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Abstract. There are long line of researches on the fundamental distributed key generation (DKG)
protocols. Unfortunately, all of them suffer from a large cubic total communication, due to the fact
that O(n) participants need to broadcast to all n participants.
We introduce the first two DKG protocols, both achieving optimal resilience, with sub-cubic total
communication and computation. The first DKG generates a secret key within an Elliptic Curve group,
incurring Õ(n2.5λ) total communication and computation. The second DKG, while slightly increasing
communication and computation by a factor of the statistical security parameter, generates a secret
key as a field element. This property makes it directly compatible with various off-the-shelf DLog-
based threshold cryptographic systems. Additionally, both DKG protocols straightforwardly imply an
improved (single-shot) common coin protocol.
At the core of our techniques, we develop a simple-yet-effective methodology via deterministic sharding
that arbitrarily group nodes into shards; and a new primitive called consortium-dealer secret sharing,
to enable a shard of nodes to securely contribute a secret to the whole population only at the cost of
one-dealer. We also formalize simulation-based security for publicly verifiable secret sharing (PVSS),
making it possible for a modular analysis for DKG. Those might be of independent interest.

1 Introduction

Distributed Key Generation. Distributed key generation (DKG) [18, 25, 33, 34, 36, 42, 49, 52]
enables a group of participants to collaboratively create a public key, while each member obtains
a secret share of the secret key. This decentralized approach eliminates the need of relying on a
trusted party to do the key generation process, serving as one indispensible building block in many
distributed protocols, such as secure multiparty computation [22], Byzantine consensus [17, 41],
threshold cryptography, and various emerging applications in blockchain (cryptocurrency wallets
[35], securing proof of stake against long-range attacks via checkpointing [5], and more).

Despite its fundamental importance, existing DKG protocols involving n participants suffer from
a total communication 1 cost of Ω(n3λ), 2 which is prohibitive even for moderate-scale deployments,
particularly when DKG is required to be continuously run in several settings, e.g., [5]. The cubic
complexity in DKG arises from the common design method of collectively executing verifiable secret
sharing (VSS) [21, 24, 52]. In a nutshell, among n participants where up to t could be adversarial,
each participant Pi picks a t-degree polynomial fi to define sk

(i) = fi(0). They then deliver the share

sk
(i)
j = fi(j) to other Pj and broadcast a commitment, comi, for the polynomial fi(X). Participants

validate received shares and collectively engage in a complaint phase, identifying the set J ∈ [n]

1 Throughout the paper, communication cost refers to the total communicated bits of honest participants during
one execution.

2 The only exception is a very recent concurrent work [6], that we will explain the difference at the end of Sec.1.2.



ensuring all transmitted secret shares are valid. The final secret share for Pi is ski =
∑

j∈J sk
(j)
i ,

and the aggregate secret key is sk =
∑

j∈J sk
(j).

Unfortunately, both delivery and complaint 3 phases currently involve n broadcast instances via
Byzantine broadcast (BB) protocols [29]. Without a common coin [17], deterministic BB protocols
generate Ω(t2) messages [28]. 4 Ensuring participation from at least t + 1 participants is vital for
sk’s secrecy, causing the DKG’s cubic communication for any t = Θ(n) 5.

If assuming a common coin, the cubic barrier of DKG may be circumvented, for example, by
sampling a committee to reduce the number of VSS instances [9], or by using a sub-quadratic
randomized BB protocol [2,44]. However, this workaround raises another crucial question: how can
a common coin be established within the group (by those participants collectively) to begin with?

Distributed Common Coin. A common coin protocol allows a group of participants/nodes to
produce an unbiased and unpredictable common randomness, which is paramount to many appli-
cations, such as lottery [14], committee sampling in distributed protocols [60], and asynchronous
consensus [32]. In history, the line of common coin study is closely related to, yet in parallel with
DKG.

A major approach to common coin is called commit-then-reveal, where each participant Pi

first commits a randomness ri to all others and then reveals ri such that the coin r =
∑

ri.
To prevent an attacker from withholding a commitment (after seeing other ri) to bias the coin,
we will need a commitment scheme supporting forced opening, such as publicly verifiable secret
sharing (PVSS) [19, 33] and time-locked commitment [56]. This approach similarly requires each
participant to broadcast its commitment, those O(n) broadcast instances immediately cause Ω(n3λ)
communication cost again when implementing with deterministic BB protocols (now, there is no
coin to use).

A recent line of research [10,11,23] discards the expensive broadcast procedures and uses a leader
node to coordinate the communication; with an honest leader, the group can produce a common
coin at the communication cost of O(n2λ). However, as leaders are switched in the Round-Robin
manner, only after the t + 1 leader election can we guarantee an honest leader. Therefore, for a
single-shot coin generation, the leader-based approach still incurs O(n3λ) communication.

Another natural solution for the common coin is letting the group execute a DKG protocol and
recover (the hash of) the secret key as the coin. Indeed, as suggested in Cachin et al.’s pioneering
work [17] and adopted by many real world projects like drand [1], we may use (the hash of) a
unique threshold signature as the common coin, after a DKG or trusted key generation for setting
up the signing keys. Unfortunately, these approaches based on DKG creates a circular problem. In
this paper, we are addressing the following long standing problem:

Can we develop a DKG and/or Common Coin protocol with sub-cubic communication complexity?

3 The complaint phase may be obviated using publicly verifiable secret sharing [19,33].
4 Broadcast needs to ensure agreement among all honest receiver outputs, thus causing a higher communication cost
than a simple multicast.

5 While we focus on synchronous DKG, asynchronous DKGs similarly let each participant invoke an asynchronous
variant of broadcast protocol whose communication cost is Ω(n2) [15], and consequently, all those asynchronous
DKGs [3,25,34] also require O(n3λ) communication cost.
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In this paper, we answer this question affirmatively. We first present the first (two) DKG
protocols with sub-cubic communication complexity, in the standard PKI model with synchronous
network. These also lead to the first sub-cubic common coin protocol (without a strong setup) 6.

1.1 Our contributions and techniques

We compare our results with the state-of-the-art efficient DKGs in Table.1 and review more related
works in Sect.1.2.

A DKG with sub-cubic communication for group-element secrets. Our first DKG protocol
has the communication complexity of

O(n2.5 · |w|+ n · BB√
n(nλ) +

√
n · BAn(nλ)), (1)

where n is the number of participants, |w| is the size of membership witness of a cryptographic accu-
mulator scheme, and BBk(ℓ) (or BAk(ℓ)) represents the communication cost of Byzantine broadcast
(or Byzantine agreement (BA)) with k nodes on input of ℓ bits.

Using optimal BB/BA [47, 48]7 and an accumulator with |w| = O(λ) [50] (which assumes a
CRS), the communication cost is O(n2.5λ). If CRS is not preferable, we also have a transparent
instantiation with the communication cost of O(n2.5 log nλ). In contrast, previous constructions
incurs communication cost of O(n · BBn(nλ)) or O(n3λ).

Moreover, this DKG can tolerate up to n/2 Byzantine nodes (which is optimal resilience), has
publicly verifiable transcripts (i.e., not need a complaint phase), and produces a secret key in a
pairing-friendly Elliptic Curve group (given currently available instantiations). Moreover, it only
requires each participant to perform O(n1.5) group operations, which is superior to all prior work
that needs O(n2) group operations (when considering optimal resilience).

The methodology: deterministic sharding + CDSS. While the cubic communication cost
of existing DKGs comes from that every participant needs to broadcast to the whole population.
To get around this, our central methodology is deterministic sharding, which simply partitions
the whole population into small-sized shards, by following an arbitrarily pre-defined rule; together
with CDSS, a new secret sharing primitive Consortium-Dealer Secret Sharing we formulated (to
be explained soon), which can enable each shard to jointly contribute one secret, but at the cost of
only one single-sender BB.

On rough terms, we let each individual only broadcast to the shard it belongs to, and essentially
only one population-level broadcast is needed from each shard (“viewing” as one participant, still
jointly executed by the shard members). In this way, we can hope to reduce the communication (say
there are

√
n shards each with

√
n nodes) to O(nBB√

n(·) +
√
nBBn(·)). It is conceptually similar

to a “decentralized representative system” where opinions of the whole population are formed only
among representatives of each community, but the “representatives” are jointly emulated by all
members of the corresponding community, without incurring much communication overhead.

6 Common coin protocols that rely on external sources (like stock price [13] or blockchain states [14,16]) or an initial
common coin [26,38,58] (which is strictly stronger than common reference string (CRS) model, as the coin has to
be independently generated after the PKI setup) do not fit into our setting. These strong setups are unfavorable
and may even contradict the primary objective of DKG (or a single-shot coin).

7 We discuss the instantiations of BA/BB in detail in Sect.2.1 and here we assume we have optimal BA/BB elsewhere,
i.e., BAk(ℓ) = BBk(ℓ) = kℓ+ k2λ.
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Table 1. Comparison with the state-of-the-art synchronous DKG protocols.

Schemes Resi. Field? PV?
Comm. Cost (total) Comp. Cost

Round
w.oracles opt.imp. (per node)

Pedersen [52] 1/2 ! % O(n · BBn(nλ)) O(n3λ) O(n2) O(∆BB(n))
KZG [43](G.)

1/2 ! %
O(n · BBn(λ)) O(n3λ) O(n logn)

O(∆BB(n))
KZG [43](B.) O(n · BBn(nλ)) O(n3λ) O(n2)

FS [33] 1/2 ! ! O(n · BBn(nλ)) O(n3λ) O(n2) O(∆BB(n))

GJM+ [42] logn
n

% !
O(nBBn(λ)+
logn · BBn(nλ))

O(n3λ) O(n log2 n) O(∆BB(n))

SBKN [55] 1/2 ! ! O(n3λ) O(n2) O(n)

Ours Sect.4 1/2 % !
O(n · BB√

n(nλ)
+
√
n · BBn(nλ))

O(n2.5λ) O(n1.5) O(∆BB(n))

Ours Sect.5 1/2 ! %
O(n · BB√

n(nλ)
+
√
n · BBn(nλκ))

O(n2.5λκ) O(n1.5κ) O(∆BB(n))

λ: computational security parameter; κ: statistical security parameter
Resi.: the maximal fraction of byzantine nodes the protocol can tolerate.
Field? asks if the secret key is in a finite field Zp for some prime p.
PV? asks if the transcripts of the protocol are publicly verifiable.
Round: ∆BB(n) is the number of rounds of a Byzantine broadcast among n parties.
Comp.Cost measures the number of group exponent operations performed by each node. We assume the
optimization from [19] has been applied whenever applicable.
Comm.Cost measures the number of bits sent by all honest nodes. In w.oracles, the cost is analyzed with oracle
calls to BB/BA.
In opt.imp., we calculate the cost with optimal BB and BA protocols. Some caveat exists, nevertheless, our claim
of sub-cubic communication still holds, and we discussed in detail in Sect.2.1.
In KZG (G.), we analyze the cost of the optimized KZG protocol [61] when there is no complaint; In KZG (B.), we
analyze the cost when there are O(n2) complaints.

The idea of dividing participants into groups is not new, conventional sharding techniques
(originated from the database community) exist in the literature [27, 60] for consensus and more.
However, our deterministic sharding is fundamentally different: conventional sharding for consensus
protocols usually aims to improve the throughput, thus letting each shard concurrently output
transactions, and hoping all shard transactions can be collected and confirmed. This in turn requires
almost every shard to function properly, thus relying on common coins (which we don’t have for
DKG and of course for common coin itself) to randomly divide the population to ensure the
corruption ratio in each of the shards, while ours is deterministic and arbitrary.

Nonetheless, we observe that for DKG, we may not need the above strong guarantee for each
shard: recall the secret key sk is the form of

∑
sk(i), where sk(i) is contributed by shard-i. Having

one honestly contributed is sufficient for the secrecy of sk. We further observe that even with a
deterministic sharding, there is always at least one shard that contains an honest majority.

The core components: consortium-dealer secret sharing. After deterministically divid-
ing population into small-size shards, our main technical tool is to make each shard “behave” like
a single node to contribute one secret to the whole population, in terms of both security and
efficiency.

Specifically, the secret contributed by a good shard should remain secret to the adversary, and
the total communication cost should be close to that of a single-sender broadcast. Trivial approaches
have to sacrifice one of the two: If all nodes in the shard distribute their secrets independently to all
n nodes, the cost is blown up to cubic again; if only one node in each shard contributes the secret,
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we may lose secrecy (as we have no way to pick an honest one). We formulate a new secret sharing
primitive CDSS to capture this functionality, where a group of dealers (in one shard) form a dealer
consortium and jointly share one secret with a larger population. If the dealer consortium has an
honest-majority, it is as good as a conventional secret sharing with an honest dealer: all receivers
have correct shares while the adversary does not know the secret. If not, we still have robustness
which ensures all receivers obtain a correct share (or abort). We then show a DKG can be built
by concurrently executing multiple CDSS instances where each shard acts as a dealer consortium.
Please see Sect.4.1 for details.

Constructing CDSS efficiently requires conquering the following challenges: first, similar to
conventional DKG, when nodes (now in each shard) jointly contribute one secret sk(i), they need
to distribute each of their shares to the whole population for future reconstruction; but at the
same time, they cannot directly reveal those shares — they together can be used to reconstruct
sk(i), which might be the only “good” secret (thus adversary can recover the final sk without
enough shares). We leverage the aggregatable PVSS [19,42] 8 to handle the secrecy concerns of the
shard secret. PVSS produces a sequence of encrypted shares under receivers’ public keys with proof
of well-formedness of ciphertexts; aggregatable PVSS allows to compression of many transcripts
(including the ciphertexts and proofs) into one. We let each node in the shard generate a PVSS
transcript for the whole population but only broadcast it within the shard. Then, everyone in the
shard aggregates the received PVSS transcripts into the same (because of the public verifiability)
one transcript (sk(i) is not leaked at all), which is to be sent to the whole population.

Next is to deliver the (aggregated) shard transcript to the whole population. The security-
efficiency dilemma strikes again: letting everyone broadcast ruins our efforts to reduce communi-
cation, while if the task is assigned to only a small number of nodes, they could all be malicious.
To tackle this issue, we formulate a new primitive called consortium-sender byzantine broadcast
(CSBB) for a consortium of senders to broadcast to a larger population at the cost of one-sender
broadcast. BB protocols usually consist of a delivery phase, where the sender sends the message
to receivers; and an agreement phase, where all receivers agree on the same message. Inspired by
(but different with) BA extension protocols [46], we utilize error-correction code [12] to realize a
conceptual “deduplicable storage system”: all shard members “store” their transcript into it, and
receivers can retrieve the most frequently appeared one. While the “storage system” can serve as an
efficient delivery phase, we can have a secure broadcast protocol by following only one agreement
phase. We also use a cryptographic accumulator [50] to help error-correction. Please see Section.4.2
for details.

