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Abstract. In side-channel analysis (SCA), the success of an attack is
largely dependent on the dataset sizes and the number of instances in
each class. The generation of synthetic traces can help to improve at-
tacks like profiling attacks. However, manually creating synthetic traces
from actual traces is arduous. Therefore, automating this process of cre-
ating artificial traces is much needed. Recently, diffusion models have
gained much recognition after beating another generative model known
as Generative Adversarial Networks (GANs) in creating realistic images.
We explore the usage of diffusion models in the domain of SCA. We pro-
posed frameworks for a known mask setting and unknown mask setting
in which the diffusion models could be applied. Under a known mask set-
ting, we show that the traces generated under the proposed framework
preserved the original leakage. Next, we demonstrated that the artifi-
cially created profiling data in the unknown mask setting can reduce the
required attack traces for a profiling attack. This suggests that the arti-
ficially created profiling data from the trained diffusion model contains
useful leakages to be exploited.

Keywords: Side-channel · Neural Network · Deep Learning · Profiling
attack · Generative Models · Diffusion Model.

1 Introduction

Side-channel Attacks (SCA) are one of those crucial threats that are required
to be evaluated. Information on the secret data could be leaked in physical
properties such as power consumption [13], and electromagnetic emanation [1].
Many of such physical properties come in a form known as traces. SCA analyzes
these traces to recover the secret data in various ways. Profiling attacks and
non-profiling attacks are common forms of SCA. Very often, the success of these
attacks relies heavily on the number of traces. However, in a practical setting,
there might be a limitation on the number of traces that can be collected by
the adversary, presumably due to some factors; for example, the device itself is
protected, which only allows limited access to the device. Due to this limitation,
the performance of the SCA could be affected, for example, making it hard
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to generalize the leakages. As such, there is a need for more data or traces to
analyze. However, manually creating artificial traces can be quite complicated
and tedious as it needs to capture the leakage information and its characteristics
properly.

In recent years, there has been a rise in using machine learning techniques to
tackle the automation of creating such artificial traces. One common approach
is to use Generative Adversarial Networks (GAN) [7], a popular technique com-
monly used in the image processing domain for generating synthetic images.
Recently, a few of the previous works [23] and [16] have investigated creating
artificial traces using GAN. However, in the image domain community, another
generative model known as the Denoising Diffusion Probabilistic Model (DDPM)
has risen in popularity recently due to its performance in producing more realis-
tic images exceeding that of GAN. As such, in this work, we aim to explore and
investigate how to adopt DDPM into the SCA domain.
Our Contributions. In this work, our contributions are stated as follows:

1. We investigate the applicability of the DDPM approach for traces generation
in the context of SCA. We proposed two different frameworks in which a
diffusion model can be used: Known mask setting and unknown mask setting.

2. In the known mask setting, we highlight that the generated traces can exhibit
the original leakages as observed in the original traces by evaluating the
traces with Correlation Power Analysis (CPA).

3. On the other hand, we show the effectiveness of the diffusion model in gen-
erating artificial data in the unknown mask setting. By increasing the down-
sampled profiling traces with the newly generated data from the diffusion
model, we show that the number of attack traces needed for a profiling attack
decreases.

In this work, we target synchronized and desynchronized traces. We validate
our approach on traces up to the first-order masking for real traces. We leave
higher-order masking of real traces to future works. The results can be publicly
accessed on the following weblinks 3.
Paper Organization. The paper is organized as follows. In Section 2, we give
an overview of related works over the recent years. Section 3 will provide the
necessary background on side-channel analysis and DDPM. In Section 4, we
present the datasets and the building blocks of the neural network being used.
Section 5 provides a visualization of the leakages that an diffusion model could
provide. Subsequently, we present the results of profiling attack when using ar-
tificial data created by the trained diffusion model for profiling in Section 6.
Lastly, in Section 7, we conclude the paper and outline some future works.

