SgnToStep shows an advantage in bit con-507

sumption, while AdaptiveLP provides better performance in amortized running508

time. For example, comparing with SgnToStep that uses the minimax approx-509

imation in [25] with polynomial degree 15, AdaptiveLP has roughly 1.5× bit510

consumption but approximately 0.5× running time. Though each evaluation of511

sgn requires less bit consumption and less running time than AdaptiveLP, the512

evaluation of Round3(x) based on SgnToStep involves 6 evaluations of sgn thus513

requires more running time.514

19

6.4 Evaluating Bucketing Function515

We evaluate the bucketing example given in (11) based on the polynomial ap-516

proximations given in Section 5. Again, the dynamic error bound is used to517

handle the homomorphic evaluation error, and BSGS method is used to eval-518

uate the polynomials. We set ϵ = 2−8, 2−12, 2−12, 2−16 and let the number of519

iterations k to be minimum such that 2−α < ϵ. The amortized running time520

and bit consumption log(qLql) for different approximation error rates are listed in521

Table 4.522

Through the table we can see that AdaptiveLP still outperforms SgnToStep523

in amortized running time. However, because the bucketing example given in524

(11) has a less number of intervals n = 5, SgnToStep requires only 4 evaluations525

of sgn. As a result, AdaptiveLP shows less advantage in running time. In general,526

SgnToStep and AdaptiveLP provide a trade-off in terms of running time and bit527

consumption.528

References529

1. Akavia, A., Leibovich, M., Resheff, Y.S., Ron, R., Shahar, M., Vald, M.: Privacy-530

preserving decision trees training and prediction. ACM Trans. Priv. Secur. 25(3),531

24:1–24:30 (2022). https://doi.org/10.1145/3517197, https://doi.org/10.1145/532

3517197533

2. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parame-534

ter choices in HElib and SEAL. pp. 103–129. https://doi.org/10.1007/978-3-319-535

56614-6 4536

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with537

errors. J. Math. Cryptol. 9(3), 169–203 (2015), http://www.degruyter.com/view/538

j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml539

4. Andrievskii, V.: Polynomial approximation of piecewise analytic functions on540

a compact subset of the real line. J. Approx. Theory 161(2), 634–644541

(2009). https://doi.org/10.1016/j.jat.2008.11.015, https://doi.org/10.1016/j.542

jat.2008.11.015543

5. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation544

of deep discretized neural networks. pp. 483–512. https://doi.org/10.1007/978-3-545

319-96878-0 17546

6. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-547

sical GapSVP. pp. 868–886. https://doi.org/10.1007/978-3-642-32009-5 50548

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully549

homomorphic encryption without bootstrapping. pp. 309–325.550

https://doi.org/10.1145/2090236.2090262551

8. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homo-552

morphic encryption. pp. 34–54. https://doi.org/10.1007/978-3-030-17656-3 2553

9. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate554

homomorphic encryption. pp. 360–384. https://doi.org/10.1007/978-3-319-78381-555

9 14556

10. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arith-557

metic of approximate numbers. pp. 409–437. https://doi.org/10.1007/978-3-319-558

70694-8 15559

20

https://doi.org/10.1145/3517197
https://doi.org/10.1145/3517197
https://doi.org/10.1145/3517197
https://doi.org/10.1145/3517197
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://doi.org/10.1016/j.jat.2008.11.015
https://doi.org/10.1016/j.jat.2008.11.015
https://doi.org/10.1016/j.jat.2008.11.015
https://doi.org/10.1016/j.jat.2008.11.015
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15

11. Cheon, J.H., Kim, D., Kim, D.: Efficient homomorphic comparison methods with560

optimal complexity. pp. 221–256. https://doi.org/10.1007/978-3-030-64834-3 8561

12. Cheon, J.H., Kim, D., Kim, D., Lee, H.H., Lee, K.: Numerical method562

for comparison on homomorphically encrypted numbers. pp. 415–445.563

https://doi.org/10.1007/978-3-030-34621-8 15564

13. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully ho-565

momorphic encryption: Bootstrapping in less than 0.1 seconds. pp. 3–33.566

https://doi.org/10.1007/978-3-662-53887-6 1567

14. Cohen, M.B., Lee, Y.T., Song, Z.: Solving linear programs in the current matrix568

multiplication time. pp. 938–942. https://doi.org/10.1145/3313276.3316303569

15. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less570

than a second. pp. 617–640. https://doi.org/10.1007/978-3-662-46800-5 24571

16. Eremenko, A., Yuditskii, P.: Uniform approximation of sgn x by polynomials and572

entire functions. Journal d’Analyse Mathématique 101(1), 313–324 (2007)573

17. Eremenko, A., Yuditskii, P.: Polynomials of the best uniform approximation to sgn574

(x) on two intervals. Journal d’Analyse Mathématique 114(1), 285–315 (2011)575

18. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-576

tology ePrint Archive, Report 2012/144 (2012), https://eprint.iacr.org/2012/577

144578

19. Gentry, C.: Fully homomorphic encryption using ideal lattices. pp. 169–178.579

https://doi.org/10.1145/1536414.1536440580

20. Gentry, C.: Computing arbitrary functions of encrypted data. Commun. ACM581

53(3), 97–105 (2010). https://doi.org/10.1145/1666420.1666444, https://doi.582

org/10.1145/1666420.1666444583

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with584

errors: Conceptually-simpler, asymptotically-faster, attribute-based. pp. 75–92.585