A simple corollary: a sub-cubic common coin protocol. Our DKG protocol gives rise to a
sub-cubic common coin protocol. Concretely, to produce a common coin, a group of n participants
initiates our DKG protocol. Upon the DKG’s completion, participants exchange their secret shares
amongst themselves. Subsequently, they can reconstruct the secret key and derive the common
coin by hashing this key. Given that the adversary lacks prior knowledge of the secret key, the

8 We remark aggregatable PVSS has been leveraged recently to reduce the cost of DKG by Gurkan et al. [42]
from nBBn(nλ) to nBBn(λ) + logn · BBn(nλ) (but it is still O(n3λ), and with the price of lowering resilience to
O(logn/n)). We take a different approach to use aggregatable PVSS together with deterministic sharding and our
customized CDBB (to be explained), finally breaking the cubic barrier.
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coin remains unpredictable and unbiased in the random oracle model. Table.2 9 contrasts this
construction with other common coin protocols that don’t rely on a strong setup.

Table 2. Comparison with common coin rotocols without a strong setup

Techniques Schemes Resi.
Comm. Cost Comp. Cost

total (per node)

Time-lock Puzzl. TCLM [56] n−1
n

O(n · BBn(λ)) Time-lock Puzzl.
PVSS Scrape [19] 1/2 O(n · BBn(nλ)) O(n2)

Leader-PVSS OptRand [10] 1/2 O(n3λ) O(n2)

DKG Ours 1/2
O(n · BB√

n(nλ)
+
√
n · BAn(nλ))

O(n1.5)

Extension to DKG for field-element secrets. We then present a DKG protocol whose secret
key is in the finite field Zp for some secure prime p, while it enjoys the same complexity and
security as our group-element DKG does. This protocol can be a drop-in replacement for ElGamal
encryption, BLS signature [7], Schnorr signature [54], and more [40].10

The technical challenge arises from the current incompatibility of aggregatable PVSS with
field-element secrets. To address this, we adopt a more general approach, constructing a CDSS
from a conventional (non-aggregatable) PVSS scheme. In our CDSS with group-element secrets,
aggregatable PVSS is employed to reduce the message size broadcasted by the dealer group while
ensuring the secrecy of the corresponding secret key against adversaries. We observe that both
goals can be achieved using a common coin within the dealer group. After the dealers broadcast
their PVSS transcripts within the group, a common coin is employed to determine a small number
(denoted by κ, linear to the statistical security parameter) of valid transcripts. This ensures that
at least one of them is from an honest dealer with overwhelming probability. The dealer group
then broadcasts all selected transcripts to all receivers via CSBB. Finally, the receiver decrypts all
transcripts and computes the sum of the decrypted values as the received share. As at least one
transcript is from an honest dealer, the secret key remains unknown to the adversary. However,
since the dealer group now needs to broadcast κ PVSS transcripts, the communication cost is higher
than that of the aggregatable PVSS-based approach by a factor of κ. Please refer to Section 5 for
detailed information.

PVSS with simulation-based security. While our DKGs use (aggregatable) PVSS as building
blocks, we find it challenging to provide a modular security proof due to the gap between the secrecy
definitions of DKG and PVSS. Specifically, DKG requires simulation-based secrecy since it should
simulate a trusted key generation process of, e.g., threshold cryptosystems. In contrast, existing
works formalize PVSS’s secrecy with a game-based indistinguishability definition. This approach
cannot capture the secret key distribution from an adversarial view and fails to address potential
malleability issues. Given these gaps, PVSS-based DKG constructions like [42] must reduce their
security to underlying hard problems without using the abstraction of PVSS.

9 Notably, we omit various randomness beacon schemes, such as those based on PoW/VDF [58], as they pre-suppose
an initial coin, making them unsuitable for single-shot common coin generation.

10 [40] showed was that key-expressable DKG suffices for rekeyable primitives including ElGamal and BLS. While
Schnorr signature is not rekeyable, its key generation algorithm can also be securely instantiated with a key-
expressable DKG, as recently discussed in [40]
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We close this gap by studying simulation-based security for PVSS, similar to zero-knowledge
proof definitions, including: (1) Secrecy. A PVSS transcript w.r.t. a uniform public key can be
simulated without knowing the secret key. (2) Soundness. Any adversary cannot produce a valid
transcript that will be decrypted to a set of inconsistent shares. (3) Simulation soundness. Some
form of soundness must be preserved, even the adversary has seen a simulated transcript.

Simulation soundness provides a certain guarantee of non-malleability that is indispensable for
proving simulation based security for DKG. To facilitate a formal definition, we further let each
transcript carry a tag or its creator identity (CID). Only transcripts with different CIDs than the
simulated one will be considered as a successful attack against simulation soundness, excluding
the trivial attack of duplicating the simulated one. For aggregatable PVSS, we view the aggregated
transcript in the same form as the original ones, such that the above security applies to aggregatable
PVSS. Please see Sect.3 for more details.

Regarding constructions, it’s not surprising to see some existing PVSS schemes already sat-
isfy our definitions. We demonstrate a PVSS satisfying our definitions in Appendix.A by slightly
modifying existing constructions like [33, 37]. We showcase a simplified variant of Gurkan et al.’s
aggregatable PVSS [42] in Appendix.B.

1.2 Related Works

Distributed Key Generation (DKG) has emerged as a significant research domain over the decades.
Pedersen [52] laid the groundwork in this area by presenting the first efficient protocol for Dlog-based
cryptosystems, which is built upon Feldman’s Verifiable Secret Sharing (VSS) [30]. In Pedersen’s
approach, all users collaboratively execute n instances of Feldman’s VSS, with each user acting as
the dealer for one instance.

Within Feldman’s VSS framework, the dealer must broadcast a commitment to a polynomial
while privately dispatching the shares to all other users. Given that the commitment size is O(nλ),
the communication overhead stands at O(nBBn(nλ)), where BBn(ℓ) represents the communication
cost for executing a Byzantine broadcast protocol among n nodes with an ℓ-bit input. Furthermore,
Pedersen’s DKG necessitates a complaint phase where users broadcast their complaints against
dishonest dealers. Considering that a user might broadcast multiple complaints simultaneously, the
communication overhead for this phase also matches O(nBBn(nλ)). It’s crucial to note, however,
that during this complaint phase, each user might verify up to O(n2) shares. For Feldman’s VSS,
the computational cost associated with verifying a single share amounts to O(n) group operations.
Therefore, the per-node computational overhead before the complaint phase is O(n2), which can
escalate to O(n3) in the complaint phase.

Most DKG constructions adhere to the joint-VSS paradigm. Essentially, every novel VSS pro-
tocol can be transformed into a new DKG protocol. Moreover, since VSS can be established on
polynomial commitments, every polynomial commitment scheme can also culminate in a VSS and,
ultimately, a DKG. Kate et al. [43] proposed the first polynomial commitment (denoted as KZG)
with an O(λ) commitment size. Consequently, prior to the complaint phase, the communication
cost can be tapered down to O(nBBn(λ)). This, however, is still asymptotically O(n3λ), even when
paired with an optimal broadcast protocol. An added advantage of the KZG polynomial commit-
ment is its efficiency in share verification; verifying a single share incurs a mere O(1) cost. This
implies that the per-node computational cost for verification before the complaint phase is a mere
O(n) in group operations, though it can inflate to O(n2) during the complaint phase. While the
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computational overhead for generating the polynomial commitment was believed to be O(n2) [57],
a novel study by Zhang et al. [61] demonstrated that the computational overhead for generating
a KZG commitment can be optimized to O(n log n). Though KZG mandates a CRS setup, other
endeavors [59,61] focusing on efficient polynomial commitments without a trusted setup have been
explored, but they fall short of KZG’s efficiency.

Fouque and Stern [33] circumvented the need for a complaint phase by integrating publicly
verifiable secret sharing (PVSS). Given that a PVSS transcript encompasses O(n) ciphertexts,
the communication cost invariably aligns with O(nBBn(nλ)), should all users opt to broadcast
the transcript. Traditionally, verifying a PVSS transcript demanded an O(n2) overhead, implying
that the per-node computational cost in DKG could reach O(n3). This hurdle was overcome by
Cascudo and David in Scrape [19], which introduced a PVSS scheme that limits verification time to
O(n). Notably, Scrape’s methodology is versatile and can be applied to enhance several preceding
techniques, including Pedersen’s, ensuring that the computational overhead during the complaint
phase remains at O(n2) rather than surging to O(n3). A dedicated line of research, evident in works
like [37], has aimed to refine the concrete performance of PVSS.

Gurkan et al. [42] harnessed an aggregatable PVSS in tandem with gossip protocols to devise
a publicly verifiable DKG. Their communication cost is nBBn(λ) + log n · BBn(nλ) (still O(n3λ))
instead of nBBn(nλ), and their per-node communication cost is O(n log2 n). However, their scheme
can only tolerate O(log n) Byzantine nodes. Shrestha et al. [55] charted a different path, presenting
a DKG without resorting to BB protocols. Instead, they employed an MVBA [46] protocol to
facilitate agreement, which culminates in an O(n3λ) communication overhead. They posited that
achieving optimal resilience with BB without a private setup should require O(n3) communication
cost. Yet, in light of recent advancements in transparent threshold signatures [4], this hypothesis
might need reevaluation. We delve deeper into the intricacies of BB/BA in Sect.2.1, while elsewhere,
we assume the existence of an optimal BA/BB.

Beyond these efforts directed at augmenting the efficiency of DKG, there have been other
studies addressing this challenge from distinct criteria. Gennaro et al. [36] discerned that the secret
key distribution in Pedersen’s DKG could be influenced by adversarial entities. They rectified this
shortcoming, achieving full secrecy but at a higher computational cost. Gurkan et al. [42] introduced
a weaker version of secrecy termed “key-expressability”, which postulates that adversaries might
influence key distribution but within confined parameters. They argued that a key-expressable
DKG suffices for a plethora of applications, with numerous DKG frameworks, including those of
Pedersen [52], Fouque-Stern [33], and our own, aligning with this definition. Canetti et al. [18]
contributed a DKG protocol with adaptive security, a contrast to our model and several others
that ensure security against only static adversaries. Recent contributions by Bacho and Loss [7]
introduced an oracle-aided adaptive definition and verified that multiple protocols align with this
definition in the algebraic group model.

Lastly, a few recent endeavors [3, 25, 34] have shifted the focus towards DKG in asynchronous
networks. These constructions adopt the joint-VSS framework and rely on an asynchronous broad-
cast protocol termed “reliable broadcast” [15] to ensure verifiability, consequently still facing the
cubic computational barrier. Notably, Das et al. [25] presented the pioneering asynchronous DKG
with an O(n3λ) communication overhead for field-element secrets, while Abraham et al. [3] delivered
an adaptively secure asynchronous DKG with same complexity.
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Concurrent Work: In a very recent concurrent work [6] 11, Bacho et al. also introduced a DKG
with sub-cubic communication complexity. Here, we provide a comparison between two works.

Regarding techniques, the one introduced in [6] and ours differ significantly. Their DKG em-
ploys dedicated consensus to agree on aggregated PVSS transcripts, while ours leveraging arbitrary
grouping together with consortion dealer secret sharing (and broadcast), which can be built upon
any BB/BA in a blackbox manner. These underlying techniques may find different applications be-
yond DKGs. Also, these different techniques may lead to different efficiency, security, functionality
trade-offs as briefly elaborated below.

In terms of communication complexity, their DKG (with a communication complexity ofO(n2 log nλ))
asymptotically outperforms our current constructions. We didn’t do further optimization when get-
ting communication down to sub-cubic; in principle, our techniques maybe applied recursively and
further bring down the communication complexity.

Regarding functionality, we provide sub-cubic DKGs for both group-element secrets and field-
element secrets, while [6] only demonstrates a DKG with group-element secrets. It is worth noting
that it is possible to use the DKG in [6] as a common coin to construct a communication-efficient
DKG with field-element secrets, for instance, by sampling a committee of dealers [31]. However,
the resulting scheme cannot be strongly adaptively secure [2], even assuming an adaptively secure
PVSS with field-element secrets. In contrast, our field-element DKG can be strongly adaptively
secure, assuming an adaptively secure PVSS and memory erasures.

In terms of security, the two results are generally incomparable. While their primary application
is a randomness beacon, the DKG in [6] is proven to be unpredictable against adaptive adversaries
in the algebraic group model. In contrast, our focus is on applications to threshold cryptography,
and we prove that our DKG satisfies key-expressibility against static adversaries in the standard
model (while our instantiations may assume a random oracle). However, we believe there is no
significant gap between the security guarantees provided by the two works. Our DKG schemes can
be adaptively secure if the underlying components, particularly the PVSS scheme, are adaptively
secure. By utilizing the adaptive PVSS scheme introduced in [8], our group-element DKG can
achieve the same security guarantee as the DKG in [6]. Conversely, if focusing on static security,
their DKG may achieve the stronger key-expressibility, although further analysis is required.

2 Model, Preliminaries, and Protocol Composition

Notations. Throughout the paper: We use λ to represent the security parameter. The notation
[i, n] represents the set {i, i+1, · · · , n}, where i and n are integers with i < n. We might abbreviate
[1, n] simply as [n]. For a set {x1, x2, . . . , xn} and a sequence (x1, x2, . . . , xn), we may abbreviate
them as {xi}i∈[n] and (xi)i∈[n], respectively. A function f(n) is deemed negligible in n, denoted
by f(n) ≤ negl(n), if for every positive integer c, there exists an n0 such that for all n > n0,
f(n) < n−c. Conversely, a non-negligible function is denoted as f(n) > negl(n). For a set X,
the notation x ←$ X signifies sampling x uniformly from X. Given a distribution X, x ← X
denotes sampling x from X. For a probabilistic algorithm A, A(x1, x2, · · · ; r) represents the result
of running A with inputs x1, x2, · · · and random coins r. We use y ← A(x1, x2, · · · ) to represent
choosing r randomly and obtaining y = A(x1, x2, · · · ; r). If ⊙ represents a group operation in G,
then g1 ⊙ g2 · · · ⊙ gn is denoted as

⊙
i∈[n] gi where each gi ∈ G. An execution of the protocol Π

11 A preliminary version of our paper was submitted to Eurocrypt 2024 in October 2023, while [6] was available
online in December 2023.
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involving n participants Pi, each with inputs vi, is represented by Π⟨{Pi(vi)}i∈[n]⟩. Adversaries are
assumed to be probabilistic polynomial time (PPT).