2 Related Works

One of the common approaches adopted in the machine learning domain is
the data augmentation approach. A form of data augmentation is the Synthetic

3 https://github.com/yap231995/Diffusion-SCA
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Minority Over-sampling Technique (SMOTE), which was explored in [19]. They
applied data augmentation to deal with data imbalance due to the Hamming
Weight (HW) leakage model. As such, after balancing the training data, it could
improve the attack performance. Another work on different data augmentation
was reported in [14], where the authors investigate data augmentation techniques
against masked AES with hiding countermeasures. It reported that the data aug-
mentation could help in decreasing the effectiveness of hiding countermeasures,
albeit requiring specific configuration when dealing with different Deep Neural
Network (DNN) architectures. Another work by Cagli et al. [4] proposed us-
ing data augmentation for Deep-Learning (DL)-based SCA. They proposed a
data augmentation method by manually adding jitters into the original traces
to increase the number of traces for profiling.

Recently, more works have performed more in-depth investigations on the ap-
plicability of data augmentation through the automatic generation of synthetic
traces through the use of DNN. [23] introduced a new approach to generating
new traces through the usage of Conditional Generative Adversarial Network
(CGAN). They show that CGAN can generate new traces that learn the leakage
from both unprotected and protected implementations. However, the leakage
model considered in their work is the Hamming Weight (HW) leakage model,
resulting in fewer classes. Furthermore, the correlation of the traces evaluated
did not consider any comparison with other keys. In [16], the authors proposed
another approach when generating traces automatically based on CGAN and
Siamese networks. They used the proposed approach to generate datasets for
both symmetric and public-key cryptographic implementations. Compared to
previous work, they also investigate and analyze the effect of the GAN network
on data generation. However, they only considered the dataset with fixed key
profiling and attack traces called ASCADf and an ECC dataset. In [11], the
authors proposed another CGAN-based approach. In their approach, the gener-
ator receives real traces as input and is not conditioned with label class, which
allows it to extract the features from the unlabeled set. Therefore, their ap-
proach did not create new artificial data but as a form of feature extraction and
dimensionality reduction.

In all recent works, the idea is to use data augmentation to generate artificial
data, which can also capture the characteristics of the leakage as well as the
countermeasures, such as hiding or masking leakage. Most of the works have
been utilizing GAN as the main approach for data generation and work under the
unknown mask setting. In this work, we investigate an alternative approach using
diffusion model for data generation for both known mask and unknown mask
settings and investigate how the approach could learn the leakage characteristics.

3 Background

In this section, we provide basic backgrounds on the topics that we will use
throughout the whole paper.



4 Yap et al.

3.1 Correlation Power Analysis (CPA)

One of the most commonly used attacks is the CPA [3]. The general approach
is to use Pearson correlation to establish the relation between different inter-
mediate values from different secret hypotheses and the actual leakage values.
The attacker will use the intermediate values computed as function f of known
inputs p and (hypothetical) secret k ∈ K. In this case, the attacker will compute
H = f(p, k). These intermediate values will then be compared with the actual
leakage traces T obtained while processing actual secret k∗. The secret k with
the highest (absolute) correlation can then be estimated as the secret value.

The Pearson correlation between x and y can be computed as follow:

r(x, y) =

∑N
i=1((xi − x̄)(yi − ȳ))√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
. (1)

For the intermediate values, they have to be mapped to the leakage. In gen-
eral, a leakage model is used to approximate the behavior of the measured traces.
For the software implementation, the leakage is usually assumed to follow the
HW model. In contrast, for hardware implementation, it is the Hamming dis-
tance (HD) model. In addition to the mentioned leakage values, an identity
mapping (ID) can also be used as an alternative leakage model. In this work, we
will mainly focus on the ID leakage model.

3.2 Profiling Attacks

Profiling attacks assume a worst-case scenario where the adversary has access to
a clone device and a target device. These two devices are similar to each other. In
this setting, the adversary can manipulate or know the device’s key of the clone
device while the key for the target device is unknown to him. Furthermore, the
adversary has the ability to collect multiple traces from a known set of random
plaintexts (or ciphertexts) from both devices. The adversary will obtain the
profiling traces from the clone device while acquiring the attack traces from the
target device. The goal of the adversary is to recover the unknown key from the
target device.