https://doi.org/10.1007/978-3-642-40041-4 5586

22. Han, K., Hong, S., Cheon, J.H., Park, D.: Logistic regression on homomor-587

phic encrypted data at scale. In: The Thirty-Third AAAI Conference on Arti-588

ficial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Ar-589

tificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on590

Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,591

USA, January 27 - February 1, 2019. pp. 9466–9471. AAAI Press (2019).592

https://doi.org/10.1609/aaai.v33i01.33019466, https://doi.org/10.1609/aaai.593

v33i01.33019466594

23. Jutla, C.S., Manohar, N.: Sine series approximation of the mod function for boot-595

strapping of approximate HE. pp. 491–520. https://doi.org/10.1007/978-3-031-596

06944-4 17597

24. Kim, M., Song, Y., Li, B., Micciancio, D.: Semi-parallel logistic regression for598

GWAS on encrypted data. Cryptology ePrint Archive, Report 2019/294 (2019),599

https://eprint.iacr.org/2019/294600

25. Lee, E., Lee, J.W., Kim, Y.S., No, J.S.: Minimax approximation of sign function601

by composite polynomial for homomorphic comparison. IEEE Transactions on De-602

pendable and Secure Computing (2021)603

26. Lee, J.W., Lee, E., Lee, Y., Kim, Y.S., No, J.S.: High-precision bootstrapping of604

RNS-CKKS homomorphic encryption using optimal minimax polynomial approxi-605

mation and inverse sine function. pp. 618–647. https://doi.org/10.1007/978-3-030-606

77870-5 22607

27. Lee, Y., Lee, J.W., Kim, Y.S., Kim, Y., No, J.S., Kang, H.: High-precision boot-608

strapping for approximate homomorphic encryption by error variance minimiza-609

tion. pp. 551–580. https://doi.org/10.1007/978-3-031-06944-4 19610

21

https://doi.org/10.1007/978-3-030-64834-3_8
https://doi.org/10.1007/978-3-030-34621-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1145/3313276.3316303
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1609/aaai.v33i01.33019466
https://doi.org/10.1609/aaai.v33i01.33019466
https://doi.org/10.1609/aaai.v33i01.33019466
https://doi.org/10.1609/aaai.v33i01.33019466
https://doi.org/10.1007/978-3-031-06944-4_17
https://doi.org/10.1007/978-3-031-06944-4_17
https://doi.org/10.1007/978-3-031-06944-4_17
https://eprint.iacr.org/2019/294
https://doi.org/10.1007/978-3-030-77870-5_22
https://doi.org/10.1007/978-3-030-77870-5_22
https://doi.org/10.1007/978-3-030-77870-5_22
https://doi.org/10.1007/978-3-031-06944-4_19

28. Liu, Z., Micciancio, D., Polyakov, Y.: Large-precision homomorphic sign evaluation611

using FHEW/TFHE bootstrapping. Cryptology ePrint Archive, Report 2021/1337612

(2021), https://eprint.iacr.org/2021/1337613

29. jie Lu, W., Huang, Z., Hong, C., Ma, Y., Qu, H.: PEGASUS: Bridging polyno-614

mial and non-polynomial evaluations in homomorphic encryption. pp. 1057–1073.615

https://doi.org/10.1109/SP40001.2021.00043616

30. Panda, S.: Polynomial approximation of inverse sqrt function for FHE. In: Dolev,617

S., Katz, J., Meisels, A. (eds.) Cyber Security, Cryptology, and Machine Learn-618

ing - 6th International Symposium, CSCML 2022, Be’er Sheva, Israel, June 30619

- July 1, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13301, pp.620

366–376. Springer (2022). https://doi.org/10.1007/978-3-031-07689-3 27, https:621

//doi.org/10.1007/978-3-031-07689-3_27622

31. Plaskota, L., Wasilkowski, G.W.: Uniform approximation of piecewise r-smooth623

and globally continuous functions. SIAM J. Numer. Anal. 47(1), 762–785 (2008).624

https://doi.org/10.1137/070708937, https://doi.org/10.1137/070708937625

32. Plaskota, L., Wasilkowski, G.W., Zhao, Y.: The power of adaption for626

approximating functions with singularities. Math. Comput. 77(264), 2309–627

2338 (2008). https://doi.org/10.1090/S0025-5718-08-02103-0, https://doi.org/628

10.1090/S0025-5718-08-02103-0629

33. Saff, E.B., Totik, V.: Polynomial approximation of piecewise analytic functions.630

Journal of the London Mathematical Society 2(3), 487–498 (1989)631

34. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes632

Cryptogr. 71(1), 57–81 (2014). https://doi.org/10.1007/s10623-012-9720-4, https:633

//doi.org/10.1007/s10623-012-9720-4634

35. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-635

cryption over the integers. pp. 24–43. https://doi.org/10.1007/978-3-642-13190-5 2636

22

https://eprint.iacr.org/2021/1337
https://doi.org/10.1109/SP40001.2021.00043
https://doi.org/10.1007/978-3-031-07689-3_27
https://doi.org/10.1007/978-3-031-07689-3_27
https://doi.org/10.1007/978-3-031-07689-3_27
https://doi.org/10.1007/978-3-031-07689-3_27
https://doi.org/10.1137/070708937
https://doi.org/10.1137/070708937
https://doi.org/10.1090/S0025-5718-08-02103-0
https://doi.org/10.1090/S0025-5718-08-02103-0
https://doi.org/10.1090/S0025-5718-08-02103-0
https://doi.org/10.1090/S0025-5718-08-02103-0
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/978-3-642-13190-5_2

	Approximate Methods for the Computation of Step Functions in Homomorphic Encryption