Communication and threat model. We assume the network is synchronous and the protocol
proceeds in rounds. The network is fully connected, meaning there is a communication channel
between each pair of nodes. We assume the channel is authenticated since every message is signed
by its sender using an existentially-unforgeable signature scheme. Every message sent by an honest
node is guaranteed to be received by an honest recipient before the beginning of the next round.
We measure communication complexity by the number of bits sent by honest nodes.

We assume an initial phase that optionally generates a common reference string (CRS) and
sets up PKI for every participant. We consider a static adversary A, which, given the CRS (if
any), specifies the set of corrupted nodes, and generates the public keys on behalf of the corrupted
nodes after seeing public keys of honest nodes. After the inital phase, all public keys and CRS are
accessible to every participant, and A can arbitrarily control the behaviour of corrupted nodes.
Allowing A to determine the corrupted set after observing the CRS aligns with many scenarios
where the CRS was universally established and reused across multiple executions.

2.1 Byzantine Agreement and Broadcast

Byzantine Agreement. In an (n, t, ℓ)-Byzantine Agreement (BA) protocol, there are n parties
P1, . . . , Pn, each Pi having an ℓ-bit initial input vi, denoted as BA⟨Pi(vi)⟩. Against any adversary
A that corrupts up to t parties, a secure BA ensures the following properties:

• Validity. If all honest parties share the same input v, they all output v.
• Agreement. All honest parties output the same message.
• Termination. All honest parties produce an output message.

Byzantine Broadcast. In an (n, t, ℓ)-Byzantine Broadcast (BB) protocol, there is a sender Ps

with ℓ-bit input message msg and a set of receivers P = {P1, . . . , Pn}, denoted as BB⟨Ps(msg),P⟩.
A secure BB has the same agreement and termination guarantee as BA does, while it concerns the
following validity.

• Validity. If the sender is honest, all honest receivers output the sender’s input message msg.

Instantiations of BA and BB. We first examine the candidates of BA protocols. For ease of
reference, we use BAn(ℓ) to denote the communication complexity of a BA protocol among n parties
with ℓ-bit input. We summarize the status in Table.3, and elaborate on them in the following.

Table 3. Summary of BA Protocols

Candidates BAn(ℓ) Resilience Setup Computation

B1 + E1 O(nℓ+ n2λ) t < (1/2− ϵ)n CRS light

B1 + E2 O(nℓ+ n2 lognλ) t < (1/2− ϵ)n Transparent light

B2 + E2 O(nℓ+ n2 lognλ) t < n/2 Transparent moderate

B3 + E1 O(nℓ+ n2λ) t < n/2 CRS heavy

In scenarios where ℓ = O(λ), Momose and Ren [47] have presented the state-of-the-art protocols.
These include:
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• A BA protocol (referred to as B1) with BAn(λ) = O(n2λ), capable of tolerating t < (1/2− ϵ)n
corruptions, for any positive constant ϵ ∈ (0, 1/2). This protocol requires only conventional
digital signatures.

• Another BA protocol with BAn(λ) = O(n2 · thrSigSize), tolerating t < n/2 corruptions, where
thrSigSize is the size of a threshold signature. Traditional threshold signatures require either
trusted key generation or a DKG phase, which is unfavorable for our purpose. However, recent
progress [4] provides a threshold signature of size O(λ log n) with a transparent setup (referred
to as B2). Additionally, a constant-size zk-SNARK [39] can also yield a threshold signature of
O(λ) size (referred to as B3).

For cases where ℓ > k, Nayak et al. [48] have provided extension protocols. These result in
BAn(ℓ) = O(n · ℓ + BAn(λ) + n2λ) if a CRS for a pairing-based accumulator is allowed (referred
to as E1). Alternatively, if the CRS is not allowed, the complexity becomes BAn(ℓ) = O(n · ℓ +
BAn(λ) + n2 log nλ) (referred to as E2).

It has been suggested that BAn(ℓ) = O(nℓ + n2λ) could be optimal for ℓ > λ in the PKI
setting [48], despite the proved lower bound being O(nℓ+n2) [28]. Combining B3 and E1 could yield
a BA protocol with optimal communication complexity and optimal resilience t < n

2 , although it
necessitates a CRS setup and potentially intensive computation. Other combinations may alleviate
concerns about setup or computation, offering sub-optimal communication complexity or resilience.

For t < n/2, a BB protocol can be considered where the sender first multicasts its input to all
receivers, and then the receivers execute a BA protocol to finalize their output. Thus, BBn(ℓ) =
O(BAn(ℓ)). Suitable instantiations follow our discussion about BA protocols

Nevertheless, the study of optimal BA/BB protocols is a rapidly evolving field and largely
unrelated to our primary focus. Hence, for simplicity, in the remainder of this paper, we assume a
BA protocol with optimal communication complexity and resilience and do not account for potential
setup requirements and computational overhead.

2.2 Distributed Key Generation

Homomorphic Key Structure. We consider a generic homomorphic key structure. Let SK
represent the group of secrets with the operation ⊕, and let PK denote the group of public keys with
the operation ⊗. The structure includes a PPT algorithm KeyGen and a relation Rela ⊂ (PK,SK)
such that

Pr[(pk, sk)← KeyGen(1λ) : (pk, sk) ∈ Rela] = 1.

We say that (PK,SK) forms a homomorphic key structure if Rela is homomorphic. That is, for any
pk1, pk2 ∈ PK and sk1, sk2 ∈ SK such that (pki, ski) ∈ Rela (i = 1, 2) and any integers α, β ∈ N, it
holds that

(αpk1 ⊗ βpk2, αsk1 ⊕ βsk2) ∈ Rela.

The key generation algorithm KeyGen should satisfy specific properties to be useful in cryptogra-
phy. However, these specificities are not central to our discussion on securely decentralizing the
algorithm.

Instantiation. Throughout this paper, we focus on two key structures. The first is the standard key
structure in DLog-based cryptography. Here, the key generation algorithm yields sk ←$ SK := Zp

and pk = gsk ∈ PK := G, where p is a secure prime and g is a generator of a cyclic group G of
order p. The relationship (pk, sk) ∈ Rela holds iff pk = gsk.
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The second structure is a pairing-based one [42]. In this structure, the key generation algorithm
creates pk = (gs, us) ∈ G1 ×G2 and sk = hs ∈ G2, where s←$ Zp for a particular secure prime p.
G1 (with generator g) and G2 (with generators u and h) are cyclic groups of order p. A bilinear
map e : G1×G2 → GT exists. The relation (pk = (pk′, pk′′), sk) ∈ Rela holds iff e(pk′, h) = e(g, sk)
and e(pk′, u) = e(g, pk′′). Here, pk1 ⊕ pk2 = (pk′1 · pk′2, pk′′1 · pk′′2).

DKG.An (n, t)-DKG protocol for {PK,SK}, denoted asΠDKG, involves n parties, P = (P1, . . . , Pn).
After execution, each Pi outputs a public key pk ∈ PK, a list of public key shares (pki)i∈[n] ∈ PKn,
and a secret key share ski ∈ SK. The protocol includes an initial phase and a reconstruction
algorithm:

• Init(1λ, n). It generates a CRS crs and establishes the PKI for P.
• Rec((i, ski)i∈I). Given a set of t+ 1 secret key shares as input, it outputs the secret key sk for
pk.

In this paper, we address ΠDKG meeting both robustness and key-expressability, the latter being
a weaker form of secrecy.

• Robustness: ΠDKG is robust if, even when up to t parties are compromised, every honest
Pi outputs the same (pk, (pki)i ∈ [n]), and its ski satisfies (pki, ski) ∈ Rela. Additionally, for
any two sets, I1 and I2, with t + 1 honest participants each, a unique secret key sk can be
reconstructed from their secret shares, as described by the equation below:

Pr

[
Rec(pk, (pki)i∈[n], {ski}i∈I1) = Rec(pk, (pki)i∈[n], {ski}i∈I2)

∧(pk,Rec({(i, ski)}i∈I1)) ∈ Rela

]
= 1.

• Key expressability: ΠDKG is key expressable if, for any PPT adversary A that compromises
up to t nodes, a PPT simulator SimA exists such that the following equation holds for any PPT
distinguisher A′:∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

Π
A
DKG⟨{Pi(1

λ)}i∈[n]⟩
→ (pk, viewA) :

A′(pk, viewA) = 1

− Pr



KeyGen(1λ)→ (pk, sk),

SimA(pk)→ (sk′, pk′,

α ∈ Z+, sviewA) :

A′(αpk ⊗ pk1, sviewA) = 1

∧ (sk′, pk′) ∈ Rela



∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where the notation ΠA
DKG⟨{Pi(1

λ)}i∈[n]⟩ → (pk, viewA) represents an execution of ΠDKG involv-
ing the adversary A, including the initial phase. Here, pk is the public key generated by the
execution, and viewA represents the adversary’s view during the execution, including all public
messages and its internal states; KeyGen is the default key generation algorithm for (PK,SK).

The concept of key-expressability is weaker than full secrecy as described in [36]. The latter
ensures that a computationally bounded adversary cannot deduce any information about the se-
cret sk beyond what’s publicly available. However, as demonstrated in [42], key-expressability is
sufficient for instantiating the key generation algorithm for a variety of cryptosystems which are
“re-keyable”, including BLS signatures, ElGamal encryption, etc. Moreover, as shown in [54], it
also suffices for Schnorr signatures. On the ohter hand, some applications such as random coins
may only require the DKG to be unpredictable, i.e., for any PPT adversary A, it holds that

Pr[ΠA
DKG⟨{Pi(1

λ)}i∈[n]⟩ → (pk, viewA),A(viewA)→ sk : (pk, sk) ∈ Rela] ≤ negl(λ).

Unpredictability is clearly implied by key expressability.
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2.3 Other Cryptography Primitives

Cryptographic accumulators. A cryptographic accumulator provides a succinct representation
of a set while ensuring efficient membership verification. Formally, such an accumulator scheme,
denoted as Acc, comprises the following four algorithms: (1) Gen(1λ, n) outputs an accumulator key
ak. (2) Eval(ak,S) on inputs ak and a set S to be accumulated, it returns an accumulated value u
for the set S. (3) Wit(ak, u,S, si) on inputs ak, u for the set S, and an element si ∈ S, it returns a
membership witness wi for si. (4)Vrfy(ak, u, si, wi) decides if si is an element accumulated into u,
using the witness wi.

An accumulator scheme is correct, if for ak ← Gen(1λ, n), any set S = {si}i∈[n], u← Eval(ak,S),
and any wi ←Wit(ak, u, si), it holds that Pr[Vrfy(ak,
u, si, wi) = 1] = 1. An accumulator scheme is unforgeable, if for an honestly generated ak, and any
PPT adversary,

Pr
[
(S, s∗, w∗)← A(ak) : s∗ /∈ S ∧ Vrfy(ak,Eval(ak,S), s∗, w∗) = 1

]
≤ negl(λ).

For simplicity, throughout this paper, we consider an accumulator scheme whose Eval and Wit are
deterministic.
Instantiation. We primarily consider the pairing-based accumulator [50] which requires a CRS and
has O(λ)-sized witness. Merkle tree is also a candidate featured by its transparent setup, although
the witness size is O(λ log n).

Erasure code scheme. A (k, n)-erasure code scheme [12] consists of two deterministic algorithms
Encode and Decode. The Encode algorithm maps any vector m = (m1, · · · ,mk) of k data fragments
into an vector c = (c1, . . . , cn) of n coded fragments, such that any k elements in the code vector
c is enough to reconstruct m due to the Decode algorithm. I.e., for any m ∈ Bk and any I ⊂ [n]
that |I| = k, we have

Pr[Decode({(i, ci)}i∈I) = m | c := (c1, · · · , cn)← Encode(m)] = 1.

Instantiation. Throughout the paper, we consider a (t+1, n)-erasure code where 2t+1 = n. Addi-
tionally, it’s important to note that this erasure code scheme will implicitly select an appropriate
B based on the actual length of each element in v. This ensures that the encoding results in only
a constant size increase.

NIZK. A non-interactive zero-knowledge (NIZK) proof system Π, for an NP language L, enables
the prover, who holds a witness of an instance x ∈ L, to convince the verifier that x ∈ L via a
single proof. Typically, it can be described by the following a triple of probabilistic polynomial-time
(PPT) algorithms:

• σ ← Setup(1λ). The setup algorithm outputs a CRS σ.

• π ← Prove(σ, x, w). The prover algorithm takes as inputs the CRS σ, an instance x ∈ L with
its witness w ∈ RL(x), and outputs a string π called a proof.

• b ← Verify(σ, x, π). The verifier algorithm takes as inputs σ, an instance x and a proof π, and
outputs either 1 accepting it or 0 rejecting it.

We consider a NIZK satisfying completeness, zero-knowledge, and simulation soudness.

1. Completeness: For all security parameters λ ∈ N and for all x ∈ Lλ and w ∈ RL(x),

Pr[σ ← Setup(1λ);π ← Prove(σ, x, w) : Verify(σ, x, π) = 1] = 1.
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2. Zero knoweldge: There is a PPT simulator (SimSetup, SimProve), s.t. for every PPT adver-
sary A, we have

Pr[σ ← Setup(1λ) : 1← AO1(σ,·,·)(σ)]−
Pr[(σ, τ ← SimSetup(1λ) : 1← AO2(σ,τ,·,·)(σ)] ≤ negl(λ).

Both the oracles O1 and O2 take as input a pair (x,w) ∈ RL(x). While O1 returns π ←
Prove(σ, x, w), O2 returns π ← SimProve(σ, τ, x).

3. Simulation soundness: For any PPT adversary A, it holds that

Pr

[
(σ, τ)← SimSetup(1λ);(x∗, π∗)← AO2(σ,τ,·)(σ) :

Verify(σ, x∗, π∗) = 1 ∧ x∗ /∈ L

]
≤ negl(λ).

We highlight that NIZK can also be constructed in the random oracle model, without assuming
a CRS.

2.4 Unique Identifier Model

Our DKG constructions are built upon multiple sub-protocols, which could run concurrently. To
ensure the security of our DKGs, each sub-protocol must remain secure during simultaneous op-
erations. Lindell et al. [45] highlighted that many BA protocols retain their security in concurrent
settings if each is given a unique identifier. We define this concept as follows.