Profiling attacks can be divided into the profiling phase and the attack phase.
In the profiling phase, a distinguisher F is built from the set of profiling traces.
This distinguisher will return a conditional probability mass function Pr(T |Z =
z). During the attack phase, the distinguisher returns a probability score for
each hypothetical sensitive value. In other words, we obtain yi = F(ti) where
ti represents an attack trace. We compute the log-likelihood score for every key
k ∈ K as follows:

sNa(k) =

Na∑
i=1

log(yi[zi,k]),

where Na as the number of attack traces used and zi,k = C(pi, k) are the hy-
pothetical sensitive values based on the key k with pi being the corresponding
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public variable to the trace ti and C is the cryptographic primitive. Next, we
rank the key of the log-likelihood score in decreasing order and classify them
into a guess vector G = [G0, G1, . . . , G|K|−1] with the score G0 corresponds to
the score of the most likely key candidate, and the score G|K|−1 to be the score
for is the least likely key candidate. The rank of the key shall be denoted as the
index of guess vector G. The guessing entropy GE is defined as the average rank
of the correct key k∗ over multiple experiments [22]. If GE = 0, when using Na

attack traces, the attack is considered successful. We denote NTGE to be the
least number of traces required to attain GE = 0.

The most known profiling attack is Template Attacks (TA). The distinguisher
is built using the Bayes’ Theorem with the assumption that the conditional prob-
ability Pr(T |Z = z) follows the multivariate Gaussian distribution [5]. Overall,
it outputs the following as the posterior probability,

Pr(Z = zk|T = t) = −D

2
log(2π)− 1

2
log(det(Σk))−

1

2
(t− tk)

TΣk(t− tk),

where tk is the sample mean of class zk and Σk is the covariance matrix of class
zk with determinant det(Σk).

3.3 Denoising Diffusion Probabilistic Models (DDPM)

DDPM was first created by [9] in 2020 to generate images and was extensively
improved [17]. In fact, recently [6] shows that with enough tuning, DDPM could
attain better performance compared to GAN. DDPM is a type of Markovian
Hierarchical Variational Autoencoder (H-VAE), which can be viewed as stack-
ing multiple Variational Autoencoder together (VAE). Figure 1 illustrates how
DDPM works visually. Given a data distribution x0 ∼ q(x0), we define the for-

Fig. 1: Visualization representation of DDPM. x0 represents the original data
while xT denote the pure Gaussian noise. The intermediate xt portrays the
noisy version of x0 at time step t.

ward noising process q which iteratively adding Gaussian noise at each time t
with a variance βt ∈ (0, 1) to x0 to obtain x1 to xT as

q(x1, . . . , xT |x0) =

T∏
t=1

q(xt|xt−1),
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q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI).

Suppose T is sufficiently large and the βt follows a schedule, for example linear
or cosine schedule, then the latent xT is almost isotropic Gaussian distribution
(i.e., xT ∼ N (0, I)). This means that we can sample xT ∼ N (0, I) and reverse
the process to obtain data from q(x0). Throughout this work, we set βt to follow
the cosine schedule as proposed in [17].

We estimate the reverse process by using a neural network by defining the
reverse process as

p(xt−1|xt) = N (xt−1;µθ(xt, t), Σθ(xt, t)).

As noted in [9], because noising process q is modeled from a Gaussian distribu-
tion, one can show that it is allowed to sample xt for any t directly from the
input data x0,

xt =
√
ᾱtx0 +

√
1− ᾱtϵ

q(xt|x0) = N (xt;
√
ᾱtx0, 1− ᾱtI)

where αt = 1− βt, αt =
∏t

s=0 αs and ϵ ∼ N (0, I).
By Bayes’ Theorem, we can reformulate q(xt−1 | xt, x0) in terms of β̄t and

µq(xt, x0):

q(xt−1 | xt, x0) = N (xt;µq(xt, x0), β̄tI)

where

β̄t =
1− ᾱt−1

1− ᾱt
βt, and µq(xt, x0) =

√
ᾱt−1β

1− ᾱt
x0 +

√
ᾱt(1− ᾱt−1)

1− ᾱt
xt.