Definition 1 (Unique identifier model.). Protocol Π uses a signature scheme Σ = (Gen,Sign,Vrfy)
to sign/verify its messages. In the unique identifier model, every instance of Π gets a distinct iden-
tifier id, leading to a modified protocol Πid. Πid is like Π, but it utilizes Σid = (Gen, Signid,Vrfyid),
where Signid(sk,m) = Sign(sk, id||m) and Vrfyid(vk,m, σ) = Verify(vk, id||m,σ). Different in-
stances must have prefix-free id strings, ensuring one id isn’t a prefix of another.

Simply put, protocols can maintain concurrent security in this model by disregarding messages
with different identifiers, ensuring security akin to isolated settings. Most consensus protocols should
be concurrently secure in this model.

3 Simulation-based Definitions for PVSS

In this section, we provide simulation-based definitions for publicly verifiable secret sharing (PVSS),
making it a valuable tool in the realm of DKG. With the new definitions, we will be able to analyze
our DKGs in a modular way.

Brief Overview. An (n, t)-secret sharing (SS) scheme allows a dealer to distribute a secret s among
n participants. Any group of t+ 1 honest parties can reconstruct s, yet any smaller group (up to t
parties) remains oblivious to s. Whereas SS assumes a trustworthy dealer, verifiable secret sharing
(VSS) addresses the possibility of a malicious dealer by letting a receiver validate the consistency of
its share with a public commitment. PVSS takes VSS a step further: all encrypted shares, complete
with a verification proof, are placed on a public channel for universal validation. An aggregatable
PVSS can compress multiple PVSS transcripts into one single publicly verifiable transcript.
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The Need for Simulation-based Definitions. One of DKG’s core goals is to act as a stand-in
for the trusted key generation phase of threshold cryptosystems. Given this, DKG should be able
to emulate standard key generation to serve a wide range of distributed cryptography applications,
thus DKG usually takes a simulation based security modeling.

However, PVSS was mostly formulated using a game-based indistinguishability definition, termed
IND-secrecy [19]. This definition doesn’t fully capture the essence of key distribution from an ad-
versary’s perspective. It overlooks potential malleability challenges which, in a DKG setting, could
allow adversaries to arbitrarily sway key distribution. This makes a security reduction for DKG
using PVSS as a blackbox inherently challenging.

To bridge this gap, we put forth simulation-based definitions for PVSS. Notably, we enrich
PVSS’s syntax to include the set of creator identities (CID) in each transcript. This prevents ad-
versaries from merely replicating a simulated transcript. It’s worth mentioning that recent research
by Bacho and Loss [8] also formalized aggregatable PVSS and incorporated the ID into its syntax.
However, their primary application was to randomness beacons, and their definitions did not adopt
a simulation-based approach.

The Syntax. We describe aggregatable PVSS with the following eight algorithms/phases. For sim-
plicity, we assume that the “native” transcripts (produced by Deal) and the aggregated transcripts
are in the same form (though they differ by the size of their CID set), and thus all algorithms and
properties apply to both types of transcripts. The syntax and definitions for a (non-aggregatable)
PVSS can be obtained by removing the algorithm Agg.

• Init(1λ, n): In the initial phase, a CRS crs is generated, and the encryption/decryption keys
{(eki, dki)}i∈[n] for all participants are set up. crs is an implicit input for all other algorithms.

• Deal((eki)i∈[n], cid) → (Trans, sk): It produces a secret sk ∈ SK and a transcript Trans, con-
sisting of a commitment com to the secret sk, ciphertexts (ci)i∈[n], a proof π of validity, and the
CID set {cid}.

• Agg({(Transi)}i∈[m], (eki)i∈[n]) → Trans: It outputs an aggregated transcript Trans whose CID
set is {cidi}i∈[m], where cidi is from Transi.

• PubVrfy((eki)i∈[n],Trans)→ b: It checks if Trans is valid.

• getCID(Trans)→ {cidi}i∈[m]: It returns the CID set.

• PubDriv(Trans)→ (pk, (pki)i∈[n]): It derives the public key (shares).

• Dec(eki, dki,Trans) → ski: One can decrypt the ciphertext ci in Trans and obtain the secret
share ski.

• Rec({(i, ski)}i∈I) → sk: It first determines coefficients {αi}i∈I, where αi ∈ N based on I and
reconstructs the committed secret sk as

⊕
i∈I αiski from any subset I ⊂ [n] and |I| = t+ 1.

Security. A PVSS scheme should satisfy correctness, soundness, secrecy, and simulation soundness.
In the following definitions, we use InitA(1

λ, n) → (crs, C, (eki, dki)i/∈C , (eki)i∈C , stA) to denote an
execution of the initial phase involving the adversary A, where C is the set of corrupted nodes, and
stA is the state of the adversary.

• Correctness: Assume InitA(1
λ, n) has been done. For (Trans, sk)← Deal(ek1, ek2, . . . , ekn), the

transcript can always be verified, i.e.,

Pr[PubVrfy((eki)i∈[n],Trans) = 1] = 1, (2)
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Assume {Transj}j∈[m] are valid “native” transcripts, and PubDriv(Transj) → (pk(j), (pk
(j)
i )).

For Agg({Transj}j∈[m], (eki)i∈[n])→ Trans, it holds that PubVrfy((eki)i∈[n],Trans) = 1, and

PubDriv(Trans) = (
⊗
j∈[m]

pk(j), (
⊗
j∈[m]

pk
(j)
i )i∈[n]).

• Soundness: Any adversary cannot produce a valid transcript while it will be decrypted to a set
of inconsistent shares. Formally, assume InitA(1

λ, n) has been done. If a transcript is verified,
i.e., PubVrfy((eki)i∈[n],Trans) = 1, then for any two subsets I1 and I2 of t + 1 uncorrupted
participants, the secret recovered from the transcript is unique, i.e.,

Pr
[
Rec({Dec(eki, dki,Trans)}i∈I1) = Rec({Dec(eki, dki,Trans)}i∈I2)

]
= 1. (3)

• Secrecy: There is a triple of PPT simulators {SInit, SDeal, SRec}. Such that, for any static PPT
adversary A which corrupts up to t nodes, a PVSS transcript by an honest dealer does not leak
sk beyond its public information, i.e., for any cid,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

InitA(1λ, n)→ (crs, C, (eki, dki)i/∈C , (eki)i∈C , stA)

Deal((eki)i∈[n], cid)→ (Trans, sk) :

A(crs, (eki)i∈[n], stA,Trans) = 1



− Pr



KeyGen(1λ)→ (pk, sk),

SInitA(1λ, n)→ (crs, C, (eki)i∈[n], stA, tk),

SDeal((eki)i∈[n], pk, tk, cid)→ Trans :

A(crs, (eki)i∈[n], stA,Trans) = 1

∧ PubDriv(Trans) = (pk, ·).



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ negl(λ), (4)

where KeyGen is the default key generation algorithm of (PK,SK).
• Simulation soundness. Some form of soundness must be preserved, even after the adversary
seeing a simulated transcript. Formally, for any static PPT adversary, it holds that

Pr



KeyGen(1λ)→ (pk, sk),

SInitA(1λ, n)→ (crs, C, (eki)i∈[n], stA, tk),

SDeal((eki)i∈[n], pk, tk, cid)→ Trans,

A(crs, (eki)i∈[n], stA,Trans)→ Trans∗

SRec(tk,Trans∗)→ sk∗,PubDriv(Trans∗)→ (pk∗, ·) :
(pk∗, sk∗) ∈ Rela ∧ cid /∈ getCID(Trans∗)

∧ PubVrfy((eki)i∈[n],Trans
∗) = 1


≤ negl(λ). (5)

Remark that we need both soundness and simulation soundness. The former does not directly
imply the latter due to different ways of extraction.

PVSS instantiation. Conventional PVSS schemes [33,37] with minor enhancements can meet our
definitions. In Appendix.A we present a secure PVSS scheme for the standard key structure in DLog-
based cryptography, i.e., sk ∈ Zp and pk = gsk ∈ G. This scheme is obtained by following the general
“encrypt-and-proof” paradigm, and additionally applying a signature of knowledge (SoK) to embed
a creator ID into its transcript. We further explicitly employ the Scrape’s technique [19] to improve
its verification time. While the PVSS scheme in Appendix.A could have various instantiations, we
summarize the result about an LWE-based instantiation (which can be seen as a variant of [37]) as
its concrete performance stands out.
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Lemma 1. Under the LWE assumption and DL assumption [37], there is a PVSS scheme for the
the standard key structure in DLog-based cryptography, satisfying correctness, soundness, secrecy,
and simulation soundness. Particularly, the transcript size of Trans is O((n)λ). Both Deal and
PubVrfy require O(n) group operations. The computational costs for other functions are minor,
approximately O(1) group operations.

Aggregatable PVSS instantiation. All known aggregatable PVSS are variants of Scrape PVSS
[19,42] for the pairing-based key structure. For completeness, we present a variant of Scrape PVSS
in Appendix.B which meets our definitions. We summarize the result about the instantiation in the
following lemma.

Lemma 2. Under the SXDH and BDG assumption [42], there is an aggregatable PVSS scheme for
the pairing-based key structure, satisfying correctness, soundness, secrecy, and simulation sound-
ness. Particularly, the transcript size of Trans is O((n+m)λ), where m represents the number of
transcripts aggregated into Trans. Both Deal and PubVrfy require O(n) group operations, whereas
Agg demands O(n logm) group operations. The computational costs for other functions are minor,
approximately O(1) group operations.

4 Sharded DKG with Sub-Cubic Communication

Deterministic Sharding. As discussed in Introduction, conventional sharding relies on common
randomness to ensure all shards to have adequate honest participants. This creates a circular issue
for DKG/Coin, which is meant to establish such randomness. Instead, we propose a deterministic
sharding, which divides the population into shards using a deterministic predefined rule. While this
method may not offer a strong guarantee, it still ensures that at least one group maintains the
honesty ratio, which can be leveraged together with CDSS.

Lemma 3 (Any-good Partition). For a population P = {P1, P2, ..., Pn} and a partition S =
{S1,S2, ...,Sm} over [n]. If there are t corrupted nodes, denoted as {Pi}i∈C where C ⊂ [n] and
|C| = t, then there exists a subset Sj such that the proportion of corrupted nodes in {Pi}i∈Sj , given

by
|C∩Sj |
|Sj | is at most t

n .

Proof. Suppose that no subset Sj satisfies the condition, i.e., ∀j ∈ [m], |C ∩ Sj | > t|Sj |
n . It follows∑

j∈[m] |C ∩ Sj | > t. However, we also have
∑

j∈[m] |C ∩ Sj | ≤ |C| ≤ t, which contradicts our as-
sumption. ⊓⊔

The ratio-preservation of deterministic sharding introduces an avenue for more efficient DKG.
Existing DKG designs, rooted in VSS, derive the secret key from the aggregation of all qualified
secret sharings. The key’s secrecy is intact as long as one honest participant is involved. Conventional
designs require the completion of at least t + 1 VSS, leading to Ω(n3) communication complexity
for t = Θ(n). With deterministic sharding ensuring an honest majority in at least one group, we
have the opportunity to treat each group as a “single entity” to share a secret, thereby reducing
required secret sharings while retaining secrecy.

In this section, we introduce a new secret sharing paradigm called Consortium-Dealer Secret
Sharing (CDSS) to realize the idea of treating a participant group as a singular dealer in terms
of efficiency and security. We then outline a DKG framework built on CDSS and present a CDSS
construction for better DKG.
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4.1 DKG from Consortium-Dealer Secret Sharing

Consortium-Dealer Secret Sharing (CDSS). We formalize the notion of CDSS, which enables
a consortium of participants to distribute shares of a random value to a large population.

Syntax. An (n, η, t, τ)-CDSS scheme for (PK,SK) involves n participants P = {P1, P2, . . . , Pn}
with a special subset D = {D1, D2, . . . , Dη} ⊂ P acting as a dealer consortium. It consists of an
initialization phase Init, a deal protocol Deal⟨D,P⟩, and a reconstruction algorithm Rec.

• Init(1λ, n). This sets up the PKI and generates a CRS crs.

• Deal⟨D,P⟩. At the end of the protocol, each receiver Pi outputs a public key pk ∈ PK, a
sequence of public key shares (pki)i∈[n] ∈ PKn, and a secret key share ski ∈ SK.

• Rec({(i, ski)}i∈I). It reconstructs the secret key sk for pk. We require Rec to be linear, i.e., it
first determines coefficients {αi}i∈I where αi ∈ N and reconstructs the secret sk =

⊕
i∈I αiski

for any subset I ∈ [n] with |I| = t+ 1.

We consider the robustness and key-expressability of CDSS in the multi-instance setting. As-
sume that after an honest initialization phase Init(1λ, n), there are m instances {Deal⟨D(j),P⟩}j∈[m]

running concurrently in the unique identifier model (cf. Def. 1). Assume there is a PPT adversary
A that corrupts {Pi}i∈C for |C| ≤ t. We detail each property below.

• Multi-instance robustness. For any A and any integer m polynomial in λ, we have the
following guarantees for each instance:

– For the j-th instance where |{Pi}i∈C ∩ D(j)| ≤ τ , all honest Pi’s output properly. That
is, every Pi outputs the same public tuple (pk, (pki)i∈[n]) and its secret share ski such that
Rela(pki, ski) = 1. Meanwhile, for any two subsets I1, I2 ⊂ [n] and |I1| = |I2| = t+ 1, it follows
that the same sk is reconstructed from {ski}i∈I1 and {ski}i∈I2 , and (pk, sk) ∈ Rela.

– For the j-th instance where |{Pi}i∈C∩D(j)| > τ , all honest receivers either return ⊥ or output
properly.

• Multi-instance key-expressability. For any A and any integer m polynomial in λ such
that ∃j ∈ [m], |{Pi}i∈C ∩ D(j)| ≤ τ , there is a PPT simulator algorithm SimA. For any PPT
distinguisher A′, it holds that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

[
⟨{DealAidj ⟨D

(j),P⟩}j∈[m]⟩ → ((outj)j∈[m], viewA),

s.t. outj = pk(j) or ⊥: A′((outj)j∈[m], viewA) = 1

]

− Pr



KeyGen(1λ)→ (pk, sk),SimA(pk)→ ({tup}j∈[m],

sviewA), s.t. tupj = (sk′(j), pk′(j), α(j)) or ⊥,

outj ← α(j) · pk ⊗ pk′(j), or outj ←⊥ if tupj =⊥:

(if tupj ̸=⊥, then (sk′(j), pk′(j)) ∈ Rela)

∧ (∃j∗, α(j∗) ̸= 0) ∧ A′((outj)j∈[m], sviewA) = 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ negl(λ).