There are various way to approximate µθ(xt, t) to µq(xt, x0). One can rewrite

µθ(xt, t) as µθ(xt, t) =
1√
αt
(xt − βt√

1−ᾱt
ϵθ(xt, t)). We simply train a neural net-

work ϵθ to minimize ∥ϵ − ϵθ(xt, t)∥2. We call this neural network to be the
diffusion model.

Conditional Free Guidance Very often, one would want to produce data
based on their label. In other words, we are also interested in modeling p(x | y)
where y is the label. Especially in SCA, we would like to create a diffusion model
that could obtain traces based on their leakage model. [10] first introduces the
concept of Conditional Free Guidance (CFG) by ditching the idea of using a
separate classifier to predict newly generated data and train two diffusion mod-
els. CFG trains both the unconditional diffusion model and conditional diffusion
simultaneously (in practice, this is just one model). The idea is to let the uncon-
ditional diffusion model guide the conditional model for more exploration, which
allows for more diversity. An equivalent goal when training a diffusion model is
known as the score-based formulation, where the objective is to maximize the
score ∇xt log p(xt | y). One can formulate this score as

∇xt
log p(xt | y) = γ∇xt

log p(xt | y) + (1− γ)∇xt
log p(xt)
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where the term ∇xt
log p(xt | y) corresponds to the score of the conditional

diffusion model while ∇xt
log p(xt) is the score of the unconditional diffusion

model, with γ being the hyperparameter that controls how much the conditional
diffusion model cares about the label. Throughout this paper, we consider γ to
be 0.7. We refer readers to [15] for a more holistic understanding of the diffusion
model and CFG.

4 Datasets and Neural Network Used for Experiment

In this section, we present the datasets that will be used for any of the experi-
ments and the neural network used as the diffusion model.

4.1 Datasets

Simulated traces We generate simulated traces of 24 sample points. These
traces are leaking with the value of the Advance Encryption Standard (AES)
substitution box. Suppose each trace is defined as an array, trace[0, . . . , 23], and
d ∈ {0, 1, 2, 3} to be the masking order of the simulated dataset. The sample
points that consist of the values of the masks are presented in Table 1. Here, we
denote Z = Sbox(pt ⊕ k∗) where pt is the plaintext byte and k∗ is the correct
key. Here, we fix k∗ = 0x03. Furthermore, mi are randomly generated bytes
for secret sharing. We randomly generate random byte values for the remaining
points. Then, we add a small noise sampled from the normal distribution to
every sample point with zero mean and variance of 0.01. We generated 14, 000
traces for training the diffusion models.

Masking Order d Leakage Point

0 trace[5, . . . , 10] = Z

1
trace[10, . . . , 15] = Z ⊕m1

trace[0, . . . , 5] = m1

2
trace[0, . . . , 4] = Z ⊕m1 ⊕m2

trace[9, . . . , 14] = m1, trace[18, . . . , 22] = m2

3
trace[0, . . . , 3] = Z ⊕m1 ⊕m2 ⊕m3

trace[7, . . . , 9] = m1 , trace[13, . . . , 17] = m2 , trace[18, . . . , 22] = m3

Table 1: Leakage points of the traces generated in simulated data based on the
masking order.

ChipWhisperer (CW) The CW dataset provides a standard comparison base
for the evaluation of different algorithms [18]. The dataset we consider runs the
unprotected AES-128 implementation on the CW308 Target. We will refer to
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this dataset as CW throughout this paper. This dataset targets the first byte in
the first round of the AES Sbox, Sbox(pt⊕k∗), with a fixed key k∗. The dataset
consists of 10, 000 traces.

ASCADf and ASCADr The ASCAD dataset consists of a first-order masked
AES implementation on an 8-bit AVR microcontroller (ATMega8515) [2]. We
target the third byte of the first round AES Sbox. This is a first-order masked
key byte. Two versions known as ASCADf and ASCADr are part of the ASCAD
dataset. ASCADf contains traces corresponding to the same fixed key for both
profiling and attack. ASCADr contains profiling traces generated from a random
key setting, while the attack traces are obtained from the fixed key target device.
The dataset consists of 50, 000 profiling traces and 10, 000 attack traces for both
datasets. The traces in ASCADf are composed of 700 sample points, while the
traces in ASCADr consist of 1400 sample points.