⟨{DealAidj ⟨D
(j),P⟩}j∈[m]⟩ → ((outj)j∈[m], viewA) denotes a concurrent execution of m CDSS

instances {Dealidj}j∈[m] involving A following an execution of the same initialization. outj is

the public key pk(j) that an honest Pi outputs in the instance or ⊥ if it aborts; viewA is the
view of the adversary A, including all public messages and its internal states. KeyGen is the
default key generation algorithm for (PK,SK).
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DKG protocol DKG⟨P⟩ for {PK,SK}

let {S1, · · · ,Sm} be a equal-sized partition over [n]

Round 1 to ∆CDSS( n
m

,n):

// Each shard {Pi}i∈Sj acts as a dealer consortium to distribute a secret to all participants P
Parallely run CDSS.Deal⟨{Pi}i∈Sj ,P⟩ with unique identifiers , ∀j ∈ [m]

At the end of round ∆CDSS( n
m

,n): each Pi ∈ P do

group m CDSS intances into J1, J2 s.t., J1 ∪ J2 = [m], and

J1 : default ouputs ⊥

J2 : valid ouputs {pk(j), (pk(j)
z )z∈[n], sk

(j)
i }j∈I2

output:

pk =
⊗
j∈J2

pk(j), (pkz =
⊗
j∈J2

pk(j)
z )z∈[n], ski =

⊕
j∈J2

skj
i

Fig. 1. DKG from CDSS. ∆CDSS(η,n) is the number of rounds needed for running the CDSS’s deal protocol CDSS.Deal
with a dealer consortium of η members and a receiver set of n nodes.

DKG from CDSS. Let P = {P1, P2, . . . , Pn} be the whole population. Let S = {S1,S2, . . . ,Sm}
be an arbitrary partition of [n]. W.l.o.g, we assume for every Si and Sj it holds that |Si| = |Sj | =
η = n/m. Then, we can have a DKG for the key structure {PK,SK} over P, by parallelly invoking
m CDSS instances, where each shard {Pi}i∈Sj acts like a dealer consortium. We present the protocol
description in Fig.1, while its initialization phase is CDSS.Init and its reconstruction algorithm is
CDSS.Rec.

The security of our DKG inherently stems from the multi-instance security of the CDSS, given
the fact that a least one shard maintains an honest majority.

Theorem 1. The DKG protocol in Fig.1 is a secure (n, t)-DKG, which satisfies robustness and
key-expressability against static adversaries, if the underlying CDSS is a secure (η, τ)-CDSS for
some integer τ ≥ ηt

n , satisfying multi-instance robustness and multi-instance key-expressability.

Proof. The robustness of the DKG is implied by the multi-instance robustness of the underlying
CDSS. Assume that the adversary A corrupts {Pi}i∈C for |C| = t. By Lemma.3, there exists at
least one j∗ ∈ [m], such that |{Pi}i∈C ∩ D(j∗)| ≤ τ . Then, by multi-instance robustness, all honest
participants should output ⊥ for all j ∈ J1 and output properly for all j ∈ J2; Moreover, J2 is non-

empty, as j∗ ∈ J2. For each j ∈ J2, we have (pk
(j)
i , sk

(j)
i ) ∈ Rela for i ∈ [n]. By the homomorphism

of Rela, it follows (ski =
⊕

j∈J2 sk
j
i , pki =

⊗
j∈J2 pk

(j)
i ) ∈ Rela. Then, we argue the secret key sk

reconstructed from any subset of t + 1 secret shares will be identical and satisfy (pk, sk) ∈ Rela.
For I ⊂ [n] s.t. |I| = t + 1, the reconstruction algorithm of CDSS will determine {αi}i∈I. Then,
the unique secret key sk(j) of j-th CDSS is

⊕
i∈I αisk

(j)
i for every j ∈ J2. By description, the

reconstruction algorithm of DKG is also CDSS.Rec, which means the final secret key reconstructed

from {(i, ski)}i∈I is sk =
⊕

i∈I1 αi(
⊕

j∈J2 sk
(j)
i ) =

⊕
j∈J2 sk

(j), which is determined by {sk(j)} and
independent of I.

The key-expressability is implied by the multi-instance key-expressability of the CDSS. We
proceed the proof by constructing the simulator SimA

DKG for any PPT adversary A which corrupts
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{Pi}i∈C for some |C| = t. SimA
DKG directly invokes the simulator SimA

CDSS and ”aggregates” its
outputs.

For clarity, we write the code of the simulator below.

SimA
DKG(pk)

Invoke SimA
CDSS(pk)→ ({tup}j∈[m], sviewA), s.t. tupj = (sk′(j), pk′(j), α(j)) or ⊥,

Compute sk′ =
⊕
j∈J

sk′(j), pk′ =
⊗
j∈J

pk′(j), α =
∑
j∈J

α(j), for J = {j : tupj ̸=⊥}

return (sk′, pk′, α, sviewA)

By the definition of multi-instance key-expresability, no PPT distinguisher A′′ can distinguish
{(α(j) · pk ⊗ pk′(j))j∈J, sviewA} and ((pk(j))j∈J2 , viewA) from the real execution. Notice that

α · pk ⊗ pk′ =
⊕
j∈J

(α(j) · pk ⊗ pk′(j)) and
⊕
j∈J2

(pk(j))

are obtained by applying the same operations on the two tuples. Therefore, there is no PPT
distinguisher A′ can distinguish

(α · pk ⊗ pk′, sviewA) and (
⊕
j∈J2

(pk(j)), viewA)

with non-negligible advantage. Thus, the DKG satisfies key-expressability. ⊓⊔

CDSS construction, intuitions. A straightforward yet non-succinct construction could let every
dealer in the consortium D run a complete secret sharing to all receivers. To reduce the communi-
cation cost, our idea is to let the receiver receive one “aggregated” and valid secret share, instead of
to send multiple shares to be aggregated. In particular, we leverage the aggregatable PVSS, which
enables us to delegate the share aggregation without harming the secrecy.

Assuming the dealer consortium has properly decided on one aggregated PVSS, the next step
is to broadcast this aggregated transcript to all receivers. However, if we simply let every dealer
broadcast the message, the communication cost will be blown up to Ω(ηn2λ) again. In Section.4.2,
we first introduce and construct a new broadcast primitive termed by consortium-sender byzantine
broadcast (CSBB), which allows the dealer consortium to broadcast the aggregated message at the
cost of Θ(n2λ). Then, in Section.4.3, we use this new broadcast primitive as a building block and
construct our CDSS scheme.

4.2 Consortium-Sender Byzantine Broadcast

Definition. An (n, η, t, τ, ℓ) Consortium-Sender Byzantine Broadcast (CSBB) involves n partic-
ipants P = {P1, . . . , Pn} that has a subset D = {D1, . . . , Dη} ⊂ P acting as the sender con-
sortium. The honest senders have the same ℓ-bit input msg. We denote an instance of CSBB by
CSBB⟨D(msg),P⟩. A CSBB is secure, if it satisfies the following properties against any PPT adver-
sary A corrupting up to t parties in P.

• Validity. If all honest nodes in D have the same valid input msg, and the adversary corrupts
up to τ parties in D, all honest parties in P output msg.
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• Agreement. All honest parties output the same message.
• Termination. All honest parties output a message.

A CSBB may have an initialization phase Init(1λ, n) for PKI setup and generating CRS. We require
the CSBB remains all security properties even when there are polynomial many instances running
concurrently in the unique identifier model (cf. Def.1) after the same initization.

Building Blocks. We use a cryptographic accumulator Acc, an error correction code EC, and
a Byantine agreement BA as building blocks. Particularly, Acc provides a succinct representation
of a set while ensuring efficient membership verification. It incorporates the algorithms Gen for
accumulator key generation, Eval to accumulate a set S into a value u, Wit to generate a witness
wi for an element si ∈ S, and Vrfy to verify if si is in the set represented by u using wi. EC includes
deterministic algorithms Encode, which encodes a message into n code blocks (ci)i∈[n], and Decode
to reconstruct a message from any t + 1 code blocks. Formal definitions about the two primitives
are recalled in the preliminaries.

Constructing CSBB. We give a construction for CSBB in Fig.2. A typical construction for BB
is through the multicast-then-BA paradigm: BA guarantees all receiver output the same value.
We follow a similar approach for CSBB, while making necessary changes to the multicast phase
to keep it efficient. Particularly, multicasting a value of ℓ bits to a population of n nodes incurs
O(nℓ) communication cost; if all η senders in the consortium perform the multicast, the cost will
be O(ηnℓ), not better than independently invoking BB for η times when ℓ = O(nλ). To reduce
the communication cost, we utilize the erasure code [12] which is a common trick in distributed
protocols. More specifically, we let each sender in the consortium deterministically encode the
O(nλ)-sized transcript into n blocks (c1, · · · , cn) each having O(λ) bits, and send each ci to Pi. Pi

should receive multiple copies of ci from the senders. However, it only multicasts the block which
appears most frequently to all other receivers. By doing so, the communication cost in the phase
becomes O(nℓ) again. When the sender consortium has an honest majority, Pi will only relay the
correct block of the message. We also follow recent works to use a cryptographic accumulator [50]
to help decode the erasure code in the presence of up to n/2 malicious blocks, such that the receiver
should reconstruct the correct message sent by the sender consortium.

Analysis. We analyze the performance and security of our CSBB. At round 1, each sender in D
sends out (u, cj , wj) whose size is O(|w| + ℓ/n) to every Pj ∈ P. The communication cost of this
round is O(η(ℓ + n|w|)). At round 2, the cost is O(n(ℓ + n|w|)). Adding them together with the
cost of BA, we have the total cost of O((n+ η)(ℓ+ n|w|)) + BAn(ℓ). Regarding computation, each
sender needs to generate n witness, and each receiver needs to verify O(n) witnesses w.r.t. Acc. We
assume without loss of generality that the per-node computation cost is O(n) group operations.

Regarding security, at a high level, the properties of agreement and termination are derived
directly from the security of the BA protocol. Concerning validity, each Pj in the second round will
yield the code cj corresponding to that input. As a consequence, all Pj participants in the third
round can reconstruct the initial input message. By the validity of BA, these participants should
output the original input. The concurrent security essentially follows our intuition that honest nodes
can ignore messages with different identifiers. Formally, we have the following theorem.

Theorem 2. The protocol in Fig.2 is a concurrently secure (n, η, t, τ, ℓ)-CSBB for any t < n
2 and

τ < η
2 in the unique identifier model, assuming the underlying accumulator scheme is secure, and

the BA protocol is concurrently secure in the unique identifier model against adversary corrupting
up to t nodes.
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Init(1λ, n)

(Sig.vki, Sig.ski)← Σ.KeyGen(1λ), generate signing keys for every Pi ∈ P

Acc.Gen(1λ, n)→ ak// Publish the accumulator key as a CRS.

CSBB⟨D(msg),P⟩

Round 1: each Di ∈ D do

(c1, . . . cn)← Encode(msg)

(u, {wj}j∈[n])← Accumulate(ak, (c1, . . . , cn))

send (u, cj , wj) to Pj ∈ P,∀j ∈ [n]

Round 2: each Pj ∈ P do

receive: {(u(i), c
(i)
j , w

(i)
j )} from all Si in round 1.

if ∃I ⊂ [η] ∧ |I| ≥ η − τ, s.t. (u(i), c
(i)
j , w

(i)
j ) = (u∗, c∗j , w

∗
j )∀i ∈ I

send (c∗j , w
∗
j ) to all Pj′ ∈ P, and store u∗

else

send ⊥ to all Pj′ ∈ P, and store u∗ =⊥
End of Round 2 each Pj ∈ P do

receive: {(c∗j′ , w∗
j′)} from all Pj′ in round 2.

if u∗ =⊥, then msgj =⊥
else set C = ∅

for j′ ∈ [n] do

if Acc.Vrfy(ak, u∗, (c∗j′), w
∗
j′) = 1, then C = C ∪ {(j′, c∗j′)}

if |C| = t+ 1, then msgj ← EC.Decode(C), break.

Round 3 to 2+∆BA:

// All participants Pj ∈ P run a BA to decide the output message

BA⟨Pj(msgj)⟩ → msg

each Pj outputs msg.

Algorithm Encode(msg, n, t)

Divide msg into (m1, . . . ,mt)

|mi| = |mj |, ∀i, j ∈ [t]

Compute (c1, . . . , cn)

← EC.Encode(m1, . . . ,mt),

return (c1, . . . , cn)

Algorithm Accumulate(ak, (c1, . . . , cn))

Define C = {(i, ci)}i∈[n]

Compute u← Acc.Eval(ak, C)
for i ∈ [n]

Compute wi ← Acc.Wit(ak, C, u, (i, ci))
return (u, {wi}i∈[n])

Fig. 2. The CSBB protocol. ∆BA(n) denotes the number of rounds needed for the BA protocol for n participants. Σ
is the signature scheme for authenticating messages.

We first give a general definition of concurrent security in the unique identifier model. Intuitively,
a protocol could achieve concurrent security in the unique identifier model if an instance can aptly
“ignore” messages with different identifiers, preserving its security as in the standalone setting.
Though a message sent by Pi in an instance with identifier id can typically be crafted with access
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to the signing oracle Signid(ski, ), we formalize the intuition as security against cross-instance signing
queries (or CIS-Security).

Definition 2 (CIS security). Protocol Π uses signature scheme Σ. In its variant Πid, it employs
Σid. If Πid retains its security properties for any id, even when facing adversaries with signing
oracles Signid′(ski, ·) for any other id′ not prefixed by id and any party’s key ski, it’s termed CIS-
secure.

Now we show our CSBB is concurrently secure in the unique identifier model. We start with the
simple fact that our CSBB transcripts are perfectly simulatable with the help of a signing oracle,
since during the protocol execution honest parties do not use any private input beyond the signing
keys.

Lemma 4. Let A be a PPT adversary that corrupts an arbitrary number of nodes in D and P
in an instance of CSBB with identifier id after Init(1λ, n). There is a simulator SA((Sig.vki)i∈[n])
with access to signing oracles Signid(Sig.ski, ·) for any i ∈ [n], outputting the view sviewA whose
distribution is identical to the distribution of the view of A in a real execution of this instance.