4.2 Neural Network Used: UNet

We train UNet [21] as the diffusion model. A simple illustration of an UNet is
shown in Figure 2. We consider the UNet to consist of 1-dimensional convo-
lutional layers, where each convolution layer is followed by a group normaliza-
tion [24] and the activation, SiLU [8]. In the UNet, we applied multiple skipped
connections (see Figure 2). Furthermore, the UNet also contains attention mech-
anisms to improve its performance. We refer to the weblink for the full architec-
ture used. We train the UNet together with an Exponential Moving Averages
(EMA) [12] to help to enhance the stability of the training. In order for the neu-
ral network to understand which timestamp t the noise is from, it is first applied
as a word embedding and followed by a shallow perceptron with GeLU as the
activation function. Similarly, in order for the UNet to learn the information
of the label y, we feed y into another shallow perceptron with GeLU [8] as the
activation function. The output of these two embeddings are concatenated and
fed to every convolutional layer of the UNet.

Fig. 2: UNet architecture.
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5 Known Mask Setting: Evaluation of the Generated
Traces Using CPA

In this section, we consider the scenario where we train a diffusion model under
the known mask setting. Here, we can consider this trained diffusion model
(together with the autoencoder) as a “portable oscilloscope” of the target device.
If an adversary obtains this trained “portable oscilloscope” without access to any
traces, they could essentially recover the secret key with the artificially generated
data from this trained diffusion model.

In this part, we evaluate the quality of the generated traces from such dif-
fusion model. To perform an evaluation of the quality, we conducted CPA on
both original traces and generated traces. The idea is to observe if the generated
traces can preserve the crucial leakages from the original traces. As such, while
we are performing CPA in key recovery mode, we assume that for higher-order
masking, the mask is known, and we assess if the mask leakage is also captured
in the generated traces.

5.1 Evaluation Framework

Side-channel traces could go up to thousands of sample points. The time re-
quired to sample/generate new traces increases with the number of dimension-
ality. We propose to use the framework to be applied with CPA. We note that
this framework can be used also in any non-profiling setting. This framework
was first proposed in [20] to help speed up the sampling process in generating
high-resolution images. The framework is as follows:

1. (Autoencoder phase) Train an autoencoder to encode and decode the
traces into a latent space with reduced dimension.

2. (Training phase) We first encode every attack trace into the latent space
by applying the encoder and train the diffusion model based on these attack
traces.

3. (Generative phase) Next, for a given label class, we used the trained
diffusion model to generate new latent embeddings by denoising randomly
initialized embedding.

This framework introduces an autoencoder to help decrease the dimension of the
traces into a latent space. This will help reduce the time required to sample new
traces as the diffusion model generates a new latent embedding with smaller
dimensional. We can then obtain the new traces by decoding the new latent
embeddings.

Autoencoder phase To train the autoencoder, we have to first find the ar-
chitecture of the model. To find the hyperparameters, we perform a random
search (see Appendix A.1). In order to identify the best performing parameters,
we use the trace correlation metric. In short, we compute the average corre-
lation between the actual and reconstructed traces from the autoencoder and
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Fig. 3: Framework for using diffusion model in CPA. We define Z to be the
corresponding mask data (e.g., L = Z ⊕m1 ⊕ · · · ⊕md).

keep the parameter that resulted in the highest correlation. Given traces T and
reconstructed T ′, we compute r(T, T ′) as described in Equation 1.

After the autoencoder has been trained with the best performing parameters,
we proceed with the trace generation using the diffusion model. We trained the
diffusion model with the latent embedding instead of the actual traces. Once
the model is trained with their proper labels, we can generate the new latent
embedding with their corresponding labels. In the case of higher-order masking,
for each trace, we generated corresponding mask share(s), and using this infor-
mation, with knowledge of the secret, one can compute back the corresponding
plaintext (or in the profiling setting, we can directly use the corresponding label
for training). After the latent embeddings are generated, we use the autoencoder
to decode these embeddings back to get the generated traces. If necessary, one
can also normalize the generated traces as post-processing.