Proof. We let the simulator SA run CSBB with the adversary A by acting on behalf of all honest
nodes. Specifically, SA follows the protocol specification to generate all protocol messages, which is
feasible because no message in our CSBB protocol requires secret input. Before sending a message
msg on behalf of an honest node Pi, S

A queries the oracle Signid(Sig.ski, ·) with msg, and then
sends out msg along with the signature. At the point of A’s view, the execution simulated by SA is
identical to the real execution, and thus the distribution of the simulated view and that of the real
view should be identical. ⊓⊔

Then, we present a generic result that shows CIS-security (cf. Def. 2) will imply concurrent
security, when the protocol transcripts can be perfectly simulatable by using access to signing
oracles. It can be seen as a generalization to Lindell et al.’s result on BA protocols [45].

Lemma 5. Let Π be a protocol that uses a signature scheme Σ in a blackbox manner. Let Πid

be a protocol which is obtained by replacing Σ with Σid. If for any PPT adversary A, its view
in an execution of Πid can be perfectly simulated by a simulator SA with access to signing ora-
cles Signid(Sig.ski, ·), and Π satisfies the CIS security, then Π maintains its security even when
polynomially many instances are executed concurrently in the unique identifier model.

Proof. Assuming there are m instances of Π running concurrently with prefix-free identifiers
{id1, . . . , idm}, we argue the j-th instance maintains all the security properties, for an arbitrary
j ∈ [m]. Since Π is CIS secure, Πidj shall be secure against any PPT adversary having access to
signing oracles Signidj′ () for j′ ̸= j. However, if there exists a PPT adversary A that involves in

all the m instances of Π and breaks the security of the j-th instance, we have a PPT adversary
B with access to signing oracles Signidj′ () for j

′ ̸= j breaking the security of Πidj . The strategy of

B is simple: it invokes A as a subroutine, forwards all messages between A and honest parties in
Πidj , and simulates all other instances by using the signing oracles. From A’s point of view, the
environment simulated by B is identical to that of a real execution. Therefore, B can break the
security of Πidj if A can break the security of j-th instance in the concurrent execution, which
contradicts the CIS security. ⊓⊔
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By Lemma.5 and 4, it would be sufficient for showing its concurrent security by showing its
CIS-security.

Theorem 3. The protocol in Fig.2 is a CIS-secure (n, η, t, τ, ℓ)-CSBB for any t < n
2 and τ < η

2 ,
assuming the underlying accumulator scheme is secure, and the BA protocol is CIS-secure against
adversary corrupting up to t nodes. Moreover, the communication complexity of the CSBB is

O((n+ η) · (ℓ+ n · |w|)) + BAn(ℓ),

where |w| is the size of a membership witness in the accumulator scheme, and BAn(ℓ) is the com-
munication of BA among n participants with ℓ-bit inputs.

Proof. Termination and agreement follow directly from the underlying BA protocol. To see validity,
we analyze the status after each round, where an adversary A corrupts up tp τ parties in D and
up to t parties in P, and there are η − τ honest parties having the same input msg. At the end of
round 1, every honest Pj will receive the same (u∗, c∗j , w

∗
j ) from the at least η − τ honest parties

in D, as Encode and Accumulate are deterministic, and thus will relay (c∗j , w
∗
j ) to all other Pi ∈ P.

At the end of round 2, honest Pj receives {(c∗i , w∗
i )} from other Pi’s which contains at least n − t

honest pairs that pass the verification. On the other hand, by the unforgeability of the accumulator,
if Acc.Vrfy(ak, u∗, (i, c∗i ), w

∗
i ) = 1, c∗i must the the correct code of msg at i-th position. Therefore,

every honest party Pj should reconstruct the same message msg. Then, by the validity of the
underlying BA protocol, all honest parties output msg.

Regarding CIS security, we let honest parties ignore any message that is invalid under the
current identifier. The CIS security of CSBB then follows the CIS security of BA and the fact that
an adversary cannot forge a signature under the current identifier by leveraging signing oracles
under other identifiers.

We then analyze its communication cost. At round 1, each sender in D sends out (u, cj , wj)
whose size is O(|w|+ ℓ/n) to every Pj ∈ P. The communication cost of this round is O(η(ℓ+n|w|)).
At round 2, the cost is O(n(ℓ + n|w|)). Adding them together with the cost of BA, we have the
total cost of O((n+ η)(ℓ+ n|w|)) + BAn(ℓ). ⊓⊔

4.3 The CDSS Construciton

Recall our intuition about CDSS construction, the dealer consortium needs to agree on one ag-
gregated PVSS before broadcasting it via our CSBB. For secrecy, it is crucial to ensure that the
secret w.r.t. the aggregated PVSS remains unknown to an adversary which may corrupt τ out of
η dealers and t out of n receivers. We guarantee the secrecy by letting each dealer generate an
(n, t)-PVSS transcript under the public keys of receivers, broadcast to the dealer consortium, and
then aggregate all valid PVSS transcripts. In particular, note that the final secret key is the sum of
secret keys shared by all dealers, which means the adversary cannot know the final secret key unless
it corrupts all dealers. Meanwhile, by the definition of PVSS, an adversary corrupting t receivers
cannot learn the secret key from the decrypted shares. Moreover, as each dealer sends its PVSS
transcript via a BB protocol, it ensures all dealers have the same view of valid transcripts and thus
obtain the same aggregated transcript.

Formally, assume an aggregatable PVSS for (PK,SK), a Byzantine Broadcast protocol BB, and
a CSBB protocol CSBB. We delineate the deal protocol of CDSS in Fig.3, while its reconstruction
algorithm is the same as PVSS.Rec. The initialization algorithm Init(1λ, n) is as follows: It invokes
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Deal⟨D,P⟩

Round 1 to ∆BB(η): each Dj ∈ D do

PVSS.Deal((eki)i∈[n], cidDj )→ (Transj , skj)

broadcast: BB⟨Dj(Transj),D⟩ with an unique identifier idBBj

End of Round ∆BB(η): each Dj ∈ D do

receive broadcast messages {Transj′}j′∈[η] from all Dj′ ∈ D
set TRANS = ∅
for j′ ∈ [η]

if PVSS.PubVrfy((eki)i∈[n], Transj′) = 1 and PVSS.getCID(Transj′) = {cidDj′ }

then TRANS = TRANS ∪ {Transj′}
PVSS.Agg(TRANS, (eki)i∈[n])→ Trans

Round ∆BB(η) + 1 to ∆BB(η) +∆CSBB(η,n):

// The dealer consortium D broadcasts the aggregated transcript Trans to all receivers P via CSBB

CSBB⟨D(Trans),P⟩
End of Round ∆BB(η) +∆CSBB(η,n): each Pi do

receive broadcast message Trans from all D, and let CID← PVSS.getCID(Trans)

if PVSS.PubVerify((eki)i∈[n], Trans) = 0 ∨ ¬(CID ⊂ {cidDj}j∈[η] ∧ |CID| ≥ τ + 1)

then output ⊥
else (pk, pk1, . . . , pkn)← PVSS.PubDerive(Trans), ski ← PVSS.Dec(eki, dki, Trans)

output (pk, pk1, . . . , pkn, ski)

Fig. 3. Deal⟨D,P⟩ Protocol of complete CDSS. ∆BB(η) (or ∆CSBB(η,n) ) is the numer of rounds need for running BB
with n parties (or CSBB with η senders and n receivers). We assume every Pi has its publicly known CID, denoted
by cidPi .

CSBB.Init(1λ, n), which includes a PKI setup for a digital signature scheme Σ, and PVSS.Init(1λ, n)
which generates (eki, dki)i∈[n] for the PVSS scheme.

4.4 Analysis

Communication complexity. We first analyze the communication complexity of our CDSS con-
struction in Fig.3. All η dealers broadcast a PVSS transcript of size O(nλ) bits, which incurs bit
complexity of ηBBη(nλ) in total; and dealers and receivers invoke a CSBB protocol to disseminate
the aggregated PVSS transcript, which incurs bit complexity of O(n2 · w) + BAn(nλ), assuming
η < n and the witness size w. The communication complexity of CDSS is

O(n2 · w) + ηBBη(nλ) + BAn(nλ), (6)

where BBz(ℓ) (or BAz(ℓ)) is the communication cost of Byzantine Broadcast BB (or Byzantien
Agreement BA) among z participants with ℓ-bit input.

Computation complexity. In our design, each dealer creates one PVSS transcript, verifies η
transcripts, and aggregates η transcripts; each receiver verifies one transcript. They invoke CSBB
once, costing O(n) group operations per node. With the PVSS scheme in Appendix.B, the per-node
computation cost is O(n).
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On complexity of the DKG. The bit communication complexity of the DKG (Fig.1) is equal to
m (the number of shards) times the complexity of the CDSS construction. Therefore, with CDSS
in Fig.3, the bit communication complexity of our DKG is O(mn2 · |w|) + nBBη(nλ) +mBAn(λ),
while n = ηm.

Now we discuss the best sharding parameters for the smallest communication. Assuming we are
using the optimal BA and BB, i.e., BAz(ℓ) = BBz(ℓ) = O(zℓ + z2λ), and the accumulator with
witness size |w| = O(λ), we notice that η = m =

√
n yields a communication cost of DKG which is

O(n2.5λ). Regarding computation cost, with the PVSS in Appendix.B, the per-node computation
cost of the DKG is O(n1.5) group operations.

Security analysis. We establish the security of our CDSS in the following.

Theorem 4. Assuming that the underlying PVSS is secure, and BB and CSBB are concurrently
secure in the unique identifier model, the CDSS protocol in Fig.3 satisfies the multi-instance ro-
bustness and the multi-instance key-expressability.

We prove the multi-instance robustness in Lemma.6 and the multi-instance key-expressability in
Lemma.7

Lemma 6. The CDSS protocol satisfies multi-instance robustness, assuming concurrent security
of BB and CSBB, and correctness and soundness of PVSS.

Proof. First, we argue that for any instance j, all honest nodes either return ⊥ or output properly,

i.e., they have the same view of public information (pk(j), (pki)
(j)
i∈[n]) and obtain a correct secret

share, despite there is a PPT adversary A corrupting {Pi}i∈C for |C| ≤ t. By agreement of CSBB,
all honest receivers Pi’s will receive the same message and will return ⊥ if the message is not a valid
PVSS transcript or its CID is not consistent with its dealer consortium. Then, by the soundness of
PVSS, when the PVSS transcript is valid, every honest receiver can obtain the correct secret share
by decrypting the transcript.

Then, we show that for the instance j where |{Pi}i∈C ∩ D(j)| ≤ τ , the honest parties must
output properly. Since at most τ nodes in D(j) are corrupted, the BB instances within D have all
the security guarantees. By the agreement of BB, all honest nodes in D will receive the message from
each instance of BB. Moreover, by the correctness of PVSS and the validity of BB, an honest node
in D broadcasts a valid PVSS transcript that will be received by all honest nodes in D. Therefore,
all honest nodes in D can receive at least η − τ valid PVSS transcripts and can aggregate them
into one. By the validity of CSBB, all nodes in P receive the same valid transcript. Then by the
soundness of PVSS, all Pi’s can obtain a valid secret share and derive the same public key (shares).

Lemma 7. The CDSS protocol satisfies the multi-instance key-expressability, assuming the concur-
rent security of BB and CSBB, and the correctness, soundness, secrecy, and simulation soundness
of PVSS.

Proof. We proceed with this proof by constructing the simulator algorithm SimA
CDSS which leverages

the simulator algorithms {PVSS.SInit,PVSS.SDeal,PVSS.SRec} of the PVSS. For clarity, we write
down the pseudo-code of SimA

CDSS below, which takes as input pk which is generated by the default
key generation algorithm KeyGen(1λ)→ (pk, sk).
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SimA
CDSS(pk)

Initialize: CSBB.InitA(1λ, n) and PVSS.SInitA(1λ, n)→ (crs, C, (eki)i∈[n], stA, tk)

Run the m instances{DealAidj}j∈[m] with A, as below:

Select j∗ ∈ [m] and i∗ ∈ [η] s.t. |D(j∗) ∩ {Pi}i∈C | ≤ τ, and D
(j∗)
i∗ ∈ D(j∗) \ {Pi}i∈C

Round 1 to ∆BB(η):

Run SDeal((eki)i∈[n], pk, tk, D
(j∗)
i∗ )→ Trans∗,BB⟨D(j∗)

i∗ (simTrans),D(j∗)⟩

Honestly execute the code for every D
(j)
i /∈ {Pi}i∈C and (i, j) ̸= (i∗, j∗)

Honestly execute the remaining rounds, besides performing the tasks below:

At the end of round ∆BB(η)

Let TRANS∗ be the set of valid PVSS transcripts in D(j∗)

for Transi ∈ TRANS∗ and Transi ̸= Trans∗

PVSS.SRec(tk,Transi)→ sk′
i, and PVSS.PubDriv(Transi)→ pk′

i

Let pk′(j∗) =
⊗

pk′
i, sk

′(j∗) =
⊕

sk′
i, α

(j∗) = 1

At the end of round ∆BB(η) +∆CSBB(η,n) + 1

for j ∈ [m] and j ̸= j∗

Receive Trans(j) from CSBB by D(j), ∀j ∈ [m];CID(j) ← PVSS.getCID(Trans(j))

if PVSS.PubVrfy((eki)i∈[n],Trans
(j)) = 1 ∧ |CID(j) ⊂ {cid

D
(j)
i

}i∈[η]| ≥ τ + 1

then PVSS.SRec(tk,Trans(j))→ sk′(j),PVSS.PubDriv→ (pk′(j), ·), α(j) = 0

tupj = (sk′(j), pk′(j), α(j)); else tupj =⊥
return ({tupj}j∈[m], viewA).

Recall the multi-instance key-expressability definition, the PPT distinguisher A′ is required to
distinguish ({α(j) ·pk⊗pk′(j)}j∈J′ , viewA) (provided by the above simulator) and ({pk(j)}j∈J, viewA)
(from a real execution), where J′ = {j ∈ [m] : Transj is valid} in the simulated execution and
J = {j ∈ [m],Transj is valid} in the real execution. Note that {α(j) · pk ⊗ pk′(j) = pk(j)}j∈J′ can
be derived from A’s view. At the point of A’s view, the only difference between the execution
simulated by SimA

CDSS and the real execution is about how PVSS.Init is executed and how Trans∗

is generated. By the secrecy of PVSS, the distinguisher A′ cannot distinguish the two tuples with
a non-negligible advantage. Note that the CID of Trans(j) does not contain cid

D
(j∗)
i∗

for j ̸= j∗.