Training phase We train the diffusion model conditionally with a generalized
CFG. In our setting, we consider a known mask setting where one would have
the mask value and the mask data value. We set the label given to the diffusion
to be both the mask and the mask data, namely y = (Z ⊕ m1 ⊕ · · · ⊕ md−1,
m1,. . . ,md) where d is the masking order of the dataset and Z is the hypothetical
sensitive values. We train the diffusion model according to Section 3.3. Note that
y,m1, . . . ,md are in real values when used to train the diffusion model.

Generative phase In this phase, one can choose the number of artificial
data/latent embeddings one would want to generate.

1. Firstly, we generate ng latent embeddings for each value of L.

2. Then, we randomly generate values of each mask values m1, . . . ,md and
obtain the label y = (L,m1, . . . ,md).
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3. Feed the diffusion model with randomly generated latent embeddings and
the label y to obtain denoised latent embeddings. Then, we decode these
denoised latent embeddings to obtain the artificial traces.

5.2 Experiment Results

We apply our framework on simulated traces from higher-order masking and
three datasets with real traces: CW, ASCADf and ASCADr.

Simulated Traces We performed the assessment for masking order 0, 1, 2 and
3 of the simulated traces. Since the results are similar for all the masking orders
tested, we shall only present the results on masking order 3. Considering that the
sizes of the simulated traces are small. We train the diffusion model without the
use of an autoencoder. We train the diffusion model using a batch size of 512, a
learning rate of 0.0005, and 50 epochs. We sample ng = 10 artificial data for each
value of L = Sbox(pt⊕k∗)⊕m1⊕m2⊕m3 with randomly generated m1,m2 and
m3. We get a total of 256 ∗ 10 = 2560 artificial latent embeddings and apply the
decoder to obtain the newly generated traces. We apply the CPA on these newly
generated traces. The result of the CPA for each mask is shown in Figure 4. The
correlation of the original traces is illustrated in Figure 4a while the correlation
of the generated traces is depicted in Figure 4b. We see that the generated traces
from the diffusion model obtain similar correlations on every share in comparison
with the corresponding correlations within the original traces. In fact, we see that
the correlation of mask m1 is amplified within around the sample point 11. This
shows that the diffusion model could potentially generate traces that amplify
the leakages.

(a) Original Traces. (b) Generated Traces.

Fig. 4: CPA on original and generated simulated data of order 3 (with known
shares).
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CW We then test the approach on real datasets. Our first target is the CW
dataset. Using random search, we found an autoencoder that mapped the traces
into a latent embedding of size 992. Afterward, we generate new traces using the
diffusion model. Here, we are using the ID leakage model, resulting in 256 classes.
We then generate 2,000 traces in total using the diffusion model. We perform
CPA on the original traces as well as on the generated traces, both using 2,000
traces in total. In Figure 5a, we show the CPA on original CW traces, and in
Figure 5b, we show the CPA on generated CW traces. Overall, we could see
that the generated leakage could preserve the important leakages from different
sample points. Similarly, we also see the correlation with respect to Sbox(pt⊕k∗)
is amplified in areas that are not correlated previously, showing that diffusion
models could possibly increase the intensity of the leakages in areas that are
previously not correlated.

(a) Original Traces. (b) Generated Traces.

Fig. 5: CPA on original and generated CW data.

ASCADf Next, we test the approach on the ASCADf dataset. Similar to the
previous experiment, we employ random search on the hyperparameters to find
an autoencoder. We then constructed an autoencoder that mapped the traces
into a latent embedding of size 192. Afterward, we generate new traces using
the diffusion model. Again, we are using the ID leakage model with 256 classes.
We then generate for each class 10 traces, so we have 2,560 traces in total.
We perform CPA on the original traces as well as on the generated traces, both
using 2,560 traces in total. In Figure 6a, we showed the CPA on original ASCADf
traces, and in Figure 6b, we showed the CPA on generated ASCADf traces. Here,
we can observe that the leakage of the intermediate value, as well as the mask,
can be preserved in the generated leakage. In observe that there is increase in
correlation with respect to Sbox(pt⊕ k∗)⊕ r. Especially between sample points
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(a) Original Traces. (b) Generated Traces.

Fig. 6: CPA on original and generated ASCADf data of order 1 (with known
shares).

0 to 200, this could be that the diffusion model learns the leakages there and
amplified it in those areas. We leave the study of explainability of diffusion
models to future works.

(a) Original Traces. (b) Generated Traces.

Fig. 7: CPA on original and generated ASCADr data of order 1 (with known
shares).

ASCADr Lastly, we test the approach on ASCADr dataset. Since the key is
not fixed, we cannot perform key recovery, instead, we plot the correlation on the
intermediate value and the mask for the original (Figure 7a) and the generated
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traces (Figure 7b). Here, we can observe that similar to the ASCADf case, the
generated traces can preserve the leakages from the original traces.

In general, from the experiments conducted on these three datasets, we can
clearly observe that the diffusion model can generate new traces that can preserve
and even amplified the important leakages from the original dataset in the known
mask setting.

6 Unknown Mask Setting: Profiling Attack

We will first provide the framework when using DDPM in a profiling attack,
followed by the experimental results. As mentioned earlier, we will be using the
ID leakage model throughout this section.

6.1 Framework for Profiling Setting

In this section, we explore the effectiveness of using a diffusion model in the pro-
filing attack setting. Figure 8 depicts the overall framework of using a diffusion
model in a typical profiling setting. The framework for profiling can be described
as follows:

1. Use a dimensionality reduction on the profiling traces to obtain its corre-
sponding latent embeddings.

2. Train the diffusion models with the profiling latent embeddings.
3. Generate new latent embeddings with the trained diffusion model. If neces-

sary, we can also normalize the generated traces as post-processing.
4. Use these new latent embeddings with the original latent embeddings as the

new profiling set for the profiling attack.

Fig. 8: Framework for using diffusion model in Profiling attack. Z is defined to
be the hypothesis sensitive variable (e.g., Z = Sbox(pt⊕ k∗))

We choose Principle Component Analysis (PCA) as the dimensionality re-
duction technique. For each of the datasets, we pick the dimension that managed
to recover the key with the least NTGE required. Therefore, for each dimension
ranging from 8 to 48 with an interval of 8, we apply PCA and subsequently
perform TA.
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We note here that the labels used to guide the diffusion model are the same
as the ones used in the profiling attack. This means that this framework is in an
unknown mask setting, unlike the previous framework in Section 5.1. The label
y is the hypothetical sensitive variable Z.

In order to test the efficacy of the diffusion model for profiling attacks, we
apply TAs in various settings. We use TA over the deep learning-based attack, as
the deep learning-based attack has too many factors that could affect the NTGE
attained. For example, even when using the same architecture, the weights are
randomly initialized, which could result in different performances in two different
training. Therefore, TA is a much better baseline for exploring diffusion models’
effectiveness than using deep learning-based profiling attacks.

Various Setting Tested We apply TA in three different settings. Firstly, we
perform TA on the original dataset. We denote this as Original. Next, we decrease
the dataset to balance every class to the minimum number of traces within a
class. For example, in ASCADf, the class 213 obtains the least number of traces
with 139 traces. Therefore, we downsample every class to 139 and obtain traces
of size 139 × 256 = 35584 for profiling. This is to simulate when there is a
lack of profiling traces. Then, we run TA on this downsampled dataset. We call
this setting Downsampled. As the next step, we want to determine if using the
diffusion model to generate new latent embedding would help in TA. We simply
double the traces of each class within the downsampled dataset. We denote
this scenario as Downsampled+Generated Latent. Subsequently, we train all
our diffusion models with a batch size of 200, a learning rate of 0.001, and 2000
epochs for each dataset experimented.