By the simulation soundness of PVSS, PVSS.SRec can obtain sk(j) which is the valid secret key of
pk(j). Moreover, we have α = α(j∗) = 1. ⊓⊔

5 DKG with Field-Element Secret

In DLog-based cryptography, most conventional cryptographic schemes possess a secret key within
the finite field Zp. Our earlier construction utilized aggregatable PVSS, which is primarily aligned
with group-element secrets (unless using generic zkSNARK [39]). In this section, we present a
CDSS construction that can be built upon a conventional PVSS without aggregation, which could
naturally give rise to a subcubic DKG for field-element secrets.

CDSS For Field-Element Secret. The aggregatable PVSS in the CDSS construction in Sect.4.3
is employed for reducing communication cost while maintaining security. Particularly, in comparison
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with a naive solution where the consortium should broadcast all valid PVSS transcripts, aggregating
them effectively reduces the size of the broadcast message from O(nηλ) to O(nλ) (assuming n the
number of receivers and η is the consortium size), which is vital for achieve subcubic DKG. On the
other hand, if we let the consortum just broadcast one of these PVSS transcripts, the corresponding
secret key may be known to the adversary, while the secret key of an aggregated transcript is
guaranteed to be hidden whenever it has a contribution from an honest party.

In this section, we introduce a different path for achieving these goals, by utilizing a common
coin “within” the dealer consoritum. Like the CDSS in Sect.4.3, all dealers first broadcast their
PVSS transcripts within the consoritum. However, after this step, the dealers do not aggregate
these valid transcripts; Instead, they inovke a common coin to randomly pick κ PVSS transcripts,
which will be sent out together via the CSBB protocol. Here, κ is the statistic security parameter
that is independent of n or η. A receiver can obtain its share by decrypting all the κ transcripts and
adding the decrypted values together. With a high probability (1−( τη )

κ), at least one of the selected
transcripts is from an honest dealer, which guarantees the secrecy of this scheme. Particularly,
we can implement the coin protocol by letting the consortium first run a DKG protocol, then
reconstruct the secret key, and finally apply a hash function (which is modeled as a random oracle)
to the secret key.

Formally, assume a PVSS for (PK,SK), a Byzantine Broadcast protocol BB, a CSBB protocol
CSBB, a DKG protocol DKGunp which we only assumes its secret key is unpredictable, and a
hash function Hash which maps {0, 1}∗ to κ indexes in the range of [η]. We elucidate the deal
phase of CDSS scheme in Fig.4, while its reconstruction algorithm is the same as PVSS.Rec. The
initialization algorithm Init(1λ, n) is as follows: It invokes CSBB.Init(1λ, n), which includes a PKI
setup for a digital signature scheme Σ, PVSS.Init(1λ, n) which generates (eki, dki)i∈[n] for the PVSS
scheme, and the setup for DKGunp.

Security analysis. We establish the security of the CDSS scheme in Fig.4 in the following.

Theorem 5. Assuming that the underlying PVSS is secure, the DKGunp is unpredicatable and ro-
bust, and BB and CSBB are concurrently secure in the unique identifier model, the CDSS in Fig.4
satisfies the multi-instance robustness and the multi-instance key-expressability in the random oracle
model.

The proof largely resembles to the proof for Theorem 4, except that we need to leverage the fact
that the selected κ transcripts include one from an honest dealer. We discuss the multi-instance
robustness in Lemma 8 and the multi-instance key-expressability in Lemma 9, respectively.

Lemma 8. The CDSS protocol satisfies multi-instance robustness in the random oracle model,
assuming concurrent security of BB and CSBB, the correctness and soundness of PVSS, and that
the DKGunp is unpredictable and robust.

Proof. The agreement of CSBB ensures that all honest receivers Pi’s will receive the same message,
which could be a PVSS transcript or ⊥. The soundness of PVSS ensures that when the PVSS
transcript is valid, every honest receiver can obtain the correct share by decrypting the transcript.
Therefore, we have that for any instance j, all honest nodes either return ⊥ or output properly.

We then argue that for the instance j where |{Pj}j∈C ∩ D(j)| ≤ τ , the honest parties output
properly. By the robustness of DKGunp, the set of dealers D(j) will obtain a set of consistent secret
shares at the end of Round ∆DKG(η). By the unpredictability of DKGunp, the output of Hash is
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Deal⟨D,P⟩

Round: 1 to ∆DKG(η)//D run a DKG protocol, and each Di obtains a secret key share skD,i

DKGunp⟨D⟩ → (pkD, skD,1, . . . , skD,η)

Round 1 +∆DKG(η) to ∆BB(η) +∆DKG(η): each Dj ∈ D do

PVSS.Deal((eki)i∈[n], cidDj )→ (Transj , skj)

broadcast: BB⟨Dj(Transj),D⟩ with an unique identifier idBBj

Round ∆BB(η) +∆DKG(η) + 1 to ∆BB(η) +∆DKG(η) + 2: each Di ∈ D do

receive broadcast messages {Transj′}j′∈[η] from all Dj′ ∈ D
set TRANS = ∅
for j′ ∈ [η]

if PVSS.PubVrfy((eki)i∈[n], Transj′) = 1 and PVSS.getCID(Transj′) = {cidDj′ }

then TRANS = TRANS ∪ {Transj′}
send skD,i to all Dj ∈ D

End of Round ∆BB(η) +∆DKG(η) + 2:

receive secret shares {skD,j}, reconstruct skD, and compute Hash(skD)→ (j1, . . . , jκ)

set OutTRANS = {Transj ∈ TRANS : j ∈ {j1, . . . , jκ}}
Round ∆BB(η) +∆DKG(η) + 3 to ∆BB(η) +∆DKG(η) +∆CSBB(η,n) + 2:

// The dealer consortium D broadcasts the selected transcript set OutTRANS to all receivers P via CSBB

CSBB⟨D(OutTRANS),P⟩
End of Round ∆BB(η) +∆DKG(η) +∆CSBB(η,n) + 2: each Pi do

receive broadcast message OutTRANS from all D, and parse OutTRANS = (Transj1 , . . . , Transjκ)

if ∃Transjz ∈ OutTRANS, s.t.,PVSS.PubVerify((eki)i∈[n], Transjz ) = 0 ∨ PVSS.getCID(Transjz ) ̸⊂ {cidDj}j∈[η]

then output ⊥
for Transjz ∈ OutTRANS do

(pk(jz), pk
(jz)
1 , . . . , pk(jz)

n )← PVSS.PubDerive(Transjz ), sk
(jz)
i ← PVSS.Dec(eki, dki, Transjz )

output (pk =
⊗
i∈[κ]

pk(jz), pk1 =
⊗
i∈[κ]

pk
(jz)
1 , . . . , pkn =

⊗
i∈[κ]

pk(jz)
n , ski =

⊕
i∈[κ]

sk
(jz)
i )

Fig. 4. Deal⟨D,P⟩ Protocol of CDSS for field-element secrets. ∆BB(η) (or ∆CSBB(η,n), or ∆DKG(η) ) is the numer of
rounds need for running BB with n parties (or CSBB with η senders and n receivers, or DKG with η parties). We
assume every Pi has its publicly known CID, denoted by cidPi .

distinguishable with κ uniformly sampled indexes from [η]. Therefore, the probability of no honest
dealer being selected is bounded by ( τη )

κ+negl(λ), which is negligibly small. By the validity of BB,
the selected honest node should have correctly broadcasted a valid PVSS to the dealer consortium.
It follows that the dealer consortium will least broadcast one valid PVSS transcript, such that all
receivers must output properly for the dealer consortium. ⊓⊔

Lemma 9. The CDSS protocol satisfies multi-instance key-expressability in the random oracle
model, assuming the concurrent security of BB and CSBB, the correctness, soundness, secrecy,
and simulation soundness of PVSS, and the robustness and unpredictability of DKGunp.

Proof. We proceed with this proof by constructing the simulator algorithm SimA
CDSS which leverages

the simulator algorithms {PVSS.SInit,PVSS.SDeal,PVSS.SRec} of the PVSS. For clarity, we write
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down the pseudo-code of SimA
CDSS below, which takes as input pk which is generated by the default

key generation algorithm KeyGen(1λ)→ (pk, sk).

SimA
CDSS(pk)

Initialize: CSBB.InitA(1λ, n), PVSS.SInitA(1λ, n)→ (crs, C, (eki)i∈[n], stA, tk), and setup for DKGunp

Run the m instances{DealAidj}j∈[m] with A, as below:

Round 1 to ∆DKG(η):

Honestly execute the DKG protocols on behalf of honest nodes

Round 1 + ∆DKG(η) to ∆BB(η) +∆DKG(η)

Select j∗ ∈ [m] s.t. |D(j∗) ∩ {Pi}i∈C | ≤ τ

Reconstruct the secret key skD(j∗) using the honest parties’s shares, and compute Hash(skD(j∗))→ {j1, . . . , jκ}

Select i∗ ∈ {j1, . . . , jκ} s.t. D(j∗)
i∗ ∈ D(j∗) \ {Pi}i∈C // It can find such i∗ with overwhelming probability

Round 1 to ∆BB(η):

Run SDeal((eki)i∈[n], pk, tk, D
(j∗)
i∗ )→ Trans∗,BB⟨D(j∗)

i∗ (simTrans),D(j∗)⟩

Honestly execute the code for every D
(j)
i /∈ {Pi}i∈C and (i, j) ̸= (i∗, j∗)

Honestly execute the remaining rounds, besides performing the tasks below:

At the end of round ∆BB(η)

Let TRANS∗ be the set of valid PVSS transcripts produced by Dj1 , . . . , Djκ ∈ D
(j∗)

for Transi ∈ TRANS∗ and Transi ̸= Trans∗

PVSS.SRec(tk,Transi)→ sk′
i, and PVSS.PubDriv(Transi)→ pk′

i

Let pk′(j∗) =
⊗

pk′
i, sk

′(j∗) =
⊕

sk′
i, α

(j∗) = 1

At the end of round ∆BB(η) +∆CSBB(η,n) + 1

for j ∈ [m] and j ̸= j∗

Receive OutTrans(j) from CSBB by D(j), and parse OutTrans(j) = {Trans(j)i1
, . . . , Trans

(j)
iz
}, ∀j ∈ [m];

if ∃i′ ∈ {i1, . . . , iz}s.t.PVSS.PubVrfy((eki)i∈[n],Trans
(j)

i′ ) = 0 ∨ PVSS.getCID(Trans
(j)

i′ ) /∈ {cid
D

(j)
i

}i∈[η]

continue

else

then PVSS.SRec(tk,Trans
(j)
ia

)→ sk′(j)
a ,PVSS.PubDriv→ (pk′(j)

a , ·), α(j)
a = 0, ∀a ∈ [z]

tupj = (
⊕
a∈[z]

sk′(j)
a ,

⊗
a∈[z]

pk′(j)
a , α(j) =

∑
a∈[z]

α(j)
a ); else tupj =⊥

return ({tupj}j∈[m], viewA).

Recall the multi-instance key-expressability definition, the PPT distinguisher A′ is required to
distinguish ({α(j) ·pk⊗pk′(j)}j∈J′ , viewA) (provided by the above simulator) and ({pk(j)}j∈J, viewA)
(from a real execution), where J′ = {j ∈ [m] : Transj is valid} in the simulated execution and
J = {j ∈ [m],Transj is valid} in the real execution. By the robustness and unpredictability of
DKGunp, the simulator SimA

CDSS can finish the above simulation with an overwhelming probability.
The following arguments are similar to that for Lemma 7. Particularly, under the condition that the
simulator could finish the above simulation, at the point of A’s view, the only difference between
the execution simulated by SimA

CDSS and the real execution is about how PVSS.Init is executed and
how Trans∗ is generated. By the secrecy of PVSS, the distinguisher A′ cannot distinguish the two
tuples with a non-negligible advantage. Note that the CID of Trans(j) does not contain cid

D
(j∗)
i∗

for
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j ̸= j∗. By the simulation soundness of PVSS, PVSS.SRec can obtain sk(j) which is the valid secret
key of pk(j). Moreover, we have α = α(j∗) = 1. ⊓⊔

Performance analysis. With the PVSS scheme outlined in Lemma 1, the PVSS transcript size
is O(nλ). Therefore, the communication cost incurred by all η dealers broadcast their PVSS tran-
scripts within the consortium is ηBBη(nλ). The communication cost for broadcasting κ PVSS
transcripts via CSBB is O(n2λκ · |w|) + BAn(nλκ), where |w| is size of an accumulator witness.
With optimal BA/BB and an accumulator with constant-sized witness, the above communication
cost will be O(n2λκ). While the dealer consortium needs to perform a DKG within the consortium,
the communication cost for the DKG is at most O(η3λ) without using the sub-cubic DKG in Sect.4,
which is not the dominating term for either communication or computation cost. For computation
cost, since each receiver needs to process κ transcripts, the per-node computation cost is O(nκ)
group operations.

Application to DKG. As the CDSS in Fig.4 satisfies both multi-instance robustness and multi-
instance key-expressability, it can be pluged into the DKG construction in Fig.1. The security of
the resulting DKG follows Theorem 1. Regarding performance, the DKG parallelly invokes m =

√
n

instances of CDSS, and thus the total communication complexity will be O(n2.5λκ), and the per-
node computation cost will be O(n1.5κ) group operations.
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A A PVSS Scheme with Field-element Secrets

Public key encryption. A PKE scheme Σenc consists of KeyGen, Enc, Dec, satisfying the standard
IND-CPA security.

Signature of Knowledge. A signature of knowledge (SoK) scheme SoK for an NP language L con-
sists of three algorithms. Setup generates a CRS which is an implicit input of other algorithms.
Sign(x,w,m) on inputs a statement x, a witness w, and a message m, produces a signature σ on
m. Vrfy(x,m, σ) verifies the signature. A SoK scheme should satisfy the Sim-Ext security [20].

NIZK. We need a NIZK Πzk for showing the well-formedness of the ciphertexts. It consists of Setup,
Prove, and Vrfy, for a language Lpvss which becomes apparent in the description of construction.
We require Πzk to satisfy completeness, simulation soundness, and zero knowledge against PPT
adversaries.

The construction.