6.2 Experiment Results for Profiling Attacks

ASCADf We consider the use of PCA to compress the dimension of the
traces to 24 as it successfully breaks the dataset and obtains the least num-
ber of NTGE with TA. We presented the results in Table 2. Here, we observed
that Downsampled+Generated Latent slight improvement over the Downsam-
pled scenario. This shows that when the adversary has the diffusion model and
with limited traces, it could improve the attack.

Original Downsampled Downsampled+Generated Latent

NTGE 1, 194 1, 552 1, 531
Dataset Size 45, 000 35, 584 71, 168

Table 2: NTGE for ASCADf when applying TA in the various setting.
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ASCADr For ASCADr, we compress the dimension to 16. We show the per-
formance in Table 3. Similarly to the above, we see an improvement in NTGE
when adding newly generated latent from the diffusion model into the down-
sampled dataset. Since there is a reduction of approximately 200 traces in the
NTGE. This shows that the generated latent/traces with the diffusion model
could help to slightly improve the performance when the number of traces is
limited to build the template.

Original Downsampled Downsampled+Generated Latent

NTGE 3, 953 4, 742 4, 598
Dataset Size 45, 000 34, 816 69, 632

Table 3: NTGE for ASCADr when applying TA in the various setting.

ASCADf desync50: Here, we consider desynchronization within the ASCADf
dataset, denoted as ASCADf desync50. The dataset is created by considering
random desynchronization up to 50 sample points in each trace within the raw
traces before extracting the 700 sample points. For ASCADf desync50, we re-
duce the dimension of the traces to a size of 48. Table 4 shows the perfor-
mance results of the TA for ASCADf desync50. Surprisingly, we observe that
Downsampled+Generated Latent obtained a significant decrease in NTGE. The
NTGE decreases by around 4000 traces, which is almost half of the NTGE at-
tained when training with the original dataset. When adding the new latent
created by the diffusion model into the downsampled dataset, it even attained
the best NTGE out of all the three settings. This shows that the diffusion model
is effective even in desynchronized datasets.

Original Downsampled Downsampled+Generated Latent

NTGE 9, 606 9, 017 5, 730
Dataset Size 45, 000 35, 584 71, 168

Table 4: NTGE for ASCADf desync50 when applying TA in the various setting.

7 Conclusion and Future Works

In this work, we have investigated and explored the applicability of using the
DDPM approach for artificial trace generation in the context of SCA. We have
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conducted the study on two different frameworks, namely the known and un-
known mask settings. We then performed the experiments on several datasets
to create a new set of traces using the diffusion model. Our experimental re-
sults have shown that the generated traces can preserve the original leakages in
the known mask setting. We have also demonstrated that in the unknown mask
setting, the diffusion model can create artificial data that can help to improve
the profiling attack, suggesting that leakages are learned within the generated
data. In the future, we will investigate more on improving the performance of the
proposed DDPM approach; for example, one direction is to optimize or speed
up the sampling process. We would like to investigate if this can also be adapted
for portability scenarios on custom traces from different setups.
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A Appendix

A.1 Random Search Hyperparameters for Autoencoder

We conducted random search to find hyperparameters for the autoencoder. In
the following table, we listed down the range of values used for each parameters.
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Parameters Start Max Step

Number of Layers 2 6 1
Number of Batch Size 64 2048 32

Embedding Size 128 Trace length 32
Epoch Size 40 100 1

Learning Rate (10x) −5 −2 1
Node Size per Layer 32 2048 32

Table 5: Range for hyperparameter random search

A.2 Hyperparameters Used on Autoencoder

In the following tables, we reported the hyperparameters found through random
search.

Parameters CW ASCADf ASCADr

Number of Layers 3 3 3
Number of Batch Size 896 800 1536

Embedding Size 992 192 256
Epoch Size 86 97 97

Learning Rate (10x) −4 −3 −3
Size of Nodes [928, 448, 992] [704, 992, 192] [704, 992, 256]
Correlation 0.87 0.97 0.85

Table 6: Hyperparameters used for each dataset, found through random search