• Init(1λ, n). (1) A generator g for the group G of order p; (2) For every i ∈ [n], (eki, dki) ←
Σenc.KeyGen(1

λ); (3) A setup for SoK; (4) A setup for NIZK Πnizk.
• Deal((eki)i∈[n], cid). Sample (a0, a1, . . . , at) ←$ Zt+1

p , define f(X) =
∑t

i=0 aiX
i, and compute

(Ai = gf(i))i∈[0,n], and (ci = Σenc.Enc(eki, f(i)); ri)i∈[n] where ri is a fresh randomness. Sign cid

with the knowledge of f(0) w.r.t. A0: SoK.Sign(A0, f(0), cid) → σ. Prove the well-formedness
of ciphertexts and obtain a proof πzk : Πzk is for the following language

{statement:(Ai, eki, ci)i∈[n]; witness:(f(i), ri)i∈[n] :

Ai = g(f(i)) ∧ ci = Σenc.Enc(eki, f(i); ri) ∧ f(i) < p}
(7)

Trans = ((Ai)i∈[0,n], (ci)i∈[n], πzk, {σ}, {cid}).
• PubVrfy((eki)i∈[n], Trans). It first checks whether

SoK.Vrfy(A
(j)
0 , cid(j), σ(j)) = 1, for all j ∈ [m]. (8)

Next, it randomly samples a (n − t)-degree polynomial q(x) ∈ Zp[x], and computes the dual
code

(code⊥0 , . . . , code
⊥
n ), where code⊥i =

q(i)∏n
j=0,j ̸=i(i− j)

. (9)

The dual code is used for checking the validity of Scrape’s polynomial commitment. See [19].

In our case, it computes A0 =
∏

j A
(j)
0 and checks whether

n∏
τ=0

Acode⊥τ
τ = 1. (10)

If the above check passes, it confirms us that the exponents of (Ai)i∈[0,n] is from a t-degree

polynomial f(X), and Ai = g
f(i)
1 . Then, it checks if πzk is valid proof. It returns 1 if all checks

pass; otherwise, it returns 0.
• getCID(Trans). It returns {cid(j)}j∈[m].

• PubDriv(Trans). It returns pk =
∏

j A
(j)
0 and (pki = Ai)i∈[n].

• Dec(eki, dki, Trans). It returns ski = Paillier.Dec(eki, dki, ci) mod p.
• Rec({(i, ski)}i∈I). It first computes the Lagrange coefficients {λi}i∈I based on I, and then sk =∑

λiski mod p.
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A.1 Analysis

Security analysis. The correctness is easy to follow. We establish the other security properties
via the following lemmas.

Lemma 10. Assuming the soundness of Πzk for Eq.7, our PVSS satisfies the soundness.

Proof. In the soundness definition of PVSS, we require that every transcript passing the public
verification can be decrypted to a consistent set of secret shares. According to the public verification
algorithm’s description, a valid transcript will pass the checking step in Eq.10. This step guarantees,
with overwhelming probability, that A0, . . . , An commit to f(0), . . . , f(n) for a polynomial f with
a degree of up to t, as analyzed in [19]. Subsequently, by the soundness of Πzk, the ciphertexts
c1, . . . , cn encrypt to f(1), . . . , f(n), ensuring that the decrypted values constitute a consistent set
of secret shares. Similarly, for a weakly aggregated transcript wTrans

⊓⊔

Lemma 11. Assuming the IND-CPA security of the underlying PKE Σenc, the zero-knowledgness
of Πzk, and the security of SoK, the PVSS satisfies the strenghthened secrecy and the simulation
soundness.

Proof. For clarity, we outline most simulator algorithms in the following.

• SInitA(1
λ, n). It invokes the simulated setup algorithm of Πzk and SoK to generate (crszk, tkzk)

and (crssok, tksok), respectively. Then, the CRS crs = (crszk, crssok) is provided to the adver-
sary A. After receiving the set of corrupted parties C and the encryption keys {eki}i∈C from A,
the simulator generates the encryption/decryption key pairs (eki, dki)i∈[n]\C for all uncorrupted
users. It publishes all encryption keys (eki)i∈[n], and sets the trapdoor as tk = (tkzk, tksok).

• SDeal((eki)i∈[n], pk, tk, cid). First, it sets A0 = pk. For i ∈ C, it samples yi ←$ Zp, computes
Ai = gyi , and encrypts yi under eki: ci ← Σenc.Enc(eki, yi). For i ∈ [n] \ C, it computes Ai via
Lagrange interpolation using A0 and (Ai)i∈C , and ci ← Σenc.Enc(eki, 0). Next, it invokes the
simulated signing algorithm of SoK to sign cid and obtains the simulated signature σ. Finally,
it invokes the simulated prover algorithm of Πzk to generate the proof πzk, and returns the
transcript Trans = ((Ai)i∈[0,n], (ci)i∈[n], πzk, {σ}, {cid}).

• SRec(tk, Trans). It parses A0, σ from Trans. Then, it runs the extractor algorithm of SoK with
the trapdoor key tksok to extract y∗ from σ, such that A0 = gy

∗
.

We argue the strengthened secrecy through the following hybrid arguments.
Hybrid 0. It runs InitA(1

λ, n) → (crs, C, (eki, dki)i/∈C , (eki)i∈C , stA) and Deal((eki)i∈[n], cid) →
(Trans, sk). The adversary A is provided with (crs, (eki)i∈[n], stA,Trans) as inputs.
Hybrid 1. It is almost identical to Hybrid 0, except that during the initial phase, the setup for
Πzk is replaced with the simulated setup algorithm of Πzk, and that the prover algorithm of Πzk in
the Deal algorithm is replaced with the simulated prover algorithm.
Hybrid 2. It is almost identical to Hybrid 1, except that during the initial phase, the setup for
SoK is replaced with the simulated setup algorithm of SoK, and that the signature of knoweldge σ
in Trans is generated with the simulated signing algorithm.
Hybrid 3. It is almost identical to Hybrid 2, except that it generates Trans in the following way. (1)
Sample yi ←$ Zp for all i ∈ C, and sample a t-degree polynomial f , such that f(i) = yi for i ∈ C. (2)
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Compute (Ai = gf(i))i∈[0,n], and (ci = Σenc.Enc(eki, f(i)); ri)i∈[n] where ri is a fresh randomness.
(3) Generate the signature of knowledge σ using the simulated signing algorithm. (4) Prove the
well-formedness of ciphertexts via the simulated prover algorithm and obtain a proof πzk.
Hybrid 4. It is almost identical to Hybrid 4, except that during generating Trans, the ciphertexts
ci for all i ∈ [n] \ C is generated as ci ← Σenc.Enc(eki, 0).
Hybrid 5. It is almost identical to Hybrid 4, except that in generating Trans, it firstly samples
A0 ←$ G and yi ←$ Zp for i ∈ C, interpolates a t-degree polynomial in the exponent based on A0

and (Ai = gyi)i∈C , and obtains Ai for i ∈ [n]\C. After that, the remaining procedures for generating
transcript Trans are identical to that in Hybrid 4.

For each hybrid k ∈ [0, 5], we denote the probability that the adversary A outputs 1 by P
(k)
A .

Notice that, the PVSS scheme satisfies the strenghthened secrecy, if

|P(0)A − P
(5)
A | ≤ negl(λ). (11)

It is easy to see that |P(0)A − P
(1)
A | ≤ negl(λ), due to zero-knowledgeness of Πzk. Similarly, we

have |P(1)A − P
(2)
A | ≤ negl(λ), from the security of SoK. Also, we have P

(2)
A = P

(3)
A (and P

(4)
A = P

(5)
A ), as

the adversary’s views in Hybrid 2 and 3 (resp. Hybrid 4 and 5)are essentially identical. Moreover,

it holds that |P(3)A − P
(4)
A | ≤ negl(λ), from the IND-CPA security of the encryption scheme.

Claim. Assuming the security of SoK, our PVSS satisfies the simulation soundness.

Proof. Recall the simulation soundness definition, where we require that the adversary can only
issue a challenge transcript that does not contain the CID included in the simulated transcript.
Therefore, the signature of knowledge σ in the challenge transcript must be different from the
simulated signature of knowledge, and thus we can extract the witness y∗ from the signature. ⊓⊔

Instantiation and performance analysis. The underlying PKE can be instantiated by the Pail-
lier encryption [51], the LWE-based PVW encryption [53], or any other encryption scheme which
is accompanied with efficient NIZK Πzk for the language specified in Eq. 7. See [37] for a com-
prehensive overview on the candidate constructions. Regarding the SoK, we can essentially apply
Schnorr signature, while viewing A0 as the verification key and a0 as the signing key, respectively.
As demonstrated by Gentry et al. [37], the PVW encryption and the associated NIZK enjoy better
concrete performance.

Then, assuming the proof size, prover time, and verification time of Πzk are linear to n (which
is true of the instantiations discussed above), the transcript size of Trans is O(nλ). Both Deal
and PubVrfy necessitate O(n) group operations. The computational overhead for the remaining
operations is relatively insubstantial, approximating O(1) group operations.

B An Aggregatable PVSS

We present an aggregatable PVSS scheme in this section, which is a simplified variant of the scheme
in [42].

Building blocks.

Pairing. There is an efficient deterministic algorithm GroupGen which outputs the description of
the pairing groups, including (p,G1,G2,GT , e, g1, ĥ1), where G1, G2, GT are groups of order p, g1
is the generator of G1, ĥ1 is the generator of G2, and e : G1 ×G2 is a bilinear map.
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Signature of Knowledge. A signature of knowledge (SoK) scheme SoK for an NP language L con-
sists of three algorithms. Setup generates a CRS which is an implicit input of other algorithms.
Sign(x,w,m) on inputs a statement x, a witness x, and a message m, produces a signature σ on
m. Vrfy(x,m, σ) verifies the signature. A SoK scheme should satisfy the Sim-Ext security [20].

The construction.

• Init(1λ, n). (1) GroupGen→ (p,G1,G2,GT , e, g1, ĥ1); (2) a group element û1 ←$ G2; (3) the setup
for SoK.Setup→ crssok. Define crs = (p,G1,G2,GT , e, g1, ĥ1, û1, crssok). (4) For uncorroputed
i ∈ [n], dki ←$ Zp, and eki = ĥdki1 ;

• Deal((eki)i∈[n], cid). Sample (a0, a1, . . . , at) ←$ Zt+1
p , define f(X) =

∑t
i=0 aiX

i, and compute

û2 = ûa01 , (Ai = gf(i))i∈[0,n], and (Ŷi = ek
f(i)
i )i∈[1,n]. Sign cid with the knowledge of f(0) w.r.t.

A0: SoK.Sign(A0, f(0), cid)→ σ. Trans = ((Ai)i∈[0,n], (Ŷi)i∈[n], û2, {σ}, {cid}).
• Agg({Transj}j∈[m], (eki)i∈[n]). Parse Transj = ((A

(j)
i )i∈[0,n], (Ŷ

(j)
i )i∈[n], û

(j)
2 ,

σ(j), {cid(j)}). Compute (Ai =
∏

j A
(j)
i )i∈[0,n], (Ŷi =

∏
j Ŷ

(j)
i )i∈[n], and û2 =

∏
j û

(j)
2 . Return

Trans = ((Ai)i∈[n], (Ŷi)i∈[n], û2, {A
(j)
0 }j∈[m]{σ(j)}j∈[m], {cid(j)}j∈[m]).

• PubVrfy((eki)i∈[n], Trans). It first checks SoK.Vrfy(A
(j)
0 , cid(j), σ(j)) for j ∈ [m]. Next, it ran-

domly samples a (n− t)-degree polynomial q(x) ∈ Zp[x], and computes the dual code

(code⊥0 , . . . , code
⊥
n ), where code⊥i =

q(i)∏n
j=0,j ̸=i(i− j)

.

The dual code is used for checking the validity of Scrape’s polynomial commitment. See [19].

In our case, it computes A0 =
∏

j A
(j)
0 and checks whether

n∏
τ=0

Acode⊥τ
τ = 1. (12)

If the above check passes, it confirms us that the exponents of (Ai)i∈[0,n] is from a t-degree

polynomial f(X), and Ai = g
f(i)
1 . Then, it checks if e(A0, û1) = e(g1, û2), and if e(g1, Ŷi) =

e(Ai, eki) for i ∈ [n]. It returns 1 if all checks pass; otherwise, it returns 0.

• getCID(Trans). It returns {cid(j)}j∈[m].

• PubDriv(Trans). It returns pk = (
∏

j A
(j)
0 , û2) and (pki = Ai)i∈[n].

• Dec(eki, dki, Trans). It returns ski = Ŷ
1

dki
i .

• Rec({(i, ski)}i∈I). It first computes the Lagrange coefficients {λi}i∈I based on I, and then sk =∏
skλi

i .

Performance analysis. The transcript size of Trans is O((n + m)λ), where m represents the
number of transcripts aggregated into Trans. Both Deal and PubVrfy require O(n) group operations,
whereas Agg demands O(n logm) group operations. The computational costs for other functions
are minor, approximately O(1) group operations.
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B.1 Security Analysis

The security follows the proofs in [42], which can be reduced to SXDH and BDH assumptions. For
clarity, we describe the simulators SInit, SDeal, and SRec in the following, which are implicity given
the proof in [42, Theorem 2].

• SInitA(1
λ, n). Invoke (1) GroupGen→ (p,G1,G2,GT , e, g1, ĥ1), sample (2) a group element û1 ←$

G2, and run (3) the simulated setup for SoK which produces crssok and tksok. Define crs =
(p,G1,G2,GT , e, g1, ĥ1, û1, crssok), provide it to the adversary A, and wait A to specify the set
of corrupted nodes C. (4) for every i ∈ [n] \ C, sample µi ←$ Zp, and define eki = ûµi

1 . Define
tk = (tksok, {µi}i∈[n]\C).

• SDeal((eki)i∈[n], pk, tk, cid). Parse pk = (g0, h0). Then, (1) for i ∈ C, sample ai ←$ Zp, set

Ai = gai , and Ŷi = ekaii . We assume with out loss of generality that |C| = t. (2) For i /∈ C, let
Ai = g

λ0(i)
0

∏
j∈C A

λj(i)
j , and Ŷi = (h

λ0(i)
0

∏
j∈C û

ajλj(i)
1 )µi , where λj(i) =

∏
k∈C,k ̸=j

i−k
j−k . (3) Run

the simulation signer algorithm of SoK to generate a simulated signature σ for cid. Output
Trans = ((Ai)i∈[0,n], (Ŷi)i∈[n], û2 = h0, σ, {cid}).

• SRec(tk,Trans) → sk. Parse Trans, and obtain σ. Run the extraction algorithm of SoK with σ
and tksok, and obtain s ∈ Zp such that A0 = gs1. Output sk = ĥs1.
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